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Abstract

We consider proximal Newton methods with an inexact computation of update steps.
To this end, we introduce two inexactness criteria which characterize sufficient accu-
racy of these update step and with the aid of these investigate global convergence and
local acceleration of our method. The inexactness criteria are designed to be adequate
for the Hilbert space framework we find ourselves in while traditional inexactness cri-
teria from smooth Newton or finite dimensional proximal Newton methods appear to
be inefficient in this scenario. The performance of the method and its gain in effective-
ness in contrast to the exact case are showcased considering a simple model problem
in function space.

Keywords Non-smooth optimization - Optimization in Hilbert space - Proximal
Newton - Inexactness

Mathematics Subject Classification 49M15 - 49M37 - 65K 10

1 Introduction

In the present work we extend the idea of Proximal Newton methods in Hilbert spaces
as presented in [15] to admit an inexact computation of update steps by solving the
respective subproblem only up to prescribed accuracy. We consider the composite
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2 B. Potzl et al.

minimization problem
min F(x):=f(x) + g(x) ey
xeX

on some real Hilbert space (X, (-, -)x) where f : X — R is assumed to be smooth in
some adequate sense and g : X —] — 00, oo] is possibly not. We pay particular atten-
tion to the infinite-dimensionality of the underlying Hilbert spaces and thus develop
inexactness criteria for update step computation that are sufficiently easy to evaluate,
help us preserve convergence properties of the exact case as considered in [15] and
reduce the computational effort significantly.

For an overview of the development of Proximal Newton methods themselves
consider [15]. Here, we want to focus on the realization of the inexactness aspect and
consider corresponding most recent literature in this introductory section. The use of
gradient-like inexactness criteria which can be seen as the direct generalization of the
one for classical smooth Newton methods in [5] is quite common, cf. [3, 9, 11, 14,
24].

In [11] additional knowledge of bounds on the second-order bilinear forms as well
as the Lipschitz constant of f’ is necessary and only local convergence has been inves-
tigated in the inexact case. Globalization of the ensuing method has been achieved
in [9] by using a Proximal Gradient substitute step in case the inexactly computed
second order step does not suffice a sufficient decrease criterion or the step compu-
tation subproblem is ill-formed due to non-convexity which thus can be overcome as
well. In [3] the particular case of Li-regularization for machine learning applications
has been considered. Thus, the inexactness criterion has further been specified and
also here enhanced with a decrease criterion in the quadratic approximation of the
composite objective function. The latter has then been tightened in order to achieve
local acceleration. A similar route has been taken in the development of a globally
convergent methods in [14] and [24].

Another approach to inexactness criteria is measuring the residual within the step
computation subproblem. In [12], where objective functions consisting of the sum
of a thrice continuously differentiable smooth part and a self-concordant non-smooth
part have been considered, the residual vector within optimality conditions for update
computation is supposed to be bounded in norm with respect to the already computed
inexact step. However, the residual can also be measured via functional descent in
the quadratic approximation of the composite objective F', cf. [10, 18]. While in [10]
the second order model decrease bound against its optimal value has not directly been
tested but simply assumed to hold after a finite (and fixed) number of subproblem solver
iterations, the authors in [18] have taken the structure of their randomized coordinate
descent subproblem solver into account and also have given quadratic bounds for the
prefactor constant within their model descent estimate in order to obtain sufficient
convergence results.

All of the above works have in common that they depend on the finite dimensional
structure of the underlying Euclidean space. In particular, the efficient computation
of proximal gradients, required for the evaluation of inexactness criteria, relies on the
diagonal structure of the underlying scalar product (-, -) x, which is usually not present
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Inexact proximal Newton methods... 3

in (discretized) function spaces, as for example, Sobolev spaces. Moreover, all current
approaches consider fixed search directions which are then scaled by some step length
parameter.

Our contributions beyond the above work can be summarized as follows: Most
importantly, we replace the Euclidean space setting with a Hilbert space one in order
to rigorously allow function space applications of our method. In particular, we are
interested in the important case where X is a Sobolev space. Then, a diagonal approxi-
mation of (-, -) x after discretization would lead to proximal operators that suffer from
mesh-dependent condition numbers. For the efficient computation of proximal steps
we thus take advantage of a non-smooth multigrid method. Specifically, we use a
Truncated Non-smooth Newton Multigrid (TNNMG) method, cf. [7], in our numeri-
cal implementation. Consequently, our inexactness criteria need to be constructed in
such a way that their evaluation is efficient in this context. Existing criteria can only
be employed efficiently, if (-, -) x enjoys a diagonal structure.

Additionally, ellipticity of the bilinear forms for forming quadratic approximations
of our objective functional as well as convexity of the non-smooth part g has often
been crucial in the literature. We drop these prerequisites and use a less restrictive
framework of convexity assumptions for the composite objective function F. Finally,
we do not demand second order differentiability with Lipschitz-continuous second
order derivative of the smooth part f but instead settle for adequate semi-smoothness
assumptions.

Let us now give the precise set of assumptions in which we will discuss the
convergence properties of inexact Proximal Newton methods. As pointed out before-
hand, we find ourselves in a real Hilbert space (X, (-, -)x) with corresponding norm
lvllx = +/(v,v)x and dual space X*. This choice of X also provides us with
the Riesz-Isomorphism R : X — X*, defined by Rx = (x, -)x, which satisfies
||Rx || = ||x || y for every x € X. Since R is non-trivial in general, we will not
identify X and X*.

Assumption 1 The smooth part of our objective functional f : X — R is assumed
to be continuously differentiable with Lipschitz-continuous derivative f' : X — X*,
i.e., we can find some constant L ; > 0 such that for every x, y € X we obtain the
estimate

|7/ = £ O ez Llx =]y - 2)

As mentioned beforehand, we will use the base algorithm from [15] as our point of
departure. This means that we consider a variation of the Proximal Newton method
which is globalized by an additional norm term within the subproblem for step com-
putation. As a consequence, the latter reads

Ax(w):=argmin Ay (8x) 3)
dxeX
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4 B. Potzl et al.

where the regularized second order decrease model A, ,, : X — R is given by

1
Arw(8x):=Ff(x)8x + EHX (8x, 8x) + ;nax ||§(+g(x +8x) —g(x).

The updated iterate then takes the form x4 (w):=x + Ax(w).

The second order model of the smooth part f from above also has to be
endowed with adequate prerequisites. Notationally identifying the linear operators
H, € L(X, X*) with the corresponding symmetric bilinear forms Hy : X x X — R,
we write (H,v)(w) = Hy (v, w) and abbreviate Hy (v)2 = H, (v, v).

Assumption 2 Uniform boundedness of the H, along the sequence of iterates in the
form

IM > 0Vx € X: [He iy yn=M “)

will also be of importance in what follows.

Assumption 3 Furthermore, we assume the existence of a mapping «1: X — R which
is bounded from below such that the bound

VxeXVueX: Hi =H(v,v) > c1(0)]|v]% )

holds, which can be interpreted as an ellipticity assumption on H, if k1 (x) is positive.
In this case, when considering exact (and smooth) Proximal Newton methods, where
H, is given by the Hessian of f at some point x € X, (5) is equivalent to « (x)-strong
convexity of f. When considering general bilinear forms H without dependence on
some x, we refer to (5) in the sense of H (v)? > k| for some constant k; € R and all
veX.

As a simple example for such an operator, one could imagine the mapping

Hy: H'(Q) - H'(Q)", H(u)i=(v = /QVM@) -Vu(§) +X(€)u(§)v(§)d$>

with Q € R” an open, bounded set and x € L°°(£2). Then, the operator H, is satisfies
both (5) with xy = —||x| _ and (4) with M = max {|x|_.1}.

While in a sufficiently smooth setting Hy:= f"(x) is common, for most of the paper
we may choose H, freely in the above framework. For fast local convergence, how-
ever, we will impose a semi-smoothness assumption, cf. (17). Semi-smooth Newton
methods in function space have been discussed, for example, in [8, 19-21].

Assumption 4 As far as the non-smooth part g: X —] — 00, 00] is concerned, we
require lower semi-continuity as well as the existence of some k> € R such that the
bound

gGx + (1 =9y = 5g0) + (1 =g = Zs(t =9)|x =]} ©
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Inexact proximal Newton methods... 5

holds for all x, y € X and s € [0, 1]. While for k; < 0 this estimate is often referred
to as weak convexity, the case of ko > 0 reduces (6) to ky-strong convexity of g.
In the latter case we can then conclude that g is bounded from below, its level-sets
Ly g are bounded for all « € R and that their diameter shrinks to O in the limit of
a — inf,cx g. Non-positivity of x5 allows g to be non-convex in a limited way. This
assumption is often summarized to weak k>-convexity of g.

The theory behind Proximal Newton methods and the respective convergence prop-
erties evolve around the convexity estimates stated in (5) and (6). We will assign
particular importance to the interplay of the convexity properties of f and g, i.e., the
sum k1 (x) + k2 will continue to play an important role over the course of the present
treatise. In particular, the convexity of f only enters this quantity in a local way,
depending on the current iterate x. Apparently, the update step in (3) is well defined
for every w > 0 if k1(x) 4+ k2 > 0. This holds also in the case of k1 (x) + «2 < 0 for
every w > —(k1(x) + «2) due to the bounds stated in (5), (6) and the strong convexity
of the norm term. For this reason, we will assume w > —(k1(x) + «2) wherever it
appears.

The above demands on f, g, H, and w constitute the standing assumptions for the
further investigation which we impose for the entirety of the paper.

Let us now briefly outline the structure of our work: In Sect.2 we introduce the
notion of composite gradient mappings and consider some of their basic properties.
Afterwards, in Sect.3, we take advantage of the acquired knowledge and introduce
the first inexactness criterion in order to investigate local convergence of our method
as well as the influence of both damping and inexactness. Section4 then considers
the globalization phase of our inexact Proximal Newton method and for this reason
introduces a second inexactness criterion which compares the functional decrease
of inexact updates with steps originating from a simpler subproblem. Thus, we also
achieve sufficient global convergence results. In order to then benefit from local accel-
eration, we investigate the transition to local convergence in Sect.5. To this end, we
need to ensure that close to optimal solutions also arbitrarily weakly damped update
steps yield sufficient decrease. Lastly, we put our method to the test in Sect.5.1 and
display global convergence as well as local acceleration considering a simple model
problem in function space. Concluding remarks can be found in Sect. 6.

2 Composite gradient mappings and their properties
The main goal to keep in mind is not only to introduce the concept of inexactness to
the computation of update steps of the Proximal Newton method from [15] but also

quantify the influence of damping update steps to the local convergence rate of our
algorithm.

2.1 Definition and representation via proximal mappings

For this cause, we take advantage of the notion of regularized composite gradient
mappings G? : X — X for some composite functional ® : X — R of the form
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6 B. Pétzl et al.

d(x):=¢ (x) + ¥ (x) with smooth part ¢ : X — R and non-smooth part ¢ : X — R.
More precisely, ¢ has to be at least continuously differentiable and y» should satisfy
Assumption 4 on g from before. Then, the aforementioned gradient mapping is defined
via

G (y)=— r[aggm;n ¢'(»)8y + §||8y||§+w(y +3y) — wy)} @)
ye

for y € X and some regularization parameter T > —&k7 the assumptions on which
we will specify further over the course of the current section. For the derivation of
useful estimates for composite gradient mappings, the so-called scaled dual proximal
mapping 735 : X* — X, defined via

1
Pyl (©):=argmin ¢ (2) + 5 H (2, 2) — £(z)
zeX 2

for arbitrary ¢ € X* and some symmetric bilinear form H sufficing (5) as well as
some real valued function v satisfying (6) for constants k1, ko € R with k1 + k2 > 0,
will play an important role.

In what is to come, we will take advantage of the following two crucial results
concerning dual proximal mappings which have been stated and proven in [15]. The
first one is a general estimate for the image of such operators which generalizes the
assertions of the so called second prox theorem, cf. e.g. [2, Chapter 6.5]. The second
one is a Lipschitz-continuity result.

Proposition 1 ([15], Proposition 2 and Corollary 1) Let H and s satisfy the assump-

tions (5) and (6) with k1 +k > 0. Then for any £ € X* the image of the corresponding
proximal mapping u::PIZI (€) satisfies the estimate

[6 - H@)E -0 = v© -y - e —ul}

forall £ € X. Additionally, for all £1, £, € X* the following inequality holds:

1
[P) ) —Pjl )| < prapy

- e,

With the aid of scaled proximal mappings, we can express the composite gradient
mapping as

GY(y) =t[y - PR (rRy —¢'(»)]. ®)
where R : X — X* again denotes the Riesz-Isomorphism. Let us now justify the
designation of G? as a regularized composite gradient mapping. If we consider the

smooth case of ¢ = 0, the proximal mapping takes the form 735 (¢) = H~'¢. This
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Inexact proximal Newton methods... 7

fact carries over to the definition of the gradient mapping via
Gey =1y = R TRy —¢'M)] =R7'¢'(y)

which resembles the infinite dimensional counterpart of the gradient V¢ in Euclidean
space. Note that this consistency result holds for all T > 0.

Another consideration which expresses the consistency between G and some
actual ’smooth’ gradient of F' = f 4 g with respect to our minimization problem
(1) is the following: Let then Gf(x*) = 0 hold for some x, € X and v > 0. This
is equivalent to the fixed point equation x, = P;R(tRx* - f ’(x*)) which can then
again be transformed to — f'(x,) € dpg(x,) C X™* for the Fréchet subdifferential 9.
Consequently, we recognize that the composite gradient mapping is zero if and only
if we evaluate it at stationary points of the underlying minimization problem (1).

2.2 Key properties and auxiliary estimates

For now, let us derive some key properties of the composite gradient mappings which
will be crucial as we quantify the influence of both inexactness and damping to local
convergence rates of our algorithm.

Before departing on this endeavor we introduce the modified quadratic model I:“x,w :
X — R of the composite objective functional F' around x € X with regularization
parameter w via

A 1
Fro)=F@X) 4+ oy —x) =f@)+ f(x)0-—x)+ EHx(y -7 +g()
) 2
+ 2y~
9

The corresponding composite gradient mapping G?"” will play an important role. In
that regard, we note that in the framework of the definition of the gradient mapping in
(7) we thus have ® = Fy , = ¢ + ¢ with

A 1 A
d)(y)zf(x)+f/(x)(y_x)+E(Hx“l‘a)R)(y_-x)zs vy =g (10

and thereby ¢’ (y) = f(x)+ (Hy +wR)(y —x) forany y € X. The following lemma
provides us with helpful estimates for the norm difference of composite gradient
mappings both from above and below.

Lemma 1 Forevery x,y,z € X and with t:=w + %(H H, ||£(X X*)+K1 (x)), the reg-
ularized composite gradient mapping suffices the estimate

t(1=H)|y 2] y= |G = G @ | y=t(1+H) [y =z, (D)
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8 B. Pétzl et al.

|z

X

£x,xs € )

where we abbreviated H:= pIcETEy)

Proof As we insert the characterizations of the respective regularized composite gra-

dient mappings as in (8), we perceive that we can represent their norm difference
via

[GF () = GEo @) =6 =2 = (Py = P) |

with abbreviations P§I=P§R(IR§ —[f'(x) + (Hx + oR) (€ — x)]) for & € {y, z}.
This provides us with the bounds

ﬁr,m ﬁx.m
T(”y - Z”X_”P)’ _PZ”X) = ”Gf () =G (Z)fo f(”y - Z”x*’”Py - PZ”X)

from above and below for the norm difference of gradient mappings. This shows that
for the proof of (11) it suffices to verify

| x| £oxxn K1)

1Py =Pellx=Hly —2lx= =7

Iy =zlx- a2

The Lipschitz result from Proposition 1 allows us to establish the following estimate
for the norm difference of proximal mapping images in relation to their arguments:

1

HP)' - P, HX < —a ||rRy - (HX +wR)(y —Xx) — (tRz — (HX +wR)(z —x)) ¥+
1 ”(T — )R — Hy ”L(X,X*)
= Lol -oR- )6 -2]y.= s v=zfx-
(13)

Let us now pay particular attention to the £(X, X*)-norm difference in the prefactor
above. On the one hand, for any 7 > —k»>, we can estimate it by

[ =R = He| iy x = 7 = ol + [Hel| £y xo)

Nevertheless, with further assumptions on the gradient mapping regularization param-
eter T we can deduce a better bound. To this end, we define A := 7 — @ and choose Aopt
such that || AR—H, H LOX.X) is minimal. Itis easy to see that the eigenvalues of the self-
adjoint operator H =R~V (AR — H,) lie in the interval [A — || H, || LX.X) A—K] (x)].

In order to now minimize the norm of H}, we recognize that it equals the spectral
radius of H and thus want to establish a symmetrical interval where eigenvalues can
pe l?cated. This yields the choice Aoptzz%(u H, Hax,x*)—i-m(x)). In particular, this
implies
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Inexact proximal Newton methods... 9

n k1 ()| + K1 (%)

1
T::a)+)\0p[:a)+E(”Hx”L(X’X*)Jf_Kl(X)) > w 2

> o+ Kk1(x)

> —K)

by our choice of w and consequently

H(T — )R — Hy HL(X,X*)

1
= |H | £ x.x)= | Hx HE(X,X*)_)‘OPt = g(HHx HL(X,X*)_Kl(x))'

Inserting this into the above estimate (13), we obtain (12) which completes the proof.
O

For the next result, we take advantage of the solution property of exactly computed
update steps from (3).

Proposition 2 Let Ax(w) be an exactly computed update step as in (3) at some x € X.
Then, for any T > —k the following identity holds:

Gr(x + Ax(@) = 0. (14)

Proof We consider the minimization problem within brackets in the definition of the
regularized composite gradient mapping in (7). Here, we have to insert the derivative ¢’
of the smooth part of the regularized model F ¥.o0 asin (10) evaluated at y = x + Ax(w)
which yields

argmin [ f'(x) + (Hy + oR)Ax(w)]6x
SxeX

+§||5x||§(+g(x+Ax(w)+8x) —g(x—i—Ax(a))). (15)

By strong convexity of the objective function for T > —«», the above minimization
problem has a unique solution 6x € X. By first order optimality conditions, this
solution then satisfies the dual space inclusion

0€ f'(x) + (Hy + ®R)Ax(®) + dpg(x + Ax(w) + 6X) + TRSX  (16)

for the Fréchet-subdifferential drg. Note here that the exactly computed update step
Ax(w) as a solution of (3) suffices

0 € f'(x) + (Hx + oR)Ax(w) + 0pg(x + Ax(w))

which directly yields that §x = 0 satisfies (16) and is thereby the unique solution of
(15). This completes the proof of (14). O
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10 B. Potzl et al.

Assumption 5 For the following, we require an approximation property of f’ at sta-
tionary points x, of our problem (1) with respect to the second order bilinear forms
H, which often appears in connection with semi-smoothness of f’:

| £/ Ces) = £/ (x) = Hy(xie — )|

o= ollx —xl). a7

Adequate definitions of H, can be given via a so-called Newton derivative from
dn f'(x), also known as the generalized differential 3* f/(x) for Lipschitz-continuous
operators in finite dimensions, and for corresponding superposition operators, cf. [21,
Chapter 3.2].

While finite-dimensional semi-smoothness of real-valued functions has been devel-
oped by Mifflin in [13], an extension to mappings between two finite dimensional
spaces has then been given by Qi [16] as well as Qi and Sun [17]. The motivation for
the concept is to develop locally g-superlinearly convergent Newton methods which
are applicable despite the general non-smoothness of the underlying mapping.

This finite-dimensional notion of semi-smoothness can also be characterized by
directional differentiability together with an approximation property of the above form.
For the generalization to infinite-dimensional domain and image spaces, however,
we do not require the directional differentiability of the corresponding mapping any
more. In that regard, continuity near the point at which it is supposed to be semi-
smooth together with the approximation property from (17) is sufficient, cf. [21] for
an elaborate introduction to the concept of semi-smoothness for general operators
between Banach spaces.

Let us now consider the difference of gradient mappings of the objective function
F and its modified second order model l:"x’w at stationary points x, of problem (1).

Lemma 2 Let the semi-smoothness assumption (17) hold at a stationary point x, € X.
Then, the regularized composite gradient mapping satisfies the following estimate for
each t > —ky and x € X sufficiently close to x,.:

Tw
T+ K2

|GT ) = G ()| = o |xe — x[ ) +

e = x]] -

Proof The proof here follows immediately by the characterization of the regularized
composite gradient mapping as in (8) and the semi-smoothness of f’ according to
(17). To go into detail, by Proposition 1 we have

|G (o) = G2 ()|

= 7| PER(tRxs — f (1)) = PE R (tRxs — [f/(6) + (Hy + 0R) (xs — 0)]) |
T

o [(xRxx = f/(x0)) = (tRxs — [f/(¥) + (Hy + @R) (s — )] | o
T !
e |/ () = (f' (0) + (Hx + 0R) (xs — 1)) |
Tw
= o(]|lxs — x| ) + - s — x|

@ Springer



Inexact proximal Newton methods... il

the last identity of which follows by the aforementioned definition of Hy € dy f(x)
as a Newton-derivative together with (17). m]

2.3 An existing inexactness criterion

In the literature composite gradient mappings have been used in order to derive an
inexactness criterion for update step computation within Proximal Newton methods.
Based on an approach from the smooth case, cf. e.g. [5], the authors in [9, 11] took
advantage of the composite gradient mapping Gf to postulate the corresponding esti-
mate which their inexact update steps have to satisfy. In a similar fashion, transferring
the criterion from the smooth case to our globalization scheme using the damped
update steps As(w) from (3) yields

|65 (x + As(@) | = 1| 6F )] (18)

for some yet to be specified forcing term n > 0. Here, F. .o denotes the modified
quadratic model from (9) above. This requirement can be understood as a relative
error criterion for the composite gradient mapping in norm due to the optimality of
exactly computed update steps as formulated in Proposition 2.

While in a finite dimensional Euclidean space setting the gradient mapping

G (x + As(a))) can be evaluated efficiently due to the diagonal structure of the
norm term, in an infinite dimensional setting the computation of it is quite demanding,
even as expensive as computing the actual exact update step Ax ().

Consequently, evaluating (18) for every iteration within the subproblem solver
becomes very costly and thereby immediately eclipses the savings we gain from
inexactly computing the update steps. For this reason, we will resort to a different
inexactness criterion.

3 First inexactness criterion and local convergence properties

As pointed out beforehand, we do not use an inexactness criterion of the form (18)
due to its immense computational effort in function space. Instead, we exploit the
advantageous properties of the TNNMG subproblem solver by resorting to an actual
relative error estimate of the form

|Ax(w) — As()| < 1| Ax(@) | 4 (19)

where Ax(w) denotes the exact solution of the update step computation subproblem
(3) and As(w) is the corresponding inexact candidate. The influence of the forcing
terms 1 > 0 on local convergence rates will be investigated in Theorem 1.

Before actually stating the local convergence results, let us remark that the inex-
actness criterion (19) is trivially satisfied by exactly computed update steps and 7 is a
measure for the margin for error which we allow in the computation. Additionally, the
fact that the inexactly computed update steps As(w) are in our case iterates from the
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12 B. Potzl et al.

convergent TNNMG subproblem solver implies that sooner or later within the solution
process of (3) the requirement (19) will be satisfied.

Furthermore, let us comment on the efficient evaluation of this relative error esti-
mate. At first sight, this is not completely obvious since apparently we do not have the
exact solution Ax(w) of the update computation subproblem (3) at hand. In order to
deal with this issue, we take advantage of the multigrid structure of the iterative sub-
problem solver which we employ, i.e., the TNNMG method from [7]. By 87 we denote
TNNMG-corrections, let therefore As’ (w) = le=1 8/ be an iterate within the inner
solver towards the exact solution Ax(w) and 6 the ’constant’ multigrid convergence

rate for ||8/ H x=0 ||5’ ! || - Simple triangle inequalities thus provide us with

[ax@) = As' @) = Z 1870 x= 18"l Z 67" = —||5’Hx

Jj=i+l Jj=i+1

Similarly, for the norm of the exact solution we obtain

o o o0
[ax@ = [X ], = [as@+ 3 o]z [as@l -] 3 ],
j=1 j=itl j=i+1
4 0 .
- s @y 9]
Combining both of these estimates implies
o A @ly il o)
ol Tav@ly— oy

as a sufficient and easy to evaluate alternative inexactness criterion for the relative
error estimate (19). Numerical experiments, which we also incorporated to Sect.5.1,
clearly demonstrate that the performed triangle inequalities are sharper than one might
have expected. Thus, the evaluation of the alternative criterion from (20) comes very
close to using the actual relative error for our computations later on.

Another crucial auxiliary result for all of the present treatise is an equivalence
estimate between exactly computed update steps which have been damped according
to different regularization parameters. It generalizes [15, Lemma 6] insofar that this
result is comprised here in the case of w = 0.

Lemma 3 Let Ax(w) and Ax(®) be exactly computed update steps at an iterate xy=:x
according to (3) with regularization parameters satisfying v > —(k1(x) + «2) and
@ > w. Then the following norm estimates hold:

- ®— o -
|| Ax(a)) — Ax(a)) ||X = m” Ax(w) ”X (21)
|Ax@) | = |Ax(@)|y < w“ Ax(@) | (22)

o +K1(x) + K2
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Inexact proximal Newton methods... 13

Proof We consider the proximal representation of exactly computed update steps
X+ Ax(@) = x4(@) = PEYOR((H, + 6R)x — f/(x))

for @ € {w, ®}. Via Proposition 1, from these we can deduce the respective proximal
inequalities

[(&R + Hy)x — f/(x) — (OR + Hy)x4(@)](E — x4(@))

< 86) = g(r+@) - 7 [& —x+ @
(23)

for any £ € X which we choose as § = x4 (@) for the respectively other & € {w, ®}
and add the ensuing estimates in order to obtain

[(wR + Hyx)Ax(®) — (@R + Hx) Ax(®)](Ax(@0) — Ax(®)) < —k2 | Ax(w) — Ax(@) Hi )

We now insert a (wR + H,) Ax(®)-term to the left-hand squared bracket and simplify
which yields

(@R + Hy) (Ax(@) — Ax(@))* 442 | Ax (@) — Ax(@) |5
<(v— a))R(Ax(d)), Ax(w) — Ax(&)))

where we can now additionally utilize (5) for the simpler form

(@ + k1(x) + K2) | Ax (@) — Ax(D) His (@ — ®)R(Ax(®), Ax(0) — Ax(@)) .
(24)

From here, we can take two paths both of which contribute to the completion of the
proof. Firstly, we divide by (w + k1(x) + k2) > 0 and use the Cauchy-Schwarz-
Inequality on the right-hand side which then implies

D — W

~ 2 @
[ax@) = Ax@) < o e

|8x@)] | Ax@ - Ax@]

i.e., exactly (21) since the difference norm term can be assumed to be non-zero without
loss of generality. Moving on, we take advantage of

0—w

[ax@)] y < |Ax(@) = Ax(@) | g+ [ Ax(@) |y < (1 + P

J|ax@]

and thereby directly obtain the second inequality from (22). The other way to manip-
ulate (24) is to simply drop the right-hand side due to (w + «; + x2) > 0. This
immediately yields

(@ — )] Ax(@) |3 < (@ — OR(Ax(@), Ax())
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14 B. Potzl et al.

where we use the Cauchy-Schwarz-Inequality and divide by (& — ) || Ax(®) || « Which
again can be assumed to be non-zero (and positive) without loss of generality. The
ensuing estimate then constitutes the first part of (22), completing the proof. O

With the relative error inexactness criterion (19) as well as the auxiliary results
concerning regularized composite gradient mappings from Sect. 2 and norm estimates
from Lemma 3 at hand, we can now tackle the proof of the following local acceleration
result.

Theorem 1 Suppose that at a stationary point x, € X of (1) the semi-smoothness
assumption (17) holds together with k1 (xx) + k2 > 0 at iterates xi close to x,. Then,
the inexact Proximal Newton method with update steps computed according to (3) at xy.
with the inexactness criterion (19) for ni > 0 exhibits the following local convergence
behavior:

(a) The sequence of iterates locally converges linearly if wy and ny are sufficiently
small, i.e., if there exists some constant 0 < © < 1 and ky € N such that for all
k > ko the following estimate holds:

1

oo 1ol T 1l o ey et <€ (29)

(b) The sequence of iterates locally converges superlinearly in case both wy and nj
converge to zero.

Proof For the sake of simplicity, we will omit the sequence indices of all quantities
here and denote x = x;, w = w; and n = ny for the current iterate, regularization
parameter and forcing term. For the next iterate, we write x4 (w) = x;4+1(w) and
H, = H,, stands for the current second order bilinear form.

For what follows, we fix T:=w+ %(” H, H Lox.xn Tk (x)) for the gradient mapping
regularization parameter which allows us to take advantage of the auxiliary estimates
deduced in Lemma 1. Under these circumstances, the first part of (11) from Lemma 1
provides us with

I‘QX.(U ﬁx.w
x4 (@) — x| < mua “(x + As(@) = G () |

| (26)

Tl

wa

IA

Jof“(x + astn | +167 wl

[ 21| ey 100
L(X,X*)
where we abbreviated the constant H: ="

As a next step, we take a look at the first norm term in brackets in (26). We use
(14) from Proposition 2 together with the second part of (11) from Lemma 1 for
y:=x + As(w) and z:=x + Ax(w) in order to obtain the following estimate:

= ”GF’c “’(x + As(a))) - G,ﬁx"“ (x + Ax(a)))
< r(l + H) ” Ax(w) — As(w)”x .

H GFX ¢ (x + As (w))

Ix = Ix
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Inexact proximal Newton methods... 15

For the ensuing norm difference we take advantage of the relative error estimate inex-
actness criterion (19) together with the monotonicity of update step norms concerning
the damping parameter @ as in Lemma 3. Additionally, the superlinear convergence
for full update steps Ax:=Ax(0) close to optimal solutions (cf. [15, Theorem 1]) is
important here:

|ax(@) = As@)][y = n]|ax@)] x= nfax] = o] —xe] ) +nlx = x]x -
27)

By the stationarity of x, together with Lemma 2, for the second term in brackets in
(26) we have

Fr .o wT

|G

@l =67 ) = 6T o]l = o x —xel ) +

The estimates (27) and (28) suffice to quantify the influence of either inexactness or
damping on local convergence rates of our algorithm. Inserting both of them into (26)
above yields

(I+Hn+ =2

ol = wdy) . @)

Jxe@) = 5] <

All that remains to do now is simplify the rather complicated prefactor term within
the estimate above. We expand the fraction by 2(t + «2) and use that by the definition
of T we have

2(t +k2) = 2(@ + k2) + | He | £ oy Fre101 () + 12 .

This provides us with

(1 +H)77 + .[sz _ (2(‘[ +K2) + || H)C ||,C(X,X*)_K1)r) +2a)
1—H B 2(t + k) — ”Hx”L(X’X,k)—i-Kl(x)-i-Kz
(“) + ” Hy HL(X,X*)""‘Z)'7 to

- o+ Kk1(x) + K3

Inserting this identity to (29) now directly yields

1

|‘x+(w)_x*||XS a)—l—/q(x)—i—/cz

[(+ [ Hs ||£(X,X*)+"2)’7 +o]x - x*||X+0(Hx — Xx ”X) .
(30)

Now, both of the asserted cases for local convergence behavior are an immediate
consequence of (30) and the uniform boundedness of the H, stated in (4). ]
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16 B. Potzl et al.

Remark 1 The estimate (25) yields a couple of algorithmically relevant insights. First,
the linear convergence factor ® can only be small, if both wy and 7y are small. Hence,
computing steps very accurately does only pay off if wy is very small. We will see
in Sect.5 that close to optimal solutions arbitrarily small regularization parameters
wy ~ 0 can indeed be used.

Second, if we neglect wy & 0, then (25) simplifies to

” Hy, “L(x,x*)+’<2 <o,

K1(x) + K2

where the prefactor on the left hand side can be interpreted as a local condition number
of the problem. Indeed, for k< = Oitcoincides with the condition number of H relative
to || - ||x. Thus, to achieve a given rate of local convergence, n; has to be chosen the
tighter the higher the condition number. This underlines the necessity of an adequate
choice of function space X and norm | - || x.

Additionally, we were able to extend the local convergence result from [15, The-
orem 1] insofar that we quantified the influence of damping update steps on (local)
convergence rates. We are now also aware of more insightful criteria for linear or
superlinear convergence of our method respectively. This helps us understand the pro-
cess of local convergence of the (inexact) Proximal Newton method to an even greater
extent.

4 Global convergence properties

Now that we have clarified the local convergence properties of our inexact Proximal
Newton method depending on the forcing terms in criterion (18), we want to take into
consideration whether the globalization scheme via the additional norm term in (3)
still fulfills its purpose and yields some global convergence results.

4.1 Cauchy decrease steps and the subgradient model

In order to achieve such a result, we will introduce a second crucial criterion which the
inexactly computed update steps Asy (wy) have to satisfy in order to be admissible for
our method. It can be viewed as an adopted strategy from smooth trust region methods
where rather cheap so-called Cauchy decrease steps are used to measure functional
value descent for the actual update steps, cf. e.g. [4, Chapter 6].

There are several conceivable ways to define and compute such comparative Cauchy
decrease steps. A canonical choice would be a simple Proximal Gradient step, i.e., the
minimizer of the regularized linear model

c o 12 2
A$ 5 6x)=f"(x)8x + E||5x |Ix+ex +6x) —g(x), dx € X.
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Inexact proximal Newton methods... 17

As was the problem with evaluating the gradient mapping for our first inexactness
criterion, also this procedure is as expensive as computing the exact Proximal Newton
step right away in our general Hilbert space setting. Thus, the idea arises to find
some comparative update step which we can compute with marginal effort in order to
measure its functional value descent and then compare it to our inexact update step.

To this end, we define the subgradient model descent of F' around x € X with
respect to i € drg(x) and regularization parameter @ > 0 by

I — @ 2
M @Gx)i=f(x)8x + pwx + EHSx |5, dxeX, 31)
and we refer to the respective minimizer

Ax*(@):=argmin kﬁ: 5(8%) (32)
SxeX ’

as the corresponding subgradient step. Before introducing the second inexactness
criterion which makes use of the above model and step, we will establish an analytical
connection between (31) and our initially defined regularized second order decrease
model A, , from (9). To this end, we remember that the regularization parameter
w > 0 1s generally chosen such that the modified non-smooth part

1
X R, g(x)=gk) + E(Hx + oR) (x)?

is convex and thus the subproblem (3) allows for a unique solution. Consequently,
the characterization of the convex subdifferential dg(x) yields that for any ot = u +
(Hy + oR)x € 9g(x) with u € drg(x) we have that

1
F(x +6x) = g(x) + i dx mMMSg@+&m—ﬁﬂ+§Hﬂhﬁ+%Mﬂ@zuh

holds for any §x € X and u € drg(x). We immediately obtain that

)Li&)(&c) = f'(x)éx + 2”5)6 ||§—|—,u8x

1 o+ 2
= f'(x0)8x + S H (6x)% + —5 I8x[x+ex +80) — 2(0) = Ar o0 (60)
(33)
is true for any éx € X. In particular, this estimate apparently also holds for the

respective minima of the decrease models of the composite objective function. For
that reason, from (33) we obtain

M o (AX(D) < Aot (Ax(@ + ) < —%(a) + o+ k1) + k) |Ax@ + 0|3
(34)
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18 B. Potzl et al.

for any @ > 0 where the last estimate constitutes a result from the exact case in
[15, Eq.(19)] and will give us norm-like descent in the objective functional later on.
Obviously, we now want to link this norm-like decrease within the subgradient model to
the regularized second order decrease model Ay, (As (a))) for our inexactly computed
update step As(w) and lastly to the direct descent within the objective functional F'.

4.2 Second inexactness criterion and efficient evaluation

We will establish the first one of these connections via the actual second inexactness
criterion which will thus also be checked within our algorithm and implementation.
For this purpose, it is sufficient if an inexactly computed update step As(w) satisfies
the estimate
)\X,w(As (a))) < )\fi&)(Ax“(&))) for some @ < @max (35)
where the upper bound @p,x > 0 is an algorithmic parameter yet to be specified. This
inequality now constitutes our formal second inexactness criterion which we will also
refer to as the subgradient inexactness criterion.
Let us shortly elaborate on the efficient evaluation of this estimate and from there
derive the actual implementation of the criterion: The solution property of Ax*(w)

provides us with first order conditions for the corresponding minimization problem in
the form of

0= f'(x)+u+ ORAx"(®)
and thus Ax* (@) = —(@R) ™' (f'(x) + u). For a given value of A, (As(w)), ie.,
descent along an inexactly computed update step within the regularized second order

model, we can thus theoretically determine @ such that (35) is satisfied with equality.
This can be seen as follows:

hro(As(@) 22 (Ax1@) = (£/() + 1) Ax @) + 5 [ A @)
= (F/@+w)[ = @R (@ +u)]+ 5[ -@R) (£ + m)§

Ly
= —%“f (x) + M“i*
(36)

which provides us with the theoretical value

, 2
@+ . 37
2)\x,w(As(a)))

o=

for the regularization parameter within the subgradient minimization problem (32).
This quantity should remain bounded in order to enable the proof of global convergence
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Inexact proximal Newton methods... 19

results later on. Thus, as also pointed out in (37), we establish a sufficient estimate
for our subgradient inexactness criterion (35) by demanding boundedness of @ from
above by @max. Note here that—as can be seen in (36)—the value for A“ (Ax“ (a)))
increases as @ does. Since globalization mechanisms in general should only provide
worst case estimates and not slow down the convergence of our algorithm, we want
the subgradient inexactness criterion to only interfere with update step computation
on rare occasions and thus choose @max very large.

The dual norm occurring in the numerator of (37) is computed as follows: we
compute the minimizer of the linear subgradient model Ax*(1) € X from (32) and
afterwards evaluate the linear functional f’(x) + u € X* there. Here, the Fréchet-
subdifferential element ;& € dpg(x) is chosen such that the norm ||
as small as possible. Obviously, this depends on the specific minimization problem at
hand but due to the non-smooth nature of g it is often possible to exploit the set-valued
subdifferential for this purpose.

Let us add some remarks concerning satisfiability of the subgradient inexactness
criterion: As mentioned above, the freedom of choice of p within drg(x) opens
up possibilities to decrease the value of || )+ /L| x+ right away. Additionally,
considering the exact case for update step computation is very insightful in order to
see that the criterion will be fulfilled by late iterations of the inner solver. For now, we
interpret || ) +nu || P dist(ap F(x), 0), i.e., we assume i € drg(x) to be chosen
(nearly) optimally for our purpose of finding solutions of (1).

Proposition 3 Assume that there exists some constant C > 0 such that

| £/ + we

=< Cdist(dr F (x), 0)

holds at some iterate xy=:x for w € 0pg(x). Then, the subgradient inexactness
criterion (35) is eventually satisfied by iterates As(w) of convergent solvers for the
subproblem (3) in case

2
- C*@+ Ly + |He| fx x+) (38)
max o + K1 (x) + K2

holds for the upper bound max from (35).

Proof According to global convergence arguments in [15, Theorem 2] together with
the assumed existence of C > 0 above, we can estimate

|7 + w] g = Cdist(3r F (), 0) = C(Ly + [ Hx | i oy Fe0) [ Ax(@)]

for the exactly computed update step Ax (w). Additionally, from [15, Eq.(19)] we infer
that

1
hew(Bx(@) < = (0 + 1) +0) [Ax@)|§ & ~2hw(Ax(@)

= (@400 + ) | Ax @)
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20 B. Potzl et al.

is true in this scenario and we consequently obtain

| £/ + M”?{* - C*w+Ly+ || Hx Hﬁ(x,x*))2
2hr0(Ax(@) ~ o+ K1(x) + K2

(39)

w=-—

Here, the convergence of the subproblem solver in the form that the respective objective
value Ay (As(a))) tends to A x,w(Ax (a))) from above comes into play. Thus, we can
summarize

“f/(x) +l$||§(* o ||f’(x) +M||§(* - Cz(“"" Ly+ ”HX “L(x,x*))2

2hrw(As@) > 2hro(Ax(@) T o+ k1 (x) + K2

o= -

for the theoretical value @ from (37). If now in particular the assumed estimate for the
upper bound @mgax holds, the assertion directly follows. O

Remark2 The bound in (38) in particular remains finite in both limits w — 0 and
x — x, for any stationary point x,, € X of problem (1) near which x1(x) + «2 > 0
uniformly holds.

The algorithmic strategy behind the subgradient inexactness criterion can now be
summarized as follows: For the present iterate of the outer loop x € X, we solve the
linearized problem (32) for the computation of the dual norm H )+ u| x+ and ini-
tiate the inner loop in order to determine the next inexact update step. At every iterate
As(w) of the inner solver for subproblem (3) we compute the corresponding subgra-
dient regularization parameter @ from (37) and check @ < @max. As a consequence
of Proposition 3, either @max is chosen large enough and we will eventually achieve
@ < Omax for some inexact step or we will compute an exact update step Ax(w)
which on its own provides us with global convergence of the sequence of iterates as

presented in [15, Sect. 4].

4.3 Summary of inexactness criteria

With both of our inexactness criteria at hand, let us shortly reflect on their compu-
tational effort and compare it to possible alternatives: For the relative error criterion
(19) in its form (20) only the evaluation of the fraction and its comparison to the
forcing term is necessary since all occurring norms are already present within the
subproblem solver. The subgradient inexactness criterion as described before requires
the solution of the quadratic minimization problem (32) once per outer iteration of
our method together with the evaluation of the quadratic model A, (As(a))) at each
inner iteration which is a cheap operation.

For comparative algorithms from literature, cf. [3, 9, 11], the gradient-like inex-
actness criterion (18) has to be assessed at every inner iteration together with one
comparison of the second order decrease model value with its base value for §x = 0.
As mentioned before, the former operation is very costly for non-diagonal function
space norms, particularly in comparison to solving a linearized problem once per
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Inexact proximal Newton methods... 21

outer iteration. This emphasizes both the necessity and the benefit of our adjustments
to existing inexactness criteria. The summarized procedure can be retraced in the
scheme of Algorithm 1.

4.4 Sufficient decrease criterion and global convergence

For global convergence in the case of inexactly computed update steps with the criteria
introduced above we still have to carry out some more deliberations. The last missing
ingredient in our recipe for norm-like descent within the composite objective functional
is given by a sufficient decrease criterion which we have also used in the exact scenario
in [15, Eq.(18)]. We say that an (inexactly computed) update step As(w) is admissible
for sufficient decrease if for some prescribed y €]0, 1[ the estimate

F(x + As(@)) = F(x) < yhr.o(As(@)) (40)

holds. Now, before justifying that (40) holds for sufficiently large values of the reg-
ularization parameter w, let us combine estimates (40), (35), the monotonicity of
)»f ’@(Ax“(d))) with respect to @ as well as (34) from above and thus recognize that
we obtain

F(x + As(@) = F(x) < yaro(Bs@) = yA o (AxH(@) < yal 5, (Ax" (@ + 1)
<__Mf+w4-1+KMXI+KﬁV
- 2

—%H Ax(@rmax + @ + D5 -

|Ax@ + o+ Dy

IA

(41)

Note that we additionally used @ > 0 and w + k1 (x) + k2 > 0 as well as @ < @max
together with the equivalence result from Lemma 3.

The following lemma ensures the satisfiability of the sufficient decrease criterion
(40) as soon as o is large enough.

Lemma4 The sufficient decrease criterion (40) is fulfilled by inexactly computed

update steps As(wy) which additionally satisfy the inexactness criteria (19) and (35)
if the regularization parameter w satisfies the inequality

ﬁ(a)‘i"dz‘i‘w(w‘i‘&)max + Kk — L) > L(@max + k)

where we abbreviated k:=x1(x) + k2 and L:=L y — k1(x).

Proof The first inexactness criterion (19) provides us with the norm estimate

[as@)]y= [Ast@) = Ax@]y+[Ax@]y= A +n[Ax@] . @2
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With the aid of the second inexactness criterion (35), (34) and Lemma 3 we thus obtain

)\x,w(AS(w)) = )»ﬁii)(AxM((;))) = A'il,ébmax (Ax”((;)max))
<—l(~ +a)+/c(x)+K)HAx(c?) +a))||2
=73 'max 1 2 max X (43)

(04 100 + 51)°

— 2
+ A )
< 2(1 U)z(d)max + w+Kk1(x) Kz) ” s(w) H X

Here, we recognize that the inequality from the assertion is equivalent to

Li—x1—o 2(@max +o+K1(x)+r2)(1+n)? -

2 =1-
2 (a) + Kk1(x) + Kz)

which together with (43) lets us estimate

L
F(xs(@) — F(x) < f/(x)As(0) + Tf | As(@)| %+ (xs (@) — gx)

1 2
= heo(As@) + 5 (L =) —o)|As@)]y

= )\x,w(AS(w)) -(1- V))\x,w(As(w)) = V)\x,w(AS(w))
and conclude that As(w) yields sufficient decrease according to (40). O

Remark 3 The above result together with the assumption (5) and (6) on our objective
functional also imply that the regularization parameter w remains bounded over the
course of the minimization process.

Let us now deduce the ensuing global convergence results for the inexact Proximal
Newton method as presented in the scheme of Algorithm 1.

For this reason, we will first prove that the right-hand side of (41), i.e., the norm
of exactly computed comparative steps Ax(omax + @ + 1), converges to zero along
the sequence of iterates generated by inexact updates. Here, it will come in handy to
define w’:=wmax + @ + 1 for the regularization parameter of the comparative exact
update steps. Note that this quantity is bounded both from above and below.

Lemma5 Let (xx) C X be the sequence generated by the inexact Proximal Newton
method globalized via (3) starting at any xo € X. Additionally, suppose that the
subgradient inexactness criterion (35) and the sufficient decrease criterion (40) are
satisfied for all k € N. Then either F(x;) — —o0 or H Axg () Hx_) 0 for k — oo.

Proof By (41) the sequence F (x;) is monotonically decreasing. Thus, either F (x;) —
—ooor F(xg) — F forsome F € R and thereby in particular F (x;) — F (xg4+1) — 0.
As a consequence of (41), then also || Axy ()|, — 0 holds. i

Note that the above result does not comprise the convergence of the sequence of iterates
itself which is desirable in the context. In the exact case of update step computation
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Data: Starting point xg € X, sufficient decrease parameter y €]0, 1[, initial values wg and ng, € > 0
for stopping criterion
Initialization: k = 0;
TEk [ As (@p) ] = & do
Choose 1 € dF g(xx) and compute norm term for @ as in (37) via the linearized minimization
problem (32);
Compute a trial step Asg (wy) according to (3) which suffices the inexactness criteria (20) and
(37);
while Sufficient decrease criterion (40) is not satisfied do
Increase wy appropriately;
Recompute Asg (wy) as above;
end
Update current iterate to x; | <— xg + Asg(wg);
Decrease wy to some wy 1 < wy for next iteration;
Decrease 7 to some 7,41 < 1y for next iteration;
Update k < k + 1;
end
Algorithm 1: Inexact second order semi-smooth Proximal Newton Algorithm

while

it was possible to take advantage of first order optimality conditions of the exactly
solved subproblem for the actual update steps and from there achieve a proper global
convergence result at least in the strongly convex case, cf. [15, Theorem 3]. Due to
the presence of inexactness in the update step computation this strategy has to be
slightly adjusted in the current scenario, i.e., applied to the comparative update steps
Ax(w®). To this end, for some & € N and iterate x; € X we introduce the so-called
corresponding comparative iterate

Hy, +0‘R ¢
Vo=t 4 Axg(@) = Py * T (Hy + o R — f100)) . (44)

Note here that the comparative iterate uses a theoretical exact update but origins at
the iterate x; which belongs to our inexact method. Also, for every k € N the identity
yk — X = Axg () holds by definition of yg.

With this definition at hand, we are in the position to discuss at least subsequential
convergence of our algorithm to a stationary point. In the following, we will assume
throughout that the sequence of objective values (F (xk)) is bounded from below. We
start with the case of convergence in norm:

Theorem 2 Assume that the subgradient inexactness criterion (35) and the sufficient
decrease criterion (40) are fulfilled. Then, all accumulation points x (in norm) of the
sequence of iterates (xy) generated by the inexact Proximal Newton method globalized
via (3) are stationary points of problem (1). Let now (xy,) C (xi) be the subse-
quence converging to x. In particular, the corresponding comparative subsequence
(yk,) defined via (44) satisfies

dist(9p F (3). 0) — 0 and |xi, — yiy | = 0.

i.e., also yy, — X forl — oo.
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Proof We simplify notation by referring to subsequence indices k; as k. As mentioned
beforehand, for the corresponding comparative sequence (yx) we have yy — x; =
Axy (o) and consequently also yy — x holds by H Axg(0°) H x> 0 due to Lemma 5.
The proximal representation of yj in (44) is equivalent to the minimization problem

1
Yk = argn;l(in g+ E(H"k + o R)(»)? — ((Hy, + 0“R)xk — f(x0))y
ye

which yields the first order optimality conditions given by the dual space inclusion
0 €0rg(y) + f/(xx) + (Hy, + 0°R) ik — 1) -
This, on the other hand, is equivalent to
(Hy, + @ R) (v = yi) + f' () — f' () € 3rg (i) + /() = dr F(y)  (45)

the remainder term on the left-hand side of which we can estimate via

| (Hy + o R) e — yi) + £/ Gr) — F/ @) | g < (M + 0 + L) |xx — yi|

— (Mt + L) | Anwd)] y— 0

for k — 0o where M denotes the uniform bound on the second order bilinear form
norms from assumption (4).

In order to now achieve the optimality assertion of the accumulation point x, we
have to slightly adjust (45) for the use of the convex subdifferential and its direct
characterization. To this end, we consider a bilinear form Q : X x X — R such that
the function g : X — R defined via g(x):=g(x) + %Q(x)z, x € X, is convex. As
above, Q:=H,, + w;R is a reasonable choice. Inserting a Q (yx)-term into (45) thus
yields

O Rxx — i) + [ ) — [ (xi) € 0gi) + {f ) — Q)

for the convex subdifferential of g. The left-hand side now as before converges to zero
in X* and consequently, we know that for every k € N there exists some gx € 9g (k)
such that we can define g:=limg_ o0 or = — f'(X) + QX by the convergence of also
vk to x. The lower semi-continuity of g together with the definition of the convex
subdifferential dg directly yields

1 1
) — g®) = gu) — g(%) — EQ(N > §(u) — liminf g(yp) — lim =~ Q(w)?
k— 00 k—00 2
= liminf g(u) — g(yx) = liminf pp (u — y;) = lim pr(u — yr) = p(u — X)
k—o00 k— 00 k—o00

forany u € X which proves the inclusion p € dg(x). The evaluation of the latter limit
expression can easily be retraced by splitting

Px(u — yi) = pr(u —X) + (px — P)(X — i) + p(& — yi) . (46)
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In particular, we recognize p € 92(x) as —f'(X) + QX € 9g(x) and equivalently
— f'(x) € 9pg(x) for the Frechét-subdifferential 7. This implies 0 € o F(X), i.e.,
the stationarity of our accumulation point x. O

In [15] the criterion | Ax(wy) | 4 < & for some small & > 0 has been used as a
condition for the optimality of the current iterate up to some prescribed accuracy.
Estimate (42) from above thus yields that also the norm of the inexactly computed
update steps can be used as an optimality measure for the current iterate within our
method.

However, small step norms H Asi(wr) ” x can also occur due to very large values of
the damping parameter wy as a consequence of which the algorithm would stop even
though the sequence of iterates is not even close to an optimal solution of the problem.
In order to rule out this inconvenient case and incorporate the influence of inexactness,
we consider the scaled version % | Asi (1) | as the stopping criterion in the later
implementations of our algorithm.

Let us now proceed to generalizing the convergence result from Theorem 2: While
bounded sequences in finite dimensional spaces always have convergent subsequences,
we can only expect weak subsequential convergence in general Hilbert spaces in this
case. As one consequence, existence of minimizers of non-convex functions on Hilbert
spaces can usually only be established in the presence of some compactness. On this
count, we note that in (46) even weak convergence of x;—x would be sufficient.
Unfortunately, in the latter case we cannot evaluate f'(x;) — f'(x). In order to
extend our proof to this situation, we require some more structure for both of the parts
of our composite objective functional. The proof is completely analogous to the one
of [15, Theorem 3].

Theorem 3 Let f be of the form f(x) = f(x)—i—f(Kx) where K is a compact operator.
Additionally, assume that g + f is convex and weakly lower semi-continuous in a
neighborhood of stationary points of (1). Suppose that f satisfies the assumptions
made on f beforehand. Then weak convergence of the sequence of iterates xp—Xx
suffices for X to be a stationary point of (1).

If F is strictly convex and radially unbounded, the whole sequence (xy) converges
weakly to the unique minimizer x, of F. If F is k-strongly convex, with k > 0, then
Xi —> Xy N norm.

5 Transition to local convergence

In order to now benefit from the local acceleration result in Theorem 1, we have to
manage the transition from the globalization phase above to the local convergence
phase described beforehand. To this end, we have to make sure that (at least close
to stationary points of (1)) arbitrarily small regularization parameters @ > 0 yield
update steps that give us sufficient decrease in F according to the criterion formulated
in (40). This endeavor has also been part of the investigation of the exact case in [15,
Section 6] but as for all aspects of our convergence analysis has to be slightly adapted
here.
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As a starting point, a rather technical auxiliary result is required. It sets the limit
behavior of inexact update steps in relation with the distance of consecutive iterates
to the minimizer of (1).

Lemma 6 Let x and x(w) = x 4+ As(w) be two consecutive iterates with update step
As(w) sufficing (19) for some 0 < n < 1. Furthermore, consider a stationary point
Xx of (1). Then the following estimates eventually hold for k1 + k2 > 0:

0]

2
ler@ - xaly= Gl —mly . - xlys ——(+ —2)]as@).

-1 k1 +K2

Proof Our proof here mainly exploits the local superlinear convergence of exactly
computed and undamped update steps Ax:=Ax(0) from [15, Theorem 1] and then
uses the respective estimates in order to introduce the influences of both damping and
inexactness. For the first asserted estimate, we take a look at

@ = xul = = vl | As@] =[x = 40+ Ax]

= @+ mfr —xfF A+ x+Ax —x
where the second step involved (42) together with H Ax(w) || x= || Ax H s proven in
Lemma 3. From here, we use the superlinear convergence of exact updates in the form

of the existence of some function ¢ : [0, co[— [0, oo[ with ¥ (¢) — O fort — 0
such that

et A =l = v (e = 2 ) | = 2]

holds in the limit of x — x,. Thus, we obtain

@ = xul = [@ 4+ + A+ (fr —x] )] = vl y= G+ 20— x.,

since eventually we can assume the y-term to be smaller than one. This completes
the proof of the first asserted estimate.
For the second one we take advantage of

w

[axly= 0+ =5

)| Ax@)]

from Lemma 3 together with again the superlinear convergence as above and find that

e = xelly = e+ ax —xf [ ax] y= v (e =2 ) | =]

+(1+ )[Ax@)]

K1(x) + K2
holds. Since the y-term eventually will be smaller than %, from here we infer

w
I+ K1 (x)+K2

V([ =2 x)

w
Kk1(x) + K2

[ =l y= 1= |ax(@)]x=2(1+ ) Aax@] -
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The inexactness of update step computation now enters the above estimate using the
inequality || Ax(w) H x= ﬁ || As(w) || x Which can easily be retraced via

(A =mn[ar@]y < [Ax@)]y—]Ax@) - As@)]
= |ax(@) = (Ax@) = As(@) | = [ 5@

with the inexactness criterion (19). This completes the proof of the lemma. O

Remark 4 1In particular, these eventual norm estimates have implications on the limit
behavior of the respective terms. If we now have £ = o ( || X4 () — x4 || X) forsome & €
X, =o(|x—x| ) immediately holds and from there we obtain § = o([|As(w)| )
in the same way.

In what follows, it will be important several times that the second order bilinear
forms H, satisfy a bound of the form

(Her(w) — HX)(x+(w) — )c*)2 = 0(||x — Xy ||§() for x — x,. a7

It is easy to see that the bound holds if either we have uniform boundedness of the
second order bilinear forms together with superlinear convergence of the iterates or if
we have continuity of the mapping x — H, together with mere convergence of the
iterates to x,. Note here that the same assumption has been made in the exact case in
[15] for the admissibility of undamped and arbitrarily weakly damped update steps.
In our scenario, we conclude that according to Theorem 1 it is sufficient that both the
regularization parameters w; > 0 and the forcing terms n; > O converge to zero as
we approach a stationary point x, € X of (1) together with assumption (4) from the
introductory section. We will later on establish this convergence of (wy) and (1) in
the specific implementation of our algorithm.

With the auxiliary estimates from Lemma 6 and Lemma 3 together with the thor-
oughly discussed additional assumption from (47) at hand, we can now turn our
attention to the actual admissibility of arbitrarily small update steps close to stationary
points of (1).

Assumption 6 For that matter, we furthermore suppose f to be second order semi-
smooth at stationary points x, of (1) with respect to the mapping H : X —
L(X, X*), x — H,, which expresses itself via the estimate

1
SO 8) = [ @)+ f @k + 3 Heore 6.6) +o([&]3) for ], 0.
(48)

This notion generalizes second order differentiability in our setting but its definition
slightly differs from semi-smoothness of f” as qualified in (17). For further elabora-
tions on this concept of differentiability, consider [15, Sect. 5].

Proposition 4 Suppose that the additional assumptions (47) and (48) hold. Further-
more, assume that the update steps As(w) computed as inexact solutions of (3) at
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iterates x € X for some w > 0 satisfy the inexactness criteria (19) for n > 0 and (35).
Then, As(w) is admissible for sufficient decrease according to (40) for any y < 1 if
x is sufficiently close to a stationary point x,, € X of (1) near which k1(x) + k2 > 0
holds.

Proof We take a look back at the proof of [15, Proposition 8] and employ the same
telescoping strategy in order to obtain

1
FOp(@) = f(x) = f () As(@) — EWAs(w))2
, 1
= [f(X+(w)) = [ G) = ) (@) = x0) = 5 H ) (@) x*)z]
1
- [f(X) — f) = f'(e) (& = x) = 5 Helx x*>2]

1
=~ [(F/00 = £ As(@) = H(r = 4. As(@)] + 5 (Ho o) = Hi) (@) = x0)?

where again we can use the second order semi-smoothness of f according to (48) for
the first two terms as well as the semi-smoothness of f’ as in (17) for the third one.
This implies

1
FO(@) = fx) = f()As(@) — EHX(AS((U))Z = o(llx1(@) = xI%) + o(llx — xul1%)
+o(lx — x:lx) | As(@) | x + p(x, @)

where we denoted p (x, w):= % (Hy, (0) — Hy) (xy (0) — xx)2. Due to the limit behavior
of inexact update step norms investigated over the course of Lemma 6 this yields

1
Frt As@) = F() = f () As@) = S Hy (As(@)” = p(x, ) + o[ As@)]).
(49)

As the next step towards the admissibility result, we define the prefactor function

F(x + As(®)) — F(x)
Ax.o(As(w))

y(x, w):=

which should be larger than some y €]0, 1[ for As(w) to yield sufficient decrease
according to (40). Thus, it suffices to show the convergence of y (x, w) to anything
greater equal than one for any @ > 0 in the limit of x — x,. The identity (49) from
above now provides us with

w 2 2
F(x + AS(w)) — F(x) = Ay w(As(w)) — EIIAS(w)le + po(x, w) +0(|IAS(60)IIX)
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which we insert into the prefactor function from above and estimate

—21As@)[% + p(x, ®) +o(|As(@)[1%)

y(x, ) =1+
hxo(As (@) 50)
s LlIAs@)lIx + o(| As(@)]I3) — p(x, )
hr.o(As(@))]
since from the computation strategy for As(w) we in particular have
- 1 2
o (As(@) < A L (AxH (@) < _5” Ax(@9)|x=0 (51)

following the later steps of (41). For the absolute value of the second order decrease
model we can use (51) together with Lemma 3 and (42) to obtain

. 1 2 Lot ki(x) +r
|)\x,w(As(w))| = Mgﬁ)(Axﬂ(w)M = EHAX(CUC)HXZ E(m

Ll eraw e
T2+ @ K () F k)

)| ax@)|y

\

) As@)|3=:C| As@)]%
(52)

where C = C(w, o°, k1(x)+k2, n) > 0denotes the constant from above. In particular,
note that C remains bounded in the limit of @ — 0 and is also well-defined in the
limit case of w = 0 close to stationary points x, with k1(x) + k2 > 0 for x near x.

We may assume that the numerator of the latter expression in (50) is non-positive,
otherwise the desired inequality for y (x, w) is trivially fulfilled. Thus, we take advan-
tage of (52) in order to decrease the positive denominator to achieve

0} p(x, w)
yro) 2+ — —e— ———
2€ Clas@)|5

where for any ¢ > 0 there exists a neighborhood of the optimal solution x, such that
the above estimate holds.

Now, the assumption (47) for the p-term immediately implies the eventual admis-
sibility of As(w) for sufficient decrease according to (40). O

5.1 Numerical results

Let us now showcase the functionality of our inexact Proximal Newton method and
also compare its performance to the case of exact computation of update steps which
have been investigated in [15]. In order to make the influence of inexactness more
clearly visible, we have decided to enhance the function space problem from there
such that update step subproblems are harder to solve and thus it takes more TNNMG
steps in order to find an exact solution.
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The Objective Functional. To this end, we now consider the following function
space problem on ©2:=[0, 1] C R3: Instead of finding a scalar function, we expanded
the problem to finding a vector field

u e H%D(Q,R%::{U S Hl(Q,R3) | v = 0on FD}

where the Dirichlet boundary is given by I'p:={0} x [0, 1] x [0, 1]. The solution which
we are looking for minimizes the composite objective functional F defined via

F(u)::f(u)—}—/QcHu||2dx (53)

for again some parameter ¢ > 0 as a weight of the Euclidean Ly-norm term where the
smooth part f: HllD (2, R%) — R is now given by

3.2
2 ujusU3

1 2
f(u)::/QEHVMHF+cxmaX(||Vu||F—1,0) +5 ~+pudy

1+u%+u%+u3

with parameters «, 8 € R as well as a force field p:  — R3. The norm ” . H  denotes
the Frobenius norm of the respective Jacobian matrices Vu.

We note that f technically does not satisfy the assumptions made on the smooth part
of the composite objective functional specified above in the case @ # 0 due to the lack
of semi-smoothness of the corresponding squared max-term with gradient arguments.
However, we think that slightly going beyond the framework of theoretical results for
numerical investigations can be instructive.

We will choose the force-field p to be constant on €2 and to this end introduce
the so-called load factor 5 > 0 which then determines p = 5(1, 1, 1)7. Again, for
the sake of simplicity, we will refer to this load factor as p. Now that we have fully
prescribed the composite objective functional F, we recognize that its non-smooth
part g is again merely given by the integrated Euclidean Ly-norm term with constant
prefactor ¢ > 0.

Specifics on the Implementation. We use automatic differentiation by adol-C in
order to establish the second order model and TNNMG to solve update step com-
putation subproblems, cf. [22]. Additionally, the subproblem solver is provided with
stopping criteria in the form of our inexactness criteria (20) and (37) with correspond-
ing parameters 7y € [0, 1[ for each iteration and global @wmax > O.

Another topic of interest concerning the implementation of our algorithm is the
choice of the aforementioned parameters w, n and wmax governing the convergence
behavior of our method. While — as discussed in its introduction in (37) — @max can
be chosen constant and is supposed to be very large, this is not the case for the
regularization parameters o and the forcing terms 7. For @, we use the heuristic
approach of doubling it in case the sufficient decrease criterion is not fulfilled and
multiplying it by Zi,, if the update has been accepted. Here, n € N denotes the number
of subsequent successful update steps

Similarly, we multiply the forcing term 7 by 0.6 for accepted updates and leave it as
it is in case the increment has been rejected by the sufficient decrease criterion. These
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rather simple strategies for the choice of parameters ensure the convergence of both
n and w to zero along the sequence of iterates and thus also from a theoretical stand-
point enable superlinear convergence as formulated in Theorem 1. For the constant
determining the subgradient inexactness criterion, we decided to choose @max = 1019,

The stopping criterion for our algorithm takes into account both the regularization
parameter and the forcing term. The respective threshold value is given by ¢ = 10710,

Test scenarios and test machine. Firstly, we will demonstrate the consistency
between results of the inexact method and the exact version the functionality of which
has been thoroughly investigated in [15]. There, also the superiority of Proximal New-
ton approaches in comparison with common first order methods like Proximal Gradient
and FISTA has been emphasized. In our case, exactly computing update steps means
neglecting the additionally introduced inexactness criteria, and computing steps up to
numerical accuracy in TNNMG. We remember that there a relative norm threshold
for increments is considered as a stopping criterion.

Afterwards, we exhibit the gains in effectiveness by enhancing the exact algorithm
with the inexactness criteria introduced above. Lastly, we analyze the implementation
of the latter criteria and try to get a grasp on how they affect the process of solving the
subproblem for update step computation. All results within the current section have
been computed after conducting three uniform grid refinements of the cubical domain
Q which results in 8% = 4096 grid elements.

Furthermore, all tests are executed single-threaded on a Intel(R) Core(TM) i5-
8265U CPU with clock frequency fixed to 1600 Mhz in order to avoid overheating
and to ensure comparability of all test runs. The test machine runs the current snapshot
of Debian 12, including updates as of January 30, 2023. The C++ Codes are compiled
with the flags -03 -DNDEBUG using the gcc compiler in version 12.2.0.

All in all, we use (53) with fixed parameters ¢ = 10, 8 = 10, p = —20 and let
a > 0 vary. Thereby, increasing « magnifies the influence of the squared max-term in
(53) and thus makes the corresponding minimization problem harder to solve.

Equivalence of Computed Solutions. This effect already becomes apparent in
Fig. 1a where update step norms for accepted iterates are depicted for both the exact
and inexact version of our method. Together with the plot of energy differences to
the optimal value from Fig. 1b, this in particular suggests the equivalence of results
achieved by both variants of the Proximal Newton algorithm. This expectation is
validated by the computation of the relative error across all grid points y’ of our
discretization via the straight-forward formula

”Mex(yi) - uinex(yi)Hz
”uex(yi)”z

errrel (y'):=

where we denoted by uex Or uinex the respective results of the exact or inexact method.
In our simulations, this relative error expression reveals that the maximal discrep-
ancy between the solutions found by the respective methods is even below numerical
accuracy and yields zero in computational evaluation.

Improvements in Computational Efficiency. With the validation that the inex-
act variant of our Proximal Newton method achieves the same solution and general
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Fig. 2 Number of TNNMG iterates required for update step computation in every trial Proximal Newton
step for c = 10, B = 10, p = —20 and & € {0, 40, ..., 240}

convergence behavior as the exact method at hand, we can now turn our attention
to the actual reason for which we have made the deliberations considering inexact
computation of update steps: computational efficiency.

The gain in efficiency already becomes apparent as we take a look at the plot from
Fig.2, where the number of required TNNMG iterations for computing the respective
Proximal Newton trial update step is depicted. In particular, the Proximal Newton steps
incorporate both accepted and declined iterates. Furthermore, we can recognize that
the decrease of the forcing term n from the relative error criterion forces also the inexact
version of our method to compute rather accurate solutions to the subproblems in the
later stages of algorithm. This in particular enables the local superlinear convergence
as we have verified in Theorem 1. In the globalization phase, however, it is easy to see

that we spare many (apparently unnecessary) subproblem solver iterations and thus
also save valuable computational time.
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Table1 Comparative statistics for the exact and inexact variant of our Proximal Newton method for ¢ = 10,
B =10, p =—-20and @ € {0, 40, ..., 240}

o Variant PN-Iterations TNNMG-It. Wall-Time in sec.
Acc Decl Total TNNMG Assembler Total
0 Exact 11 3 14 60 13.99 89.02 117.40
Inexact 11 3 14 37 9.37 88.81 112.67
40 Exact 15 9 24 147 30.74 109.68 166.94
Inexact 15 9 24 72 15.43 109.52 152.12
80 Exact 19 12 31 214 44.79 139.86 218.99
Inexact 19 12 31 96 20.67 139.45 195.11
120 Exact 17 11 28 211 43.97 124.78 201.52
Inexact 18 15 33 124 26.49 134.69 198.99
160 Exact 19 14 33 271 56.59 139.11 232.25
Inexact 19 14 33 109 23.41 140.70 201.61
200 Exact 17 13 30 254 52.99 131.44 217.46
Inexact 18 13 31 105 22.60 138.89 196.66
240 Exact 18 12 30 268 56.01 131.81 220.97
Inexact 18 16 34 141 30.27 142.25 211.08

This reduction of required TNNMG steps can be ascribed to the inexactness criteria
which we have introduced over the course of the current chapter. Even though it has
been a central concern of ours to also provide efficient ways for the evaluation these
prerequisites for inexact update steps, this still might negate our abovementioned
gains in efficiency. In order to dispel this worry, we have recorded the essential data
concerning overall algorithmic efficiency for both the exact and inexact variation of
our method across all test scenarios in Table 1.

While the number of accepted (“Acc.”), declined (“Decl.”), and total Proximal
Newton iterations required for finding the solution of the minimization problem overall
are the same for both alternatives, both the number of total TNNMG iterations and
wall-time needed for this endeavor reveal the gains in efficiency of the inexact method.
In particular, the evaluation of inexactness criteria is included in the TNNMG wall-time
share. The advantageous properties of the modified algorithm become more and more
apparent as « and thereby the complexity of the underlying minimization problem
increases.

However, we have to note that across all numerical tests here the determining factor
for the total wall-time of the respective run is the time required by the assembler,
i.e., the time it takes to compute gradients and hessians, and to from there establish
the respective second order problems which are then solved for the computation of
Proximal Newton update steps. Furthermore, the wall-time shares of TNNMG and the
assembler do not add up to the total time elapsed over one run of the algorithm since
the latter additionally incorporates e.g. the evaluation of decrease criteria and update
procedures of iterates and parameters.
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Fig.3 Comparison of the relative error as required in (19) and its estimator from (20) within the computation

of Proximal Newton trial steps k = 28 and k = 29 while minimizing (53) for ¢ = 10, § = 10, p = =20
and o = 200

Having in mind the goal of the introduction of inexactness, on the other hand, we
can still declare this endeavor as a success. As far as the time for solving the step com-
putation subproblems is concerned, we have spared 51.7% across the above numerical
tests which is a significant improvement. In particular for problems where first and
second order models can be computed explicitly without depending on automatic
differentiation software, this gain in effectiveness is crucial.

Investigation of Inexactness Criteria As mentioned beforehand, we also want
to take a look at how the inexactness criteria affect the solution process of the step
computation subproblems. To this end, we consider two aspects each of which covers
one of our criteria based on exemplary computations of Proximal Newton steps: On
the one hand, in order to investigate the relative error criterion (19), we compute every
Proximal Newton step twice. Within the first computation, we neglect inexactness
criteria which allows us to then compute the actual relative error Eye of the TNNMG
iterates in the second and actually inexact computation process. This makes it possible
to compare the actual relative error to the estimate E.y which we use for easier
evaluation, cf. (20).

As can be seen in the left-hand part of Table 2 and the plots in Fig.3 for repre-
sentative trial step computations, both of these quantities stay within the same order
of magnitude. This lets us infer that the employed triangle inequality for the deduc-
tion of (20) is surprisingly sharp in practice. Note that the estimated error Ecg is not
assigned within the first two TNNMG iterations since we have to take more of these
into consideration in order to obtain a valid estimate for multigrid convergence rates 6
in (20). The respective column in Table 2 reveals that the estimated convergence rate
then remains relatively constant over the minimization of the quadratic model which
suggests it to be measured adequately by our procedure.

Furthermore, the graph for the computation of trial step k = 29 in Fig.3b shows
that the forcing term in this case was so small that the relative error criterion (19) could
not be met by iterates of the subproblem solver before the latter stopped computation
due to the default criterion from TNNMG. Thus, the relative error to the (numerically)
exact solution of the subproblem is zero for the last data point in the actual relative
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Table2 Overview for inexactness criteria along TNNMG iterations iy in Proximal Newton trial step k = 28
while minimizing (53) for ¢ = 10, § = 10, p = —20 and « = 200. Listed are the actual relative error
Erel, its estimate Eegt, the forcing term 7, the estimated TNNMG convergence rate 6, the subgradient
regularization parameter @, and its upper bound @max

ik Erel Eest n 0 @ ®max
1 0.0805495 Not assigned 0.000282111 1.03008e—06 8.71446 le+10
2 0.0381125 Not assigned 0.000282111 0.0487216 8.81993 le+10
3 0.0199241 0.0111777 0.000282111 0.372641 8.79332 le+10
4 0.0102817 0.0114414 0.000282111 0.533085 8.53583 le+10
5 0.00527283 0.0057486 0.000282111 0.524131 8.91433 le+10
6 0.00271465 0.00289124 0.000282111 0.517709 8.41266 le+10
7 0.00142414 0.00146153 0.000282111 0.513961 8.8467 le+10
8 0.00077351 0.000754427 0.000282111 0.514819 8.57349 le+10
9 0.000438303 0.000407447 0.000282111 0.522954 8.31665 le+10
10 0.000257378 0.0002354 0.000282111 0.539877 8.20661 le+10

error which also explains why it is missing in the corresponding logarithmic plot. In
particular, the exact computation of update steps close to optimal solutions is crucial for
the local acceleration of our method as shown in Theorem 1. Allin all, we conclude that
the estimate which implicitly uses the convergence rate of our multigrid subproblem
solver constitutes an adequate and easy-to-evaluate alternative to the actual relative
error.

On the other hand, we also consider the subgradient inexactness criterion (35). As
mentioned beforehand, we have introduced this criterion for globalization purposes
with the intention that it would not interfere with the minimization process, especially
in the local acceleration phase close to optimal solutions. In fact, we have noticed that
throughout our tests the determining quantity for further solving the subproblem was
the relative error estimate and not that & from (37) was too large. For example, over
the TNNMGe-iterations of the Proximal Newton trial step considered in Fig. 3a we had
nearly constant & ~ 8.5, clearly remaining below our choice of @max = 1010,

6 Conclusion

We have extended the globally convergent and locally accelerated Proximal Newton
method in Hilbert spaces from [15] to inexact computation of update steps. Addition-
ally, we have improved local convergence proofs by considering regularized gradient
mappings and have thereby disclosed the influence of damping and inexactness to local
convergence rates. We have found inexactness criteria that suit the general infinite-
dimensional Hilbert space setting of the present treatise and can be evaluated cheaply
within every iteration of the subproblem solver. Using these inexactness criteria, we
have also been able to carry over all convergence results, local as well as global, from
the exact case. The application of our method to actual function space problems is
enabled by using an efficient solver for the step computation subproblem, the Trun-
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cated Non-smooth Newton Multigrid Method. We have displayed functionality and
efficiency of our algorithm by considering a simple model problem in function space.

Room for improvement is definitely present in the choice of both regularization
parameters w and forcing terms 1. The former can be addressed by different approaches
like estimates for residual terms of the quadratic model established in subproblem (3),
cf. [23], or adapted strategies for controlling time step sizes in computing solutions
of ordinary differential equations. For the forcing terms on the other hand, adaptive
choices have already been studied for inexact Newton methods e.g. in [1, 6]. While
these can be carried over to our non-smooth scenario, it also appears to be promising
to tie the choice of regularization parameters and forcing terms together due to their
similar convergence behavior. This idea both reduces the computational effort and
better reflects the problem structure at hand.
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