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Abstract
We consider differential inclusions with strengthened one-sided Lipschitz (SOSL)
right-hand sides. The class of SOSL multivalued maps is wider than the class of
Lipschitz ones and a subclass of the class of one-sided Lipschitz maps. We prove a
Filippov approximation theorem for the solutions of such differential inclusions with
perturbations in the right-hand side, both of the set of the velocities (outer pertur-
bations) and of the state (inner perturbations). The obtained estimate of the distance
between the approximate and exact solution extends the known Filippov estimate for
Lipschitz maps to SOSL ones and improves the order of approximation with respect
to the inner perturbation known for one-sided Lipschitz (OSL) right-hand sides from
1
2 to 1.
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1 Introduction

We consider the differential inclusion

ẋ(t) ∈ F(t, x(t)) for a.e. t ∈ [t0, T ] and x(t0) = x0, (1)

where F is a set-valuedmapdefined inRn+1 with nonempty compact (possibly convex)
sets inRn as values, measurable in the time t for all x and upper semi-continuous (not
necessarily continuous) in the state x for almost all t ∈ I = [t0, T ].
The solutions of the inclusion are absolutely continuous (AC) functions x : I → R

n

satisfying (1) almost everywhere.
Filippov-type approximation theorems for differential inclusions follow the orig-

inal theorem of Filippov [38] and provide approximation estimates for the solutions
of (1) in the presence of perturbations by solutions of the original inclusion (1). The
perturbations appear in the right-hand side F(t, x) and in the initial set and the approx-
imation estimates are given in terms of the norms of the perturbations. The theorem
of Filippov extends classical results on Lipschitz continuity of the (unique) solution
of an ODE with respect to perturbations in the right-hand side and the initial point,
to Lipschitz stability of the solution set of a differential inclusion. We next recall the
classical theorem of Filippov [38] in a slightly simplified form with a fixed Lipschitz
constant instead of a time-depending one.

Theorem 1.1 (Filippov [38]) Let F : I × R
n ⇒ R

n have closed, nonempty sets as
values and consider an approximate solution y : I → R

n with perturbed initial value
y(t0) = y0 and

dist(ẏ(t), F(t, y(t))) ≤ ε(t), (2)

where ε(·) is integrable. For ρ > 0 define the tube �(t) = y(t) + ρB1(0) for t ∈ I
with x0 ∈ �(t0) and let F be continuous (in the Hausdorff metric in Sect. 2.1) for all
x ∈ �(t), t ∈ I as well as let F(t, ·) be Lipschitz continuous with a constant L ≥ 0,
i.e.

dH(F(t, x), F(t, y)) ≤ L|x − y|2 for x, y ∈ �(t), t ∈ I . (3)

Then there exists a (neighboring) solution x(·) of (1) on a subinterval of I such that

|y(t) − x(t)|2 ≤ ξ(t) = eL(t−t0)|y0 − x0|2 +
∫ t

t0
eL(t−s)ε(s) ds (4)

|ẏ(t) − ẋ(t)|2 ≤ Lξ(t) + ε(t) a.e.

for t ∈ I with ξ(t) ≤ ρ.

In other words, an approximate solution satisfying (3) with a (time-dependent) ε(·)-
violation of the velocity from the right-hand side F(t, y(t)) is close to a solution x(·)
of the unperturbed system (1) with a distance proportional to the norm of the violation
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ε(·). The importance of the theorem is confirmed by its numerous applications related
to discrete or other approximations of differential inclusions (e.g., [28–31, 34–36,
64]), relaxation theorems (called also Filippov-Ważewski theorems) on the density of
the solutions set of (1) in the set of relaxed solutions (e.g., [2, Sec. 2.4], [3, Sec. 10.4],
[6, 9, 24, 42, 58]), results on the asymptotic behavior of the solutions and others (e.g.,
[31–33, 36]). That is why extending the scope of the Filippov theorem beyond the
family of Lipschitzian, and beyond the one of continuous maps, is an attractive field
of investigation. For more information we refer to [3, 31, 36, 42].

In this respect see also the discussion in [31] of the theorem of Pliś which states
the existence of a neighboring trajectory for differential inclusions without assuming
uniqueness. It is obtained in [56] for right-hand sides with closed values and integrable
Lipschitz modulus and also includes an error estimate with a maximal solution of a
corresponding ODE.

In this paper, for any given solution y(·) of the system with inner and outer vector
perturbations in Rn ,

ẏ(t) ∈ F
(
t, y(t) + δ(t)

)+ ε(t) for a.e. t ∈ [t0, T ] and y(t0) = y0 = x0 + ρ0,

(5)

we want to obtain the existence of a solution of the original system (1) such that the
distance between these two solutions is estimated by some norms of the measurable
perturbations δ(·), ε(·), ρ0 and is small if the perturbations are small.

Ourmotivation for representing the perturbed system in form (5) and the importance
of inner perturbations δ(·), which is essential when F is not continuous with respect
to the state variable, are discussed in details in Sect. 2.2.

Removing the continuity of F with respect to the state variable may be problematic,
since then the continuous dependence of the solutions with respect to perturbations
in the initial condition or the right-hand side may be lost. Fortunately, in some cases
the continuous dependence is preserved, possibly in a Hölder form, as in the case of
one-sided Lipschitz (OSL) mapping F .

The OSL property of single-valued maps in R
n or in Hilbert spaces is known

in numerical analysis as a generalization of the Lipschitz continuity ([4, 22], [43,
Sec. IV.12], [15]).

An early and restrictive extension of theOSLcondition to set-valuedmaps is defined
in [37] and [45, 49]. This condition, equivalent to the monotonicity of the mapμI − F
for some μ ∈ R, may be satisfied only by maps that are a.e. single-valued [67].

A weaker abstract version of the OSL condition in Banach spaces is formulated in
[23], and its most popular form for multimaps in R

n and Hilbert spaces is coined in
[29]. More details on OSL maps may also be found in [25, 27].

Definition 1.2 ([29]) The set-valued map F defined from a domain [t0, T ] × D in
R
n+1 to R

n is called One-Sided Lipschitz (OSL) in D with constant μ ∈ R if for
a.e. t ∈ [t0, T ], every x, y ∈ D and every v ∈ F(t, x) there is w ∈ F(t, y) such that

〈x − y, v − w〉 ≤ μ|x − y|22, (6)

where | · |2 denotes the Euclidean norm in Rn .
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888 R. Baier, E. Farkhi

The OSL property describes a large family of mappings which contains both Lipschitz
and dissipative maps (see also Sect. 2 for examples and a comparison to other known
classes of Lipschitz-like maps).

One should note that the constant μ may be zero or even negative, in contrast to
the case of Lipschitz continuity. The OSL systems with negative OSL constant have a
strongly invariant set which is asymptotically stable and attracts every trajectory [32].
In addition, OSL maps are not necessarily continuous as is shown in Sect. 2: easy
examples of discontinuous OSL single-valued functions in R

1 with OSL constant
μ = 0 are monotone decreasing functions.

In the case of OSL map F (even in the presence of discontinuities) a Filippov
type approximation theorem is proved in [29] for inclusions with OSL and convex-
valued right-hand sides with outer perturbations and first order of approximation of
the solutions with respect to these perturbation is established. This theorem is applied
there to the Euler approximation of differential inclusions and error estimates are
derived implying convergence for right-hand sides which may be not Lipschitz in
the state variable (this is easy to see for autonomous inclusions). Effective estimates
for the Euler scheme providing convergence for OSL mappings being discontinuous
in the state variable follow from a Filippov-type theorem for OSL mappings with
inner perturbations [30], where order 1

2 of approximation with respect to the inner
perturbations is obtained. This leads to the order O(

√
h) of the Euler method for

differential inclusions with (discontinuous) OSL right-hand sides.
The Strengthened One-Sided Lipschitz (SOSL) condition we define next is inter-

mediate between the Lipschitz and the OSL condition, i.e. weaker than the Lipschitz
condition and stronger than the OSL one.

Definition 1.3 ([53, p. 171]) The set-valued map F from a domain [t0, T ] × D in
R
n+1 to R

n is called Strengthened One-Sided Lipschitz (SOSL) in D with constant
μ ∈ R if for a.e. t ∈ [t0, T ], every x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ D and every
v = (v1, . . . , vn) ∈ F(t, x) there is w = (w1, . . . , wn) ∈ F(t, y) such that for all
i ∈ {1, . . . , n} we have the implications

xi > yi ⇒ vi − wi ≤ μ|x − y|∞ (7)

and

xi < yi ⇒ wi − vi ≤ μ|x − y|∞, (8)

where | · |∞ denotes the maximum norm in Rn .

The two cases in the definition above can be unified with the trivial case xi = yi as
follows:
For a.e. t ∈ [t0, T ], every x, y ∈ D and every w ∈ F(t, y) there is v ∈ F(t, x) such
that for all i ∈ {1, . . . , n} the implications (7)–(8) hold, or equivalently

(xi − yi )(vi − wi ) ≤ μ|xi − yi | · |x − y|∞ (i = 1, . . . , n). (9)
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A Filippov approximation theorem for strengthened… 889

Note that also the SOSL constant μ may be negative and F is not necessarily
a.e. single-valued. For maps with values in R

1, the SOSL condition is equivalent to
the OSL one. Also, the set-valued map F is SOSL iff co F (with convexified values)
is SOSL.

A somewhat stronger (uniform) version of the SOSL condition appears earlier in
[50, 51] (see remarks, e.g., in [8, 9]). First order convergence of the Euler scheme is
derived in [49] for 1d case and in [50, 51] for higher dimensions for the unique solution
of a differential inclusion satisfying this condition. Later, first order of convergence
of the solution set for the explicit/implicit Euler method is derived in [9, 53] also for
the wider class of SOSL maps as defined here.

The following hierarchy between the classes of OSL, SOSL and Lipschitz (in the
Hausdorff metric) mappings with compact values in Rn is not hard to verify (see e.g.,
Example 2.8 and [8, Example 5.1]):

OSL ⊃ SOSL ⊃ Lip, (10)

and there is no equality between any two classes.
Although the SOSL condition is weaker than the Lipschitz continuity, it is strong

enough to provide approximation results for differential inclusions (see [9, 53]), better
than for OSL maps and often the same as for Lipschitz maps. This is exactly the case
with the Filippov approximation theorem (Theorem 1.1) proved here for SOSL maps
in the right-hand side.

As a main result in this paper we prove a Filippov-type theorem for a SOSL right-
hand side F with inner and outer perturbations. The obtained estimate of the distance
between the perturbed and non-perturbed solutions is of first order, as in the classical
Filippov theorem for the Lipschitz case, and improves the corresponding approxima-
tion estimate for OSL right-hand side of [30], removing the square root on the norm
of the inner perturbation. Thus we prove the correctness of the conjecture in [30,
Remark 3.2] stating that, under a suitably defined SOSL condition, one may obtain
first order convergence with respect to the inner perturbation.

The paper is organized as follows: In the next section general definitions and known
facts as well as examples and properties of OSL and SOSL maps are presented. In
Section 3 the main theorem of the paper together with stability results for reachable
sets are presented. In Section 4 an application of this theorem to approximations of
dynamical systems with numerical experiments are presented.

2 Preliminaries and examples

2.1 Notation

We denote vectors in R
n by x = (x1, x2, . . . , xn) ∈ R

n . The (closed) Euclidean unit
ball in R

n is denoted by B1(0), the ball around the center x0 with radius r > 0 by
Br (x0). Themaximumnorm of the vector x ∈ R

n is denoted by |x |∞ = max1≤i≤n |xi |,
its Euclidean norm is denoted by |x |2 or simply as |x |. The norm of an L∞-function
f : I → R

n for a bounded, nonempty interval I = [t0, T ] ⊂ R is ‖ f ‖L∞ =
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890 R. Baier, E. Farkhi

esssupt∈I | f (t)|, for f being an L1-function we denote the corresponding norm as
‖ f ‖L1 = ∫

I | f (t)| dt . For a real number μ we denote μ+ = max{0, μ}, μ− =
min{0, μ}.

We denote by K(Rn) the set of compact, nonempty subsets of Rn and by C(Rn)

the set of convex, compact, nonempty subsets of R
n . To measure distances of

bounded, nonempty sets A, B ⊂ R
n we introduce the one-sided Hausdorff dis-

tance d(A, B) = supa∈A dist(a, B) and the (two-sided) Hausdorff distance as
dH(A, B) = max

{
d(A, B), d(B, A)

}
, where dist(z, B) = infb∈B |z − b|2 is the

distance of a vector z ∈ R
n to the set B. The norm of a set is defined by

‖A‖2 = dH(A, {0}) = sup{|a|2 : a ∈ A}. Recall that the Hausdorff distance inK(Rn)

is also obtained via dH(A, B) = min
{
ε > 0 | A ⊂ B + εB1(0), B ⊂ A + εB1(0)

}
.

The interior, the boundary and the closure of a set A ⊂ Rn are denoted by int(A),
bd(A) and A, respectively.

We fix the time interval I = [t0, T ] and denote F : D ⇒ R
n for a set-valued

map with domain D ⊂ R
m (usually m ∈ {n, n + 1}) and which has subsets of Rn as

images. The graph of the set-valued map F is defined as

Graph F = {(x, y) ∈ D × R
n : y ∈ F(x)}.

F is (Lebesgue) measurable if the pre-image F−1(U ) = {t ∈ I : F(t) ∩U �= ∅} is a
(Lebesgue) measurable set for each open setU ⊂ R

n [3, Sec. 8.1]. For a single-valued
map F(t) = { f (t)} this corresponds to the usual criterion for (Lebesgue) measurable
functions f : I → R

n that the pre-image f −1(U ) = {t ∈ I : f (t) ∈ U } of an open
set U ⊂ R

n is (Lebesgue) measurable. F with compact, nonempty images is upper-
semicontinuous (usc) (in the ε-sense) [2, Sec. 1.1, Definition 5], [3, Sec. 1.4, below
Definition 1.4.1] if for all x ∈ D, ε > 0 there exists δ > 0 such that for all y ∈ R

n

with |y− x |2 < δ the inclusion F(y) ⊂ F(x)+ εB1(0), i.e. d(F(y), F(x)) ≤ ε holds
(in contrary to set-valued continuity where d(F(x), F(y)) ≤ ε would also hold).

2.2 Inner and outer perturbations

We use the term “inner perturbation” for the state perturbation δ(·) in the inclusion (5)
and “outer perturbation” for the perturbation of the set of velocities ε(·) as it is done
in the classial book of Filippov [39, Chap. 2, § 7] and e.g., in [19, Definition 2], [44,
Sec. 2], [21, Sec. A.4, (2)], [5, Sec. 5], [12, (14)].

The lack of continuity of F(t, ·) is the main reason to consider separately per-
turbations of the state variable (the inner perturbations) and perturbations of the set
of velocities (the outer perturbations) as in [39, Chap. 2, § 7]. Indeed, if F(t, ·) is
Lipschitz continuous with constant L , we have for small |δ(t)|2 the inclusion

F(t, x + δ(t)) ⊆ F(t, x) + L|δ(t)|2B1(0).

Then any solution y(·) of the perturbed inclusion (5) fulfills the inclusion

ẏ(t) ∈ F
(
t, y(t)

)+ ξ(t) for a.e. t ∈ [t0, T ] and y(t0) = y0 ∈ Br (x
0), (11)
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Fig. 1 The function − sign(x) and its (unperturbed) set-valued variant −Sign(x) (Color figure online)

where |ξ(t)|2 ≤ L|δ(t)|2 + |ε(t)|2. In the latter inclusion only a small outer pertur-
bation is present. In this case it is sufficient to consider only outer perturbations in the
Filippov-type theorems.

Yet, without continuity of F(t, ·), an element of the set F(t, x + δ(t)) may be far
away from the set F(t, x) for small |δ(t)|2 so that the approximation bound for the
outer perturbation |ξ(t)|2 in (11) may be large, while the inner perturbations tend to
zero.

The following simple example of Filippov illustrates this observation.
Let F : R ⇒ R be defined by

F(x) = −Sign(x) =
⎧⎨
⎩

{1} if x < 0,
[−1, 1] if x = 0,
{−1} if x > 0.

(12)

The set-valued map in Fig. 1 (right plot) is the convex-valued usc “regularization”
of − sign(x) (see (15), left plot) and is discontinuous, only upper semicontinuous, at
x = 0.

On the graph of F(x) = −Sign(x) we consider a sequence of points (xk, yk) =
(δk,−1) and (−xk,−yk) = (−δk, 1) with δk = 1

k for k ∈ N on its graph. In Fig. 1
(right plot) the red graph and the blue points for k = 2 are shown.

Due to the upper semi-continuity of F for x = 0, i.e. for all ε > 0 there exists
δ > 0 such that

F(z) ⊂ F(0) + εB1(0) for all z ∈ R with |z| ≤ δ,

the sequence ((xk, yk))k with yk ∈ F(xk) converges to (0,−1) ∈ F(0). Similarly,
the sequence ((−xk,−yk))k converges to (0, 1) ∈ F(0). The missing lower semi-
continuity of F at x = 0 implies that the inclusion

F(0) ⊂ F(z) + εB1(0) for all z ∈ R with |z| ≤ δ,

holds only with ε ≥ 2 for any small δ > 0, and not for smaller ε > 0.
Thus, replacing an inner perturbation by an outer onemay yield too coarse estimates

in theFilippov-type theorem.Considering inner perturbations separately from theouter
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Fig. 2 Inner (on the left) resp. outer (on the right) vector perturbations of −Sign(x) (Color figure online)

ones refines the estimates and allows to extend the approximation estimates to the case
of set-valued maps F which are discontinuous with respect to the state variable.

In Fig. 2 the graphs of two inner vector perturbations F(x + δk) (in blue) and
F(x − δk) (in green) for δk = 1

k are shown for k = 2 in the left plot, while the
right plot shows two outer vector perturbations F(x) + εk (in blue) and F(x) − εk
(in green) for εk = 1

k and k = 2. In both plots the graph of the original mapping
F(x) = −Sign(x) (dashed lines in red color in both plots) is also present.

On Fig. 2 one checks visually that the Hausdorff distance between the graphs of
F(·) and F(· + δk) is bounded by δk . The same estimate for the graphs hold for the
outer vector perturbation F(·)+εk . Nevertheless, the Hausdorff distance between the
values of F and the perturbed mapping F(· + δk) at a given point x = 0 is equal to 2.

Let us sketch two more motivations for the systems (5) with vector and set-valued
perturbations, respectively. Theorem 1.1 requires Lipschitz continuity in the state
variablewith closed, not necessarily convexvalues and essentially that the approximate
solution fulfills the inequality (2). The latter together with ε0 = |y0 − x0|2 means that
y(·) is a solution of the differential inclusion

ẏ(t) ∈ F(t, y(t)) + ε(t)B1(0) for a.e. t ∈ I and y(t0) ∈ x0 + ε0B1(0)

with set-valued outer perturbation ε(t)B1(0). In this case we can rewrite the inclusion
in the form (5) with δ(t) = 0 by [21, Proposition 3.5].

The secondmotivationwewould like to sketch comes from set-valued discretization
methods for solving the differential inclusion (1) as the set-valued Euler method [10,
17, 35, 66]. A discrete solution for the step size h = T−t0

N with a given N ∈ N taking
values on the grid points t j = t0 + jh, j = 0, . . . , N , has the form y j+1 = y j +hw j ,
w j ∈ F(y j ), where we have assumed F to be autonomous for simplicity. To prove the
convergence for this set-valued method, one essential step is to obtain the existence of
a neighboring solution in continuous time. Consider the piecewise linear interpolant

y(t) = y j + (t − t j )w
j for t ∈ I j (13)
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A Filippov approximation theorem for strengthened… 893

on the subinterval I j = [t j , t j+1], j = 0, . . . , N − 1. It is absolutely continuous with
the derivative

ẏ(t) = w j ∈ F(y j ) (14)

in the interior of I j . The right-hand side in (14) can be seen as an inner vector pertur-
bation of the right-hand side F(y(t)) in (1), since

F(y j ) = F(y(t) + δ(t)) with δ(t) =
{
y j − y(t) for t ∈ I j \{t j+1}, j = 0, . . . , N − 2,

yN−1 − y(t) for t ∈ IN−1, j = N − 1.

Thus, y(·) is a solution of the perturbed differential inclusion (14) and the Filippov
Theorem 3.7 guarantees the existence of a neighboring solution of (1) at a distance
O(h) for SOSL right-hand sides, if the inner perturbation δ(t) is O(h) in norm. If
the original inclusion (1) has a unique solution, this Filippov theorem already implies
error estimates of order 1 for the set-valued Euler’s or some Runge–Kutta methods
(see [45, 49]).

2.3 Examples for SOSL/OSL set-valuedmaps

We list some classes of SOSL set-valued maps. An OSL (or SOSL) function in this
subsectionmeans a single-valued function taking values inR orRn . Since every single-
valued map with the values from an OSL function is an OSL set-valued map (see
Remark 2.3), we start the discussion with SOSL and OSL (single-valued) functions
and the special case of linear functions.

Lemma 2.1 Let A ∈ R
n×n be a matrix and b(t) ∈ R

n for t ∈ I . Then the affine
function f (t, x) = Ax + b(t) for x ∈ R

n, t ∈ I is

(i) OSL with constant μ = λmax, where λmax is the maximal eigenvalue of the sym-
metrized matrix Asym = 1

2 (A + A�),

(ii) SOSL with constant μ = max
i=1,...,n

(
max{0, aii } + ∑

j=1,...,n
j �=i

|ai j |
)

The SOSLconstant can be estimated viamax{0, max
i=1,...,n

aii }+ max
i=1,...,n

∑
j=1,...,n

j �=i

|ai j |.

Proof (i) Let x, y ∈ R
n , t ∈ I and v = f (t, x) = Ax + b(t), w = f (t, y) =

Ay + b(t). Then,

〈x − y, v − w〉 = 〈x − y, A(x − y)〉 = 1

2
〈x − y, A(x − y)〉

+ 1

2
〈A�(x − y), x − y〉

= 〈x − y,
1

2
(A + A�)(x − y)〉

= 〈x − y, Asym(x − y)〉 ≤ λmax|x − y|22
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894 R. Baier, E. Farkhi

is OSL with the claimed constant by the estimate with the Rayleight quotient.
(ii) Let i ∈ {1, . . . , n} and consider vi − wi . By v = Ax + b(t), w = Ay + b(t) we

have vi − wi = ai (x − y) with the i-th row vector a�
i ∈ R

n . Hence,

(xi − yi )(vi − wi ) = (xi − yi ) · 〈a�
i , x − y〉 = (xi − yi )

n∑
j=1

ai j (x j − y j )

≤ aii (xi − yi )
2 + |xi − yi |

∑
j=1,...,n

j �=i

|ai j | · |x j − y j |

≤ (max{0, aii } +
∑

j=1,...,n
j �=i

|ai j |

︸ ︷︷ ︸
=:μi

)|xi − yi | · |x − y|∞.

Obviously,

μi ≤ max
k=1,...,n

μk = max
k=1,...,n

(
max{0, akk} +

∑
j=1,...,n
j �=k

|akj |
)

≤ max{0, max
k=1,...,n

akk} + max
k=1,...,n

∑
j=1,...,n
j �=k

|akj |.

��
In the previous lemma we could have estimated the SOSL constant by the bigger

row-sum norm ‖A‖∞ = max
i=1,...,n

∑
j=1,...,n

|ai j |, but then the SOSL constant could no

longer be zero, e.g., for diagonal matrices with negative diagonal elements. Both
constants can be non-positive as it is the case for f (x) = Ax with the matrix

A =
(−2 −1

1 −1

)
with eigenvalues −2, −1 for the symmetrized matrix Asym (the OSL

constant is μ = −1) or for f (x) = Bx with the diagonal matrix B = diag({−2,−1})
and the SOSL constant μ = 0. It is easy to see with Lemma 2.1 that in the first case
f (x) = Ax is also SOSL but with positive constant μ = 1.

Remark 2.2 Each real-valuedmonotone decreasing functionwith domain inR is SOSL
(hence OSL) with constant μ = 0 and every dissipative function from R

n to R
n (see

[20, Chap. 3, (1)]) is OSL with the same constant.
The negation of the sign function

f (x) = − sign(x) with sign(x) =

⎧⎪⎨
⎪⎩

−1 if x < 0,

0 if x = 0,

1 if x > 0

(15)
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for x ∈ R (see in Fig. 1, left picture) is discontinuous at x = 0 and SOSLwith constant
μ = 0. The function g(x) = −x − sign(x) is OSL with constant −1 and SOSL with
constant 0.

We now list some classes of set-valued SOSL and OSL and show connections to
previously defined notions in the literature.

Remark 2.3 Let F : R
n ⇒ R

n be a set-valued map. Each single-valued map with
F(x) = { f (x)} and an OSL/SOSL function f is an OSL/SOSL set-valued map.

Let F be dissipative (see [20, Chap. 3, (1)]), i.e. G = −F is monotone/accretive
(see [21, Sec. 4.3] so that for all x, y ∈ R

n and all v ∈ G(x), w ∈ G(y) the inequality
〈x − y, v − w〉 ≥ 0 holds. Then F is OSL with constant 0. An important example for
dissipative set-valued maps is F(x) = −∂g(x), the Moreau-Rockafellar subdifferen-
tial for a convex function g : Rn → R∪ {∞}, see [21, Chap. 1, Sec. 4, Problems 12].

We state some more examples of OSL and SOSL maps and refer to [29, 30] for
similar example classes and discussions on earlier OSL/SOSL concepts. The next
result in (iv) generalizes [51, Lemma 3.6] to SOSL maps.

Proposition 2.4 Let F : Rn ⇒ R
n be a set-valued map and let one of the following

assumptions hold:

(i) F is Lipschitz with constant L ≥ 0, i.e. dH(F(x), F(y)) ≤ L|x − y|2, and set
μF = √

nL.
(ii) G : Rn ⇒ R

n is OSL/SOSL with constant μG ∈ R, U , V ⊂ R
n are nonempty

and set F(x) = G(x +U ) + V , μF = μG.
(iii) G : Rn ⇒ R

n is OSL/SOSL with constant μG ∈ R, λ ≥ 0 and set F = λG,
μF = λμG.

(iv) G, H : R
n ⇒ R

n are OSL/SOSL maps with constants μG , μH ∈ R and set
F = G + H, μF = μG + μH .

(v) Fi : R ⇒ R are OSL maps with constants μi ∈ R, i = 1, . . . , n and set
F(x) =∑n

i=1 Fi (xi )e
i for x = (x1, . . . , xn) ∈ R

n with the standard unit vectors
ei ∈ R

n, i = 1, . . . , n, the notation

Fi (xi )e
i = {v ∈ R

n : vi ∈ Fi (xi ) and v j = 0 for j ∈ {1, . . . , n}, j �= i} (16)

and μF = max{0,maxi=1,...,n μi }.
If G, H are SOSL in (ii)–(iv), then F is also SOSL in (i)–(v) with the stated constant
μF .
If G, H are OSL in (ii)–(iv), then F is OSL in (i)–(v) with constant μF (with μF = L
in (i)).

Proof (i) is simple for the OSL or SOSL case and follows for x, y ∈ R
n , v ∈ F(x),

i = 1, . . . , n from

〈x − y, v − w〉 ≤ |x − y|2 · |v − w|2,
resp. (xi − yi )(vi − wi ) ≤ |xi − yi | · |vi − wi | ≤ |xi − yi | · |v − w|2

≤ |xi − yi | · L|x − y|2 ≤ L
√
n · |xi − yi | · |x − y|∞
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withw ∈ F(y) such that v ∈ w+L|x−y|2 B1(0), seewithout proofs [30,Remark 2.1],
[29, Remark 2.2], [26, Remark 1].
For (ii) see [30, Lemma3.1] forOSLmaps, for SOSLmaps let i = 1, . . . , n, x, y ∈ R

n ,
z ∈ F(x) with z = w + v and w ∈ G(x + u), u ∈ U . Choose w̃ ∈ G(y + u) such
that the SOSL condition holds for G and set z̃ = w̃ + v ∈ G(y +U ) + V . Then,

(xi − yi )(zi − z̃i ) = (xi − yi ) · ((wi + vi ) − (w̃i + vi )
) ≤ μG |xi − yi | · |x − y|∞.

The proofs of (iii)-(iv) are standard and left to the reader.
(v) Let x, y ∈ R

n and v ∈ F(x) so that vi ∈ Fi (xi ) for i = 1, . . . , n. By the OSL
condition there exists wi ∈ Fi (t, y) ⊂ R with (xi − yi )(vi − wi ) ≤ μi |xi − yi |2 . We
set w = (w1, . . . , wn) so that w ∈ F(y) and

(xi − yi )(vi − wi ) ≤ max{μi , 0}|xi − yi | · |x − y|∞

which proves the SOSL condition with constant μF . ��
It is remarkable that many well-known functions (or their negation) in machine

learning, electrical engineering, control theory or physics are SOSL (see e.g., [14,
Sec. 2], [11, Sec. 2.4], [47, 57]), some functions are listed in the following example.

Example 2.5 All functions fi : R → R, i = 1, 2, below have the real numbers as
domain and range and belong to the class of SOSL functions.

(i) The negation of the sigmoidal function

f1(x) = −σ(x, α) with σ(x, α) = 2

1 + exp(− x
α
)

− 1 (17)

for x ∈ R and some fixed α > 0 is SOSL with constant μ = 0, since f1(·)
is monotone decreasing, and is C∞(R), in particular is Lipschitz with constant
L1 = 1

2α .
(ii) The negation of the saturation function

f2(x) = − sat(βx) with sat(x) =
{
sign(x) if |x | > 1,

x if |x | ≤ 1
(18)

for x ∈ R and some fixed β > 0 is Lipschitz with constant L2 = β. f2(·) is SOSL
with constant μ = 0, since f2(·) is also monotone decreasing.

The sigmoidal or the saturation function are used in practical realization (approxi-
mation) of the discontinuous sign function from Remark 2.2 (see e.g., [47, Sec. 3.1]),
or in the theoretical analysis of discontinuous differential equations. This approxi-
mation is usually performed by the choice of small values α > 0 for the sigmoidal
function f1(x) in (17) or for the saturation function f2(x) by large values for β > 0
in (18).

123



A Filippov approximation theorem for strengthened… 897

Fig. 3 Sigmoidal (first row) and saturation function (second row) for α ∈ { 15 , 1
20 }, β ∈

{1, 4}(Color f igureonline)

Fig. 4 The two SOSL maps F1 and F2 (outer and inner set perturbation of G on the left/right) (Color figure
online)

In (i) L1 = maxx∈R | ḟ1(x)| = | ḟ1(0)| = 1
2α tends to ∞ for α → 0 + 0 and

in (ii) the Lipschitz constant L2 = β explodes if the non-saturation zone [− 1
β
, 1

β
] is

narrowed for β → ∞. This behavior can be observed in Fig. 3.
Further examples of SOSL (monotone decreasing) functions used inmachine learn-

ing are the negation of the Heaviside and the ReLU/ramp function (see e.g., [14,
Chap. 2]).

Next we present examples of OSL and SOSL set-valued maps which are not single-
valued.

Example 2.6 We study examples of SOSL set-valued maps Fi : R ⇒ R, i = 1, 2,
with convex, compact, nonempty images which are set perturbations of the OSL map
G(x) = −Sign(x) in the sense of Proposition 2.4(ii). Compare both perturbations
with the original set-valued map G in Fig. 1 (right plot).

(i) F1(x) = −Sign(x) + 1
4 [−1, 1] (outer perturbation of OSL set-valued map G)

in Fig. 4 (left) is OSL (and SOSL) with constant μ = 0 due to Proposition 2.4(ii)
(apply with U = {0} and V = 1

4 [−1, 1]). F1 is discontinuous (only usc) and not
dissipative.

(ii) F2(x) = −Sign(x + 1
4 [−1, 1]) (inner perturbation of OSL set-valued map G)

in Fig. 4 (right) is OSL (and SOSL) with constant μ = 0 due to Proposition 2.4(ii)
(apply with U = 1

4 [−1, 1] and V = {0}). F2 has the same properties as F1 in (i).
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Example 2.7 An example of a discontinuous SOSL set-valued map defined in R with
non-degenerate intervals as values, a negative SOSL constantμ = 0 and which cannot
be represented as the sum of a Lipschitzmultifunction and a dissipative (SOSL) single-
valued function is F(x) = co{− sign(x),−(sign(x) + x1/3)}.
We end this section by one example which is OSL but not SOSL.

Example 2.8 ([8, Example 5.6]) Consider the set-valued map F(x) = −∂g(x) for
x ∈ R

n which is the convex subdifferential of Rockafellar/Moreau of the real-valued
function g(x) = |x |2.

Then F is OSL and dissipative by Remark 2.3 (i.e. −F is monotone) but not SOSL
for n ≥ 2.

Another example would be the Hölder continuous function of degree 1
3 from [30,

Example 5.4] which is OSL with constant μ = 1
2 but not SOSL. More variants

of Lipschitz-type or OSL-type set-valued maps and corresponding examples can be
found in [9] and [7, 8].

3 Filippov-type theorems for SOSLmaps

3.1 Existence and boundednes of solutions

For the proof of Filippov theorems under weaker conditions than Lipschitz continuity
we need an existence result for differential inclusions under weak assumptions.

Theorem 3.1 ([54, Corollary 6 of Theorem 1]) Consider F : I ×R
n ⇒ R

n, x0 ∈ R
n

such that

(i) F(t, x) is an orientor field, i.e. F(t, x) is closed and nonempty,
(ii) F(·, x) is measurable in t ∈ I for all x ∈ R

n,
(iii) for almost all t ∈ I

– either F(t, ·) is upper semi-continuous (= usc) at x ∈ R
n and F(t, x) is convex

– or F(t, ·) is lower-semicontinuous (= lsc) at some neighborhood of x ∈ R
n

(iv) F(·, ·) is (weakly) locally integrably bounded, i.e. for every bounded set S̃ ⊂
I×R

n the distance function dist(0, F(t, x)) is bounded by an integrable function
k : I → R for all (t, x) ∈ S̃.

Then, there exists a solution of the differential inclusion (1).

Remark 3.2 The assumptions of the theorem provide two options to guarantee the
existence: convex images with upper semi-continuity only or lower semi-continuity
with nonconvex closed images (similar to the discussion in [2, Sec. 2.1, p. 94]). From
now on we mainly follow the first option for the rest of the paper, since the set-valued
map −Sign(x) which appears in most of our applications is only usc.

A similar local existence result can be found in [63] in Theorem 8.13, where (ii) is
replaced by the weaker existence of a (strongly) measurable selector of F(·, x). The
global existence follows from Theorem 8.15 together with Example 8.17.
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We now summarize our basic assumptions on the right-hand side F : I × R
n ⇒

R
n of the differential inclusion. Here, the boundedness condition in (A1) is slightly

stronger than (iv) in the previous existing result (that guarantees the boundedness of
at least one solution), since we consider a sub-inclusion of F(t, x) and also need the
boundedness of all solutions.

(A1) F(t, x) ⊂ R
n is compact and nonempty and is integrably bounded on bounded

sets, i.e. for every constant C and for every compact S ⊂ R
n with ||S||2 ≤ C

there is an L1-function KF (·;C) such that

||F(t, S)||2 ≤ KF (t;C). (19)

(A2) F(·, x) is Lebesgue measurable in t ∈ I for all x ∈ R
n .

(A3) F(t, ·) is upper semi-continuous at x ∈ R
n for almost all t ∈ I .

(A4) F(t, x) is convex.
(A5) F is SOSL with a constant μ ∈ R.

In the case that (A2)–(A3) hold, F is called upper Carathéodory in [1, Sec. 4].

We first state a version of Gronwall’s lemma in differential form which does not
require the usual non-negativity of functions defining the right-hand side (20) of the
inequality. It is inspired by the proofs of [65, Lemma 2.4.4] and [21, Sec. 8.5].

Lemma 3.3 Let I = [t0, T ], k(·) and p(·) are in L1(I ), ψ : I → R absolutely
continuous and

ψ̇(t) ≤ k(t)ψ(t) + p(t) for a.e. t ∈ I . (20)

Then,

ψ(t) ≤ ϕ(t) = eK (t)
(

ϕ(t0) +
∫ t

t0
e−K (s) p(s) ds

)
, (21)

where K (t) = ∫ tt0 k(s) ds and ϕ(·) solves the initial value problem

ϕ̇(t) = k(t)ϕ(t) + p(t) for a.e. t ∈ I , ϕ(t0) = ψ(t0)

Proof Define the AC function η(t) = e−K (t)ψ(t) for t ∈ I . Then, via (20)

η̇(t) = e−K (t)(−k(t)ψ(t) + ψ̇(t)) ≤ e−K (t) p(t). (22)

η(t) = η(t0) + ∫ t
t0

η̇(s) ds by absolute continuity together with (22) and ψ(t) =
eK (t)η(t) yields

ψ(t) ≤ eK (t)
(

ϕ(t0) +
∫ t

t0
e−K (s) p(s) ds

)
= ϕ(t).

��
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We prove a technical lemma for the boundedness of solutions with inner vector and
outer set-valued perturbations similar to [29, Lemma 3.1] and [30, Lemma 3.2]. Note
that the integrable boundedness condition in (A1) (see e.g., [31]), isweaker than simply
boundedness on bounded sets [30] and the linear growth condition, ||F(t, x)||2 ≤
c(t)(1+|x |2)with c(·) ∈ L1(I ) [21, Chap. 2, § 6], but stronger than the condition (iv)
in Theorem 3.1. The assumption (A1) allows the estimates for all perturbed solutions
in the next lemma below.

Lemma 3.4 Let F : I × R
n ⇒ R

n fulfill assumptions (A1) and be OSL with constant
μ ∈ R.

Then for all Kδ, Kε, K0 ≥ 0 there exist constants CB,CF ≥ 0 such that for all
measurable vector perturbations δ(·) ∈ L∞(I ), ε(·) ∈ L1(I ) and all initial values
y0 ∈ R

n with

‖δ(·)‖L∞ ≤ Kδ, ‖ε(·)‖L1 ≤ Kε, |y0 − x0|2 ≤ K0, (23)

the solutions y(·) of the perturbed inclusion (5) satisfy

‖y(·)‖L∞ ≤ CB, ‖ẏ(·)‖L1 ≤ CF , (24)

where

CB = eμ+(T−t0)
(|x0|2 + K0

)+ eμ+(T−t0)
(‖KF (·; Kδ)‖L1 + Kε

)
, (25)

CF = ‖KF (·;CB + Kδ)‖L1 + Kε. (26)

Proof F is OSL so that for all x, x̃ ∈ R
n and for a.e. t ∈ I (see (6) and [29])

δ∗(x − x̃, F(t, x)) = max
v∈F(t,x)

〈x − x̃, v〉 ≤ max
ṽ∈F(t ,̃x)

(〈x − x̃, ṽ〉 + μ|x − x̃ |22
)

= δ∗(x − x̃, F(t, x̃)) + μ|x − x̃ |22
For a.e. t ∈ I , ẏ(t) ∈ F(t, y(t) + δ(t)) + ε(t). Then using the above inequality for

support functions,

〈y(t), ẏ(t) − ε(t)〉 ≤ δ∗(y(t), F(t, y(t) + δ(t))) ≤ δ∗(y(t), F(t, δ(t))) + μ|y(t)|22
≤ δ∗(y(t), F(t, ‖δ(·)‖L∞ B1(0)) + μ · |y(t)|22
≤ |y(t)|2 · ‖F(t, KδB1(0))‖2 + μ · |y(t)|22
≤ μ · |y(t)|22 + KF (t; Kδ) · |y(t)|2

holds for a.e. t ∈ I by a suitable L1-function KF (·; Kδ), since the set KδB1(0) is
bounded. Hence,

〈y(t), ẏ(t)〉 = 〈y(t), ẏ(t) − ε(t)〉 + 〈y(t), ε(t)〉
≤ μ · |y(t)|22 + KF (t; Kδ) · |y(t)|2 + |ε(t)|2 · |y(t)|2.
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Introducing the function p(t) = |y(t)|2, it is trivial to show by definition that p(·) is
AC and that p2(·) is differentiable at each point of differentiability of y(·), i.e. almost
everywhere in I . Since p(t)2 is a composition of an (outer) locally Lipschitz function
g(s) = s2 and an AC function p(t), the (extended) chain rule holds for a.e. t ∈ I by
[59, Theorem 2] yielding

p(t) ṗ(t) = 1

2

d

dt
p(t)2 = 1

2

d

dt
〈y(t), y(t)〉 = 〈y(t), ẏ(t)〉 ≤ μ · p(t)2

+ (KF (t; Kδ) + |ε(t)|2) · p(t) (27)

Next we want to prove (28) for almost every t ∈ I .

ṗ(t) ≤ μ · p(t) + KF (t; Kδ) + |ε(t)|2 (28)

Case 1: Consider the points t where p(t) �= 0 and ṗ(t) exists.
In the (measurable) set of points t ∈ I where p(t) �= 0 we can cancel p(t) on both
sides of the estimate (27) and get (28).

Case 2: If t lies in the (measurable) set N = {τ ∈ I : p(τ ) = 0}, we can consider
only its subset of the points of density (which is of full measure by the Lebesgue
density theorem, see [13, Chap. II, Theorem 5.1]), at which also the derivative ṗ(t)
exists, since p(·) is absolutely continuous. Consider an arbitrary sequence {tk}k inN
converging to such a density point t and calculate

ṗ(t) = lim
k→∞

p(t) − p(tk)

t − tk
= 0

since p(t) = 0. Then (28) is trivially fulfilled.
In both cases (28) holds for a.e. t ∈ I and it follows from the Gronwall inequality

(Lemma 3.3) that

|y(t)|2 = p(t) ≤ eμ(t−t0)|y0|2 +
∫ t

t0
eμ(t−s)(KF (s; Kδ) + |ε(s)|2

)
ds

≤ eμ(T−t0)
(|x0|2 + K0

)+ eμ(T−t0)
(

‖KF (·; Kδ)‖L1 +
∫ T

t0
|ε(s)|2 ds

︸ ︷︷ ︸
≤Kε

)
= CB

(29)

which proves the first inequality in (24). Furthermore, we have for a.e. t ∈ I :

|ẏ(t)|2 ≤ ‖F(t, y(t) + δ(t)) + ε(t)‖2 ≤ ‖F(t, y(t) + δ(t))‖2 + |ε(t)|2
≤ ‖F(t, (CB + Kδ)B1(0)))‖2 + |ε(t)|2 ≤ KF (t;CB + Kδ) + |ε(t)|2,

‖ẏ(·)‖L1 =
∫ T

t0
|ẏ(t)|2 dt ≤ ‖KF (·;CB + Kδ)‖L1

+
∫ T

t0
|ε(t)|2 dt ≤ ‖KF (·;CB + Kδ)‖L1 + Kε = CF
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which proves the second inequality in (24). ��
To prove a Filippov-type theorem for the SOSL case, we state an equivalent con-

dition to the SOSL property which refines the working condition in [53, Sec. 2, (31)]
and is applied in the proofs in this section.

Lemma 3.5 Let F : I ×R
n ⇒ R

n have nonempty images. The following condition is
equivalent to the SOSL condition for F:
For a.e. t ∈ I and every x, y, ỹ ∈ R

n, w ∈ F(t, y) there is v ∈ F(t, x) such that

(xi − ỹi )(vi − wi ) ≤ μ|xi − ỹi | · |x − ỹ|∞ + |μ| · |xi − ỹi | · |y − ỹ|∞ (30)

for every index i ∈ {1, . . . , n} satisfying

|xi − yi | > |y − ỹ|∞. (31)

Proof For given t, x, y, ỹ we denote by J the set of indices satisfying (31).
First, we assume that (30) holds for any given t, x, y, ỹ and indices i ∈ J . Choosing

ỹ = y, we get from (30) the SOSL condition in the form (9) for a.e. t ∈ I .
Conversely, let F be SOSL. Then there exists a subset Ĩ ⊂ I of full measure such

that the inequalities in Definition 1.3 hold for given x, y, ỹ ∈ R
n . Let t ∈ Ĩ and i ∈ J .

Without loss of generality suppose xi > yi . Then it follows from (31) that xi > ỹi .
We obtain from the SOSL condition that for the given x, y ∈ R

n , w ∈ F(t, y) there
is v ∈ F(t, x) such that for i ∈ J

vi − wi ≤ μ|x − y|∞.

We multiply this inequality by the positive number xi − ỹi = |xi − ỹi | and obtain

(xi − ỹi )(vi − wi ) ≤ μ|xi − ỹi | · |x − y|∞. (32)

Then, for μ ≥ 0 we apply the triangle inequality |x − y|∞ ≤ |x − ỹ|∞ + |y − ỹ|∞
and get

(xi − ỹi )(vi − wi ) ≤ μ|xi − ỹi | · |x − ỹ|∞ + μ|xi − ỹi | · |y − ỹ|∞

which obviously implies the claim for t ∈ Ĩ .
In the case μ < 0 we use the inverse inequality |x − y|∞ ≥ |x − ỹ|∞ − |y − ỹ|∞

and get from (32)

(xi − ỹi )(vi − wi ) ≤ μ|xi − ỹi | · |x − ỹ|∞ − μ|xi − ỹi | · |y − ỹ|∞

which also implies (30). ��
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Remark 3.6 The working condition for SOSL maps in Lemma 3.5 plays a key role
in the definition of an auxiliary differential sub-inclusion in the proof of the Filippov
theorem for SOSL maps. The corresponding one for OSL maps

〈x − ỹ, v − w〉 ≤ μ|x − y|22 + |y − ỹ|2 · |v − w|2

which is equivalent to the OSL condition is used in [30] for the same purpose in the
proof of the Filippov theorem in the OSL case.

We recall the working condition for SOSL maps in [53, Sec. 2, (31)]:
For (a.e.) t ∈ I and all x, y, ỹ ∈ R

n , v ∈ F(t, x) there is w ∈ F(t, y) such that

(xi − ỹi )(vi − wi ) ≤ μ|x − ỹ|2∞ + μ · |x − ỹ|∞ · |y − ỹ|∞ (33)

for indices i ∈ {1, . . . , n} satisfying

|xi − yi | > κ|y − ỹ|∞. (34)

Both working conditions (30)–(31) and (33)–(34) are equivalent to the SOSL con-
dition for μ ≥ 0, κ = 1, but only (30)–(31) is equivalent to the SOSL property if
μ < 0.

3.2 Filippov approximation theorem for the SOSL case

We now state the main result of this paper, the Filippov theorem for inclusions with
SOSL right-hand sides.

Theorem 3.7 (Filippov-type theorem for the SOSL case with inner perturbations)
Let F : I × R

n ⇒ R
n satisfy (A1)–(A5), consider the inner vector perturbation

δ(·) ∈ L∞(I ) and let ỹ(·) be a solution of the inclusion

˙̃y(t) ∈ F(t, ỹ(t) + δ(t)) for a.e. t ∈ I and ỹ(t0) = y0. (35)

Then there exists a solution x(·) of the inclusion (1) such that for all t ∈ [t0, T ]

|̃y(t) − x(t)|∞ ≤ max
{
eμ(t−t0)|y0 − x0|∞, 2eμ+(t−t0) · ‖δ(·)‖L∞

}

+ |μ| ·
∫ t

t0
eμ(t−s)|δ(s)|2 ds. (36)

Proof The proof is done in several steps. Denote by� the measurable set of points t in
I in which all ỹi (·), i = 1, . . . , n, are differentiable in t as well as (9), (30)–(31), (35)
and the upper-semicontinuity of F(t, ·) hold. Since ỹ(t) is absolutely continuous, �
has full measure in I .

Step 1: definition of an auxiliary differential inclusion involving the criterion of
Lemma 3.5
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For the given functions ỹ(·), δ(·) we set y(t) = ỹ(t) + δ(t) and for any x ∈ R
n ,

t ∈ I = [t0, T ] we denote by J (t, x) the set of indices i ∈ {1, 2, . . . , n} satisfying the
condition

|xi − yi (t)| > ‖δ(·)‖L∞ . (37)

Clearly, for the given t, x, y(t), ỹ(t), we have J (t, x) ⊂ J , where J is the set of
indices for which (31) holds (see the proof of Lemma 3.5). For (t, x) ∈ � ×R

n let us
introduce the set-valued mapping

G(t, x) =
{
v ∈ F(t, x) | ∀i ∈ J (t, x) : (xi − ỹi (t))(vi − ˙̃yi (t))

≤ μ|xi − ỹi (t)| · |x − ỹ(t)|∞ + |μ| · |xi − ỹi (t)| · |δ(t)|∞
}
. (38)

Note that G(t, x) is well-defined by (38) for all x ∈ R
n and t ∈ �. For t ∈ I\�,

x ∈ R
n we define G(t, x) = F(t, x) and consider the auxiliary differential inclusion

ẋ(t) ∈ G(t, x(t)) for a.e. t ∈ I and x(t0) = x0. (39)

Step 2: verification of the conditions in Theorem 3.1 ensuring the existence of a
solution of (39)
(i), (iii) The values of G(t, x) are convex, compact, nonempty.
For t ∈ I\�, x ∈ R

n , all three conditions in (i) hold by the assumptions on F , since
G(t, x) = F(t, x).
For t ∈ �, the above mentioned inclusion J (t, x) ⊂ J and Lemma 3.5 imply that
G(t, x) �= ∅ for all x ∈ R

n , since ˙̃y(t) ∈ F(t, ỹ(t) + δ(t)) = F(t, y(t)) for t ∈ �.
The convexity and closedness follow directly from (38). For the upper semi-continuity
we now rewrite the definition of G(t, x) for t ∈ I , x ∈ R

n . We introduce for i ∈
{1, . . . , n} :
• The set-valued map Hi : Rn ⇒ I

Hi (x) = {t ∈ I : ξi (t, x) > ‖δ(·)‖L∞} with ξi (t, x) = |yi (t) − xi |

collects the times t for which (37) holds.
• The set-valuedmaps D̃i , Di , D : I×R

n ⇒ R
n , the functions ηi , βi : I×R

n → R

by

ηi (t, x) = ỹi (t) − xi ,

βi (t, x) =
⎧⎨
⎩

(ỹi (t) − xi ) ˙̃yi (t) − μ|xi − ỹi (t)| · |x − ỹ(t)|∞ − |μ| · |xi − ỹi (t)| · |δ(t)|∞
for t ∈ �, x ∈ R

n,

−|̃yi (t) − xi | · KF (t, |x |2) for t ∈ I\�, x ∈ R
n,

(40)

D̃i (t, x) = {v ∈ R
n : ηi (t, x)vi ≥ βi (t, x)} ∩ F(t, x). (41)
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Note that for t ∈ I\� the inequality in (41) is trivially satisfied for every v ∈
F(t, x) by (19).

Di (t, x) = χHi (x)(t)D̃i (t, x) + (1 − χHi (x)(t))F(t, x), (42)

G(t, x) =
n⋂

i=1

Di (t, x). (43)

It is easy to verify by (43) that G has closed values, since the values of F and Di

are closed for t ∈ I , x ∈ R
n .

(ii) G(·, x) is measurable for any x ∈ R
n

Let us first mention that all functions ηi (t, x)vi and βi (t, x) for a fixed x ∈ R
n are

Carathéodory in (t, v) ∈ I ×R
n , i.e. measurable in t for fixed v and continuous with

respect to v for fixed t .
For a fixed x ∈ R

n the set Hi (x) is measurable as the pre-image of the open
interval U = (‖δ(·)‖L∞ ,∞) for the measurable function ϕ(·) = |yi (·) − xi |. For
fixed (t, x) ∈ � × R

n the first operand in the intersection of set-valued map D̃i (t, x)
is measurable in t respectively by [16, Théorème 3.5]. The measurability of D̃i (·, x)
follows from the intersection with the measurable set-valued map F(·, x), the one
of Di (·, x) follows from (42), since Hi (x) is a measurable set and therefore, the
characteristic function χHi (x)(·) is measurable in t by [18, Example 2.1.2] as well as
the product χHi (x)(·)D̃i (·, x) by [16, Corollaire 1]. As a finite intersection in (43) the
measurability of G(·, x) is granted on I by [3, Theorem 8.2.4].
(iii) G(t, ·) is usc for t ∈ �

For this we show that for a fixed t ∈ � the graph of Di (t, ·) is closed for every
i = 1, . . . , n.
For sequences with limk→∞ xk = x∗ and limk→∞ vk = v∗ with vk ∈ Di (t, xk) we
show that v∗ ∈ Di (t, x∗).

case a: t ∈ Hi (x∗)
The continuity of ξ(t, ·) yields that t ∈ Hi (xk) and vk ∈ D̃i (t, xk) from (42) for large
k.
The left- and right-hand sides ηi (t, x)vi and βi (t, x) in the inequality (41) are con-
tinuous in (x, v), so that the convergence of both sequences {xk}k , {vk}k yield the
inequality (41) in the first set of the intersection also for (x∗, v∗). Since the graph of
F(t, ·) is closed, v∗ ∈ D̃i (t, x∗) is valid and v∗ ∈ Di (t, x∗) from t ∈ Hi (x∗).

case b: t /∈ Hi (x∗)
By definition in (42) Di (t, x∗) = F(t, x∗) and v∗ ∈ Di (t, x∗) holds trivially.
Therefore in all cases the graphs of Di (t, ·) and G(t, ·) are closed and G(t, ·) is usc
due to [2, Sec. 1.1, Theorem 1] (see also [3, Propositions 1.4.8-−1.4.9]), since F(t, x)
is compact and F(t, ·) is usc in x .
(iv) G is locally integrably bounded as a subset of F , which is integrably bounded on
bounded sets by (A1).
Hence, we have checked all assumptions of the Existence Theorem 3.1.

Step 3: solution of the auxiliary differential inclusion
By Theorem 3.1, there exists a solution x(t) of the auxiliary inclusion (39). We set
z(t) = x(t) − ỹ(t) for the next two steps. Clearly, z(·) is AC and we can assume
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906 R. Baier, E. Farkhi

without loss of generality (possibly after removing a set of measure zero from �) that
x(·) and z(·) are differentiable for t ∈ �.
In the next steps we prove the estimate (36).

Step 4: local SOSL estimate for zi (·) on open subsets of �

For i = 1, . . . , n we define the sets

θi = {t ∈ I : |yi (t) − xi (t)| > ‖δ(·)‖L∞
}
,

T i
max = {t ∈ I : |zi (t)| = |z(t)|∞},
�i = int θi ∩ int T i

max.

By the continuity of z(·) and the measurability of yi (·) − xi (·), θi and T i
max are mea-

surable sets so that �i is measurable and open. Define the open set � = ⋃n
i=1 �i .

Then

I\� =
n⋂

i=1

(
I\(int(θi ) ∩ int(T i

max))
) =

n⋂
i=1

(
(I\ int(θi ) ∪ (I\ int(T i

max)
)

(44)

is a closed set. Then clearly I = � ∪ int(I\�) ∪ bd(I\�). It is well-known that
every open set V ⊂ R is a countable union of disjoint open intervals (see e.g., [60,
Theorem 1.3] or [41, Proposition 0.21]). Every such disjoint open interval is the
maximal interval (with respect to set inclusion) containing a given point of V . We will
call these disjoint open intervals (maximal) components of V .

Step 4a: We now show that for any i ∈ {1, . . . , n} and any (maximal) component
of �i , � = (t ′, t ′′) and every t ∈ � = [t ′, t ′′] the following estimate holds:

|z(t)|∞ ≤ eμ(t−t ′)|z(t ′)|∞ + |μ| ·
∫ t

t ′
eμ(t−s)|δ(s)|2 ds (45)

Note that if (45) holds on the open interval �, then it is also true on its closure by
the continuity of z(·) and of the function in the right-hand side of (45). For (45) we
show the following estimate for a.e. t ∈ �i :

d

dt
|zi (t)| ≤ μ|z(t)|∞ + |μ| · |δ(t)|2 (46)

We use the definition of G(t, x) (see (38)) for t ∈ �i ∩ �, since ẋ(t) ∈ F(t, x(t))
and (31) holds for t ∈ � ⊂ �i Hence, for t ∈ �i ∩ �

zi (t)żi (t) = (xi (t) − ỹi (t))(ẋi (t) − ˙̃yi (t))
≤ μ|xi (t) − ỹi (t)| · |x(t) − ỹ(t)|∞ + |μ| · |xi (t) − ỹi (t)| · |y(t) − ỹ(t)|∞
= μ|zi (t)| · |z(t)|∞ + |μ| · |zi (t)| · |δ(t)|2, (47)

since y(t) = ỹ(t) + δ(t).
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For the absolutely continuous function p(τ ) = |zi (τ )| and τ ∈ I we can argue as
in the proof of Lemma 3.4 to get that p(·)2 and zi (·)2 are differentiable at the points
where |zi (·)| is differentiable that is w.l.o.g. in � (eventually removing a set of zero
measure from �). Furthermore, the (extended) chain rule holds for p(τ )2 = zi (τ )2

and a.e. τ ∈ I (w.l.o.g. we may assume that τ ∈ �) yielding together with (47)

p(τ ) ṗ(τ ) = 1

2

d

dτ
p(τ )2 = 1

2

d

dτ
zi (τ )2 = zi (τ )żi (τ )

≤ μp(τ ) · |z(τ )|∞ + |μ| · p(τ ) · |δ(τ )|2 for τ ∈ �. (48)

We can repeat the arguments of cases 1 and 2 in the proof of Lemma 3.4 to show
that (46) holds for t ∈ �i ∩ �. We can apply the Gronwall inequality (Lemma 3.3)
together with p(t) = |zi (t)| = |z(t)|∞ for t ∈ � ⊂ �i ⊂ T i

max and it follows
from (46) that (45) holds.

Step 4b: We show that the inequality (45) proved in step 4a for a (maximal) com-
ponent of �i also holds for t ∈ � = [t ′, t ′′] for any (maximal, possibly larger)
component � = (t ′, t ′′) of � =⋃n

i=1 �i .
Indeed, take an arbitary (maximal) component �i = (t ′i , t ′′i ) of �i . If it does not

intersect any (maximal) component � j = (t ′j , t ′′j ) of � j for j �= i , then �i is also a
(maximal) component of � and we can apply the result of step 4a.

If �i ∩ � j �= ∅ for some j �= i , we now show that (45) holds in the closure of the
interval �i ∪ � j = (t ′, t ′′).
There are two possibilities:

a) the inclusions �i ⊂ � j or � j ⊂ �i hold
In this case we simply apply step 4a on the larger interval.

b) �i and � j overlap partially, i.e. either t ′j ≤ t ′i < t ′′j ≤ t ′′i or t ′i ≤ t ′j < t ′′i ≤ t ′′j
Assume for instance the first sub-case (the second one is similar to prove). Writ-
ing (45) for the interval [t ′j , t ′i ], we get

|z(t ′i )|∞ ≤ eμ(t ′i−t ′j )|z(t ′j )|∞ + |μ|
∫ t ′i

t ′j
eμ(t ′i−s)|δ(s)|2 ds. (49)

Let t ∈ [t ′j , t ′′i ]. If t ∈ [t ′j , t ′′j ], then (45) holds by Claim 1 for this interval. In the
other case t ∈ [t ′i , t ′′i ]. Then we apply (45) in (t ′i , t ′′i ), and for |z(t ′i )|∞ we use (49) and
get

|z(t)|∞ ≤ eμ(t−t ′i )|z(t ′i )|∞ + |μ|
∫ t

t ′i
eμ(t−s)|δ(s)|2 ds

≤ eμ(t−t ′i )
(
eμ(t ′i−t ′j )|z(t ′j )|∞ + |μ|

∫ t ′i

t ′j
eμ(t ′i−s)|δ(s)|2 ds

)

+ |μ|
∫ t

t ′i
eμ(t−s)|δ(s)|2 ds
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= eμ(t−t ′j )|z(t ′j )|∞ + |μ|
∫ t ′i

t ′j
eμ(t−s)|δ(s)|2 ds

+ |μ|
∫ t

t ′i
eμ(t−s)|δ(s)|2 ds,

where we have used (49) in the second estimate. The estimate above implies that (45)
holds in the closure of the union (t ′, t ′′) of any two intersecting (maximal) components
�i ,� j of �i and � j , respectively.

Since every (maximal) component of � is a union of countably many intersecting
components of �i , i = 1, . . . , n, using the above argument and induction, we obtain
that (45) holds in the closure of any (maximal) component of �.

In the next step we derive an error estimate in I\� representing an error reset in
the estimate, since errors at previous times are not accumulated in this case.

Step 4c (SOSL error reset):We now prove that for all t ∈ int(I )\� we have

|z(t)|∞ ≤ 2‖δ(·)‖L∞ . (50)

Fix t ∈ int(I )\�, and define Jmax(t) = {i ∈ {1, . . . , n} : |zi (t)| = |z(t)|∞} as
set of “maximal” indices. Obviously, Jmax(t) �= ∅ and t ∈ T i

max for all i ∈ Jmax(t).
Consider the possible cases:

1) there exists i0 ∈ Jmax(t) with t ∈ int(T i0
max)

Since t ∈ int(I )\�, it follows from a similar representation as in (44) that t ∈
int(I )\ int(�i0). Hence, there are two sub-cases:
α) t ∈ int(I )\�i0 , i.e. t /∈ int(�i0) and t /∈ bd(�i0)

Then t /∈ �i0 and

|xi0(t) − yi0(t)| ≤ ‖δ(·)‖L∞ , |zi0(t)| = |z(t)|∞,

thus by the triangle inequality and t ∈ T i0
max

|zi0 (t)| − |δi0 (t)| ≤ |zi0 (t) − δi0 (t)| = |xi0 (t) − (ỹi0 (t) + δi0 (t)
)|

= |xi0 (t) − yi0 (t)| ≤ ‖δ(·)‖L∞
so that |z(t)|∞ = |zi0 (t)| ≤ ‖δ(·)‖L∞ + |δi0 (t)| ≤ ‖δ(·)‖L∞ + |δ(t)|2 ≤ 2‖δ(·)‖L∞ .

β) t ∈ bd(�i0)

Since t ∈ bd(�i0)\ bd(I ), there exists a sequence {τk}k ⊂ (int(I )\�i0)∩int(T i0
max)

converging to t . Hence, by the definition of �i0 and T i0
max,

|xi0(τk) − yi0(τk)| ≤ ‖δ(·)‖L∞ , |zi0(τk)| = |z(τk)|∞

for k ∈ N. Thus, by the triangle inequality and τk ∈ T i0
max
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|zi0(τk)| − |δi0(τk)| ≤ |zi0(τk) − δi0(τk)|
= |xi0(τk) − (ỹi0(τk) + δi0(τk)

)|
= |xi0(τk) − yi0(τk)| ≤ ‖δ(·)‖L∞ ,

so that |z(τk)|∞ = |zi0(τk)| ≤ ‖δ(·)‖L∞ + |δi0(τk)|
≤ ‖δ(·)‖L∞ + |δ(τk)|2 ≤ 2‖δ(·)‖L∞ .

The continuity of z(·) yields |z(t)|∞ ≤ 2‖δ(·)‖L∞ and also (50).

2) for all i ∈ Jmax(t), t /∈ int(T i
max)

Then, since t ∈ ⋂
i∈Jmax(t) T

i
max, it follows that there exists i0 ∈ Jmax(t) with

t ∈ bd(T i0
max). T i

max is closed by the continuity of zi (·), z(·) so that int(I )\T i
max is

open and bd(T i
max) = bd(int(I )\T i

max) is contained in a union of countable many
points which has measure 0. Thus we obtain (50) for a.e. t ∈ int(I )\�. By the
continuity of |z(·)|∞ we get that (50) holds for every t ∈ int(I )\�.

Step 4d: t ∈ bd(I ) = {t0, T }
If t = t0, then

|z(t0)|∞ = |x(t0) − ỹ(t0)|∞ = |x0 − y0|∞. (51)

Otherwise, t = T which follows either from step 4b) and the continuity of z(·) (if
T is at the boundary of �) with

|z(T )|∞ ≤ eμ(T−t ′)|z(t ′)|∞ + |μ|
∫ T

t ′
eμ(T−s)|δ(s)|2 ds (52)

or from step 4c) and the continuity of z(·) (if T is at the boundary of int(I )\�) with

|z(T )|∞ ≤ 2‖δ(·)‖L∞ . (53)

Step 5:We show that if � = (t ′, t ′′) is a (maximal) component of � with smallest
value t ′ ∈ I , then either t ′ = t0 or |z(t ′)|∞ ≤ 2‖δ(·)‖L∞ .

Indeed, if t ′ > t0, then in each left neighborhood (t ′ − ε, t ′) there is a point τε /∈ �,
since otherwise one can extend � to the left in � and it will not be maximal in �.
Thus for every ε = 1

k , k ∈ N, there is a τk ∈ (t ′ − 1
k , t

′)\�. As in step 4c we
get |z(τk)|∞ ≤ 2‖δ(·)‖L∞ , k ∈ N. By the continuity of z(·) and its norm, we get
|z(t ′)|∞ ≤ 2‖δ(·)‖L∞ .

Step 6: We show that the inequality

|z(t)|∞ ≤ max{eμ(t−t0)|y0 − x0|∞, 2eμ+(t−t0) · ‖δ(·)‖L∞}
+ |μ| ·

∫ t

t0
eμ(t−s)|δ(s)|2 ds (54)

holds for all t ∈ I .
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Step 6a) We prove that (54) holds for t ∈ �.
Take a (maximal) component � = (t ′, t ′′) of �. By step 5, either t ′ = t0 or |z(t)|∞ ≤
2‖δ(·)‖L∞ . If t ′ = t0, then by step 4b (or (52) for t ′′ = T ) we have for t ∈ � = [t0, t ′′]

|z(t)|∞ ≤ eμ(t−t0)|z(t0)|∞ + |μ| ·
∫ t

t0
eμ(t−s)|δ(s)|2 ds

≤ max{eμ(t−t0)|z(t0)|∞, 2eμ+(t−t0) · ‖δ(·)‖L∞}
+ |μ| ·

∫ t

t0
eμ(t−s)|δ(s)|2 ds

which proves (54) in this case together with |z(t0)|∞ = |x0 − y0|∞ .
Let t ′ > t0. Then by step 5, |z(t ′)|∞ ≤ 2‖δ(·)‖L∞ and by this inequality and (45) we
have for t ∈ �

|z(t)|∞ ≤ eμ(t−t ′) · 2‖δ(·)‖L∞ + |μ| ·
∫ t

t ′
eμ(t−s)|δ(s)|2 ds

≤ max{eμ(t−t0)|z(t0)|∞, 2eμ+(t−t0) · ‖δ(·)‖L∞}
+ |μ| ·

∫ t

t0
eμ(t−s)|δ(s)|2 ds.

Trivially, (54) holds by (51) for t = t0. Thus we have shown that (54) holds in each
component of �, hence in the closure of � (by the continuity of z(·)).

Step 6b) We prove that (54) holds for t ∈ I\�.
By step 4c or (53) (if T ∈ bd(�)), we have to distinguish three cases, namely t = t0,
t ∈ (t0, T ) and t = T . In the first two cases we have |z(t0)|∞ = eμ(t0−t0)|z(t0)|∞
by (51) or |z(t)|∞ ≤ 2‖δ(·)‖L∞ by (50) so that (54) holds. For the third case we use
the inequality (53). Therefore, the estimate (54) follows immediately in all cases. ��

We now prove a version of Filippov’s Theorem for SOSLmaps with inner and outer
perturbations similar to the OSL case in [29, Theorem 3.2] and [30, Theorem 3.1] with
a new proof idea.

Corollary 3.8 (Filippov-type theorem for SOSL maps with inner and outer perturba-
tions) Let F : I ×R

n ⇒ R
n satisfy the assumptions (A1)–(A5) and let y(·) satisfying

the perturbed inclusion (5) with vector perturbations ε(·) ∈ L1(I ), δ(·) ∈ L∞(I ).
Then, there exists a solution x(·) of (1) such that for all t ∈ I

|y(t) − x(t)|∞ ≤ max
{
eμ(t−t0)|y0 − x0|∞, 2eμ+(t−t0) · (‖δ(·)‖L∞ + ‖ε(·)‖L1

)}

+ |μ| ·
∫ t

t0
eμ(t−s)|δ(s)|2 ds +

(
|μ|
∫ t

t0
eμ(t−s) ds + 1

)
·
∫ t

t0
|ε(s)|2 ds (55)

≤ max
{
eμ(t−t0)|y0 − x0|∞, 2eμ+(t−t0) · (‖δ(·)‖L∞ + ‖ε(·)‖L1

)}
+ C1(μ)‖δ(·)‖L∞ + C2(μ)‖ε(·)‖L1 (56)
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with C1(μ) = |μ| · maxt∈I
∫ t
t0
eμ(t−s) ds, C2(μ) = C1(μ) + 1.

Proof The function z(t) = y(t) − ∫ tt0 ε(s) ds is AC with

ż(t) = ẏ(t) − ε(t) ∈ F(t, y(t) + δ(t)), z(t0) = y(t0) = y0

satisfies the differential inclusion (35) with right-hand side F(t, z(t)+ δ̃(t)) and a new
inner vector perturbation δ̃(t) = δ(t) + ∫ tt0 ε(s) ds. δ̃(·) is also an L∞-function with

|̃δ(t)|2 ≤ |δ(t)|2 +
∫ t

t0
|ε(r)|2 dr , ‖̃δ(·)‖L∞ ≤ ‖δ(·)‖L∞ + ‖ε(·)‖L1 .

Theorem 3.7 guarantees the existence of a solution x(·) of the original differential
inclusion (1) with the estimate (36). Then,

|y(t) − x(t)|∞ ≤ |y(t) − z(t)|∞ + |z(t) − x(t)|∞
≤ |

∫ t

t0
ε(s) ds|∞ + max

{
eμ(t−t0)|y0 − x0|∞, 2eμ+(t−t0) · (‖δ(·)‖L∞ + ‖ε(·)‖L1)

}

+ |μ| ·
∫ t

t0
eμ(t−s)

(
|δ(s)|2 +

∫ s

t0
|ε(r)|2 dr

)
ds

≤ max
{
eμ(t−t0)|y0 − x0|∞, 2eμ+(t−t0) · (‖δ(·)‖L∞ + ‖ε(·)‖L1

)}

+ |μ| ·
∫ t

t0
eμ(t−s)|δ(s)|2 ds +

(
|μ|
∫ t

t0
eμ(t−s) ds + 1

)
·
∫ t

t0
|ε(s)|2 ds.

��
Note that C1(μ) in Corollary 3.8 can be calculated as 0 for μ = 0 and estimated

by 1 for μ < 0.

Remark 3.9 Note that the estimate (56) in the SOSL case proves the conjecture of [30,
Remark 3.2] and provides order 1 with respect to the norm of the inner perturbation
‖δ(·)‖L∞ and of the outer perturbation ‖ε(·)‖L1 . In the OSL case in [30, Theorem 3.1]
the corresponding estimate

|y(t) − x(t)|2 ≤ eμ(t−t0)|y0 − x0|2 +
∫ t

t0
eμ(t−s)|ε(s)|2 ds + C

√∫ t

t0
e2μ(t−s)|δ(s)|2 ds

(57)

(with a constantC depending only onμ,CB ,CF ) is of order 1 in the outer perturbation
but of order 1

2 in the inner perturbation. Hence, the SOSL case provides a better order
of the estimates which is also visible in the second motivation of Subsec. 2.2. Under
the boundedness assumption (A1) not only the solutions of the perturbed system (5)
by Lemma 3.4 are bounded but also the states y j and velocities w j of the Euler’s
method uniformly in the step-size h (see the reasoning in [30] for the OSL case). Then
‖δ(·)‖∞ = O(h) holds for the SOSL and the OSL case, but only for the SOSL case
the estimate for the Euler polygons in (13) would be O(h).
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A direct proof of Corollary 3.8 following the lines of the proof in [30, Theorem 3.1]
in the OSL case may improve the constants C1(μ) and C2(μ). On the other hand, the
measurability of F(·, x + δ(·)) is a subtle issue (see for results in [21, Proposition 3.5]
for continuous δ(·)) and would need either an additional upper Scorza-Dragoni prop-
erty [1, Sec. 5] or another existence result requiring only a strongmeasurable selection
of F(·, x) plus assumptions on its boundedness (see [63, Chap. 3, Theorem 8.13 and
following results]).

3.3 Stability and approximation results

From the presented results we can easily derive stability results for reachable sets with
respect to the initial sets or the vector perturbations.

Definition 3.10 Let X0 ⊂ R
n be a nonempty initial set. The reachable setR(t, t0, X0),

sometimes denoted as RF (t, t0, X0), of the differential inclusion (1) at a given time
t ∈ I with initial condition x(t0) ∈ X0 and right-hand side F is defined as the set of
all end points of solutions at this time, i.e.

R(t, t0, X
0) = { x(t) ∈ R

n : x(·) is a feasible solution on [t0, t]of (1) with x(t0) ∈ X0 }.
Corollary 3.11 For reachable sets of (1) starting from two compact, nonempty initial
sets X0,Y 0 ⊂ R

n and F : I × R
n ⇒ R

n satisfying the assumptions (A1)–(A5) we
have the estimate

dH(R(t, t0, X
0),R(t, t0,Y

0)) ≤ eμ(t−t0) dH(X0,Y 0) for t ∈ I

and weak (set-valued) exponential stability holds if the SOSL constant μ is negative
and t → ∞.

The same estimate is stated in [29, Theorem 3.2] for the OSL case. Note that the
OSL and SOSL estimate do not differ, since the error terms with respect to the initial
condition coincide.

Corollary 3.12 Let X0 ⊂ R
n be a compact, nonempty set and let the assumptions of

Corollary 3.8 be satisfied. IfRδ,ε(t, t0, X0) denotes the reachable set of the perturbed
inclusion (5) at time t ∈ I with initial set X0, then

dH(R(t, t0, X
0),Rδ,ε(t, t0, X

0)) ≤ 2eμ+(t−t0)
(‖δ(·)‖L∞+ ‖ε(·)‖L1

)
+ C1(μ)‖δ(·)‖L∞+ C2(μ)‖ε(·)‖L1

with C1(μ),C2(μ) as in Corollary 3.8.

This result is a direct result of Corollary 3.8. The next approximation result is
formulated in the spirit of the classical Filippov Theorem 1.1 and focuses on distances
of graphs of the two right-hand sides.

Proposition 3.13 Let F : I × R
n ⇒ R

n satisfy the assumptions (A1)–(A5), and let
Graph F(t, ·) be measurable (w.r.t. to t).
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(i) Let y : I → R
n be AC such that y(t0) = y0 and

dist((y(t), ẏ(t)),Graph F(t, ·)) ≤ γ (t) for a.e. t ∈ I (58)

with γ (·) ∈ L∞(I ). Then there exists a solution x(·) of (1) satisfying

|y(t) − x(t)|2 ≤ max

{
eμ(t−t0)|y0 − x0|∞, 2eμ+(t−t0) · (‖γ (·)‖L∞ + ‖γ (·)‖L1

)}

+ C1(μ)‖γ (·)‖L∞ + C2(μ)‖γ (·)‖L1 for t ∈ I (59)

with C1(μ),C2(μ) as in Corollary 3.8 and μ the SOSL constant of F.

(ii) If G : I × R
n ⇒ R

n satisfies the assumptions (A1)–(A5) such that GraphG(t, ·)
is measurable (w.r.t. to t) and

d(GraphG(t, ·),Graph F(t, ·)) ≤ γ (t) for a.e. t ∈ I , (60)

then the one-sided Hausdorff distance d(RG(t, t0, y0),RF (t, t0, x0)) can be esti-
mated by the same right-hand side as in (59) for t ∈ I .

Proof (i) Let y(·) be given. Then
(
y(t), ẏ(t)

) ∈ Graph F(t, ·) + γ (t)B̃1(0) for a.e. t ∈ I (61)

with B̃1(0) the closed unit ball in R2n . The map H : I ⇒ R
2n with

H(t) =
((

y(t), ẏ(t)
)+ γ (t)B̃1(0)

)
∩ Graph F(t, ·)

ismeasurable by [3, Theorem 8.2.4] and has closed, nonempty images by construction.
By [3, Theorem 8.1.4], it has a measurable selection

(
z(t), w(t)

) ∈ H(t) for t ∈ I
which satisfies

|y(t) − z(t)|2 ≤ γ (t), |ẏ(t) − w(t)|2 ≤ γ (t) for a.e. t ∈ I . (62)

Then for a.e. t ∈ I

ẏ(t) = w(t) + (ẏ(t) − w(t)
) ∈ F(t, z(t)) + (ẏ(t) − w(t)

) = F(t, y(t) + δ(t)) + ε(t),

where δ(·) = z(·)−y(·) ∈ L∞(I ), ε(·) = ẏ(·)−w(·) ∈ L1(I ). ApplyingCorollary 3.8
together with (62), there exists a solution x(·) of (1), such that (59) holds for the given
function y(·).
(ii) For y(t) ∈ RG(t, t0, y0) for t ∈ I , we have

ẏ(t) ∈ G(t, y(t)) for a.e. t ∈ I and y(t0) = y0 (63)
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as well as
(
y(t), ẏ(t)

) ∈ GraphG(t, ·) so that (61) also holds and the proof above
continues as before by using x(t) ∈ RF (t, t0, x0). ��

Remark 3.14 It follows from the last proposition that the estimate (59) also holds for
the (two-sided) Hausdorff distance between the reachable sets of the inclusions (1)
and (63) under the assumption that (58) holds for the Hausdorff distance between the
graphs of F and G. Then μ = max{μF , μG} and the constants C1 and C2 are the
maximal corresponding constants.

The last three claims can be considered as both approximation and stability results: if
the interval I is finite, the estimates of the Hausdorff distances between the original
and “perturbed” reachable sets in all three results are uniform in time. This also implies
estimates of the distances between the corresponding solution funnels, i.e. the union
of the graphs of all solutions. On an infinite time interval, the Hausdorff distances
between the reachable sets stay small, if the SOSL constant is non-positive and the
Hausdorff distance between the initial sets or the norms of the perturbations δ(·), ε(·)
or of the bound γ (·) for the graphs are small.

For instance, let us consider the right-hand side of the differential inclusion ẋ(t) ∈
−Sign(x(t)) which is replaced by a sequence of sigmoidal or saturation functions
with growing Lipschitz constants. If the stability with respect to the initial value
is studied with the help of the classical Filippov Theorem 1.1 for Lipschitz right-
hand side, the estimate will explode for increasing time. Applying Theorem 3.7 for
SOSL right-hand side, the estimate is uniformly bounded by the Hausdorff distance
of the initial sets, since the SOSL constant for all functions of the sequence is 0.
The approximation estimates in this case would not suffer on exploding Lipschitz
constants (which appear in Example 2.5 if the Filippov theorem for Lipschitz right-
hand side would be applied). In contrast to the exploding estimates obtained in the
classical Filippov theorem, Proposition 3.13 gives good estimates, since the graphs
of the sigmoidal or saturation functions tend to the graph of −Sign(·) and all SOSL
constants are non-positive.

4 Examples of differential inclusions with SOSL right-hand sides

In this section we present examples of dynamical systems with SOSL right-hand
sides. In the case of Filippov’s regularization of discontinuous ODEs with unique
solution, Theorem 3.7 implies first order of convergence of the Euler approximants
to this solution, as we have motivated in Subsection 2.2. The numerical experiments
presented here confirm this order of convergence. The combination of the discrete and
continuous Filippov-type approximation theorems was successfully applied in [17] to
obtain error estimates of the Euler method for Lipschitz differential inclusions with
state constraints and may also work in the case of SOSL mappings.

We now consider examples from differential equations based on applications.
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Example 4.1 We consider the second-order differential equation on the time interval
I = [0, T ] which was introduced by Flügge-Lotz/Klotter in [40, (1.3a) and (1.5d)]

ÿ(τ ) + 2Dẏ(τ ) + b

ω2 sign
(
ρ1y(τ ) + ρ2 ẏ(τ )

)+ y(τ ) = 0 (64)

for b > 0, D > 0, ω > 0, initial value y0 = (3
4

)
and a motion under the influence of

bang-bang controls. The example can also be found in [62, Beispiel 1.3] and with a
slightly different factor for y(τ ) in [51, Example 5.2]. Asmentioned in [40] the control
function u(τ ) = ρ1y(τ ) + ρ2 ẏ(τ ) anticipates the behavior of the solution component
y(τ ), acts as a feedback controller and precedes or follows it in time depending on
ρ = ρ2

ρ1
> 0 or ρ < 0. In [40, (1.5d)] the value b

ω2 is set to 1 and the damping factor
D to 0.1.

The Filippov regularization is

ẏ1(t) = y2(t),
ẏ2(t) ∈ −2Dy2(t) − y1(t) − b

ω2 Sign(ρ1y1(t) + ρ2y2(t)).

}
(65)

Let ρ1 = 0 and ρ2 > 0:
In this case the model is similar to [57, (2)] (with the right-hand side 0 in (64) replaced
by a driving force ϕ(ητ) with a constant η and the equivalent simpler controller
sign(ẏ(τ ))) and comprises two important engineering equations. Onemodel originates
from an electric circuit with capacitor, coil, resistor (which damps the condesator
charging) and rectifier eventually switching the sign of the condensator charging driven
by an excitation with a periodic alternating (AC) voltage. The other model describes
a mechanical system with a spring driven by forced vibrations with viscous damping
as well as combined dry and Coulomb friction. In the latter D and μ = b

ω2 are the
Coulomb and sliding/dry friction coefficients, respectively.

This equation is also treated in several articles on discontinuous differential equa-
tions (e.g., in [62, Beispiel 0.1], [21, Example 13.3] and in [46, (1.4)]. In Fig. 5 (left) the
(approximated) solution components y1(t) (blue) and y2(t) (red) are shown together
with the black dashed switching curve y2 = 0, where b

ω2 = 4, η = π , ϕ(s) = 2 cos(s),
T = 6.Whenever the solution intersects with this curve, the solution component y2(t)
has a corner due to −Sign(y2) in F(t, y).

The right-hand side is SOSL with constant μF = 1. To see this, rewrite the right-

hand side of (65) as F(t, y) = Ay + b(t) − μS̃(y) with A =
(

0 1
−1 −2D

)
, the vector

b(t) = ( 0
ϕ(ηt)

)
and the set-valued map S̃(y) = {0} × Sign(y2) for y = (y1, y2) ∈ R

2.
The affine part Ay + b(t) is estimated by Lemma 2.1 with SOSL constant

μ = max
i=1,2

(
max{0, aii } +

∑
j=1,2
j �=i

|ai j |
)

= max

{
0 + |1|, max{0,−2D} + | − 1|

}
= 1.

It is easy to prove that S̃(·) is SOSL of constant 0 so that F is SOSL (even uniform
SOSL) by Proposition 2.4(iv) with constant μ = 1.
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Fig. 5 Solution components and switching curves for Examples 4.1 and 4.2 (Color figure online)

Fig. 6 Euler polygons for Example 4.2, 2nd component (left) and phase portrait (right) (Color figure online)

With Lemma 2.1 and the symmetrized matrix Asym it is straight forward to prove
that the right-hand side F(t, ·) is even disspative (i.e. uniform OSL with constant
μF = 0).

Example 4.2 Wecontinue Example 4.1with the generalmodel in [40, (1.4) and (1.5d)].
case ρ1 > 0 and ρ2 > 0:

The numerical test with the explicit Euler method on the time interval I = [0, 3π ]
and ρ = 1 indicates graphically convergence order 1 with respect to the step size. In
Fig. 5 (right) the (approximated) solution components y1(t) (blue) and y2(t) (red) are
shown together with the green dashed function y1(t)+ y2(t), where b

ω2 = 1, ϕ(s) = 0,
T = 3π . Whenever the green function intersects with the black dashed axis y2 = 0,
the solution component y2(t) has a kink due to −Sign(y1 + y2) in G(t, y). In Fig. 6
the second component of the Euler polygons for N ∈ {40, 80, 160, 320} subintervals
are shown together with the reference trajectory calculated with Nref = 20480 (dashed
black line). Note that there are corners at the phase portrait for the green trajectory
around the points (−2.5, 2.5), (1.5,−1.5) and (3.5,−4) reflecting discontinuities of
the velocity when the trajectory crosses the line of discontinuity of the right-hand side
y1 + y2 = 0. All solutions in the left plot show small zig-zagging behavior near the
times t with y1(t) + y2(t) = 0.

In Table 1 the maximum errors (4th column) of the Euler iteration at each grid
point are calculated for various step sizes hk with respect to the reference solution.
From this data of subsequent step sizes, the error at the k-th step is compared with the
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Table 1 Convergence table for Example 4.2

k Nk hk Error(hk ) Estim. order for hk by k and 6

0 10 0.942478 51.2071 1.4401

1 20 0.471239 12.4716 1.3206

2 40 0.235619 3.3784 1.1797

3 80 0.117810 1.2293 1.0868

4 160 0.058905 0.5251 1.0166

5 320 0.029452 0.2260 0.8169

6 640 0.014726 0.1283 –

sixth step. The order is estimated and shows roughly O(h). A least squares analysis
for matching the true errors with the unknowns C and p in Chp yields approximately
C = 36.502, p = 1.4350, whereas C = 14.397 for fixed p = 1.

The speciality of this variant is the linear combination of components of the solution
in the controller deciding on the sign switch in the controller sign(y(t) + ρ ẏ(t)) so
that it is not clear whether the right-hand side of the differential inclusion is SOSL or
not. Nevertheless, the model fits very nicely to the choice of a basis in Rn for uniform
SOSL set-valued maps in [52].

As suggested in [51] we introduce the transformed system with z1(t) = y1(t),
z2(t) = y1(t) + ρy2(t) so that we can express y2(t) = 1

ρ
(z2(t) − y1(t))). Thus, we

consider the equivalent differential inclusion z′(t) ∈ G(t, z(t)) with

ż1(t) = 1

ρ
(z2(t) − z1(t)),

ż2(t) ∈ −2D̃z2(t) − (ρ + 2D̃)z1(t) − b

ω2 Sign(z2(t)),

where D̃ = (D − 1
2ρ ). We prove the strengthened OSL condition and consider z =

(z1, z2), z̃ = (̃z1, z̃2) ∈ R
2, v = (v1, v2) ∈ G(t, z), s(z2) ∈ Sign(z2). G(t, z) is

expressed as Bz − μS̃(z) with the matrix B =
( − 1

ρ
1
ρ

−(ρ + 2D̃) −2D̃

)
and μ, S̃(·) as in

Example 4.1. The linear part z �→ Bz is SOSL by Lemma 2.1 with constant

μB = max
i=1,2

(
max{0, aii } +

∑
j=1,...,2

j �=i

|ai j |
)

= max
{
max{0,− 1

ρ
} + | 1

ρ
|,max{0,−2D̃} + | − (ρ + 2D̃)|}

= max
{ 1
ρ

,max{0,−2D̃} + |ρ + 2D̃|}.
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We can argue with Proposition 2.4(iv) as in Example 4.1 to see that the transformed
differential inclusion with right-hand side G(t, z) is SOSL (even uniformly) with
constant μG = μB .

We discuss analytically another higher-dimensional example with three coupled
strings with six states.

Example 4.3 ([61], [51, Example 5.3], [55, (16)]) Consider the system of three coupled
springs with dry friction of second order

y′
i (t) = y3+i (t) (i = 1, 2, 3), (66)

y′
4(t) ∈ −y1(t) + (y2(t) − y1(t)) − y4(t) − 0.3 Sign(y4(t)), (67)

y′
5(t) ∈ −(y2(t) − y1(t)) + (y3(t) − y2(t)) − y5(t) − 0.3 Sign(y5(t)), (68)

y′
6(t) ∈ −(y3(t) − y2(t)) − y6(t) − 0.3 Sign(y6(t)) + 10 cos(π t) (69)

on t ∈ I = [0, 6] with initial condition y(0) = (−1, 1,−1,−1, 1, 1)�. With the

matrix A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−2 1 0 −1 0 0
1 −2 1 0 −1 0
0 1 −1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
, the set-valued map for the inhomogenity

B(x) = ∑6
i=1 Bi (xi )e

i and the vector function c(t) = ∑6
i=1 ci (t)e

i with the nota-
tion (16) used in Proposition 2.4 and Bi (xi ) ⊂ R, ci (t) ∈ R with

Bi (xi ) =
{

{0} (i = 1, 2, 3),

−0.3 Sign(xi ) (i = 4, 5, 6),
ci (t) =

{
0 (i = 1, . . . , 5),

10 cos(π t) (i = 6).

Then F(t, x) = Ax + B(x) + c(t).
The diagonal elements of A are either 0 or −1 so that the maximal sum of absolute

values of off-diagonal elements is 4 (attained in the fifth row). Hence, the function
(t, x) �→ Ax + c(t) is SOSL with constant μA = 4 by Lemma 2.1. The set-
valued map B is strengthened uniform OSL with constant 0 by Proposition 2.4(v). By
Proposition 2.4(iv) the set-valued map F is strengthened uniform OSL with constant
μF = μA = 4.

Example 4.4 Inner set-valued perturbations of the differential inclusion (66)–(69) in
Example 4.3 involving δi > 0, i = 4, 5, 6, yield the system

y′
i (t) = y3+i (t) (i = 1, 2, 3), (70)

y′
4(t) ∈ −y1(t) + (y2(t) − y1(t)) − y4(t) − 0.3 Sign(y4(t) + δ4[−1, 1])), (71)

y′
5(t) ∈ −(y2(t) − y1(t)) + (y3(t) − y2(t)) − y5(t) − 0.3 Sign(y5(t) + δ5[−1, 1]),

(72)

y′
6(t) ∈ −(y3(t) − y2(t)) − y6(t) − 0.3 Sign(y6(t) + δ6[−1, 1]) + 10 cos(π t)

(73)
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which is SOSL with constant μ = 4 due to Proposition 2.4(ii) and Example 4.3, but
not strengthened uniform OSL.

The new differential inclusion can be seen in the light of a computer implementation
of the system of Example 4.3. In practice an algorithm implementing a discrete set-
valued Euler’s method will not test whether a floating point number yi , i = 4, 5, 6, is
exactly zero or not to evaluate −Sign(yi ). Due to rounding errors one would choose
an implementation which returns −Sign(0) for the argument yi if the absolute value
of yi is less or equal δi close to the floating point precision multiplied by a factor
depending on an upper bound of |yi |, i.e. |yi | ≤ δi . This is exactly the case when
yi ∈ δi [−1, 1] so that −Sign(yi + δi [−1, 1]) = [−1, 1]. Hence, inner set-valued
perturbations can incorporate strategies for taking into account rounding errors in
floating point arithmetics.

Further examples in the analysis of block designs or cascading state observers [48,
(4.2) and below (A.3)] also lead to SOSL systems.

Conclusions

Well-posedness and regularity of solutions in perturbed problems is a topic studied
persistently by A. Dontchev. In the paper [35] he and his co-author proved the order
of convergence 1 for the set-valued Euler’s method in the Lipschitz case and partially
repeated the proof of the celebrated Filippov theorem (Theorem 1.1) for convex and
compact-valued right-hand sides, since they were not aware of this theorem. The
authors of this paper believe that continuing this tradition is an appropriate way to
honor the memory of Asen L. Dontchev.

While the form of the perturbed problem in Theorem 3.7 and Corollary 3.8 is differ-
ent from that in the original theorem of Filippov, the formulation of Proposition 3.13
is more in the spirit of this theorem.

We are currently preparing a follow-up paper that will focus on discrete approxima-
tions of differential inclusions for SOSL maps which will benefit from the available
Filippov approximation theorems in continuous time (presented here) and in discrete
time [9].
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