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Abstract
We propose a new approach to solving bilevel optimization problems, intermediate
between solving full-system optimality conditions with a Newton-type approach, and
treating the inner problem as an implicit function. The overall idea is to solve the full-
system optimality conditions, but to precondition them to alternate between taking
steps of simple conventional methods for the inner problem, the adjoint equation, and
the outer problem.While the inner objective has to be smooth, the outer objective may
be nonsmooth subject to a prox-contractivity condition. We prove linear convergence
of the approach for combinations of gradient descent and forward-backward splitting
with exact and inexact solution of the adjoint equation. We demonstrate good perfor-
mance on learning the regularization parameter for anisotropic total variation image
denoising, and the convolution kernel for image deconvolution.

Keywords Bilevel optimization · Nonsmooth · Inverse problems · Forward-backward

1 Introduction

Two general approaches are typical for the solution of the bilevel optimization problem

min
α∈A

J (Su(α)) + R(α) with Su(α) ∈ argmin
u∈U

F(u;α) (1)

in Hilbert spaces A and U . The first, familiar from the treatment of general math-
ematical programming with equilibrium constraints (MPECs), is to write out the
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Karush–Kuhn–Tucker conditions for the whole problem in a suitable form, and to
apply a Newton-type method or other nonlinear equation solver to them [1–5].

The second approach, common in the application of (1) to inverse problems and
imaging [6–12], treats the solution mapping Su as an implicit function. Thus it is
necessary to (i) on each outer iteration k solve the inner problem minu F(u;αk) near-
exactly using an optimization method of choice; (ii) solve an adjoint equation to
calculate the gradient of the solution mapping; and (iii) use another optimization
method of choice on the outer problem minα J (Su(α)) with the knowledge of Su(αk)

and ∇Su(αk). The inner problem is therefore generally assumed to have a unique
solution, and the solution map to be differentiable. An algorithm for nonsmooth inner
problems has been developed in [13], while [14] rely on proving directional Bouligand
differentiability for otherwise nonsmooth problems.

The challenge of the first “whole-problem” approach is to scale it to large problems,
typically involving the inversion of large matrices. The difficulty with the second
“implicit function” approach is that the inner problem needs to be solved several times,
which can be expensive. Solving the adjoint equation also requires matrix inversion.
The variant in [15] avoids this through derivative-free methods for the outer problem.
It also solves the inner problem to a low but controlled accuracy.

In this paper, by preconditioning the implicit-formfirst-order optimality conditions,
we develop an intermediate approach more efficient than the aforementioned, as we
demonstrate in the numerical experiments of Sect. 4. It can be summarized as (i) take
only one step of an optimization method on the inner problem, (ii) perform a cheap
operation to advance towards the solution of the adjoint equation, and, finally, (iii)
using this approximate information, take one step of an optimization method for the
outer problem. Repeat.

The preconditioning, which we introduce in detail in Sect. 2, is based on insight
from the derivation of the primal-dual proximal splitting of [16] as a preconditioned
proximal point method [17–19]. We write the optimality conditions for (1) as the
inclusion 0 ∈ H(x) for a set-valued H , where x = (u, p, α) for an adjoint variable
p. The basic proximal point method then iteratively solves xk+1 from

0 ∈ H(xk+1) + (xk+1 − xk).

This can be as expensive as solving the original optimality condition. The idea then
is to introduce a preconditioning operator M that decouples the components of x—in
our case u, p and α—such that each component can be solved in succession from

0 ∈ H(xk+1) + M(xk+1 − xk).

Gradient steps can be handled through nonlinear preconditioning [18, 19], as we will
see in Sect. 2 when we develop the approach in detail along with two more specific
algorithms, the FEFB (Forward-Exact-Forward-Backward) and the FIFB (Forward-
Inexact-Forward-Backward). In Sect. 3 we prove their local linear convergence under
a second-order growth condition on the composed objective J ◦ Su , and other more
technical conditions. The proof is based on the “testing” approach developed in [18]
and also employed extensively in [19, 20]. Finally, we evaluate the numerical perfor-
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mance of the proposed schemes on imaging applications in Sect. 4, specifically the
learning of a regularization parameter for total variation denoising, and the convolution
kernel for deblurring. Since the purpose of these experiments is a simple performance
comparison between different algorithms, instead of real applications, we only use a
single training sample of various dimensions, as explained in Sect. 4.

Intermediate approaches, some reminiscent of ours, have recently also been devel-
oped in themachine learning community.Our approach, however, allows a non-smooth
function R in the outer problem (1). Moreover, to our knowledge, our work is the first
to show linear convergence for a fully “single-loop” algorithm. To be more precise,
the STABLE [21], TTSA [22], FLSA [23], MRBO, VRBO [24], and SABA [25] are
“single-loop” algorithms such as ours, taking only a single step towards the solution
of the inner problem on each outer iteration. The STABLE requires solving the adjoint
equation exactly, as does our first approach, the FEFB. The others use a Neumann
series approximation for the adjoint equation. Our second approach, the FIFB, takes
a simple step reminiscent of gradient descent for the adjoint equation. The TSSA and
STABLE obtain sublinear convergence of the outer iterates {αk}k∈N assuming strong
convexity (second-order growth) of both the inner and outer objective. For the SABA
similar linear convergence is claimed with the outer strong convexity replaced by a
Polyak-Łojasiewicz inequality. Without either of those assumptions, the theoretical
results on the aforementioned methods from the literature are much weaker, and gen-
erally only show various forms of “stall” of the iterates at a sublinear rate, or the
ergodic convergence of the gradient ∇α[J ◦ Su](αk) of the composed objective to
zero. Such modes of convergence say very little about the convergence of function
values to optimum or the iterates to a solution.

In the context of not fully single-loop algorithms, the AID, ITD [26], AccBio [27],
and ABA [28] take a fixed (small) number of inner iterations for each outer iteration.
The AID and ITD only sublinear convergence of the composed gradient is claimed.
For the ABA and AccBio linear convergence of outer function values is claimed under
strong convexity of both the inner and outer objectives.

Fundamentals and applications

Fundamentals ofMPECs and bilevel optimization are treated in the books [29–32]. An
extensive literature review up to 2018 can be found in [33], and recent developments
in [34]. Optimality conditions for bilevel problems, both necessary and sufficient, are
developed in, e.g., [35–39]. A more limited type of “bilevel” problems only constrains
α to lie in the set of minimisers of another problem. Algorithms for such problems are
treated in [40, 41].

Bilevel optimization has been used for learning regularization parameters and for-
ward operators for inverse imaging problems. With total variation regularization in
the inner problem, the parameter learning problem in its most basic form reads [7]

min
α

1

2
‖Su(α) − b‖2 + R(α) with Su(α) = argmin

u∈U
1

2
‖Aαu − z‖2 + α1‖∇u‖1.
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This problem finds the best possible α for reconstructing the “ground truth” image b
from the measurement data z, which may be noisy and possibly transformed and only
partially known through the forward operator Aα , mapping images to measurements.
To generalize to multiple images, the outer problem would sum over them and cor-
responding inner problems [12]. Multi-parameter regularization is discussed in [42],
and natural conditions for α > 0 in [43].1 In other works, the forward operator Aα

is learned for blind image deblurring [44] or undersampling in magnetic resonance
imaging [11]. In [8] regularization kernels are learned, while [14, 45] study the learn-
ing of optimal discretisation schemes. To circumvent the non-differentiability of Su ,
[46] replace the inner problem with a fixed number of iterations of an algorithm. Their
approach has connections to the learning of deep neural networks.

Bilevel problems can also be seen as leader–follower or Stackelberg games: the
outer problem or agent leads by choosing α, and the inner agent reacts with the best
possible u for that α. Multiple-agent Nash equilibria may also be modeled as bilevel
problems. Both types of games can be applied to financial markets and resource use
planning; we refer to the the aforementioned books [29–32] for specific examples.

Notation and basic concepts

We write L(X; Y ) for the space of bounded linear operators between the normed
spaces X and Y and Id for the identity operator. Generally X will be Hilbert, so we
can identify it with the dual X∗.

ForG ∈ C1(X), we writeG ′(x) ∈ X∗ for the Fréchet derivative at x , and∇G(x) ∈
X for its Riesz presentation, i.e., the gradient. For E ∈ C1(X; Y ), since E ′(x) ∈
L(X; Y ), we use the Hilbert adjoint to define ∇E(x) := G ′(x)∗ ∈ L(Y ; X). Then
the Hessian ∇2G(x) := ∇[∇G](x) ∈ L(X; X). When necessary we indicate the
differentiation variable with a subscript, e.g., ∇u F(u, α). For convex R : X → R, we
write dom R for the effective domain and ∂R(x) for the subdifferential at x .With slight
abuse of notation, we identify ∂R(x)with the set of Riesz presentations of its elements.
We define the proximal operator as proxR(x) := argminz

1
2‖z − x‖2 + R(z) =

(Id+∂R)−1(x).
We write 〈x, y〉 for an inner product, and B(x, r) for a closed ball in a relevant

norm ‖ · ‖. For self-adjoint positive semi-definite M ∈ L(X; X) we write ‖x‖M :=√〈x, x〉M := √〈Mx, x〉. Pythagoras’ or three-point identity then states

〈x − y, x − z〉M = 1

2
‖x − y‖2M − 1

2
‖y − z‖2M + 1

2
‖x − z‖2M (2)

for all x, y, z ∈ X . We extensively use Young’s inequality

〈x, y〉 ≤ a

2
‖x‖2 + 1

2a
‖y‖2 for all x, y ∈ X , a > 0.

1 An error in [43, Lemma 10] requires some conditions therein to be taken “in the limit” as t ↘ 0.
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We sometimes apply operations on x ∈ X to all elements of a set A ⊂ X , writing
〈x + A, z〉 := {〈x + a, z〉 | a ∈ A}, and for B ⊂ R, writing B ≥ c if b ≥ c for all
b ∈ B.

2 Proposedmethods

We now present our proposed methods for (1). They are based on taking a single
gradient descent step for the inner problem, and using forward-backward splitting for
the outer problem. The two methods differ on how an “adjoint equation” is handled.
We present the algorithms and assumptions required to prove their convergence in
Sects. 2.2 and 2.3 after deriving optimality conditions and the adjoint equation in
Sect. 2.1. We prove convergence in Sect. 3.

2.1 Optimality conditions

Supposeu �→ F(u;α) ∈ C2(U ) is proper, coercive, andweakly lower semicontinuous
for each outer variable α ∈ dom R ⊂ A . Then the direct method of the calculus of
variations guarantees the inner problem minu F(u;α) to have a solution. If, further,
u �→ F(u;α) is strictly convex, the solution is unique so that the solution mapping
Su from (1) is uniquely determined.

Suppose further that F,∇F and Su are Fréchet differentiable. Writing T (α) :=
(Su(α), α), Fermat’s principle and Su(α̃) ∈ argminu F(u; α̃) then show that

[∇u F ◦ T ](α) = ∇u F(Su(α);α) = 0 (3)

for α near α̃. Therefore, the chain rule for Fréchet differentiable functions yields

0 = ∇α[∇u F ◦ T ](α) = ∇αSu(α)∇2
u F(T (α)) + ∇αu F(T (α)).

That is, p = ∇αSu(α) solves for u = Su(α) the adjoint equation

0 = p∇2
u F(u, α) + ∇αu F(u, α). (4)

We introduce the corresponding solution mapping for the adjoint variable p,

Sp(u, α) := −∇αu F(u;α)
(
∇2
u F(u;α)

)−1
. (5)

We will later make assumptions that ensure that Sp is well-defined.
Since Su : A → U , the Fréchet derivative S′

u(α) ∈ L(A ;U ) and the Hilbert
adjoint ∇αSu(α) ∈ L(U ;A ) for all α. Consequently p ∈ L(U ;A ), but we will need
p to lie in an inner product space. Assuming A to be a separable Hilbert space, we
introduce such structure

P = (L(U ;A ), 〈〈 · , · 〉〉) (6a)
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by using a countable orthonormal basis {ϕi }i∈I of A to define the inner product

〈〈p1, p2〉〉 :=
∑
i∈I

〈p∗
1ϕi , p

∗
2ϕi 〉 =

∑
i∈I

〈ϕi , p1 p∗
2ϕi 〉. (p1, p2 ∈ L(U ;A )). (6b)

We briefly study this inner product and the induced norm ‖| · ‖| in Sect. 2.
By the sum rule for Clarke subdifferentials (denoted ∂C ) and their compatibility

with convex subdifferentials and Fréchet differentiable functions [47], we obtain

∂C (J ◦ Su + R)(̂α) = ∇α(J ◦ Su)(̂α) + ∂R(̂α) = ∇αSu (̂α)∇u J (Su (̂α)) + ∂R(̂α).

The Fermat principle for Clarke subdifferentials then furnishes the necessary optimal-
ity condition

0 ∈ ∇α(J ◦ Su)(̂α) + ∂R(̂α) = ∇αSu (̂α)∇u J (Su (̂α)) + ∂R(̂α). (7)

We combine (3), (4) and (7) as the inclusion

0 ∈ H (̂u, p̂, α̂) (8)

with

H(u, p, α) :=
⎛
⎝

∇u F(u;α)

p∇2
u F(u;α) + ∇αu F(u;α)

p∇u J (u) + ∂R(α)

⎞
⎠ (9)

This is the optimality condition that our proposed methods, presented in Sects. 2.2 and
2.3, attempt to satisfy. We generally abbreviate

x = (u, p, α), x̂ = (̂u, p̂, α̂), etc.

2.2 Algorithm: forward-exact-forward-backward

Our first strategy for solving (8) takes just a single gradient descent step for the inner
problem, solves the adjoint equation exactly, and then takes a forward-backward step
for the outer problem. We call this Algorithm 2.1 the FEFB (forward-exact-forward-
backward).

Using H defined in (9), Algorithm 2.1 can be written implicitly as solving

0 ∈ Hk+1(x
k+1) + M(xk+1 − xk) (10)

for xk+1 = (uk+1, pk+1, αk+1), where, with x = (u, p, α),

Hk+1(x) := H(x) +
( ∇u F(uk ;αk )−∇u F(u;α)

p∇2
u F(u;αk )+∇αu F(u;αk )−(p∇2

u F(u;α)+∇αu F(u;α)
)

0

)
, (11a)
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Algorithm 2.1 Forward-exact-forward-backward (FEFB) method
Require: Functions R, J , F as in Assumption 2.2. Step length parameters τ, σ > 0.
1: Pick an initial iterate (u0, α0) ∈ U × A .

2: for k ∈ N do
3: uk+1 := uk − τ∇u F(uk ; αk ) � inner gradient step

4: pk+1 := −∇αu F(uk+1; αk )
(
∇2
u F(uk+1;αk )

)−1 � adjoint solution

5: αk+1 := proxσ R

(
αk − σ(pk+1∇u J (uk+1))

)
� outer forward-backward step

6: end for

and the preconditioning operator M ∈ L(U × P × A ;U × P × A ) is

M := diag(τ−1 Id, 0, σ−1 Id). (11b)

The “nonlinear preconditioning” applied to H to construct Hk+1 shifts iterate indices
such that a forward step is performed instead of a proximal step; compare [18, 19].

We next state essential structural, initialisations, and step length assumptions. We
start with a contractivity condition needed for the proximal step with respect to R.

Assumption 2.1 Let R : A → R be convex, proper, and lower semicontinuous. We
say that R is locally prox-σ - contractive at α̂ ∈ A for q ∈ A (within A ⊂ dom R)
if there exist CR > 0 and a neighborhood A ⊂ dom R of α̂ such that, for all α ∈ A,

‖Dσ R(α) − Dσ R (̂α)‖ ≤ σCR‖α − α̂‖ for Dσ R(α) := proxσ R(α − σq) − α.

If ρ > 0 can be arbitrary with the same factor CR , we drop the word “locally”.

We verify Assumption 2.1 for some common cases in Sect. 1. When applying the
assumption to to α̂ satisfying (8), we will take q = − p̂∇u J (̂u) ∈ ∂R(̂α). Then
Dσ R (̂α) = 0 by standard properties of proximal mappings. The results for nonsmooth
functions in Sect. 1 in that case forbid strict complementarity. In particular, for R =
β‖ · ‖1 + δ[0,∞)n we need to have q ∈ (β, . . . , β), and for R = δC for a convex
set C , we need to have q = 0. Intuitively, this restriction serves to forbid the finite
identification property [48] of proximal-type methods, as {αn} cannot converge too
fast in our techniques for the stability of the inner problem and adjoint with respect to
perturbations of α.

We now come to our main assumption for the FEFB. It collects conditions related
to step lengths, initialization, and the problem functions F , J , and R. For a constant
c > 0 to be determined by the assumption, we introduce the testing operator

Z := diag(ϕu Id, Id, Id). (12)

The idea, introduced in [18] and further explained in [19], is to test the algorithm-
defining inclusion (10) with the linear functional 〈Z · , xk+1 − x̂〉 to obtain a descent
estimate with respect to the ZM-norm. The operator Z encodes component-specific
scalings and convergence rates, althoughwe do not exploit the latter in thismanuscript.
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Assumption 2.2 We assume that U is a Hilbert space, A a separable Hilbert space,
and treat the adjoint variable p ∈ L(U ;A ) as an element of the inner product space
P defined in (6a). Let R : A → R and J : U → R be convex, proper, and lower
semicontinuous, and assume the same from F( · , α) ∈ C2(U ) for all α ∈ dom R.

Pick (̂u, p̂, α̂) ∈ H−1(0) and let {(um, pm, αm)}m∈N be generated by Algorithm 2.1
for a given initial iterate (u0, p0, α0) ∈ U × P × dom R. For a given r , ru > 0 we
suppose that

(i) The relative initialization bound ‖u1 − Su(α0)‖ ≤ Cu‖α0 − α̂‖ holds for some
Cu > 0.

(ii) There exists in B (̂α, 2r)∩dom R a continuously Fréchet-differentiable and LSu -
Lipschitz inner problem solution mapping Su : α �→ Su(α) ∈ argmin F( · ;α).

(iii) F (̂u; · ) is Lipschitz continuously differentiable with factor L∇F ,̂u > 0, and
γF · Id ≤ ∇2

u F(u;α) ≤ LF · Id for all (u, α) ∈ B (̂u, ru) × (B (̂α, r) ∩ dom R)

for some γF , LF > 0. Moreover, (u, α) �→ ∇2
u F(u;α) and (u, α) �→

∇αu F(u;α) ∈ P are Lipschitz in B (̂u, ru) × (B (̂α, r) ∩ dom R) with fac-
tors L∇2F and L∇αu F , where we equip U × A with the norm (u, α) �→
‖u‖U + ‖α‖A .

(iv) The inner step length τ ∈ (0, 2κ/LF ] for some κ ∈ (0, 1).
(v) The outer fitness function J is Lipschitz continuously differentiable with factor

L∇ J , and γα · Id ≤ ∇2
α(J ◦ Su) ≤ Lα · Id in B (̂α, r) ∩ dom R for some

γα, Lα > 0. Moreover, R is locally prox-σ -contractive at α̂ for p̂∇u J (̂u)within
B (̂α, r) ∩ dom R for some CR ≥ 0.

(vi) The constants ϕu,Cu > 0 satisfy

γF (L∇ J Np + LSp N∇ J )Cu + L2∇F ,̂u

(1 − κ)
ϕu < γFγα,

where

N∇αu F := max
u∈B (̂u,ru),

α∈B (̂α,2r)∩dom R

‖|∇αu F(u, α)‖|,

LSp := γ −2
F L∇2F N∇αu F + γ −1

F L∇αu F ,

N∇ J := max
α∈B (̂α,r)∩dom R

‖∇u J (Su(α))‖,
N∇Su := max

α∈B (̂α,r)∩dom R
‖|∇αSu(α)‖|, and

Np := N∇Su + Cr with C = LSpCu .

(vii) The outer step length σ fulfills

0 < σ ≤ (CF − 1)Cu

(LSu + CFCu)Cα
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where
{
CF := √

1 + 2τγF (1 − κ), and

Cα := (NpL∇ J + N∇ J LSp )Cu + Lα + CR .

(viii) The initial iterates u0 and α0 are such that the distance-to-solution

r0 :=
√

σϕuτ−1‖u0 − û‖2 + ‖α0 − α̂‖2 = √
σ‖x0 − x̂‖ZM

satisfies

r0 ≤ r and r0 max{2LSu ,

√
σ−1ϕ−1

u τ(1 + τ LF ) + τ L∇F ,̂u} ≤ ru .

Remark 2.3 (Interpretation) Part (i) of Assumption 2.2 ensures that the initial inner
problem iterate is good relative to the outer problem iterate. If u1 solves the inner
problem for α0, (i) holds for any Cu > 0. Therefore, (i) can always be satisfied by
solving the inner problem for α0 to high accuracy. This condition does not require α0

to be close to a solution α̂ of the entire problem.
Part (ii) ensures that the inner problem solution map exists and is well-behaved; we

discuss it more in the next Remark 2.4.
Parts (iii) and (v) are second order growth and boundedness conditions, standard in

smooth optimization. The nonsmooth R is handled through the prox-σ -contractivity
assumption. If Su is twice Fréchet differentiable, the product and the chain rules
establish

〈h,∇2
α(J ◦ Su)(α)h〉 = 〈S′

u(α)h,∇2
u J (Su(α))S′(α)h〉

+ 〈∇u J (Su(α)), S′′
u (α)(h, h)〉 (h ∈ A ).

If R = 0, first-order optimality conditions establish ∇u J (Su (̂α)) = 0. Therefore, if,
further, J is strongly convex and S′

u (̂α) is invertible, γ · Id ≤ ∇2
α(J ◦ Su)(̂α) for some

γ > 0. Then additional continuity assumptions establish the positivity required in (v)
in a neighbourhood of α̂. It is also possible to further develop the condition to not
depend on the solution mapping at all.

Dependent on R, (v)may restrict the outer step length parameter σ . Part (iii) ensures
that u �→ ∇2

u F(u;α) is invertible and Sp is well-defined. We will see in Lemma 3.3
that the radius ru is sufficiently large that α ∈ B (̂α, r) implies Su(α) ∈ B (̂u, ru). Part
(v) implies that α �→ ∇α(J ◦ Su)(α) is Lipschitz in B (̂α, r).

Part (iv) is a standard step length condition for the inner problemwhile (vii) is a step
length condition for the outer problem. It depends on several constants defined in the
more technical part (vi). We can always satisfy the inequality in (vi) by good relative
initialisation (small Cu > 0), as discussed above, and taking the testing parameter
ϕu small. According to the local initialization condition (viii), the latter can be done
if the initialial iterates are close to a solution (̂u, α̂) of the entire problem, or if ru > 0
can be be taken arbitrarily large. If we can take both r > 0 and ru > 0 arbitrarily
large, we obtain global convergence.
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Remark 2.4 (Existence and differentiability of the solution map) Suppose F is twice
continuously differentiable in both variables, and that γF · Id ≤ ∇2

u F(u;α) for all
u ∈ B (̂u, ru) and α ∈ B (̂α, 2r)∩ dom R for some γF > 0. Then the implicit function
theorem shows the existence of a unique continuously differentiable Su in a neighbor-
hood of any α ∈ B (̂α, r) ∩ dom R. Such an Su is also Lipschitz in a neighborhood of
α; see, e.g., [19, Lemma 2.11]. If A is finite-dimensional, a compactness argument
gluing together the neighborhoods then proves Assumption 2.2 (ii).

2.3 Algorithm: forward-inexact-forward-backward

Algorithm 2.2 Forward-inexact-forward-backward (FIFB) method
Require: Functions R, J , F as in Assumption 2.5. Step length parameters τ, σ, θ > 0.
1: Pick an initial iterate (u0, p0, α0) ∈ U × P × A .

2: for k ∈ N do
3: uk+1 := uk − τ∇u F(uk ; αk ) � inner gradient step

4: pk+1 := pk − θ
(
pk∇2

u F(uk+1; αk ) + ∇αu F(uk+1; αk )
)

� adjoint step

5: αk+1 := proxσ R

(
αk − σ(pk+1∇u J (uk+1))

)
� outer forward-backward step

6: end for

Our second strategy for solving (8) modifies the first approach to solve the adjoint
variable inexactly, so that no costly matrix inversions are required. Instead we perform
an update reminiscent of a gradient step. This approach, which we call the FIFB
(forward-inexact-forward-backward) reads as Algorithm 2.2 and has the implicit form

⎧⎪⎨
⎪⎩

0 = τ∇u F(uk;αk) + uk+1 − uk

0 = θ
(
pk∇2

u F(uk+1;αk) + ∇αu F(uk+1;αk)
)+ pk+1 − pk

0 ∈ σ(∂R(αk+1) + pk+1∇u J (uk+1)) + αk+1 − αk .

(13)

The implicit form can also be written as (10) with

Hk+1(x) := H(x) +
( ∇u F(uk ;αk )−∇u F(u;α)

pk∇2
u F(u;αk )+∇αu F(u;αk )−(p∇2

u F(u;α)+∇αu F(u;α)
)

0

)
, (14a)

and the preconditioning operator M ∈ L(U × P × A ;U × P × A ),

M := diag(τ−1 Id, θ−1 Id, σ−1 Id). (14b)

For the testing operator Z we use the structure

Z := diag(ϕu Id, ϕp Id, Id). (15)

with the constants ϕu, ϕp > 0 determined in the following assumption. It is the FIFB
counterpart ofAssumption2.2 for theFEFB, collecting essential structural, step length,
and initialization assumptions.
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Assumption 2.5 We assume that U is a Hilbert space, A a separable Hilbert space,
and treat the adjoint variable p ∈ L(U ;A ) as an element of the inner product space
P defined in (6a). Let R : A → R and J : U → R be convex, proper, and
lower semicontinuous, and assume the same from F( · , α) for all α ∈ dom R. Pick
(̂u, p̂, α̂) ∈ H−1(0) and let {(um, pm, αm)}m∈N be generated by Algorithm 2.2 for a
given initial iterate (u0, p0, α0) ∈ U × P × dom R. For given r , ru > 0 we suppose
that

(i) The relative initialization bounds ‖u1 − Su(α0)‖ ≤ Cu‖α0 − α̂‖ and ‖|p1 −
∇αSu(α0)‖| ≤ Cp‖α0 − α̂‖ hold with some constants Cu > 0 and Cp > 0.

(ii) There exists in B (̂α, 2r) ∩ dom R a continuously Fréchet-differentiable
and LSu -Lipschitz inner problem solution mapping Su : α �→ Su(α) ∈
argmin F( · ;α).

(iii) F (̂u; · ) is Lipschitz continuously differentiable with factor L∇F ,̂u > 0, and
γF · Id ≤ ∇2

u F(u;α) ≤ LF · Id for u ∈ B (̂u, ru) and α ∈ B (̂α, 2r) ∩ dom R.

Moreover, (u, α) �→ ∇2
u F(u;α) and (u, α) �→ ∇αu F(u;α) ∈ P are Lipschitz

in B (̂u, ru)×(B (̂α, r)∩dom R)with factors L∇2F and L∇αu F , wherewe equip
U × A with the norm (u, α) �→ ‖u‖U + ‖α‖A .

(iv) The inner step length τ ∈ (0, 2κ/LF ] for some κ ∈ (0, 1) whereas the adjoint
step length θ ∈ (0, 1/LF ).

(v) The outer fitness function J is Lipschitz continuously differentiablewith factor
L∇ J , and γα · Id ≤ ∇2

α(J ◦ Su) ≤ Lα · Id in B (̂α, r) ∩ dom R for some
γα, Lα > 0. Moreover, R is locally prox-σ -contractive at α̂ for p̂∇u J (̂u)

within B (̂α, r) ∩ dom R for some CR ≥ 0.
(vi) The constants ϕu, ϕp,Cu > 0 satisfy

ϕp ≤ ϕu
γ 2
F (1 − κ)

2LF LSp

and

LF LSpϕp +
√

(LF LSpϕp)2 + γ 2
F (L∇ J Np + LSp N∇ J )2C2

u

+ L2∇F ,̂u

(1 − κ)
ϕu < γFγα,

where

N∇αu F := max
u∈B (̂u,ru),

α∈B (̂α,2r)∩dom R

‖|∇αu F(u, α)‖|,

LSp := γ −2
F L∇2F N∇αu F + γ −1

F L∇αu F ,

N∇ J := max
α∈B (̂α,r)∩dom R

‖∇u J (Su(α))‖,
N∇Su := max

α∈B (̂α,r)∩dom R
‖|∇αSu(α)‖|, and

Np := N∇Su + Cr with C = LSpCu .
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582 E. Suonperä, T. Valkonen

(vii) The outer step length σ satisfies

0 < σ ≤ 1
Cα

min
{

(CF−1)Cu
LSu+CFCu

,
(CF,S−1)Cp−(1+CF,S)LSpCu

(1+LSu )LSp+CF,SCp−(1+CF,S)LSpCu

}

with

CF := √
1 + 2τγF (1 − κ), CF,S := √

(1 + θγF )/(1 − θγF ) and

Cα := NpL∇ JCu + N∇ J max{Cp, LSpCu} + Lα + CR .

(viii) The initial iterate (u0, p0, α0) is such that the distance-to-solution

r0 :=
√

σϕu

τ
‖u0 − û‖2 + σϕp

θ
‖|p0 − p̂‖|2 + ‖α0 − α̂‖2 = √

σ‖x0 − x̂‖ZM

satisfies

r0 ≤ r and r0 max{2(Cu + LSu ),
√

τ
σϕu

(1 + τ LF ) + τ L∇F ,̂u} ≤ ru .

Remark 2.6 (Interpretation) The interpretation of Assumption 2.2 in Remark 2.4 also
applies to Assumption 2.5. We stress that to satisfy the inequality in (vi), it suffices
to ensure small Cu > 0 by good relative initialization of u and p with respect to α,
and choosing the testing parameters ϕu, ϕp > 0 small enough. According to (viii),
the latter can be done by initializing close to a solution, or if the radii ru > 0 is large.

3 Convergence analysis

We now prove the convergence of the FEFB (Algorithm 2.1) and the FIFB (Algo-
rithm 2.2) in the respective Sects. 3.2 and 3.3. Before this we start with common
results. Our proofs are self-contained, but follow on the “testing” approach of [18]
(see also [19]). The main idea is to prove a monotonicity-type estimate for the oper-
ator Hk+1 occurring in the implicit forms (10) and (14) of the algorithms, and then
use the three-point identity (2) with respect to ZM-norms and inner products. This
yields an inequality that readily yields an estimate from which convergence rates
can be observed. The main results for the FEFB and the FIFB and in the respective
Theorems 3.16 and 3.21.

Throughout, we assume that either Assumption 2.2 (FEFB) or 2.5 (FIFB) holds, and
tacitly use the constants from the relevant one. We also tacitly take it that αk ∈ dom R
for all k ∈ N, as this is guaranteed by the assumptions for k = 0, and by the proximal
step in the algorithms for k ≥ 1.

3.1 General results

Our main goal here is to bound the error in the inner and adjoint iterates uk and
pk in terms of the outer iterates αk . We also derive bounds on the outer steps, and
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local monotonicity estimates. We first show that the solution mapping for the adjoint
equation (4) is Lipschitz.

Lemma 3.1 Suppose (u, α) �→ ∇2
u F(u;α) and (u, α) �→ ∇αu F(u;α) ∈ P are Lip-

schitz continuous with the respective constants L∇2F and L∇αu F in some bounded
closed set Vu × Vα. Also assume that γF · Id ≤ ∇2

u F(u;α) and ‖|∇αu F‖| ≤ N∇αu F

in Vu × Vα for some γF , N∇αu > 0. Then Sp is Lipschitz continuous in Vu × Vα, i.e.

‖|Sp(u1, α1) − Sp(u2, α2)‖| ≤ LSp (‖u1 − u2‖ + ‖α1 − α2‖)

for u1, u2 ∈ Vu and α1, α2 ∈ Vα with factor LSp := γ −2
F L∇2F N∇αu F + γ −1

F L∇αu F .

Proof Using the definition of Sp in (5), we rearrange

Sp(u1, α1) − Sp(u2, α2) = (∇αu F(u1;α1) − ∇αu F(u2;α2)) (∇2
u F(u1;α1))

−1

+ ∇αu F(u2;α2)
(
(∇2

u F(u1;α1))
−1 − (∇2

u F(u2;α2))
−1
)

.

Thus the triangle inequality and the operator norm inequality Theorem 6.1 (ii) give

‖|Sp(u1, α1) − Sp(u2, α2)‖|
≤ ‖(∇2

u F(u1;α1))
−1‖‖|∇αu F(u1;α1) − ∇αu F(u2;α2)‖|

+ ‖|∇αu F(u2;α2)‖|‖(∇2
u F(u1;α1))

−1 − (∇2
u F(u2;α2))

−1‖ =: E1 + E2. (16)

The assumption γF · Id ≤ ∇2
u F(u;α) implies ‖(∇2

u F(u;α))−1‖ ≤ γ −1
F . Therefore,

also using the Lipschitz continuity of (u, α) �→ ∇αu F(u;α) in Vu × Vα, we get

E1 ≤ γ −1
F L∇αu F (‖u1 − u2‖ + ‖α1 − α2‖) . (17)

Towards estimating the second term on the right hand side of (16), we observe that

A−1 − B−1 = A−1BB−1 − A−1AB−1 = A−1(A − B)B−1

for any invertible linear operators A, B. Then we use ‖|∇αu F‖| ≤ N∇αu F and the
Lipschitz continuity of ∇2

u F(u;α) to obtain

E2 = ‖∇2
u F(u1;α1)

−1(∇2
u F(u1;α1) − ∇2

u F(u2;α2))∇2
u F(u2;α2)

−1‖
· ‖|∇αu F(u2;α2)‖|

≤ N∇αu F‖∇2
u F(u1;α1)

−1‖‖∇2
u F(u2;α2)

−1‖‖(∇2
u F(u1;α1) − ∇2

u F(u2;α2))‖
≤ γ −2

F L∇2F N∇αu F (‖u1 − u2‖ + ‖α1 − α2‖) .

Inserting this inequality and (17) into (16) establishes the claim. ��
We now prove two simple step length bounds.

123



584 E. Suonperä, T. Valkonen

Lemma 3.2 Let Assumption 2.2 or 2.5 hold. Then σ < 1/Lα and 1 < CF <√
1 + γF/LF .

Proof We have CF > 1 since κ < 1 forces 2τγF (1 − κ) > 0. Assumption 2.2 (iv)
or 2.5 (iv) implies 2τγF (1 − κ) < 4γF (κ − κ2)/LF ≤ γF/LF . Therefore CF <√
1 + γF/LF . For CF ,Cu, LSu > 0 it holds CFCu − Cu < LSu + CFCu .

Hence Assumption 2.2 (vii) or 2.5 (vii) gives

σ ≤ (CF − 1)Cu

Cα(LSu + CFCu)
<

1

Cα

= 1

Cu(LSp N∇ J + Np) + Lα + CR
<

1

Lα

.

��
The next lemma explains the latter inequality for r0 in Assumption 2.2 (viii) and

2.5 (viii). For un and αn close enough to the respective solutions, it bounds the next
iterate un+1 and the true inner problem solution Su(αn) for αn to the ru-neighborhood
of û.

Lemma 3.3 Suppose Assumption 2.2 or 2.5 hold and αn ∈ B (̂α, r0), as well as un ∈
B (̂u,

√
σ−1ϕ−1

u τr0). Then un+1 ∈ B (̂u, ru) and Su(αn) ∈ B (̂u, ru).

Proof The inner gradient step of Algorithm 2.1 or 2.2 with un ∈ B (̂u,
√

τ
σϕu

r0) give

‖un+1 − û‖ ≤ ‖un+1 − un‖ + ‖un − û‖ ≤ τ‖∇u F(un;αn)‖ +
√

σ−1ϕ−1
u τr0.

Using ∇u F (̂u; α̂) = 0, αn ∈ B (̂α, r0), and the Lipschitz continuity of F (̂u; · ) and
F( · ;αn) from Assumption 2.2 (iii) or 2.5 (iii) we continue to estimate, as required

‖un+1 − û‖ ≤ τ‖∇u F(un;αn) − ∇u F (̂u;αn) + ∇u F (̂u;αn) − ∇u F (̂u; α̂)‖
+
√

σ−1ϕ−1
u τr0

≤ τ(LF‖un − û‖ + L∇F ,̂u‖αn − α̂‖) +
√

σ−1ϕ−1
u τr0

≤ (

√
σ−1ϕ−1

u τ(1 + τ LF ) + τ L∇F ,̂u)r0 ≤ ru .

Next, the Lipschitz continuity of Su in B (̂α, 2r) from Assumption 2.2 (ii) or 2.5 (ii)
with αn ∈ B (̂α, r0) and r0 ≤ r from Assumption 2.2 (viii) or 2.5 (viii) imply

‖Su(αn) − û‖ = ‖Su(αn) − Su (̂α)‖ ≤ LSu‖αn − α̂‖ ≤ LSur0 ≤ ru . ��

We now introduce a working condition that we later prove. It guarantees that the
Lipschitz andHessian properties ofAssumption 2.2 (ii), (iii) and (v) orAssumption 2.5
(ii), (iii) and (v) hold at iterates.
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Assumption 3.4 (Iterate locality) Let r0 ≤ r and Np be defined in either Assump-
tion 2.2 or 2.5. Then this assumption holds for a given n ∈ N if

αn ∈ B (̂α, r0), un ∈ B (̂u,

√
σ−1ϕ−1

u τr0), and ‖|pn+1‖| ≤ Np.

Indeed, the next two lemmas show that if Assumption 3.4 holds for n = k along
with some further conditions, then it holds for n = k + 1.

Lemma 3.5 Suppose either Assumption 2.2 or 2.5 holds. Let n ∈ N and suppose

‖|pn+1 − ∇αSu(α
n)‖| ≤ C‖αn − α̂‖ (18)

with αn ∈ B (̂α, r). Then ‖|pn+1‖| ≤ Np.

Proof We estimate using (18) and the definitions of the relevant constants in Assump-
tion 2.2 or 2.5 that

‖|pn+1‖| ≤ ‖|∇αSu(α
n)‖| + ‖|pn+1 − ∇αSu(α

n)‖|
≤ N∇Su + C‖αn − α̂‖ ≤ N∇Su + Cr = Np. ��

Lemma 3.6 Let k ∈ N. Suppose either Assumption 2.2 or 2.5 holds; Assumption 3.4
holds for n = k; and that (18) holds for n = k+1. If also ‖xn+1−x̂‖ZM ≤ ‖xn−x̂‖ZM
for n ∈ {0, . . . , k}, then Assumption 3.4 holds for n = k + 1.

Proof Summing ‖xn+1 − x̂‖ZM ≤ ‖xn − x̂‖ZM over n = 0, . . . , k gives ‖xk+1 −
x̂‖ZM ≤ ‖x0 − x̂‖ZM = σ−1/2r0. By the definitions of Z and M in (12) or
(15), and (11b) or (14b) respectively, it follows αk+1 ∈ B (̂α, r0) and uk+1 ∈
B (̂u,

√
σ−1ϕ−1

u τr0) as required. We finish by using Lemma 3.5 with n = k + 1

to establish ‖|pk+2‖| ≤ Np. ��

We next prove a monotonicity-type estimate for the inner objective. For this we
need need the following three-point monotonicity inequality.

Theorem 3.7 Let z, x̂ ∈ X . Suppose F ∈ C2(X), and for some L > 0 and γ ≥ 0 that
γ · Id ≤ ∇2F(ζ ) ≤ L · Id for all ζ ∈ [̂x, z] := {̂x + s(z − x̂) | s ∈ [0, 1]}. Then, for
all β ∈ (0, 1] and x ∈ X,

〈∇F(z) − ∇F (̂x), x − x̂〉 ≥ γ (1 − β)‖x − x̂‖2 − L

4β
‖x − z‖2. (19)

Proof The proof follows that of [19, Lemma 15.1] whose statement unnecessarily
takes ζ in neighborhood of x̂ instead of just the interval [̂x, z]. ��
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Lemma 3.8 Let n ∈ N. Suppose either Assumption 2.2 or 2.5, and 3.4 hold. Then for
any κ ∈ (0, 1), we have

〈∇u F(un;αn), un+1 − û〉 ≥ γF (1 − κ)

2
‖un+1 − û‖2 − LF

4κ
‖un+1 − un‖2

− L2∇F ,̂u

2γF (1 − κ)
‖αn − α̂‖2. (20)

Proof Assumption 2.2 (iii) or 2.5 (iii) with αn ∈ B (̂α, r) and un ∈ B (̂u, ru) from
Assumption 3.4 give γF · Id ≤ ∇2

u F(u;αn) ≤ LF · Id for all u ∈ [̂u, un]. We have
∇u F (̂u; α̂) = 0 since 0 ∈ H (̂u, p̂, α̂). Therefore Theorem 3.7 yields

〈∇u F(un;αn), un+1 − û〉 = 〈∇u F(un;αn) − ∇u F (̂u;αn), un+1 − û〉
+〈∇u F (̂u;αn) − ∇u F (̂u; α̂), un+1 − û〉
≥ γF (1 − κ)‖un+1 − û‖2 − LF

4κ
‖un+1 − un‖2

−|〈∇u F (̂u;αn) − ∇u F (̂u; α̂), un+1 − û〉|.

Young’s inequality and the definition of L∇F ,̂u in Assumption 2.2 (iii) or 2.5 (iii) now
readily establishes the claim. ��

The next lemma bounds the steps taken for the outer problem variable.

Lemma 3.9 Let n ∈ N. Suppose either Assumption 2.2 or 2.5 hold, as do Assump-
tion 3.4 (18), and

‖un+1 − Su(α
n)‖ ≤ Cu‖αn − α̂‖. (21)

Then

‖αn+1 − αn‖ ≤ σ [(NpL∇ JCu + N∇ JC + Lα) + CR]‖αn − α̂‖ (22)

and

Cu‖αn − α̂‖ + LSu‖αn+1 − αn‖ ≤ CFCu
(‖αn − α̂‖ − ‖αn+1 − αn‖)

≤ CFCu‖αn+1 − α̂‖. (23)

Proof Using the α-update of Algorithm 2.1 or 2.2, we estimate

‖αn+1 − αn‖
= ‖[proxσ R(αn − σ pn+1∇u J (un+1)) − αn] − [proxσ R (̂α − σ p̂∇u J (̂u)) − α̂]‖
≤ ‖[proxσ R(αn − σ pn+1∇u J (un+1)) − αn] − [proxσ R(αn − σ p̂∇u J (̂u)) − αn]‖

+ ‖[proxσ R(αn − σ p̂∇u J (̂u)) − αn] − [proxσ R (̂α − σ p̂∇u J (̂u)) − α̂]‖.
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Since proximal maps are 1-Lipschitz, and R is by Assumption 2.2 (v) or 2.5 (v) locally
prox-σ -contractive at α̂ for p̂∇u J (̂u)within B (̂α, r)∩dom Rwith factorCR , it follows

‖αn+1 − αn‖ ≤ σ‖pn+1∇u J (un+1) − p̂∇u J (̂u)‖ + σCR‖αn − α̂‖
=: σQ + σCR‖αn − α̂‖. (24)

We have p̂∇u J (̂u) = ∇αSu (̂α)∇u J (Su (̂α)) = ∇α(J ◦ Su)(̂α), where ∇α(J ◦ Su)
is Lα-Lipschitz in B (̂α, r) � αn by Assumption 2.2 (v) or 2.5 (v). Hence

Q ≤ ‖pn+1∇u J (un+1) − ∇α(J ◦ Su)(α
n) + ∇α(J ◦ Su)(α

n) − p̂∇u J (̂u)‖
≤ ‖pn+1∇u J (un+1) − ∇αSu(α

n)∇u J (Su(α
n))‖ + Lα‖αn − α̂‖.

Using the Lipschitz continuity of∇u J fromAssumption 2.2 (v) or 2.5 (v), we continue

Q ≤ ‖pn+1(∇u J (un+1) − ∇u J (Su(α
n)) + (pn+1 − ∇αSu(α

n))∇u J (Su(α
n))‖

+ Lα‖αn − α̂‖
≤ ‖|pn+1‖|L∇ J‖un+1 − Su(α

n)‖ + ‖|pn+1 − ∇αSu(α
n)‖|‖∇u J (Su(α

n))‖
+ Lα‖αn − α̂‖.

Wehave‖|pn+1‖| ≤ Np andαn ∈ B (̂α, r)byAssumption3.4.Hence‖∇u J (Su(αn))‖ ≤
N∇ J by the definition in Assumption 2.2 (vi) or 2.5 (vi). Using (18) and (21) therefore
give

Q ≤ NpL∇ JCu‖αn − α̂‖ + N∇ JC‖αn − α̂‖ + Lα‖αn − α̂‖ = (Cα − CR)‖αn − α̂‖.

Inserting this into (24), we obtain (22).
Assumption 2.2 (vii) or Assumption 2.5 (vii) and (22) then yield

(LSu + CFCu)‖αn+1 − αn‖ ≤ σ(LSu + CFCu)Cα‖αn − α̂‖ ≤ (CF − 1)Cu‖αn − α̂‖.

Rearranging terms and finishing with the triangle inequality we get (23). ��
Remark 3.10 (Gradient stepswith respect to R)Wecould (in bothFEFBandFIFB) also
take a gradient step instead of a proximal step with respect to R with L∇R-Lipschitz
gradient. That is, we would perform for the outer problem the update

αn+1 = αn − σ [pn+1∇u J (un+1) + ∇R(αn)].

This can be shown to be convergent by changing (24) to

‖αn+1 − αn‖ = σ‖pn+1∇u J (un+1) + ∇R(αn)‖
= σ‖pn+1∇u J (un+1) − p̂∇u J (̂u) + ∇R(αn) − ∇R(̂α)‖
≤ σ

(‖pn+1∇u J (un+1) − p̂∇u J (̂u)‖ + L∇R‖αn − α̂‖).
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We next prove that if an inner problem iterate has small error, and we take a short
step in the outer problem, then also the next inner problem iterate has small error.

Lemma 3.11 Let k ∈ N. Suppose Assumption 2.2 or 2.5 hold. If Assumption 3.4, (18),
and (21) hold for n = k, then (21) holds for n = k+1 and we have αk+1 ∈ B (̂α, 2r0).

Proof We plan to use Theorem 3.7 on F( · ;αk+1) followed by the three-point identity
and simple manipulations. We begin by proving the conditions of the theorem.

First, we show that both uk+1 ∈ B (̂u, ru) and Su(αk+1) ∈ B (̂u, ru). The former
is immediate from Assumption 3.4 and Lemma 3.3. For the latter we use (23) of
Lemma 3.9. Its first inequality readily implies either ‖αk − α̂‖ > ‖αk+1 − αk‖
or αk+1 = α̂. In the latter case Su(αk+1) = û ∈ B (̂u, ru). In the former, using
αk ∈ B (̂α, r0), we get

‖αk+1 − α̂‖ ≤ ‖αk+1 − αk‖ + ‖αk − α̂‖ < 2‖αk − α̂‖ ≤ 2r0

Therefore we can use the Lipschitz continuity of Su in B (̂α, 2r) from Assumption 2.2
(ii) or 2.5 (ii) to estimate

‖Su(αk+1) − û‖ = ‖Su(αk+1) − Su (̂α)‖ ≤ LSu‖αk+1 − α̂‖ ≤ LSu2r0.

This implies Su(αk+1) ∈ B (̂u, ru) by Assumption 2.2 (viii) or 2.5 (viii).
Since both uk+1, Su(αk+1) ∈ B (̂u, ru), Assumption 2.2 (iii) or 2.5 (iii)
shows that γF · Id ≤ ∇2F(u) ≤ LF · Id for u ∈ [Su(αk+1), uk+1]. Consequently

Theorem 3.7 and ∇u F(Su(αk+1);αk+1) = 0 give

〈∇u F(uk+1;αk+1), uk+2 − Su(α
k+1)〉 ≥ γF (1 − κ)‖uk+2 − Su(α

k+1)‖2

− LF

4κ
‖uk+2 − uk+1‖2.

Inserting the u update of Algorithm 2.1 or 2.2, i.e., −τ−1(uk+2 − uk+1) =
∇u F(uk+1;αk+1) and using the three-point identity (2) we get

1

2τ

(
‖uk+2 − Su(α

k+1)‖2 + ‖uk+2 − uk+1‖2 − ‖uk+1 − Su(α
k+1)‖2

)

≤ −γF (1 − κ)‖uk+2 − Su(α
k+1)‖2 + LF

4κ
‖uk+2 − uk+1‖2.

Equivalently

(1 + 2τγF (1 − κ)) ‖uk+2 − Su(α
k+1)‖2 +

(
1 − τ LF

2κ

)
‖uk+2 − uk+1‖2

≤ ‖uk+1 − Su(α
k+1)‖2.

Because Assumption 2.2 (iv) or 2.5 (iv) guarantees 1 − τ LF/(2κ) > 0, this implies

‖uk+2 − Su(α
k+1)‖ ≤ C−1

F ‖uk+1 − Su(α
k+1)‖.
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Therefore the triangle inequality, (21) for n = k and the Lipschitz continuity of Su in
B (̂α, 2r) � αk, αk+1 yield

‖uk+2 − Su(α
k+1)‖ ≤ C−1

F ‖uk+1 − Su(α
k+1)‖

≤ C−1
F

(‖uk+1 − Su(α
k)‖ + LSu‖αk+1 − αk‖)

≤ C−1
F

(
Cu‖αk − α̂‖ + LSu‖αk+1 − αk‖).

Inserting (23) here, we establish the claim. ��
The next lemma is a crucial monotonicity-type estimate for the outer problem. It

depends on an α-relative exactness condition on the inner and adjoint variables.

Lemma 3.12 Let n ∈ N. Suppose Assumption 2.2(v) and (vi), or 2.5 (v) and (vi) hold
with Assumption 3.4 and

‖un+1 − Su(α
n)‖ ≤ Cu‖αn − α̂‖ and ‖|pn+1 − ∇αSu(α

n)‖| ≤ C‖αn − α̂‖. (25)

Then, for any d > 0,

〈pn+1∇u J (un+1) + ∂R(αn+1), αn+1 − α̂〉 ≥ − Lα

2
‖αn+1 − αn‖2

+
(

γα

2
− L∇ J NpCu + CN∇ J

2d

)
‖αn+1 − α̂‖2

+
(

γα

2
− (L∇ J NpCu + CN∇ J )d

2

)
‖αn − α̂‖2. (26)

Proof The α-update of both Algorithms 2.1 and 2.2 in implicit form reads

0 = σ(qn+1 + pn+1∇u J (un+1)) + αn+1 − αn for some qn+1 ∈ ∂R(αn+1).

Similarly, 0 ∈ H (̂u, p̂, α̂) implies p̂∇u J (̂u) + q̂ = 0 for some q̂ ∈ ∂R(̂α). Writing
E0 for the left hand side of (26), these expressions and the monotonicity of ∂R yield

E0 = 〈pn+1∇u J (un+1) − p̂∇u J (̂u) + qn+1 − q̂, αn+1 − α̂〉
≥ 〈pn+1∇u J (un+1) − ∇αSu(α

n)∇u J (Su(α
n)), αn+1 − α̂〉

+ 〈∇αSu(α
n)∇u J (Su(α

n)) − p̂∇u J (̂u), αn+1 − α̂〉 =: E1 + E2. (27)

We estimate E1 and E2 separately.
The one-dimensional mean value theorem gives

E2 = 〈∇α(J ◦ Su)(α
n) − ∇α(J ◦ Su)(̂α), αn+1 − α̂〉 = 〈Q(αn − α̂), αn+1 − α̂〉

for some ζ ∈ [̂α, αn] and Q := ∇2
α(J ◦ Su)(ζ ).

Since ‖αn − α̂‖ ≤ r by Assumption 3.4, also ‖ζ − α̂‖ ≤ r .
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Therefore, the 3-point identity (2) and Assumption 2.2 (v) or 2.5 (v) yield

E2 = 1

2
‖αn+1 − α̂‖2Q + 1

2
‖αn − α̂‖2Q − 1

2
‖αn+1 − αn‖2Q

≥ γα

2
(‖αn+1 − α̂‖2 + ‖αn − α̂‖2) − Lα

2
‖αn+1 − αn‖2. (28)

To estimate E1 we rearrange

E1 = 〈pn+1∇u J (un+1) − ∇αSu(α
n)∇u J (Su(α

n)), αn+1 − α̂〉
= 〈pn+1(∇u J (un+1) − ∇u J (Su(α

n)))

+ (pn+1 − ∇αSu(α
n))∇u J (Su(α

n)), αn+1 − α̂〉.

We have ‖∇u J (Su(αn))‖ ≤ N∇ J by the definition of the latter in Assumption 2.2 (vi)
or 2.5 (vi) with αn ∈ B (̂α, r) from Assumption 3.4. The same assumptions establish
that ∇u J is Lipschitz. Hence, using the operator norm inequality Theorem 6.1 (iii),

E1 ≥ −‖|pn+1‖|‖∇u J (un+1) − ∇u J (Su(α
n))‖‖αn+1 − α̂‖

− ‖|pn+1 − ∇αSu(α
n)‖|‖∇u J (Su(α

n))‖‖αn+1 − α̂‖
≥ −

(
L∇ J‖|pn+1‖|‖un+1 − Su(α

n)‖ + C‖∇u J (Su(α
n))‖‖αn − α̂‖

)
‖αn+1 − α̂‖.

Applying (25) and Young’s inequality now yields for any d > 0 the estimate

E1 ≥ − (
L∇ J NpCu + CN∇ J

) ‖αn − α̂‖‖αn+1 − α̂‖
≥ − (

L∇ J NpCu + CN∇ J
) (d

2
‖αn − α̂‖2 + 1

2d
‖αn+1 − α̂‖2

)
. (29)

By inserting (28) and (29) into (27) we obtain the claim (26). ��

3.2 Convergence: forward-exact-forward-backward

We now prove the convergence of Algorithm 2.1. We start with a lemma that shows
an α-relative exactness estimate on the adjoint iterate when one holds for the inner
iterate. This is needed to use Lemma 3.12. The main result of this subsection is in
the final Theorem 3.16. It proves under Assumption 2.2 the linear convergence of
{(un, αn)}n∈N generated by Algorithm 2.1 to (̂u, α̂) solving the first-order optimality
condition (8) for some p̂.

Lemma 3.13 Let n ∈ N. Suppose Assumption 2.2 and the inner exactness estimate

(21) hold as well as αn ∈ B (̂α, r0) and un ∈ B (̂u,

√
σ−1ϕ−1

u τr0). Then (18) and (25)
hold for C = LSpCu .
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Proof Since (18) with (21) equals (25), it suffices to prove (18). We assumed
αn ∈ B (̂α, r0) and un+1, Su(αn) ∈ B (̂u, ru) by Lemma 3.3. Therefore the Lips-
chitz continuity of Sp in B (̂u, ru)× B (̂α, r) from Lemma 3.1 with Assumption 2.2 (ii)
and (iii) and (21) give

‖|pn+1 − ∇αSu(α
n)‖| = ‖|Sp(un+1, αn) − Sp(Su(α

n), αn)‖|
≤ LSp‖un+1 − Su(α

n)‖ ≤ LSpCu‖αn − α̂‖. ��
We are able to collect the previous lemmas into a descent estimate from which

we immediately observe local linear convergence. We recall the definitions of the
preconditioning and testing operators M and Z in (11b) and (12).

Lemma 3.14 Let n ∈ N and suppose Assumption 2.2 and 3.4, and the inner exactness
estimate (21) hold. Then

‖xn+1 − x̂‖2ZM + 2εu‖un+1 − û‖2 + 2εα‖αn+1 − α̂‖2 ≤ ‖xn − x̂‖2ZM (30)

for ϕu > 0 as in Assumption 2.2 (vi),

εu := ϕuγF (1 − κ)

2
> 0, and εα := γα − (L∇ J Np + LSp N∇ J )Cu

2
> 0.

Proof We start by proving the monotonicity estimate

〈ZHn+1(x
n+1), xn+1 − x̂〉 ≥ Vn+1(̂x) − 1

2
‖xn+1 − xn‖2ZM (31)

for Vn+1(̂u, p̂, α̂) := εu‖un+1 − û‖2 + εα‖αn+1 − α̂‖2. We observe that εu, εα > 0
by Assumption 2.2. The monotonicity estimate (31) expands as

hn+1 ≥ Vn+1(̂u, p̂, α̂) − ϕu

2τ
‖un+1 − un‖2 − 1

2σ
‖αn+1 − αn‖2 (32)

for (all elements of the set)

hn+1 :=
〈⎛
⎝

ϕu∇u F(un;αn)

pn+1∇2
u F(un+1;αn) + ∇αu F(un+1;αn)

pn+1∇u J (un+1) + ∂R(αn+1)

⎞
⎠ ,

⎛
⎝
un+1 − û
pn+1 − p̂
αn+1 − α̂

⎞
⎠
〉

.

We estimate each of the three lines of hn+1 separately. For the first line, we use
(20) from Lemma 3.8. For the middle line we observe that pn+1∇2

u F(un+1;αn) +
∇αu F(un+1;αn) = 0 by the p-update of Algorithm 2.1.

For the last line, we use (26) from Lemma 3.12 with d = 2. We can do this because
(25) holds by (21) and 3.13. This gives

〈pn+1∇u J (un+1) + ∂R(αn+1), αn+1 − α̂〉 ≥ − Lα

2
‖αn+1 − αn‖2 + εα‖αn+1 − α̂‖2

+ εα‖αn − α̂‖2.
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Summing with (20) we thus obtain

hn+1 ≥ ϕuγF (1 − κ)

2
‖un+1 − û‖2 − ϕu LF

4κ
‖un+1 − un‖2 − Lα

2
‖αn+1 − αn‖2

+ εα‖αn+1 − α̂‖2 +
(

εα − ϕu L2∇F ,̂u

2γF (1 − κ)

)
‖αn − α̂‖2.

The factor of the first term is εu and the factor of last term is zero. Since σ < 1/Lα

by Lemma 3.2 and LF/(2κ) ≤ 1/τ by Assumption 2.2 (iv), we obtain (32), i.e., (31).
We now come to the fundamental argument of the testing approach of [18], com-

bining operator-relative monotonicity estimates with the three-point identity. Indeed,
(31) combined with the implicit algorithm (10) gives

〈ZM(xn+1 − xn), xn+1 − x̂〉 + Vn+1(̂x) ≤ 1

2
‖xn+1 − xn‖2ZM .

Inserting the three-point identity (2) and expanding Vn+1 yields (30). ��
Before stating our main convergence result for the FEFB, we simplify the assump-

tions of the previous lemma to just Assumption 2.2.

Lemma 3.15 Suppose Assumption 2.2 holds. Then (30) holds for any n ∈ N.

Proof Then claim readily follows if we prove by induction for all n ∈ N that

Assumption 3.4, (21), and (30) hold. (∗)

We first prove (∗) for n = 0. Assumption 2.2 (i) directly establishes (21). The
definition of r0 in Assumption 2.2 also establishes that αn ∈ B (̂α, r0) and un ∈
B (̂u,

√
σ−1ϕ−1

u τr0). We have just proved the conditions of Lemma 3.13, which estab-
lishes (18) for n = 0.

Now Lemma 3.5 establishes ‖|p1‖| ≤ Np. Therefore Assumption 3.4 holds for
n = 0. Finally (3.14) proves (30) for n = 0. This concludes the proof of the induction
base.

We then make the induction assumption that (∗) holds for n ∈ {0, . . . , k} and
prove it for n = k + 1. Indeed, the induction assumption and Lemma 3.11 give
(21) for n = k + 1. Next (30) for n = k implies αk+1 ∈ B (̂α, r0) and uk+1 ∈
B (̂u,

√
σ−1ϕ−1

u τr0), where r0 and ru are as in Assumption 2.2. Therefore Lemma 3.3

gives uk+2 ∈ B (̂u, ru) while Lemma 3.13 establishes (18) for n = k + 1. For all
n ∈ {0, . . . , k}, the inequality (30) implies ‖xn+1 − x̂‖ZM ≤ ‖xn − x̂‖ZM . Therefore
Lemma 3.6 proves Assumption 3.4 and finally (3.14) proves (30) and consequently
(∗) for n = k + 1. ��
Theorem 3.16 Suppose Assumption 2.2 holds. Then ϕuτ

−1‖un − û‖2 + σ−1‖αn −
α̂‖2 → 0 linearly.
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Proof Lemma 3.15, expansion of (30), and basic manipulation show that

ϕuτ
−1‖un − û‖2 + σ−1‖αn − α̂‖2

≥ (ϕuτ
−1 + 2εu)‖un+1 − û‖2 + (σ−1 + 2εα)‖αn+1 − α̂‖2

= (1 + 2εuϕ
−1
u τ)ϕuτ

−1‖un+1 − û‖2 + (1 + 2εασ )σ−1‖αn+1 − α̂‖2
≥ μ

(
ϕuτ

−1‖un+1 − û‖2 + σ−1‖αn+1 − α̂‖2)

for μ := min{1 + 2εuϕ−1
u τ, 1 + 2εασ }. Since μ > 1, linear convergence follows. ��

3.3 Convergence: forward-inexact-forward-backward

We now prove the convergence of Algorithm 2.2. The overall structure and idea of
the proofs follows Sect. 3.2 and uses several lemmas from Sect. 3.1. We first prove
monotonicity estimate lemma for the adjoint step and then that a small enough step
length in the outer problem gurantees that the inner and adjoint iterates stay in a small
local neighbourhood if they are already in one. The main result of this subsection
is in the final Theorem 3.21. It proves under Assumption 2.5 the linear convergence
of {(un, pn, αn)}n∈N generated by Algorithm 2.2 to (̂u, p̂, α̂) solving the first-order
optimality condition (8).

Lemma 3.17 Let u ∈ U , α ∈ A and p1, p2, p̃ ∈ P.Moreover,γF ·Id ≤ ∇2
u F(u;α) ≤

LF · Id and
p̃∇2

u F(u;α) + ∇αu F(u;α) = 0. (33)

holds. Then

〈〈p1∇2
u F(u;α) + ∇αu(u;α), p2 − p̃〉〉 ≥ γF

2
‖|p2 − p̃‖|2 + γF

2
‖|p1 − p̃‖|2

− LF

2
‖|p2 − p1‖|2.

Proof Using (33), the three-point identity (2) and γF · Id ≤ ∇2
u F(u;α) ≤ LF · Id

gives for A := ∇2
u F(u;α) the lower bound

〈〈p1∇2
u F(u;α) + ∇αu F(u; α), p2 − p̃〉〉

= 〈〈(p1 − p̃)∇2
u F(u; α), p2 − p̃〉〉

=
∑
i∈I

〈∇2
u F(u;α)(p1 − p̃)∗ϕi , (p2 − p̃)∗ϕi 〉

=
∑
i∈I

(
1

2
‖(p1 − p̃)∗ϕi‖2A − 1

2
‖(p2 − p1)

∗ϕi‖2A + 1

2
‖(p2 − p̃)∗ϕi‖2A

)

≥
∑
i∈I

(
γF

2
‖(pk+1 − p̃)∗ϕi‖2 − LF

2
‖(pk+2 − pk+1)∗ϕi‖2 + γF

2
‖(pk+2 − p̃)∗ϕi‖2

)

= γF

2
‖|p2 − p̃‖|2 + γF

2
‖|p1 − p̃‖|2 − LF

2
‖|p2 − p1‖|2.
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��
Lemma 3.18 Let k ∈ N. Suppose Assumption 2.5 holds, and Assumption 3.4 and

‖un+1 − Su(α
n)‖ ≤ Cu‖αn − α̂‖ and ‖|pn+1 − ∇αSu(α

n)‖| ≤ Cp‖αn − α̂‖ (34)

hold for n = k. Then (34) holds for n = k + 1.

Proof Observe that (34) for n = k implies (21) as well as (18) for n = k and C = Cp.
Lemma s3.11 therefore proves the first part of (34) for n = k + 1, i.e.,

‖uk+2 − Su(α
k+1)‖ ≤ Cu‖αk+1 − α̂‖. (35)

We still need to show the second part ‖|pk+2 − ∇αSu(αk+1)‖| ≤ Cp‖αk+1 − α̂‖.
We follow the fundamental argument of the testing approach (see the end of the proof
of (3.14)) and use Assumption 2.5 (ii) and (iii). For the latter we need αk, αk+1 ∈
B (̂α, 2r) and uk+2, Su(αk) ∈ B (̂u, ru). We have αk ∈ B (̂α, r0) by Assumption 3.4
and αk+1 ∈ B (̂α, 2r0) by Lemma 3.11. Thus we may use the Lipschitz continuity of
Su with the triangle inequality and (35) to get Su(αk) ∈ B(Su (̂α), LSur0) ⊂ B (̂u, ru)
and

‖uk+2 − û‖ ≤ ‖uk+2 − Su(α
k+1)‖ + ‖Su(αk+1) − Su (̂α)‖

≤ (Cu + LSu )‖αk+1 − α̂‖ ≤ (Cu + LSu )2r0,

which yields uk+2 ∈ B (̂u, ru). The definition of Sp in (5) implies

Sp(u
k+2, αk+1)∇2

u F(uk+2;αk+1) + ∇αu F(uk+2;αk+1) = 0.

Since also γF · Id ≤ ∇2
u F ≤ LF · Id in B (̂u, ru)× B (̂α, 2r) from Assumption 2.5 (iii),

we get

〈〈pk+1∇2
u F(uk+2;αk+1) + ∇αu F(uk+2;αk+1), pk+2 − Sp(u

k+2, αk+1)〉〉
≥ γF

2
‖|pk+2 − Sp(u

k+2, αk+1)‖|2 + γF

2
‖|pk+1 − Sp(u

k+2, αk+1)‖|2

− LF

2
‖|pk+2 − pk+1‖|2 =: A (36)

from Lemma 3.17. By the p update of the FIFB in the implicit form (13), we have

pk+1∇2
u F(uk+2;αk+1) + ∇αu F(uk+2;αk+1) = −θ−1(pk+2 − pk+1).

Combining with (36) gives

− 〈〈pk+2 − pk+1, pk+2 − Sp(u
k+2, αk+1)〉〉 ≥ θ A.
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An application of the three-point identity (2) with θLF ≤ 1 from Assumption 2.5 (iv)
now yields for CF,S = √

(1 + θγF )/(1 − θγF ) the estimate

‖|pk+2 − Sp(u
k+2, αk+1)‖| ≤ C−1

F,S‖|pk+1 − Sp(u
k+2, αk+1)‖|.

This estimate and the triangle inequality give

‖|pk+2 − ∇αSu(α
k+1)‖| = ‖|pk+2 − Sp(Su(α

k+1), αk+1)‖|
≤ ‖|pk+2 − Sp(u

k+2, αk+1)‖| + ‖|Sp(uk+2, αk+1) − Sp(Su(α
k+1), αk+1)‖|

≤ C−1
F,S‖|pk+1 − Sp(u

k+2, αk+1)‖|
+ ‖|Sp(uk+2, αk+1) − Sp(Su(α

k+1), αk+1)‖| =: E1 + E2.

(37)
The solution map Su is Lipschitz in B (̂α, 2r) and Sp is Lipschitz in B (̂u, ru) ×

B (̂α, 2r) due to Assumption 2.5 (ii) and (iii), and Lemma 3.1. Combined with the
triangle inequality, (34) for n = k and (35), we obtain

CF,S E1 ≤ ‖|pk+1 − Sp(Su(α
k), αk)‖| + ‖|Sp(uk+2, αk+1) − Sp(Su(α

k), αk)‖|
≤ ‖|pk+1 − ∇αSu(α

k))‖| + LSp

(
‖uk+2 − Su(α

k)‖ + ‖αk+1 − αk‖
)

≤ Cp‖αk − α̂‖
+ LSp

(
‖uk+2 − Su(α

k+1)‖ + ‖Su(αk+1) − Su(α
k)‖ + ‖αk+1 − αk‖

)

≤ E3 + LSpCu‖αk+1 − α̂‖
(38)

for

E3 := Cp‖αk − α̂‖ + LSp (1 + LSu )‖αk+1 − αk‖.

Using again the Lipschitz continuity of Sp and (35), we get

E2 ≤ LSp‖uk+2 − Su(α
k+1)‖ ≤ LSpCu‖αk+1 − α̂‖. (39)

Inserting (38) and (39) into (37) yields

‖|pk+2 − ∇αSu(α
k+1)‖| ≤ C−1

F,S E3 + (C−1
F,S + 1)LSpCu‖αk+1 − α̂‖.

Therefore the claim follows if we show that

C−1
F,S E3 ≤ (Cp − (C−1

F,S + 1)LSpCu)‖αk+1 − α̂‖. (40)

Lemma 3.9 proves (22) with C = Cp. Together with Assumption 2.5 (vii) it yields

‖αk+1 − αk‖ ≤ σCα‖αk − α̂‖
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≤ (CF,S − 1)Cp − (1 + CF,S)LSpCu

(1 + LSu )LSp + CF,SCp − (1 + CF,S)LSpCu
‖αk − α̂‖.

Multiplying by (1 + LSu )LSp + CF,SCp − (1 + CF,S)LSpCu, rearranging terms,
and continuing with the triangle inequality gives (40). Indeed,

E3 ≤ CF,S(Cp − (C−1
F,S + 1)LSpCu)(‖αk − α̂‖ − ‖αk+1 − αk‖)

≤ CF,S(Cp − (C−1
F,S + 1)LSpCu)‖αk+1 − α̂‖.

��

We now show that the adjoint iterates stay local if the outer iterates do.
Again, by combining the previous lemmas, we prove an estimate from which local

convergence is immediate. For this, we recall the definitions of the preconditioning
and testing operators M and Z in (14b) and (12).

Lemma 3.19 Suppose Assumption 2.5 and 3.4, and the inner and adjoint exactness
estimate (34) hold for n ∈ N. Then

‖xn+1− x̂‖2ZM +2εu‖un+1− û‖2+2εp‖pn − p̂‖2+2εα‖αn+1− α̂‖2 ≤ ‖xn − x̂‖2ZM
(41)

for

εu := ϕuγF (1 − κ)

2
− Cα,1 > 0, εp := ϕpγF

2
> 0, and

εα :=
γα − Cα,1 −

√
C2

α,1 + 4C2
α,2

2
> 0,

where ϕu, ϕp > 0 are as in Assumption 2.5, Cα,1 := ϕp
LF LSp

γF
, and Cα,2 :=(

L∇ J Np + LSp N∇ J
)Cu

2 .

Proof We start by proving the monotonicity estimate

〈ZHn+1(x
n+1), xn+1 − x̂〉 ≥ Vn+1(̂x) − 1

2
‖xn+1 − xn‖2ZM (42)

for Vn+1(̂u, p̂, α̂) = εu‖un+1 − û‖2 + εp‖pn − p̂‖2 + εα‖αn+1 − α̂‖2. We observe
that εu, εp, εα > 0 by Assumption 2.5. The monotonicity estimate (42) expands as

hn+1 ≥ Vn+1(̂u, p̂, α̂) − ϕu

2τ
‖un+1 − un‖2 − ϕp

2θ
‖|pn+1 − pn‖|2 − 1

2σ
‖αn+1 − αn‖2

(43)
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for (all elements of the set)

hn+1 :=
〈⎛
⎝

ϕu∇u F(un;αn)

ϕp
(
pn∇2

u F(un+1;αn) + ∇αu F(un+1;αn)
)

pn+1∇u J (un+1) + ∂R(αn+1)

⎞
⎠ ,

⎛
⎝
un+1 − û
pn+1 − p̂
αn+1 − α̂

⎞
⎠
〉

.

We estimate the three lines of hn+1 separately. We immediately take care of the first
line by using (20) from Lemma 3.8.

For the second line, using the optimality condition (4) we have

ϕp〈〈pn∇2
u F(un+1;αn) + ∇αu F(un+1;αn), pn+1 − p̂〉〉

= ϕp〈〈(pn − Sp(u
n+1, αn))∇2

u F(un+1;αn), pn+1 − p̂〉〉
= ϕp〈〈(pn − p̂)∇2

u F(un+1;αn), pn+1 − p̂〉〉
+ ϕp〈〈( p̂ − Sp(u

n+1, αn))∇2
u F(un+1;αn), pn+1 − p̂〉〉

=: ϕp(E1 + E2). (44)

We have un+1, Su(αn) ∈ B (̂u, ru), and αn ∈ B (̂α, r) by Lemma 3.3 and 3.4. Thus
γF · Id ≤ ∇2

u F ≤ LF · Id in B (̂u, ru) × B (̂α, 2r) and ‖∇2
u F(un+1;αn)‖ ≤ LF by

Assumption 2.5 (iii). We get

E1 ≥ γF

2
‖|pn+1 − p̂‖|2 + γF

2
‖|pn − p̂‖|2 − LF

2
‖|pn+1 − pn‖|2 (45)

from Lemma 3.17. By Theorem 6.1 (i) 〈〈 · , · 〉〉 is an inner product and ‖| · ‖| a norm
on L(U ;A ), and we can use thus Cauchy-Schwarz inequality for them. Therefore,
using also Theorem 6.1 (ii), Lemma 3.1 and Young’s inequality, we can estimate

E2 ≥ −∣∣〈〈( p̂ − Sp(u
n+1, αn))∇2

u F(un+1;αn), pn+1 − p̂〉〉∣∣
≥ −‖|( p̂ − Sp(u

n+1, αn))∇2
u F(un+1;αn)‖|‖|pn+1 − p̂‖|

≥ −LF‖|Sp (̂u, α̂) − Sp(u
n+1, αn))‖|‖|pn+1 − p̂‖|

≥ −LF LSp

(
‖un+1 − û‖ + ‖αn − α̂‖

)
‖|pn+1 − p̂‖|

≥ − LF LSp

γF

(
‖un+1 − û‖2 + ‖αn − α̂‖2

)
− γF

2
‖|pn+1 − p̂‖|2. (46)

Inserting (45) and (46) into (44), we obtain

ϕp〈〈pn∇2
u F(un+1;αn) + ∇αu F(un+1;αn), pn+1 − p̂〉〉

≥ ϕpγF

2
‖|pn − p̂‖|2 − ϕpLF

2
‖|pn+1 − pn‖|2

− ϕpLF LSp

γF

(
‖un+1 − û‖2 + ‖αn − α̂‖2

)
(47)

The factor of the last term equals Cα,1 from Assumption 2.5 (v).
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598 E. Suonperä, T. Valkonen

Since Assumption 3.4 and (34) hold, Lemma 3.12 gives (26) with C = Cp and any
d > 0 for the third line of hn+1. Summing (20), (47) and (26) we finally deduce

hn+1 ≥
(

ϕuγF (1 − κ)

2
− Cα,1

)
‖un+1 − û‖2 − ϕu LF

4κ
‖un+1 − un‖2

+ ϕpγF

2
‖|pn − p̂‖|2 − ϕpLF

2
‖|pn+1 − pn‖|2 − Lα

2
‖αn+1 − αn‖2

+
(

γα

2
− Cα,2

d

)
‖αn+1 − α̂‖2 +

(
γα

2
− ϕu L2∇F ,̂u

2γF (1 − κ)
− Cα,1 − Cα,2d

)
‖αn − α̂‖2.

We have

Cα,2

d
= Cα,1 + Cα,2d = Cα,1

2
+
√
C2

α,1 + 4C2
α,2

2
for d =

−Cα,1 +
√
C2

α,1 + 4C2
α,2

2Cα,2
.

Then also γα

2 − Cα,2
d = εα . It follows

hn+1 ≥ εu‖un+1 − û‖2 − ϕu LF

4κ
‖un+1 − un‖2 + εp‖pn − p̂‖2

− ϕpLF

2
‖|pn+1 − pn‖|2 − Lα

2
‖αn+1 − αn‖2 + εα‖αn+1 − α̂‖2.

Since σ < 1/Lα by Lemma 3.2, LF/(2κ) ≤ 1/τ and θ < 1/LF by Assump-
tion 2.5 (iv),weobtain (43), i.e., (42).Wefinish by applying the fundamental arguments
of the testing approach to (42) and the general implicit update (10) as in (3.14). ��

We simplify the assumptions of the previous lemma to just Assumption 2.5.

Lemma 3.20 Suppose Assumption 2.5 holds. Then (41) holds for any n ∈ N.

Proof The claim readily follows if we prove by induction for all n ∈ N that

Assumption 3.4, (34), and (41) hold. (∗∗)

We first prove (∗∗) for n = 0. Assumption 2.5 (i) directly establishes (34). The
definition of r0 in Assumption 2.5 also establishes that αn ∈ B (̂α, r0) and un ∈
B (̂u,

√
σ−1ϕ−1

u τr0). We have just proved the conditions of Lemma 3.5, which gives

‖|p1‖| ≤ Np. Thus we we proved Assumption 3.4 for n = 0. Now (3.19) proves (41)
for n = 0. This concludes the proof of induction base.

We thenmake the induction assumption that (∗∗) holds for n ∈ {0, . . . , k} and prove
it for n = k + 1. The induction assumption and Lemma 3.18 give (34) for n = k + 1.
The inequality (41) for n ∈ {0, . . . , k} also ensures ‖xn+1 − x̂‖ZM ≤ ‖xn − x̂‖ZM
for n ∈ {0, . . . , k}. Therefore Lemma 3.6 proves Assumption 3.4 for n = k + 1. Now
(3.19) shows (41) and concludes the proof of (∗∗) for n = k + 1. ��

We finally come to the main convergence result for the FIFB.
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Theorem 3.21 Suppose Assumption 2.5 holds. Then ϕuτ
−1‖un − û‖2 + ϕpθ

−1‖pn −
p̂‖2 + σ−1‖αn − α̂‖2 → 0 linearly.

Proof We define μ1 := min{(1 + 2εuϕ−1
u τ), (1 + 2εασ )} and μ2 := 1 − 2εpϕ−1

p θ.

Lemma 3.20, expansion of (41), and basic manipulation show that

μ1
(
ϕuτ

−1‖un+1 − û‖2 + σ−1‖αn+1 − α̂‖2)+ ϕpθ
−1‖|pn+1 − p̂‖|2

≤ (1 + 2εuϕ
−1
u τ)ϕuτ

−1‖un+1 − û‖2 + (1 + 2εασ )σ−1‖αn+1 − α̂‖2
+ ϕpθ

−1‖|pn+1 − p̂‖|2
= (ϕuτ

−1 + 2εu)‖un+1 − û‖2 + (σ−1 + 2εα)‖αn+1 − α̂‖2 + ϕpθ
−1‖|pn+1 − p̂‖|2

≤ ϕuτ
−1‖un − û‖2 + μ2ϕpθ

−1‖|pn − p̂‖|2 + σ−1‖αn − α̂‖2.
(48)

There are two separate cases (i) μ1μ2 ≤ 1 and (ii) μ1μ2 > 1. In case (i), we have

ϕuτ
−1‖un − û‖2 + μ2ϕpθ

−1‖|pn − p̂‖|2 + σ−1‖αn − α̂‖2
= μ−1

1

(
μ1
(
ϕuτ

−1‖un − û‖2 + σ−1‖αn − α̂‖2)+ μ1μ2ϕpθ
−1‖|pn − p̂‖|2)

≤ μ−1
1

(
μ1
(
ϕuτ

−1‖un − û‖2 + σ−1‖αn − α̂‖2)+ ϕpθ
−1‖|pn − p̂‖|2),

which with (48) implies linear convergence since μ−1
1 ∈ (0, 1). In case (ii), we obtain

ϕuτ
−1‖un − û‖2 + μ2ϕpθ

−1‖|pn − p̂‖|2 + σ−1‖αn − α̂‖2
≤ μ2

(
μ1
(
ϕuτ

−1‖un − û‖2 + σ−1‖αn − α̂‖2)+ ϕpθ
−1‖|pn − p̂‖|2),

which with (48) implies linear convergence since μ2 ∈ (0, 1). ��

4 Numerical experiments

We evaluate the performance of our proposed algorithms on parameter learning for
(anisotropic, smoothed) total variation image denoising and deconvolution. For a
“ground truth” image b ∈ R

N2
of dimensions N × N , we take

J (u) = 1

2
‖u − b‖22

as the outer fitness function. For b we use a cropped portion of image 02 or 08 from
the free Kodak dataset [49] converted to gray values in [0, 1]. The purpose of these
numerical experiments is a simple performance comparison between our proposed
methods and a few representative approaches from the literature. We therefore only
consider a single ground-truth image b and a corresponding corrupted data z in the
various inner problems, which we next describe. For proper generalizable parameter
learning, multiple such training pairs (bi , zi ) should be used. This can in principle be
done by summing over all the data in both the inner and outer problem; resulting in a
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600 E. Suonperä, T. Valkonen

Fig. 1 Denoising data and results for the implicit and FIFB methods (N = 128)

higher-dimensional bilevel problem; see, e.g., [50]. In practise, a large sample count
would require stochastic techniques.

4.1 Denoising

For denoising we take in (1) as the inner objective

F(u;α) = 1

2
‖u − z‖22 + α‖Du‖1,γ (u ∈ R

N2
, α ∈ [0,∞)),

and as the outer regulariser R ≡ 0. The simulatedmeasurement z is obtained from b by
addingGaussian noise of standard deviation 0.1.Thematrix D is a backward difference
operator with Dirichlet boundary conditions. Instead of the one-norm, ‖ · ‖1, to ensure
the twice differentiability of the objective and hence a simple adjoint equation, we use
a C2 Huber- or Moreau–Yosida -type approximation with

‖y‖1,γ :=
2N2∑
i=1

ργ (yi ), where ργ (x) :=
{

−|x |3
3γ 2 + |x |2

γ
if |x | ≤ γ,

|x | − γ
3 if |x | > γ.

We used γ = 10−4 in our experiments (Fig. 1).

4.2 Deconvolution

For deconvolution, we take as the inner objective

F(u;α) = 1

2
‖K (α) ∗ u − z‖22 + Cα1‖Du‖1,γ , (u ∈ R

N2
, α ∈ [0,∞)4),

and as the outer regulariser R(α) = β(
∑4

i=2 αi −1)2+δ[0,∞)(α1) for a regularisation
parameterβ = 104.We introduce the constantC = 1

10 to help convergenceby ensuring
the same order of magnitude for all components of α. The first element of α is the total
variation regularization parameter while the rest parametrizes the convolution kernel
K (α) as illustrated in Fig. 2a. The sumof the elements of the kernel equalsα2+α3+α4.

Operator rθ rotates image θ degrees, clockwise for θ > 0 and counterclocwise for
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α2

α3 α4

0

0

0

0

(a) Kernel structure (b) Original (c) Blurry; error 9.8% (d) FIFB; error 7.2%

Fig. 2 Deconvolution kernel parametrisation, data, and result for FIFB (N = 128)

θ < 0. We form z by computing r−1(K (α) ∗ r1(b)) for α = [0.15, 0.1, 0.75] and
adding Gaussian noise of standard deviation 1 · 10−2.

For denoising, and deconvolution assuming ker D ∩ ker K (α) = {0}, it is not
difficult to verify the structural parts of Assumption 2.2 and 2.5, required for the
convergence results of Sect. 3. We do not attempt to verify the conditions on the step
lengths, choosing them by trial and error.

4.3 An implicit baselinemethod

We evaluate Algorithms 2.1 and 2.2 against a conventional method that solves both
the inner problem and the adjoint equation (near-)exactly, as well as the AID [26].
We also experimented with solving the equivalent constrained optimisation problem
minα,u J (u) subject to ∇u F(u;α) = 0 with IPOPT [51] and the NL-PDPS [52, 53].
However, we did not observe convergence without the inclusion of additional H1

regularisation in the inner problem, as in, e.g., [7]. Since that changes the problem,
we have not included “whole problem” approaches in our comparison.

To solve the inner problem in the implicit baselinemethod, we use gradient descent,
starting at v0 = 0 and updating vm+1 := vm − τm∇F(vm;αk) We then set uk+1 =
vm+1. The adjoint and outer iterate updates are as in Algorithm 2.1, however, we
discover σ = σk by the line search rule [19, (12.41)] for nonsmooth problems, starting
at σk = 5 · 10−5 and multiplying by 0.1 on each line search step. For deconvolution
we use a fixed step length parameter, as it performed better. The specific parameter
choices (step lengths, number of inner and adjoint iterations) for all algorithms and
experiments are listed in Table 1.

4.4 Numerical setup

Our algorithm implementations are available on Zenodo [54]. To solve the adjoint
equation in the FEFB and implicit methods, we use Matlab’s bicgstab implemen-
tation of the stabilized biconjugate gradient method [55] with tolerance 10−5, and
maximum iteration count 103. With the AID we use 50 conjugate gradient iterations.
These choices, as well as the choice of the number of inner iterations for the implicit
method and the AID, have been made by trial and error to be as small as possible while
obtaining an apparently stable algorithm.
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Table 1 Algorithm parametrisation (step length parameters, inner and adjoint iteration counts), time mul-
tiplier, and outer steps taken to reach threshold computational resources (CPU time) value

N Method Outer Inner Adjoint Time
steps steps steps mult τ θ σ

Denoising

128 Implicit 15 2.5 · 104 103 0.22 5 · 10−4 – LS

AID 7.7 · 103 10 50 0.12 5 · 10−4 – 2 · 10−8

FEFB 3.9 · 103 1 103 0.11 8 · 10−4 – 5 · 10−9

FIFB 5.1 · 105 1 1 0.22 5 · 10−4 1 · 10−5 5 · 10−10

256 Implicit 12 2.5 · 104 103 0.40 5 · 10−4 – LS

AID 3.9 · 103 10 50 0.21 5 · 10−4 – 1 · 10−8

FEFB 2.3 · 103 1 103 0.16 8 · 10−4 – 2 · 10−9

FIFB 2.3 · 105 1 1 0.35 5 · 10−4 7.5 · 10−6 5 · 10−10

Deconvolution

128 Implicit 29 1 · 105 103 0.21 5 · 10−4 – 5 · 10−5

AID 11 · 103 50 50 0.14 5 · 10−4 – 2.5 · 10−6

FEFB 4.9 · 102 1 103 0.15 5 · 10−4 – 1 · 10−6

FIFB 5.2 · 105 1 1 0.22 5 · 10−4 1 · 10−4 2.5 · 10−7

32 Implicit 8.7 · 102 5 · 104 103 0.93 5 · 10−4 – 5 · 10−6

AID 9.2 · 105 10 50 1.00 5 · 10−4 – 1 · 10−7

FEFB 11 · 103 1 103 0.19 5 · 10−4 – 1 · 10−6

FIFB 4.4 · 106 1 1 0.65 5 · 10−4 5 · 10−5 7 · 10−8

The threshold is 6000 for denoising, and 15,000 for deconvolution. The time multipliers allows conversion
from computational resources to real time. It differs between algorithms and problem dimensions due to
different levels of parallelisability. The ’inner steps’ and ’adjoint steps’ columns indicate the (maximum)
number of iterations taken towards a solution of the inner problem or the adjoint equation on every outer
iteration. The bicgstab method for solving the adjoint for the implicit method and the FEFB may use
a smaller number of iterations as determined by the threshold 10−5. “LS” for the step length parameter σ

means that line search was used

Fig. 3 Graph of composed objective the denoising problem (both problem sizes), along with near-optimal
α̃ found by recursive subdivision
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Fig. 4 Denoising performance. The graphs correspond to the FIFB (green line), FEFB (orange line), AID
(pink line), and implicit method (violet line)

To evaluate scalability, we consider for denoising both N = 128 and N = 256.
For deconvolution we consider N = 128 and N = 32. We take initial u0 = Su(α0)

and p0 = Sp(u0, α0) where for denoising α0 = 0 and for deconvolution α0 =
[0.4, 0.25, 0.25, 0.5] and α0 = [0.04, 0.25, 0.25, 0.5] with N = 128 and N = 32
respectively.

To compare algorithm performance, we plot relative errors against the cputime
value of Matlab on an AMD Ryzen 5 5600H CPU. We call this value “computational
resources”, as it takes into account the use of several CPU cores by Matlab’s internal
linear algebra, making it fairer than the actual running time. For each algorithm and
problem, we indicate in Table 1 the step length parameters, the number of outer steps
to reach the computational resources value of 6000 for denoising 15,000 for decon-
volution, and an average multiplier to convert computational resources into running
times.

For performance comparison, we need estimates α̃ and ũ of optimal α̂ and
û = Su(α̂). For denoising we find them by searching for the one-dimensional variable
α on a regular grid and recursively subdividing until node spacing goes below 10−5.
As ũ, we take an estimate of Su(α̃) obtained with 25,000 steps of the implicit base line
method. We visualise so obtained α̃ and J ◦ Su in Fig. 3. For the higher-dimensional
deconvolution problem, such a scan is not feasible. Instead, we obtain the comparison
estimates by running the implicit method from a very good initial iterate until com-
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Fig. 5 Deconvolution performance. The graphs correspond to the FIFB (green line), FEFB (orange line),
AID (pink line), and implicit method (violet line). For the inner problem, we additionally plot the relative
error of Su(αk ) for the FIFB (green dotted line)

putational resources (CPU time) value of 6000 for N = 32 and 10,000 for N = 128.
Specifically, we initialise the kernel parameters (α2, α3, α4) as those used for generat-
ing the data z, and the regularization parameter α1 = 0.045 for N = 32 and α1 = 0.02
for N = 128, the latter found by trial and error. This initialisation is different from
that used for the actual numerical experiments; see above. Our experiments indicate
that the other methods approach α̃ so obtained faster than the implicit method itself,
providing some justification for the choice.

With these solution estimates we define the inner and outer relative errors

eα,rel := ‖α̃−αk‖
‖α̃‖ and eu,rel := ‖ũ−uk‖

‖ũ‖ .

4.5 Results

We report performance in Figs. 4 and 5 and the image data and reconstructions in
Figs. 1 and 2. Figure5 indicates that for deconvolution the FIFB significantly out-
performs the other methods. The outer variable converges much faster than for other
evaluated methods despite the fact that the inner variable especially with N = 32
stays some distance away from ũ. However, as the dashed line indicates, the exact
solution Su(αk) of the inner problem for the corresponding outer iterate, shows clear
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signs of convergence. (The few “spikes” in the graph for N = 128 temporarily have
the regularisation parameter αk

0 much closer to zero than α̃0.) This observation justi-
fies the intuition that the inner problem does not need to be solved to high accuracy
to obtain convergence for the outer problem; that such accurate solutions can even
be detrimental to convergence. The exact solution of the adjoint equation in both the
implicit method and the FEFB causes them to be too slow to make any meaningful
progress. The denoising experiments of Fig. 4 likewise suggest that the FIFB is ini-
tially the best performing algorithm, although the implicit method and the AID catch
up later on the denoising problem. On the small denoising problem (N = 128), the
implicit method is significantly faster than any oher method. Overall, and for practical
purposes, nevertheless, the FIFB appears to perform the best.
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Appendix A: Prox-�-contractivity

In the next three theorems we verify prox-σ -contractivity (Assumption 2.1) for some
common cases.

The next theorem readily extends to R = β‖ · ‖1 + δ[0,∞)n on R
n and products

sets A since proxσ R is independent for each coordinate.

Theorem 5.1 (prox-σ -contractivity of positivity-constrained soft-thresholding) Let
σ, β > 0 and R = β| · |1 + δ[0,∞) on R. Then R is prox-σ -contractive at any
α̂ ≥ max{0, σ (q + β)} for any q ∈ R

n with any factor 0 < CR < σ−1 within

A =
[
max

{
0, α̂ − α̂ − σ(q + β)

1 − σCR

}
,∞

)
.
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In particular, if α̂ ∈ dom R = [0,∞) and −q = β ∈ ∂R(̂α), then R is locally
prox-σ -contractive at α̂ with any factor 0 < CR < σ−1 within

A = [0,∞) .

Proof We have (see, e.g., [19])

Dσ R(α) = proxσ R(α − σq) − α =
{

−σ(q + β), α ≥ σ(q + β),

−α, α < σ(q + β).

We have by assumption α̂ ≥ σ(q + β). If also α ≥ σ(q + β), we have Dσ R(α) −
Dσ R (̂α) = 0, which satisfies the required inequality.

Suppose then that α < σ(q + β).
Since Dσ R (̂α) = −σ(q + β), we need to show

|Dσ R(α) + σ(q + β)| ≤ σCR (̂α − α). (49)

We have Dσ R(α) = −α, so (49) rearranges as

−α + σ(q + β) ≤ σCR (̂α − α).

Since 1 > σCR , this inequality can be rearranged as the condition α ≥ α̂ − α̂−σ(q+b)
1−σCR

.
Any α ∈ A satisfies this bound.

Let then −q = β ∈ ∂R(̂α). Since α̂ ≥ 0, we have α̂ ≥ σ(q + β) = 0. Since
α̂−σ(q+β)
1−σCR

= α̂
1−σCR

≥ α̂, the claimed simpler expression for A follows from the
general. ��

Similarly to the previous result, the restriction q = 0 in the next theorem on
projections to a convex set C forbids stricly complementary cases of α̂ ∈ bdC , i.e.,
we cannot have 0 �= −q ∈ NC (̂α) := ∂δC (̂α).

Theorem 5.2 (prox-σ -contractivity of projections) Let σ > 0 and R = δC for a
convex and closed C ⊂ R

n. Then R is prox-σ -contractive at any α̂ ∈ C for q = 0
within A = C with any factor CR > 0.

Proof We have proxσ R = projC for the Euclidean projection onto C . Since α, α̂ ∈
C = dom R and q = 0, we have α = projC (α) = projC (α − σq), and likewise for α̂.
The claim is now immediate. ��
Example 5.3 (ReLu) The proximal mapping of δ[0,∞) is known as the rectifier linear
unit activation function (ReLu). By the above theorem, it is prox-σ -contractive at any
α̂ ≥ 0 for q = 0.

Theorem 5.4 (prox-σ -contractivity of smooth functions) Let σ, β > 0 and R : Rn →
R be convex with Lipschitz gradient. Then R is prox-σ -contractive at any α̂ ∈ R

n for
any q ∈ R

n within A = R
n with the factor CR = L∇R the Lipschitz factor of ∇R.
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Proof Write p(α) := proxσ R(t(α)) and t(α) := α − σq. According to the definition
of the proximal operator, 0 = σ∇R(p(α))+ p(α)− t(α).Hence p(α)−α = −σ [q+
∇R(p(α))] which yields for any α ∈ R

n , as required,

‖Dσ R(α) − Dσ R (̂α)‖ = ‖[p(α) − α] − [p(̂α) − α̂]‖
= σ‖∇R(p(α)) − ∇R(p(̂α))‖
≤ σ L∇R‖|p(α) − p(̂α)‖|
≤ σ L∇R‖t(α) − t (̂α)‖
= σ L∇R‖α − α̂‖.

��

Appendix B: A norm on separable spaces

We show basic properties of the inner product and norm defined by (6b).

Theorem 6.1 LetU be aHilbert space andA a separable Hilbert space. OnL(U ;A )

define 〈〈 · , · 〉〉 and ‖| · ‖| according to (6b). Then

(i) 〈〈 · , · 〉〉 is an inner product and ‖| · ‖| a norm on L(U ;A ).
(ii) For M ∈ L(U ;U ) and p ∈ L(U ;A ), we have ‖|pM‖| ≤ ‖|p‖|‖M‖L(U ;U ).
(iii) The operator norm on L(U ;A ) satisfies ‖ · ‖L(U ;A ) ≤ ‖| · ‖|.
Proof (i) 〈〈 · , · 〉〉 is bilinear and symmetric. Also ‖|p‖| = 〈〈p, p〉〉 ≥ 0 for all p ∈ P .

To prove that ‖|p‖| > 0 for p �= 0, we observe that the contrary implies ‖p∗ϕi‖ = 0
for all i ∈ I . Since {ϕi }i∈I is a basis for A , this implies p∗ = 0, hence p = 0.

(ii) We have ‖|pM‖|2 = ∑
i∈I ‖M∗ p∗ϕi‖2 ≤ ∑

i∈I ‖M∗‖2
L(U ;U )

‖p∗ϕi‖2 =
‖M‖2

L(U ;U )
‖|p‖|2.

(iii) Let p ∈ L(U ;A ). Then‖p‖L(U ;A ) = ‖p∗‖L(A ;U ) = supα∈A ,‖α‖=1 ‖p∗α‖U .
Since {ϕi }i∈I is an orthonormal basis for A , we can write α = ∑

i∈I aiϕi for some
ai ∈ R with

∑
i∈I a2i = 1. Thus ‖p∗α‖2U = ∑

i∈I
∑

α∈I ai a j 〈p∗ϕi , p∗ϕ j 〉U ≤∑
i∈I

(∑
α∈I a2j

)
‖p∗ϕi‖2U = ‖|p‖|2, where the last inequality uses Young’s inequal-

ity. The claim follows. ��
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