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Abstract
Sparse optimization is about finding minimizers of functions characterized by a num-
ber of nonzero components as small as possible, such paradigm being of great practical
relevance inMachine Learning, particularly in classification approaches based on sup-
port vector machines. By exploiting some properties of the k-norm of a vector, namely,
of the sum of its k largest absolute-value components, we formulate a sparse optimiza-
tion problem as a mixed-integer nonlinear program, whose continuous relaxation is
equivalent to the unconstrained minimization of a difference-of-convex function. The
approach is applied to Feature Selection in the support vector machine framework,
and tested on a set of benchmark instances. Numerical comparisons against both the
standard �1-based support vector machine and a simple version of the Slope method
are presented, that demonstrate the effectiveness of our approach in achieving high
sparsity level of the solutions without impairing test-correctness.

Keywords Global optimization · Sparse optimization · Cardinality constraint ·
k-norm · Support vector machine

1 Introduction

The sparse counterpart of amathematical program is aimed at finding optimal solutions
that have as few nonzero components as possible, this feature playing a significant role

B Manlio Gaudioso
manlio.gaudioso@unical.it

Giovanni Giallombardo
giovanni.giallombardo@unical.it

Giovanna Miglionico
gmiglionico@dimes.unical.it

1 Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica (DIMES), Università
della Calabria, Via Pietro Bucci, 87036 Rende, CS, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-023-00506-y&domain=pdf
http://orcid.org/0000-0002-6304-5877


746 M. Gaudioso

in several applications,mainly (but not solely) arising in the broad fields of data science
and machine learning. Indeed, this is one of the reason why sparse optimization has
recently become a topic of great interest in the field of mathematical optimization.

Accounting for sparsity in a mathematical program amounts to embed into its
formulation a measure dependent on the number of zero components of a solution-
vector. The mathematical tool that is most naturally suited to such task is the �0-
(pseudo-)norm ‖ · ‖0, often simply referred to as the �0-norm, defined as the number
of nonzero components of a solution, it rather being a measure of vector density. Thus,
a sparse optimization problem should also encompass the �0-norm minimization in
order to achieve the largest possible sparsity. Such feature highlights the intrinsic
bi-objective nature of sparse optimization, thatmakes it fit to two commonplace single-
objective formulations, the �0-regularization problem and the cardinality-constrained
problem, depending on whether one aims at pushing for sparsity or at ensuring an
assigned sparsity level, respectively.

Given a real-valued function f : Rn → R, with n ≥ 2, the (unconstrained) �0-
regularization problem has the following structure

min
{
f (x) + σ‖x‖0 : x ∈ R

n
}
, (SOP)

where the �0-norm penalty term inside the objective function pushes towards sparse
solutions, and a fixed penalty-parameter σ > 0 ensures the trade-off between the two
(possibly) conflicting objectives. Problem (SOP) has a nonconvex and discontinuous
nature (see, e.g., [1] for a study on complexity issues), that makes it unfit to be faced
by means of standard nonlinear optimization approaches. In fact, it has been usually
tackled by replacing the �0-norm with the �1-norm, thus obtaining an optimization
problem, the �1-regularization one (SOP1), whose tractability rather depends on the
properties of f , the �1 term being a convex function. It has been proved (see [16, 17,
21]) that, under appropriate conditions the solutions of (SOP) and (SOP1) coincide.
Nevertheless, in many practical applications the equivalence conditions do not hold
true and the solutions obtained from the �1 minimization problem are less sparse that
those of the �0 problem.

A different viewpoint in dealing with the bi-objective nature of sparse optimization
is given by the cardinality-constrained formulation

min
{
f (x) : ‖x‖0 ≤ t, x ∈ R

n
}
, (SOPt )

where sparsity is ensured by forcing the �0-norm to be not larger than a given integer
t ∈ {1, . . . , n − 1}, thus obtaining minimizers with at least n − t zero components.
Such a problem has been studied in depth in recent years due to its possible application
in areas of relevant interest such as compressed sensing [21] and portfolio selection
[10]. We refer the reader to [37] for an up-to-date survey. Here, we only mention [4],
on the theoretical side, where necessary optimality conditions have been analyzed, and
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Sparse optimization via vector k-norm and DC programming... 747

[15, 24], on the methodological side, where reformulations as mathematical programs
with complementarity constraints have been proposed.

In this paper we focus on sparse optimization as an effective way to deal with
Feature Selection (FS) in Machine Learning (ML), see [32], where the problem is
to detect the sample parameters which are really significant in applications such as
unsupervised learning (see [22]) and regression (see [45]). In particular, we restrict our
attention to supervised binary classification, an area where intensive research activity
has been performed in the last decades, mainly since the advent of Support Vector
Machine (SVM) as the election classification methodology, see [19, 47].

Most of the applications of sparse optimization to feature selection fall into two
classes of methods, those where the �0-norm has been approximated by means of
appropriate concave functions (see, e.g., [13, 14, 42, 49]) and those where sparsity
of the solution has been enforced by resorting to the definition of appropriate sets of
binary variables, giving rise to Mixed Integer Linear (MILP) or even Mixed Integer
Non Linear (MINLP) problems. In fact, it is natural to associate to any continuous
variable an appropriate binary one according to its property of being zero or nonzero.
Mixed integer reformulations have been widely adopted in relevant areas of Machine
Learning such as classification, logistic regression, medical scoring etc. (see e.g. [7,
8, 20, 43, 46] and the references therein). As for the SVM literature we cite here [6,
29, 39].

The model we propose is inspired by the possibility of connecting the �0-norm
to the vector k-norm, which is defined as the sum of the k largest absolute-value
components of any vector, and is a polyhedral norm, thus relatively easy to be treated
by standard tools of convex nonsmooth optimization. Properties of the vector k-norm
have been investigated in several papers (see, e.g., [30, 41, 50]). We particularly recall
the applications to matrix completion, see [40], and to linear system approximation,
see [48], as a possible alternative to the use of classic �1, �2 and �∞ norms.

More recently, vector k-norm has been proved to be an effective tool for dealing
with sparse optimization, see [31], also with specific applications to feature selection
in the SVM framework, see [28]. The use of k-norm is somehow evoked also in the
trimmed LASSO model described in [9].

The novelty of this paper is the development of a continuous k-norm-based model
which is obtained as the continuous relaxation of a MINLP problem. The objective
function comes out to be nonconvex, in particular of the Difference-of-Convex (DC)
type, thus our approach is closer to the trimmed LASSO [9] than to the SLOPEmethod
[5, 11]. Other DC-like approaches are presented in [23, 38, 52].

The remainder of the article is organized as follows. In Sect. 2 we summarize the
properties of vector k-norms, and we introduce a couple of MINLP reformulations of
the �0-regularization problem (SOP). In Sect. 3 we consider the continuous relaxations
of both such reformulations, and we focus in Sect. 4 to the one based on vector k-
norm, which consists of a DC (Difference of Convex) optimization problem. In Sect.
5 we cast the SVM-based Feature Selection problem into our sparse optimization
setting. Finally, in Sect. 6we report on the computational experience, obtained on some
benchmark datasets for binary classification, of both relaxed MINLP reformulations,
highlighting the role of k-norms in increasing sparsity levels of the solutions.
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Notation Vectors are represented in lower-case bold letters, with e and 0 representing
vectors with all the elements equal to one and to zero, respectively. The inner product
of vectors x and y is denoted by x�y. Given any vector in Rn , say x = (x1, . . . , xn)�,
we denote the �p-norm, with 1 ≤ p < +∞, and the �∞-norm, respectively, by

‖x‖p �

⎛
⎝

n∑
j=1

|x j |p
⎞
⎠

1/p

and ‖x‖∞ � max
{
|x j | : j ∈ {1, . . . , n}

}
.

Furthermore, we recall the definition of the �0-norm

‖x‖0 �
∣∣∣
{
i : xi 	= 0, i ∈ {1, . . . , n}

}∣∣∣,

and some of its relevant properties:

(i) ‖x‖0 = 0 ⇔ x = 0;
(ii) ‖x + y‖0 ≤ ‖x‖0 + ‖y‖0;
(iii) ‖αx‖0 	= |α|‖x‖0;
(iv) (‖ · ‖p)

p → ‖ · ‖0 when p → 0;
(v) lim infx→x ‖x‖0 ≥ ‖x‖0, i.e., ‖ · ‖0 is lower semicontinuous.

2 MINLP-based formulations of the �0-regularization problem

Introducing an n-dimensional binary decision-vector z, associated to x, whose kth
component zk is set to one if xk > 0 and set to zero otherwise, an obvious and classic
reformulation of problem (SOP) is the following

(MISOP) min f (x) + σe�z (1)

s.t. x ≥ −Mz (2)

x ≤ Mz (3)

z ∈ {0, 1}n, (4)

where the positive “big”M parameter denotes a uniformbound on the absolute value of
any single component of x. It is easy to verify that any minimizer (x∗, z∗) of (MISOP)
is such that

x∗
k 	= 0 ⇔ z∗k = 1, (5)

and, consequently, the term e�z∗ actually represents the �0-norm of x∗. It is worth
observing that an ideal threshold for M is M∗ � ‖x∗‖∞, where x∗ is any global
minimum of (SOP), as indeed any M ≥ M∗ guarantees equivalence of (SOP) and
(MISOP).

In view of introducing an alternativeMINLP-based reformulation of (SOP), we first
recall, for k ∈ {1, . . . , n}, the polyhedral vector k-norm ‖x‖[k], defined as the sum of
the k largest unsigned components of x. In particular, given x = (x1, . . . , xn)�, and

123



Sparse optimization via vector k-norm and DC programming... 749

adopting the following notation

j1 � argmax{|x1|, . . . , |xn|}
j2 � argmax{|x1|, . . . , |xn|} \ {|x j1 |}
j3 � argmax{|x1|, . . . , |xn|} \ {|x j1 |, |x j2 |}

...

jn � argmin{|x1|, . . . , |xn|},
such that

|x j1 | ≥ |x j2 | ≥ . . . ≥ |x jn |, (6)

the vector k-norm of x can be expressed as

‖x‖[k] �
k∑

s=1

|x js |. (7)

Moreover, it is easy to see that ‖ · ‖[k] fulfills the following properties:

‖x‖∞ = |x j1 | = ‖x‖[1] ≤ ‖x‖[2] ≤ . . . ≤ ‖x‖[n] = ‖x‖1, (8)

‖x‖0 ≤ k ⇐⇒ ‖x‖1 = ‖x‖[s] ∀s ∈ {k, . . . , n}. (9)

Now, focusing in particular on the equivalence (9), and introducing an n-dimensional
binary decision-vector y, whose kth component yk is set to one if ‖x‖1 − ‖x‖[k] > 0
and set to zero otherwise, it is possible to state yet another mixed binary reformulation
of problem (SOP) as the following

(MIkSOP) min f (x) + σe�y (10)

s.t. ‖x‖1 − ‖x‖[k] ≤ M ′yk ∀k ∈ {1, . . . , n} (11)

y ∈ {0, 1}n (12)

where the sufficiently large parameter M ′ > 0 has been introduced. An equivalence
between (MIkSOP) and (SOP) can be obtained in the constrained case where x is
restricted to stay in a compact set S ⊂ R

n . In fact, letting D � maxx∈S ‖x‖1, and
observing that

‖x‖1 − ‖x‖[k] ≤ ‖x‖1 − ‖x‖∞ ≤
(
1 − 1

n

)
‖x‖1 ≤

(
1 − 1

n

)
D,

then any M ′ ≥ (
1 − 1

n

)
D ensures the equivalence. Unlike (MISOP) formulation (1)–

(4), the (MIkSOP) formulation (10)–(12) is characterized by the presence of a set of
nonconvex constraints (11), whose left hand sides are, in particular, DC functions.
Furthermore, as for the objective function, we remark that the only feasible solu-
tions of (MIkSOP) which are candidates to be optimal are those (x, y) for which the
equivalence

‖x‖1 − ‖x‖[k] = 0 ⇐⇒ yk = 0 (13)
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holds for every k ∈ {1, . . . , n}. Observing that at any of such solutions it is necessarily
yn = 0 and that, provided x 	= 0, there holds

e�y = max
{
s : ‖x‖1 − ‖x‖[s] > 0, s ∈ {1, . . . , n}

}
,

it follows that

e�y = ‖x‖0 − 1,

which implies that if (x∗, y∗) is optimal for problem (MIkSOP), then x∗ is optimal for
problem (SOP) as well.

In the sequel, we analyze the continuous relaxation of the MINLP-based formula-
tions (MISOP) and (MIkSOP), assuming in particular that f is a convex function, not
necessarily differentiable.

3 Continuous relaxation of MINLP-based SOP formulations

We start by studying the continuous relaxation (RSOP) of (MISOP), obtained by
replacing the binary constraints z ∈ {0, 1}n with 0 ≤ z ≤ 1. A simple contradiction
argument ensures that any minimizer (x, z) of (RSOP) satisfies by equality at least
one constraint of the pair xk ≤ Mzk and xk ≥ −Mzk , for every k ∈ {1, . . . , n}. More
precisely, if xk 	= 0 then eitherMzk = xk > 0 > −Mzk , or−Mzk = xk < 0 < Mzk ,

while if xk 	= 0 then zk = 0. Summarizing, (x, z) is such that zk = |xk |
M

for every

k ∈ {1, . . . , n}, from which it follows that

e�z = 1

M
‖x‖1,

and the relaxed problems (RSOP) can be written as

min
{
F(x) � f (x) + σ

M
‖x‖1 : x ∈ R

n
}
. (RSOP)

In other words, the continuous relaxation of (MISOP) just provides the �1-
regularization of function f , often referred to as LASSO model, a convex, possibly
nonsmooth program due to the assumption made on f (for a discussion on LASSO
and possible variants see, e.g., [52]).

Consider now the continuous relaxation (RkSOP) of (MIkSOP), where 0 ≤ y ≤ 1
replace y ∈ {0, 1}n . Note that any minimizer (̃x, ỹ) of (RkSOP) satisfies by equality
all the constraints (11), since if this were not the case for some k, the corresponding ỹk
would be reduced, leading to a reduction in the objective function without impairing
feasibility. Consequently,every continuous variable ỹk , with k ∈ {1, . . . , n}, is such
that

ỹk = 1

M ′
(‖̃x‖1 − ‖̃x‖[k]

)
,
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implying that

e�ỹ = 1

M ′

(
n‖̃x‖1 −

n∑
k=1

‖̃x‖[k]
)

.

As a consequence, (RkSOP) can be stated as

min

{
F̃(x) � f (x) + σ

M ′

(
n‖x‖1 −

n∑
k=1

‖x‖[k]
)

: x ∈ R
n
}
. (RkSOP)

We observe that, recalling (7), the sum of the k-norm of x can be written as

n∑
k=1

‖x‖[k] = n|x j1 | + (n − 1)|x j2 | + . . . + |x jn |. (14)

Hence, taking into account the definition of ‖x‖1, we obtain that

(
n‖x‖1 −

n∑
k=1

‖x‖[k]
)

=
(
|x j2 | + 2|x j3 | + . . . + (n − 1)|x jn |

)

=
( n∑

s=2

(s − 1)|x js |
)

, (15)

and, consequently, we come out with the problem

min

{
F̃(x) � f (x) + σ

M ′

( n∑
s=2

(s − 1)|x js |
)

: x ∈ R
n
}
. (16)

The latter formula highlights that increasing weights are assigned to decreasing abso-
lute values of the components of x, i.e., the smaller is the absolute value the bigger is
its weight; this somehow indicates a kind of preference towards reduction of the small
components, which is, in turn, in favor of reduction of the �0-norm of x.

Remark 1 Formula (16) clarifies the differences between our approach and the SLOPE
method (see [5, 11]), the trimmed LASSO method (see [9]), the approach proposed
in [28] and the �1−2 method [51]. In SLOPE, a reverse ordering of the weights with
respect to our model is adopted, as components |x js | are associated to non-increasing
penalty weights. In fact, the resulting convex program is

min

{
f (x) +

n∑
s=1

λs |x js | : x ∈ R
n
}
, (17)
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with λ1 ≥ λ2 ≥ · · · ≥ λn . Given any σ > 0, a possible choice of parameters is

λs = σ ∀s ∈ {1, . . . , t} and λs = 0 ∀s ∈ {t + 1, . . . , n}, (18)

for some sparsity parameter t ∈ {1, . . . , n − 1}. Under such a choice problem (17)
becomes the following convex penalized k-norm model:

min

{
f (x) + σ‖x‖[t] : x ∈ R

n
}
. (19)

In trimmed LASSO, given a sparsity parameter t ∈ {1, . . . , n − 1}, the following
nonconvex problem is addressed

min

{
f (x) + σ

n∑
s=t+1

|x js | : x ∈ R
n
}

(20)

where, unlike our approach, components of x with the highest absolute values are not
penalized at all, whereas the (n − t) smallest ones are equally penalized. As for the
approach presented in [28], it can be proved that, for a given penalty parameter σ > 0,
letting Jσ (x) �

{
j ∈ {1, . . . , n} : x j > 1

σ

}
, the proposed DC (hence nonconvex)

program can be formulated as

min

{
f (x) + |Jσ (x)| + σ

∑
j /∈Jσ (x)

|x j | : x ∈ R
n
}
, (21)

which tends to (SOP) as σ → ∞. Finally, we remark the substantial difference
between the method we propose and the �1−2 approach [51], where the �0 pseudo-
norm is approximated by the DC model ‖x‖1 − ‖x‖2.
A better insight into the differences between the two formulations (RSOP) and (Rk-
SOP) can be gathered by appropriate setting of the constants M and M ′. Since the
former is referred to single vector components and the latter to norms, it is natural to
set

M ′ = nM . (22)

With such choice the objective function F̃(·) of (RkSOP) becomes:

F̃(x) = f (x) + σ

M
‖x‖1 − σ

nM

n∑
k=1

‖x‖[k]. (23)

We observe that function F̃(·) is the difference of two convex functions, namely,

F̃(x) = f1(x) − f2(x), (24)

with
f1(x) � f (x) + σ

M
‖x‖1 (25)
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and

f2(x) = σ

nM

n∑
k=1

‖x‖[k]. (26)

As a consequence, (RkSOP) can be handled by resorting to both the theoretical and the
algorithmic tools of DC programming (see, e.g., [2, 33, 44]). Moreover, we observe
that f1 is exactly the objective function of (RSOP), thus it is

F(x) − F̃(x) = f2(x) ≥ 0.

Summing up, F(x) is convex and majorizes the (nonconvex) F̃(x), with f2(x) being
the nonnegative gap, whose value depends on the sum of the k-norms.

4 Properties of problem (RkSOP) and its solutions

We start by analyzing some properties of function f2(·). First, taking into account (14)
and (26), we rewrite f2 as

f2(x) = σ

M

(
|x j1 | +

(
1 − 1

n

)
|x j2 | +

(
1 − 2

n

)
|x j3 | + . . . + 1

n
|x jn |

)

= σ

M

n∑
s=1

cs |x js |, (27)

where cs = 1 − (s−1)
n , for every s ∈ {1, . . . , n}, with c1 > c2 > · · · > cn . Next,

in order to study the behavior of f2(·) at equal �1-norm value, we consider any ball
B(0, ρ) � {x ∈ R

n : ‖x‖1 = ρ}, centered at the origin with radius ρ > 0, and we
focus on the following two optimization problems (Pmax) and (Pmin), respectively.

f (max)
2 = max

{
f2(x) : x ∈ B(0, ρ)

}
(Pmax)

and

f (min)
2 = min

{
f2(x) : x ∈ B(0, ρ)

}
. (Pmin)

We observe that, denoting by � the set of all permutations of {1, . . . , n}, both
problems can be decomposed in several problems of the type

max
{
f2(x) : x ∈ B(0, ρ), |xπs | ≥ |xπs+1 | ∀s ∈ {1, . . . , n − 1}} (Pmax

π )

and

min
{
f2(x) : x ∈ B(0, ρ), |xπs | ≥ |xπs+1 | ∀s ∈ {1, . . . , n − 1}} (Pmin

π )
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754 M. Gaudioso

respectively, for every π ∈ �. We remark that (Pmax
π ) and (Pmin

π ) are nonconvex
programs, due to the nonconvex ordering constraints |xπs | ≥ |xπs+1 |, and we denote

their global solutions by x(max)
π and x(min)

π , respectively.

Proposition 4.1 For any given π ∈ �, the following properties regarding optimal
solutions of (Pmax

π ) and (Pmin
π ) hold:

(i) Problem (Pmax
π ) has two maximizers x (max)

π1 = ±ρ, x (max)
π2 = · · · = x (max)

πn = 0.
They are both global, with objective function value f2(x(max)) = ρσ

M ;

(ii) Problem (Pmin) has 2n global minimizers |x (min)
π1 | = · · · = |x (min)

πn | = ρ
n , with

objective function value f2(x(min)) = ρσ
M

( n+1
2n

)
.

Proof (i) The property follows by observing that the solutions |x (max)
π1 | = ρ, x (max)

π2 =
x (max)
π3 = · · · = x (max)

πn = 0, due to (27), are optimal for the relaxation obtained by
eliminating the ordering constraints from (Pmax

π ), and that such solutions are also
feasible for (Pmax

π ).
(ii) We observe first that themonotonically decreasing structure of the cost coefficients

cs guarantees that at the optimum |x (min)
πs | > |x (min)

πs+1 | cannot occur for any index
s ∈ {1, . . . , (n − 1)}. Consequently, it comes out from satisfaction of the ordering
constraints in (Pmin

π ), and from x(min) ∈ B(0, ρ), that the optimal solutions satisfy

|x (min)
π1 | = · · · = |x (min)

πn | = ρ
n and the property follows.

��
Remark 2 The optimal solutions of (Pmax

π ) depend on π , in particular on the choice
of the index π1, but they have all the same optimal value. Thus problem (Pmax) has a
total number of 2n global solutions, with f max

2 = ρσ
M . As for problem (Pmin

π ), the 2n

optimal solutions are independent of π , hence they are also global solution for (Pmin),
with f (min)

2 = ρσ
M

( n+1
2n

)
. As a consequence, the variation 	(ρ) of f2 on B(0, ρ) is

	(ρ) = f max
2 − f min

2 = ρ
σ

M
− ρ

σ

M

(
n + 1

2n

)
= ρ

σ

M

(
n − 1

2n

)
.

Remark 3 The �0-norm of the optimal solutions of problem (Pmax) is equal to 1, while
the �0-norm of those of (Pmin) is equal to n. As a consequence, the (subtractive) gap
f2, for a fixed value of the �1 norm, is maximal when ‖x‖0 = 1 and it is minimal
when all components are nonzero and equal in modulus, that is ‖x‖0 = n; in other
words, model (RkSOP) exhibits a stronger bias towards reduction of the �0-norm than
(RSOP). Of course, the price to be paid to obtain such an advantage is the need of
solving the DC (global) optimization problem (RkSOP) instead of the convex program
(RSOP).

An additional insight into properties of the solutions of (RkSOP) can be obtained by
focusing on the related necessary conditions for global optimality. In particular, at any
global minimizer x̃, taking into account the DC decomposition (24), the inclusion

∂ f2(̃x) ⊂ ∂ f1(̃x) (28)
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is satisfied, see [34]. Before introducing a property of minimizers in terms of their �0
norm,we recall somedifferential properties of the k-norm, see [31]. The subdifferential
at any point x ∈ R

n is

∂‖x‖[k] =
{
g[k] ∈ R

n : g[k] = argmax
{
x�w : ‖w‖1 = k, ‖w‖∞ ≤ 1

}}
. (29)

In particular, given any x ∈ R
n , and denoting by J[k](x) � { j1, . . . , jk} the index

set of k largest absolute-value components of x, a subgradient g[k] ∈ ∂‖x‖[k] can be
obtained as

g[k]
j =

⎧⎪⎨
⎪⎩

1 if j ∈ J[k](x) and x j ≥ 0,

−1 if j ∈ J[k](x) and x j < 0,

0 otherwise.

(30)

Moreover, we note that the subdifferential ∂‖·‖[k] is a singleton (i.e., the vector k-norm
is differentiable) any time the set J[k](·) is uniquely defined.

As for the subdifferential ∂‖ · ‖1 of the �1 norm, we recall that its element are the
subgradients g(1) at x whose j th component, for every j ∈ {1, . . . , n}, is obtained as

g(1)
j =

⎧
⎪⎨
⎪⎩

1 if x j > 0

−1 if x j < 0

α j if x j = 0

(31)

where α j ∈ [−1, 1]. Summing up, we get

∂ f1(x) = ∂ f (x) + σ

M
∂‖x‖1

and

∂ f2(x) = σ

nM

n∑
k=1

∂‖x‖[k].

The following proposition provides a quantitative evaluation of the effect of the
penalty-parameter σ on the �0-norm of a global minimizer.

Proposition 4.2 Let x̃ denote a global minimizer of the k-norm relaxation (RkSOP),
and L denote the Lipschitz constant of f . Then, the following inequality holds at x̃:

‖̃x‖0 ≤ nML

σ
+ 1.

Proof Satisfaction of the inclusion (28) at x̃ implies that, for each subgradient ξ̃
(2) ∈

∂ f2(̃x) there exists a couple of subgradients ξ̃ ∈ ∂ f (̃x) and ξ̃
(1) ∈ σ

M ∂‖x‖1 such that

ξ̃
(2) = ξ̃ + ξ̃

(1)
(32)
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Now suppose ‖̃x‖0 = r , for some r ∈ {1, . . . , n} and, w.l.o.g., assume that

|̃x1| ≥ |̃x2| ≥ . . . |̃xr | > 0

with the remaining components, if any, equal to zero, that is J[k](̃x) = {1, 2, . . . , k},
for every k ∈ {1, . . . , n}. Now pick, for k = 1, . . . , n, a subgradient in ∂ ‖̃x‖[k] defined
as in (30) and calculate ξ̃

(2) ∈ ∂ f2(̃x) as

ξ̃
(2) = σ

nM

n∑
k=1

g̃[k].

By simple calculation we get

ξ̃
(2)
j = σ

nM
(n − j + 1)s (̃x j ), ∀ j ∈ {1, . . . , n},

where

s (̃x j ) =
{
1 if x̃ j ≥ 0,

−1 if x̃ j < 0.

By a component-wise rewriting of condition (32), and taking into account only the
components j ∈ {1, . . . , r} such that x̃ j 	= 0, from (31)we obtain that at theminimizer
x̃, for some ξ̃ ∈ ∂ f (̃x) it is

ξ̃ j = σ

nM
(1 − j)s (̃x j ), ∀ j ∈ {1, . . . , r},

that is
|̃ξ j | = σ

nM
( j − 1), ∀ j ∈ {1, . . . , r}. (33)

Then, taking into account |̃ξ j | ≤ L , the thesis follows by observing that condition (33)
implies

r ≤ nML

σ
+ 1.

��

Remark 4 Proposition 4.2 suggests a quantitativeway to control sparsity of the solution
acting on parameter σ . It is worth pointing out, however, that the bound holds only if
a globalminimizer is available. This is not necessarily the case if a local optimization
algorithm is adopted, as we do in Sect. 6.
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5 Feature selection in support vector machine (SVM)

In the SVM framework for binary classification two (labeled) point-sets A �
{a1, . . . , am1} and B � {b1, . . . ,bm2} in R

n are given, the objective being to find
a hyperplane, associated to a couple (x, γ ) ∈ R

n ×R, strictly separating them. Thus,
it is required that the following inequalities hold true:

a�
i x ≤ γ − 1, ∀i ∈ {1, . . . ,m1}, (34)

b�
l x ≥ γ + 1, ∀l ∈ {1, . . . ,m2}. (35)

The existence of such a hyperplane is ensured if and only if convA ∩ convB = ∅, a
property hard to be checked.A convex, piecewise linear and nonnegative error function
of (x, γ ) is thus defined. It has the form

e(x, γ ) =
m1∑
i=1

max{0, a�
i x − γ + 1} +

m2∑
l=1

max{0,−b�
l x + γ + 1}, (36)

being equal to zero if and only if (x, γ ) actually defines a (strictly) separating hyper-
plane satisfying (34–35).

In the SVM approach the following convex problem

min

{
Ce(x, γ ) + ‖x‖ : x ∈ R

n, γ ∈ R

}
, (37)

is solved, where the norm of x is added to the error function aiming to obtain a
maximum-margin separation, C being a positive trade-off parameter.

The �1 and �2 norms are in general adopted in model (37), but, in case feature
selection is pursued, the �0-norm looks as the most suitable tool, although the �1-
norm is usually considered as a good approximation. In the following, we will focus
on the feature selection �0-norm problem

min

{
Ce(x, γ ) + ‖x‖0 : x ∈ R

n, γ ∈ R

}
, (38)

by applying a relaxed model of the type (RkSOP) and the relative machinery. Note
that, to keep the notation as close as possible to that commonly adopted in the SVM
framework, the trade-off parameterC , unlike the classical formulation of (SOP),where
parameter σ is present, is now equivalently put in front of the error term e(x, γ ).

Our MINLP formulation of problem of (38), along the guidelines of the (MIkSOP)
model (10–12), letting M = 1 and M ′ = n (see (22)), is

min Ce(x, γ ) + e�y (39)

s.t. ‖x‖1 − ‖x‖[k] ≤ nyk ∀k ∈ {1, . . . , n} (40)

y ∈ {0, 1}n (41)
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By adopting the same relaxation scheme described in §3, we obtain the DC continuous
program (SVM-RkSOP)

min

{
Ce(x, γ ) + ‖x‖1 − 1

n

n∑
k=1

‖x‖[k] : x ∈ R
n, γ ∈ R

}
, (SVM-RkSOP)

an SVM model, tailored for feature selection, as it exploits the continuous relaxation
of (MISOP), whose computational behavior will be analyzed in the next section.

6 Computational experience

We have evaluated the computational behavior of our SVM-based feature selection
model (SVM-RkSOP) by testing it on 8 well known datasets whose relevant details
are listed in Table 1. In particular, we remark that such datasets can be partitioned
in two groups depending on the relative proportion between the number of points
(m1 + m2) and the number of features (n). From this viewpoint, datasets 1 to 4 have
a large number of points compared to the small number of features, whilst datasets 5
to 8 have a large number of features compared to the small number of points.

We recall that (SVM-RkSOP) is a DC optimization problem, analogous to (24),
where

f1(x, γ ) � C
m1∑
i=1

max{0, a�
i x−γ +1}+C

m2∑
l=1

max{0,−b�
l x+γ +1}+‖x‖1 (42)

and

f2(x, γ ) � 1

n

n∑
k=1

‖x‖[k], (43)

that can be tackled by adopting techniques, like those described in [3, 27, 36], which
require to calculate at each iterate-point the linearization of function f2(·). In fact,
such linearization can be easily calculated by applying (30) at any point x ∈ R

n

Table 1 Details of datasets # Name References m1 + m2 n

1 Breast-cancer [18] 683 10

2 Diabetes [18] 768 8

3 Heart [18] 270 13

4 Ionosphere [18] 351 34

5 Brain_Tumor1 [12] 60 7129

6 Brain_Tumor2 [12] 50 12625

7 DLBCL [12] 77 7129

8 Leukemia/ALLAML [12] 72 5327
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to a get a subgradient g[k] ∈ ∂‖x‖[k]. In particular, we have implemented a version
of the DCA algorithm, see [2], exploiting the fact that at an iterate point x, once
obtained a linearization h2(x, ·) of f2(·) at x, the new iterate-point can be calculated
by minimizing the function

C
m1∑
i=1

max{0, a�
i x − γ + 1} + C

m2∑
l=1

max{0,−b�
l x + γ + 1} + ‖x‖1 − h2(x, x)

that can be easily turned into an equivalent linear program. Hence, applying DCA to
(SVM-RkSOP) amounts to solving a sequence of linear programs as long as a decrease
of the objective function is obtained. In order to evaluate the effectiveness of (SVM-
RkSOP) solved by DCA, we will also make some comparison against the behavior of
the convex standard �1-norm-based SVM model (SVM-RSOP)

min

{
Ce(x, γ ) + ‖x‖1 : x ∈ R

n, γ ∈ R

}
(SVM-RSOP)

whose solution can be easily obtained by solving just one equivalent linear program,
next referred to as LP-SVM-RSOP. The experimental plan for both approaches is
based on a two-level cross-validation protocol to tune parameter C and to train the
classifier. In fact, the tenfold cross-validation approach has been adopted at the higher
level to train the classifier, every dataset being randomly partitioned into 10 groups of
equal size. Then, 10 different blocks (the training sets) are built, each containing 9 out
of 10 groups. Every block is used to train the classifier, using the left out group as the
testing-set that returns the percentage of correctly classified bags (test correctness).
Before executing the training phase, at the lower level it is needed to tune parameterC .
A grid of 20 values, ranging between 10−3 and 102, has been selected, and a five-fold
cross-validation approach has been adopted on each training set (the model-selection
phase). For each training set, we choose the C value as the one returning the highest
average test-correctness. As for the selection of an appropriate starting point for DCA
applied to (SVM-RkSOP), next referred to as DCA-SVM-RkSOP, denoting by xa the
barycenter of all the ai instances, and by xb the barycenter of all the bl instances, we
have selected the starting point (x0, γ0) by setting

x0 = xa − xb (44)

and choosing γ0 such that all the bl instances are well classified.We have implemented
the DCA-SVM-RkSOP algorithm [26] in Python 3.6, and run the computational exper-
iments on a 2.80 GHz Intel(R) Core(TM) i7 computer. The LP solver of IBM ILOG
CPLEX 12.8 [35] has been used to solve linear programs. The numerical results
regarding DCA-SVM-RkSOP and LP-SVM-RSOP are reported in Table 2 and Table
3, respectively, where we list the percentage correctness averaged over the 10 folds of
both the testing and the training phases. Moreover, we report the values ft0, ft-2, ft-4,
and ft-9, representing the percentage average of features for which the corresponding
component of the minimizer x∗ is larger than 1, 10−2 , 10−4 , 10−9, respectively.
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Hence, small values of ft-9 denote high sparsity of x∗. Finally we also report the cpu
time (measured in seconds) regarding the execution time of DCA-SVM-RkSOP and
LP-SVM-RSOP in the training phase, averaged over the 10 training folds.

The results clearly show the benefits of the regularization model obtained by
exploiting vector-k-norms. In fact, for all datasets DCA-SVM-RkSOP returns average
test-correctness never significantly worse than LP-SVM-RSOP, managing to improve
on sparsity levels. If the latter outcome is apparent although not particularly relevant for
small-size problems, it turns out very significant for large-size problems forwhich spar-
sity increases of an order ofmagnitude. Take, for an example, the Leukemia/ALLAML
dataset, having 5327 features: while LP-SVM-RSOP manages to get an average test-
correctness of 95.42%using around 33 features,DCA-SVM-RkSOP returns an average
test-correctness of 93.81% using only 5 features. As expected, such improvement is
obtained at the expenses of an increased computational time.

Finally, to evaluate (SVM-RkSOP) not only against the �1-norm-based SVMmodel
(SVM-RSOP), we have implemented the convex k-norm-based model (19), that, as
previously remarked, can be seen as a special case of the SLOPE approach (17), based
on the weight setting (18) for some t ∈ {1, . . . , n − 1}. In fact we have defined the
(SVM-kPURE) model as follows:

min

{
e(x, γ ) + σ‖x‖[t] : x ∈ R

n, γ ∈ R

}
. (SVM-kPURE)

To handle such problem we have used the solver NCVX, a general-purpose code for
nonsmooth optimization described in [25].

We have adopted different experimentation strategies for datasets 1–4 and 5–8. In
particular for the first group we have set t = 0.6n (with possible rounding) and have
tested σ = 1 and σ = 100. The results are in Tables 4 and 5, respectively. As for
datasets 5–8, characterized by large values of n, we have tested two different settings
of t . The first one is the same as for datasets 1–4, that is t = 0.6n. The second one
comes from the results obtained by (SVM-RSOP). In fact, letting tsvm = n(ft-9)/100,
where ft-9 is available in the bottom half part of Table 3, we have selected t = tsvm as
the average number of significant components of w at the solution of (SVM-RSOP).
Since we have observed that the results are rather insensitive to the parameter σ , we
report in Tables 6 and 7 only the ones obtained for σ = 1.

The results demonstrate that the simplistic use of the k-norm in the convex setting
provides poor performance, definitely worse even than the �1-norm model. Taking in
fact ft-9 as a measure of sparsity, we observe that on datasets of the first group (Tables
4 and 5) no significant sparsity is enforced for σ = 1, while for σ = 100 the results for
the two datasets Diabetes and Heart are sparse, at the expenses of a severe reduction
of the classification correctness. As for the datasets of the second group, for both
choices of t we observe (Tables 6 and 7) that the solutions are not at all sparse, while
the large difference between training and testing correctness indicates the presence of
overfitting.

We remark that in our experiments we have not considered the comparison of
our model with the plain MILP formulation (MISOP), as the superiority of the k-
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Table 4 Numerical results: SVM-kPURE (σ = 1, t = 0.6n)

Name Test (%) Train (%) ft0 (%) ft-2 (%) ft-4 (%) ft-9 (%) cpu (s)

Breast-Cancer 96.92 97.23 2.00 98.00 100.00 100.00 1.16

Diabetes 76.96 77.79 26.25 100.00 100.00 100.00 1.38

Heart 83.33 85.59 9.23 99.23 100.00 100.00 1.97

Ionosphere 88.30 93.63 20.29 96.76 97.05 97.05 17.45

Table 5 Numerical results: SVM-kPURE (σ = 100, t = 0.6n)

Name Test (%) Train (%) ft0 (%) ft-2 (%) ft-4 (%) ft-9 (%) cpu (s)

Breast-Cancer 95.90 95.98 0.00 99.00 100.00 100.00 9.62

Diabetes 65.10 65.10 0.00 0.00 0.00 60.00 0.79

Heart 73.33 74.21 0.00 7.69 7.69 43.84 1.38

Ionosphere 64.11 64.10 0.00 0.00 0.00 97.05 3.31

Table 6 Numerical results: SVM-kPURE (σ = 1, t = tsvm)

Name Test (%) Train (%) ft0 (%) ft-2 (%) ft-4 (%) ft-9 (%) cpu (s)

Brain_Tumor1 48.38 100.00 0.00 59.90 99.58 100.00 77.89

Brain_Tumor2 68.17 100.00 0.0 40.91 99.33 100.00 173.19

DLBCL 93.33 100.00 0.00 37.63 99.26 100.00 64.02

Leukemia/ALLAML 91.13 100.00 0.00 46.75 99.36 100.00 42.51

Table 7 Numerical results: SVM-kPURE (σ = 1, t = 0.6n))

Name Test (%) Train (%) ft0 (%) ft-2 (%) ft-4 (%) ft-9 (%) cpu (s)

Brain_Tumor1 47.17 97.78 0.00 44.35 99.57 100.00 66.57

Brain_Tumor2 57.67 100.00 0.00 25.65 99.37 100.00 176.21

DLBCL 86.91 99.71 0.00 24.08 99.32 100.00 70.93

Leukemia/ALLAML 90.06 100.00 0.00 25.60 99.29 10.00 39.23

norm based approaches has been elsewhere demonstrated (see [28, 29]), at least for
problems of reasonable size. As for comparisonwith the k-norm based approachSVM0

described in [28], it has to be taken into account that the results therein (see Tables
6 and 7) are strongly affected by the penalty parameter choice. Nevertheless, as far
as test-correctness is considered, from comparison of Table 2 with [28, Table 5], we
observe that each of the two approaches SVM0 and DCA-SVM-RkSOP prevails on
four of the eight datasets considered in both papers. As for sparsity of the solutions,
the behavior is comparable on the data sets of the second group, while SVM0 exhibits
stronger sparsity enforcement on the first group of datasets, somehow at expenses of
test-correctness.
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7 Conclusions

We have introduced a novel continuous nonconvex k-norm-based model for sparse
optimization, which is derived as the continuous relaxation of a MINLP problem.
We have applied such model to Feature Selection in the SVM setting and the results
suggest the superiority of the proposed approach over other attempts to simulate the
�0 pseudo-norm (e.g., the �1 norm penalization). On the other hand, we have also
observed that the mere replacement of the �0 pseudo-norm with the k-norm, evoked
in some methods available in the literature, does not provide satisfactory results, at
least in the experimentation area considered in this paper.
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