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Abstract
We consider an optimal control problem for the steady-state Kirchhoff equation, a
prototype for nonlocal partial differential equations, different from fractional powers of
closed operators. Existence and uniqueness of solutions of the state equation, existence
of global optimal solutions, differentiability of the control-to-state map and first-order
necessary optimality conditions are established. The aforementioned results require
the controls to be functions in H1 and subject to pointwise lower and upper bounds. In
order to obtain the Newton differentiability of the optimality conditions, we employ
a Moreau–Yosida-type penalty approach to treat the control constraint and study its
convergence. The first-order optimality conditions of the regularized problems are
shown to be Newton differentiable, and a generalized Newton method is detailed. A
discretization of the optimal control problem by piecewise linear finite elements is
proposed and numerical results are presented.
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1 Introduction

In this paper we study an optimal control problem governed by a nonlinear, nonlocal
partial differential equation (PDE) of Kirchhoff-type

{−M
(
x, ‖∇ y‖2

L2(Ω)
; u)�y = f in Ω,

y = 0 on ∂Ω.
(1.1)

here Ω ⊂ R
N is an open and bounded set and the right-hand side f belongs to

L2(Ω). We focus on the particular case M(x, s; u) = u(x) + b(x) s, which has been
considered previously, e. g., in [8, 10]. Here u and b are strictly positive functions and
u serves as the control. The full set of assumptions is given in Sect. 2. We mention that
in case u and b are positive constants, (1.1) has a variational structure; see [10].

Equation (1.1) is the steady-state problemassociatedwith its time-dependent variant

⎧⎨
⎩

ytt − M
(
x, ‖∇ y‖2

L2(Ω)
; u)�y = f in Ω × (0, T ),

y = 0 on ∂Ω × (0, T ),

y(x, 0) = y0(x), yt (x, 0) = y1(x) in Ω.

(1.2)

In one space dimension, problem (1.2) models small vertical vibrations of an elastic
string with fixed ends, when the density of the material is not constant. Specifically,
the control u is proportional to the inverse of the string’s cross section; see [10, 18].
A physical interpretation of the multi-dimensional problems (1.1) and (1.2) appears
to be missing in the literature.

PDEswith nonlocal terms play an important role in physics and technology and they
can bemathematically challenging. Although in some cases variational reformulations
are available, the models (1.1), (1.2) do not allow this in general. Thus, despite the
deceptively simple structure, (1.1) requires a set of analytical tools not often employed
in PDE-constrained optimization. Existence and uniqueness of solutions for (1.1)
have been investigated in [10] and [8]; see also the references therein. For further
applications of nonlocal PDEs, we refer the reader to [2, 9, 17].

The authors in [8] studied an optimal control problem for (1.1) with the following
cost functional

J (y, u) = 1

2
‖y − yd‖2L2(Ω)

+ λ

2
‖u‖2L2(Ω)

(1.3)

with an admissible set Uad = {u ∈ L2(Ω) | u ≥ ua > 0 a.e. in Ω}. However we
believe that the proof of existence of an optimal solution in this work has a flaw. We
give further details in the “Appendix”. Moreover, the proof in [8] is explicitly tailored
to such tracking type functionals. In the present work we see it necessary to modify the
control cost term to contain the stronger H1-norm. We also allow for a more general
state dependent term, which leads to the objective

J (y, u) =
∫

Ω

ϕ(x, y(x)) dx + λ

2
‖u‖2H1(Ω)

(1.4)
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Optimal control of the stationary Kirchhoff equation 481

and a set of admissible controls in H1(Ω). In this setting, we prove the weak-strong
continuity of the control-to-state operator into H1

0 (Ω)∩W 2,q(Ω) for any q ∈ [1,∞)

and the existence of a globally optimal solution. Moreover, we work with a point-
wise lower bound on admissible controls. This bound has an immediate technological
interpretation, representing an upper bound on the string’s cross section. On the other
hand, we also impose an upper bound on the controls. This is to be able to use the
topology of L∞(Ω) in the proof of the Fréchet differentiability of the control-to-state
map so that we can derive optimality conditions in a more straightforward way than
by the Dubovitskii-Milyoutin formalism utilized in [8].

The first-order optimality conditions obtained when minimizing (1.4) subject to
(1.1) involve a variational inequality of nonlinear obstacle type in H1. We choose to
relax and penalize the bound constraints via a Moreau–Yosida regularization, which
amounts to a quadratic penalty of the bound constraints for the control. In this setting,
we can prove the generalized (Newton) differentiability of the optimality system. A
similar philosophy, albeit for a different problem, has been pursued by [1]. We also
mention [23, Chapter 9.2] for an approach via a regularized dual obstacle problem. A
recent and promising alternative is offered by [5], where theNewton differentiability of
the solutionmap for unilateral obstacle problems is shown,without the need to penalize
the constraint. Indeed, relaxing the lower and upper bounds adds new difficulties, since
the existence of a solution of the Kirchhoff equation (1.1) can only be guaranteed
for positive controls. Therefore, we compose the control-to-state map with a smooth
cut-off function. We then study the convergence of global minimizers as the penalty
parameter goes to zero, see Theorem 3.4 for details. We can expect a corresponding
result to hold also for locally optimal solutions under an assumption of second-order
sufficient optimality conditions, but this is not investigated here.

To summarize our contributions in comparison to [8], we consider a more general
objective, present a simpler proof for the existence of a globally optimal control, prove
the differentiability of the control-to-state map and generalized differentiability of the
optimality system for a regularized version of the problem as well as the applicability
of a generalizedNewton scheme.We also describe a structure preserving finite element
discretization of the problem and the discrete counterpart of the generalized Newton
method.

The paper is organized as follows. In Sect. 2, we review existence and uniqueness
results for solutions of the Kirchhoff equation (1.1) and prove the existence of a
globally optimal control. Subsequently, we prove the Fréchet differentiability of the
control-to-state operator and derive a system of necessary optimality conditions for a
regularized problem in Sect. 3. In Sect. 4, we prove the Newton differentiability of the
optimality system and devise a locally superlinearly convergent scheme in appropriate
function spaces. Section5 addresses the discretization of the optimal control problem,
its optimality system and the generalized Newton method by a finite element scheme.
The paper concludes with numerical results in Sect. 6.
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482 M. Hashemi et al.

2 Optimal control problem: existence of a solution

In this work we are interested in the study of the following optimal control problem
for a stationary nonlinear, nonlocal Kirchhoff equation:

Minimize J (y, u):=
∫

Ω

ϕ(x, y(x)) dx + λ

2
‖u‖2H1(Ω)

(2.1a)

subject to

{
−
(
u + b ‖∇ y‖2

L2(Ω)

)
�y = f in Ω,

y = 0 on ∂Ω
(2.1b)

and u ∈ Uad. (2.1c)

The set of admissible controls is given by

Uad = {u ∈ H1(Ω) | ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω}. (2.2)

The following are our standing assumptions.

Assumption 2.1 We assume that Ω ⊂ R
N is a bounded domain of class C1,1 with

1 ≤ N ≤ 3; see for instance [22, Chapter 2.2.2]. The control cost parameter λ is
a positive number. The right-hand side f is a given function in L∞(Ω) satisfying
f ≥ f0 a.e., where f0 is a non-negative real number. The bounds ua and ub are
functions in C(Ω) such that ub ≥ ua ≥ u0 holds for some positive real number u0.
Finally, we assume b ∈ L∞(Ω) with b ≥ b0 a.e. for some positive real number b0.

The integrandϕ in the objective is assumed to satisfy the following standard assump-
tions; see for instance [22, Chapter 4.3]:

Assumption 2.2

(1) ϕ : Ω × R → R is Carathéodory and of class C2, i. e.,

(i) ϕ(·, y) : Ω → ϕ(x, y) is measurable for all y ∈ R,
(ii) ϕ(x, ·) : R → ϕ(x, y) is twice continuously differentiable for a.e. x ∈ Ω .

(2) ϕ satisfies the boundedness and local Lipschitz conditions of order 2, i. e., there
exists a constant K > 0 such that

∣∣D�
yϕ(x, 0)

∣∣ ≤ K for all 0 ≤ � ≤ 2 and for a.e. x ∈ Ω,

and for every M > 0, there exists a Lipschitz constant L(M) > 0 such that

∣∣D2
yϕ(x, y1) − D2

yϕ(x, y2)
∣∣ ≤ L(M) |y1 − y2|

holds for a.e. x ∈ Ω and for all |yi | ≤ M , i = 1, 2.

Assumption 2.2 implies the following properties for the Nemytskii operator
Φ(y)(x):=ϕ(x, y(x)).

Lemma 2.3 ([22, Lemma 4.11, Lemma 4.12]).
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Optimal control of the stationary Kirchhoff equation 483

(i) Φ is continuous in L∞(Ω). Moreover, for all r ∈ [1,∞], we have

‖Φ(y) − Φ(z)‖Lr (Ω) ≤ L(M) ‖y − z‖Lr (Ω)

for all y, z ∈ L∞(Ω) such that ‖y‖L∞(Ω) ≤ M and ‖z‖L∞(Ω) ≤ M .

(ii) Φ is twice continuously Fréchet differentiable in L∞(Ω), and we have

(
Φ ′(y) h

)
(x) = ϕy(x, y(x)) h(x),(

Φ ′′(y) [h1, h2]
)
(x) = ϕyy(x, y(x)) h1(x) h2(x)

for a.e. x ∈ Ω and h, h1, h2 ∈ L∞(Ω).

We now proceed to define the notion of weak solution of the Kirchhoff problem.
Since for any pair (u, y) ∈ Uad × H1(Ω), u + b ‖∇ y‖2

L2(Ω)
is strictly positive, we

can write Eq. (2.1b) in the form

− �y = f

u + b ‖∇ y‖2
L2(Ω)

. (2.3)

Here and in the following, we occasionally write ‖·‖ instead of ‖·‖L2(Ω). The L
2(Ω)-

inner product is denoted by (· , ·). Moreover, we denote by L(U , V ) the space of
bounded linear operators from U to V .

Multiplication of (2.3) with a test function v ∈ H1
0 (Ω) and integration by parts

yields the following definition.

Definition 2.4 A function y ∈ H1
0 (Ω) is called a weak solution of (2.3) if it satisfies

∫
Ω

∇ y · ∇v dx =
∫

Ω

f v

u + b ‖∇ y‖2 dx for all v ∈ H1
0 (Ω). (2.4)

The existence of a unique weak solution as well as itsW 2,q(Ω)-regularity has been
shown in [8, Theorem 2.2]. Nevertheless, we briefly sketch the proof since its main
idea is utilized again later on. For a complete proof we refer the reader to [8].

Theorem 2.5 For any u ∈ Uad, there exists a unique weak solution y ∈ H1
0 (Ω) of the

Kirchhoff problem (2.3). Moreover, y ∈ W 2,q(Ω) holds for all q ∈ [1,∞), so it is
also a strong solution.

Proof Suppose that u ∈ Uad and let g : [0,∞) → R be the function defined by

g(s) = s − ‖∇ ys‖2,

where ys is the unique weak solution of the Poisson problem

{−�ys = f
u+b s in Ω,

ys = 0 on ∂Ω.
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Amonotonicity argument can be used to show that g has a unique root. Since ys solves
(2.3) if and only if g(s) = 0 holds, the uniqueness of the solution of the Kirchhoff
equation is guaranteed. Furthermore, due to the boundedness of u from below, the
right-hand side f /(u + b s) of the Poisson problem above belongs to L∞(Ω). Hence,
by virtue of regularity results for the Poisson problem, y ∈ W 2,q(Ω) holds for any
q ∈ [1,∞); see, e. g., [11, Theorem 9.15]. �


For the proof of existence of a globally optimal control of (2.1), we show next that
the control-to-state operator S : Uad → H1

0 (Ω) ∩ W 2,q(Ω) is continuous.

Theorem 2.6 The control-to-state map S is continuous from Uad (with the L2(Ω)-
topology) into H1

0 (Ω) ∩ W 2,q(Ω) for all q ∈ [1,∞).

Proof The control-to-state map S : Uad → H1
0 (Ω) ∩ W 2,q(Ω) is well-defined as a

consequence of Theorem 2.5. To show its continuity, let {un} ⊂ Uad be a sequence
with un → u in L2(Ω). Set yn :=S(un), then we have the a-priori estimate

‖yn‖W 2,q (Ω) ≤ c1

∥∥∥∥ f

un + b ‖∇ yn‖2
∥∥∥∥
Lq (Ω)

≤ c2

∥∥∥∥ f

un + b ‖∇ yn‖2
∥∥∥∥
L∞(Ω)

≤ c

∥∥∥∥ f

ua

∥∥∥∥
L∞(Ω)

≤ C .

From now on, suppose without loss of generality that q ∈ [2,∞) holds. Since
W 2,q(Ω) is a reflexive Banach space and every bounded subset of a reflexive Banach
space is weakly relatively compact, there exists a subsequence yn , denoted by the
same indices, satisfying yn⇀ŷ in W 2,q(Ω). The compactness of the embedding
W 2,q(Ω) ↪→ W 1,q(Ω) implies the strong convergence yn → ŷ in W 1,q(Ω) and
thus ‖∇ yn‖ → ‖∇ ŷ‖. Moreover, un → u in L2(Ω) implies the existence of a further
subsequence un , still denoted by the same indices, with un(x) → u(x) for a.e. x ∈ Ω .
Consequently,

f

un + b ‖∇ yn‖2 → f

u + b ‖∇ ŷ‖2 a.e. in Ω.

Since f
un+b ‖∇ yn‖2 is dominated by f

ua
, we have

∣∣∣∣ f

un + b ‖∇ yn‖2 − f

u + b ‖∇ ŷ‖2
∣∣∣∣
q

≤
∣∣∣∣2 fua

∣∣∣∣
q

.

By virtue of the dominated convergence theorem,

−�yn = f

un + b ‖∇ yn‖2 → f

u + b ‖∇ ŷ‖2 in Lq(Ω).
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Optimal control of the stationary Kirchhoff equation 485

On the other hand, from yn⇀ŷ inW 2,q(Ω), it follows that�yn⇀�ŷ holds in Lq(Ω).
The uniqueness of the weak limit yields

−�ŷ = f

u + b ‖∇ ŷ‖2

and from the uniqueness of the solution of (2.3) we obtain ŷ = S(u). Therefore,
�yn → �ŷ holds in Lq(Ω) and thereby yn → ŷ in W 2,q(Ω).

We note that we have proved that for any sequence {un} ⊂ Uad with un → u in
L2(Ω) there exists a subsequence {un}, denoted by the same indices, so that S(un) →
S(u) in W 2,q(Ω). Thus we can easily conclude convergence of the entire sequence
S(un) → S(u) in W 2,q(Ω). Indeed, if S(un) � S(u), then there exist δ > 0 and a
subsequence with indices nk such that

‖S(unk ) − S(u)‖W 2,q (Ω) > δ for k → ∞.

Since unk → u in L2(Ω), there exists a further subsequence {unk� } such that
S(unk� ) → S(u), which is a contradiction. Consequently, we obtain S(un) → S(u)

as claimed. �

The compact embedding H1(Ω) ↪→ L2(Ω) immediately leads to the following

corollary.

Corollary 2.7 The control-to-state map S is weakly-strongly continuous fromUad (with
the H1(Ω)-topology) into H1

0 (Ω) ∩ W 2,q(Ω) for all q ∈ [1,∞). That is, when
{un} ⊂ Uad with un⇀u in H1(Ω), then S(un) → S(u) in W 2,q(Ω).

We can now address the existence of a global minimizer of (2.1).

Theorem 2.8 Problem (2.1) possesses a globally optimal control ū ∈ Uad with asso-
ciated optimal state ȳ = S(ū) ∈ H1

0 (Ω) ∩ W 2,q(Ω) for all q ∈ [1,∞).

Proof The proof follows the standard route of the direct method so we can be brief.

Step (1): We show that the reduced cost functional

j(u):=
∫

Ω

Φ(S(u)) dx + λ

2
‖u‖2H1(Ω)

is bounded from below on the set Uad. To this end, recall from the proof
of Theorem 2.6 that S(Uad) is bounded in W 2,q(Ω). Due to the embed-
ding W 2,q(Ω) ↪→ C(Ω) for q > N/2, there exists M > 0 such that
‖S(u)‖L∞(Ω) ≤ M holds for all u ∈ Uad. From Assumption 2.2 we can
obtain the estimate

|ϕ(x, S(u)(x))| ≤ |ϕ(x, 0)| + |ϕ(x, S(u)(x)) − ϕ(x, 0)|
≤ K + L(M) |S(u)(x)| ≤ K + L(M) M .

This implies
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∫
Ω

Φ(S(u)) dx ≥ −(K + L(M) M
) |Ω| (2.5)

for all u ∈ Uad. The assertion follows.
Step (2): We construct the tentative minimizer ū. Since j is bounded from below on

Uad, there exists a minimizing sequence {un} ⊂ Uad so that

j(un) ↘ inf
u∈Uad

j(u)=:β.

The boundedness of {un} in H1(Ω) follows from the radial unbounded-
ness of j . Consequently, there exists a subsequence, denoted by the same
indices, such that un⇀ū in H1(Ω). Uad is convex and closed in H1(Ω)

and therefore weakly closed in H1(Ω), thus ū ∈ Uad. Now Corollary 2.7
implies S(un) → S(ū) in W 2,q(Ω).

Step (3): It remains to show the global optimality of ū. Set F(y):= ∫
Ω

Φ(y) dx , thus
F is composed of a Nemytskii operator and a continuous linear integral
operator from L1(Ω) into R. By virtue of Lemma 2.3, Φ is continuous
in L∞(Ω). Since W 2,q(Ω) ↪→ L∞(Ω) holds, F ◦ S is weakly-strongly
continuous on Uad w.r.t. the topology of H1(Ω).
In summary, exploiting the weak sequential lower semicontinuity of ‖·‖H1

we have

β = lim
n→∞ j(un) = lim

n→∞ F(S(un)) + λ

2
lim inf
n→∞ ‖un‖2H1

≥ F(S(ū)) + λ

2
‖ū‖2H1(Ω)

= j(ū).

By definition of β and since ū ∈ Uad ∩ H1(Ω), we therefore must have
β = j(ū). �


Remark 2.9 An inspection of the existence theory shows that these results remain valid
in the absence of an upper bound ub on the control. However, the upper bound is of
essential importance in the following section, where we prove the Fréchet differentia-
bility of the control-to-state map.

3 Optimality system

In this sectionwe address first-order necessary optimality conditions for localminimiz-
ers. We need to overcome several obstacles. First of all, the control-to-state operator

S : Uad → H1
0 (Ω) ∩ W 2,q(Ω)

is not Fréchet differentiable in the H1(Ω)-topology. The reason is that Uad has empty
interior w.r.t. this topology except in dimension N = 1.More precisely, every H1(Ω)-
neighborhood of any control u ∈ Uad contains functions which are arbitrarily negative
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on sets of small but positive measure. However, the proof of Theorem 2.5, which
establishes the well-definedness of the control-to-state map, is contingent upon the
controls to remain positive. In order to overcome this issue, we work with the topology
of H1(Ω) ∩ L∞(Ω).

With regard to an efficient numerical solution method in function spaces, we are
aiming to arrive at an optimality systemwhich isNewton differentiable. To this end,we
propose to relax and penalize the control constraint. Notice that this is not straightfor-
ward since we need to ensure positivity of the relaxed control in the state equation. We
achieve the latter by a smooth cut-off function. The optimality system of the penalized
problem then turns out to be Newton differentiable, as we shall show in Sect. 4.

The material in this section is structured as follows. In Sect. 3.1, we prove the
Fréchet differentiability of the control-to-state map. We establish the system of first-
order necessary optimality conditions for the original problem (2.1) in Sect. 3.2. In
Sect. 3.3 we introduce the penalty approximation and show that for any null sequence
of penalty parameters, there exists a subsequence of global solutions to the correspond-
ing penalized problems which converges weakly to a global solution of the original
problem; see Theorem 3.4. Section3.4 addresses the system of first-order necessary
optimality conditions for the penalized problem.

3.1 Differentiability of the control-to-state map

In this subsection we show the Fréchet differentiability of the control-to-state map S
by means of the implicit function theorem. To verify the assumption of the implicit
function theorem, we need the following result about the linearization of the Kirchhoff
equation (2.3).

Proposition 3.1 Suppose that û ∈ Uad and ŷ ∈ H1
0 (Ω) ∩ W 2,q(Ω) is the associated

unique solution of the Kirchhoff equation (2.3) for any q ∈ [1,∞). Then, for any
h ∈ Lq(Ω), the linearized problem

{
−�y − 2 b (∇ ŷ ,∇ y)�ŷ

(û+b ‖∇ ŷ‖2) = h in Ω,

y = 0 on ∂Ω,
(3.1)

has a unique solution y ∈ H1
0 (Ω) ∩ W 2,q(Ω).

Proof Since (3.1) is linear, we can decompose it into two problems with right hand
sides h+:=max{0, h} and h−:= −min{0, h} respectively. To each of these problems,
an argument similar to the proof of Theorem 2.5 applies, and we obtain unique weak
solutions y+ and y− which belong to H1

0 (Ω)∩W 2,q(Ω). Then clearly, y = y+ − y−
solves (3.1). �

Theorem 3.2 Suppose that û ∈ Uad. Then the control-to-state operator

S : Uad → H1
0 (Ω) ∩ W 2,q(Ω)

is continuouslyFréchet differentiablew.r.t. the topology of L∞(Ω)onanopen L∞(Ω)-
neighborhood of û for all q ∈ [1,∞).
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Proof Suppose that û ∈ Uad is arbitrary and that ŷ ∈ H1
0 (Ω) ∩ W 2,q(Ω) is the

associated state. The map E : (H1
0 (Ω) ∩ W 2,q(Ω)

)× L∞(Ω) → Lq(Ω) defined by

E(y, u):= − �y − f

u + b ‖∇ y‖2 .

is continuously Fréchet differentiable with

E ′(ŷ, û)(y, u) = −�y +
(
u + 2 b (∇ ŷ , ∇ y)

)
f(

û + b ‖∇ ŷ‖2)2 .

It remains to show that Ey(ŷ, û) ∈ L(H1
0 (Ω) ∩ W 2,q(Ω), Lq(Ω)

)
has a bounded

inverse. To this end, consider

Ey(ŷ, û) y = −�y + 2 b f (∇ ŷ , ∇ y)(
û + b ‖∇ ŷ‖2)2 . (3.2)

The existence and uniqueness of y ∈ H1
0 (Ω) ∩ W 2,q(Ω) satisfying (3.1), i. e.,

Ey(ŷ, û) y = h, is established by virtue of Proposition 3.1. This implies the bijectiv-
ity of Ey(ŷ, û). The open mapping/continuous inverse theorem now yields that the
inverse of Ey(ŷ, û) is continuous. Notice that E(y, u) = 0 ⇔ E(S(u), u) = 0 holds
for all u ∈ Uad. Invoking the implicit function theorem,weobtain that S is continuously
differentiable in some L∞(Ω)-neighborhood of û. Since û ∈ Uad was arbitrary, S actu-
ally extends into an L∞(Ω)-neighborhood of Uad and it is continuously differentiable
there. Moreover, we obtain that δy = S′(û) δu satisfies Ey(ŷ, û) δy = −Eu(ŷ, û) δu,
i. e.,

−�δy +
(
δu + 2 b (∇ ŷ , ∇δy)

)
f(

û + b ‖∇ ŷ‖2)2 = 0.

�


3.2 First-order optimality conditions

The optimality system can be derived by using the Lagrangian L : H1
0 (Ω) × Uad ×

H1
0 (Ω) → R, defined by

L(y, u, p) :=
∫

Ω

ϕ(x, y) dx + λ

2
‖u‖2H1(Ω)

+
∫

Ω

∇ y · ∇ p dx

−
∫

Ω

f

u + b ‖∇ y‖2 p dx

(3.3)

and taking the derivative with respect to the state and the control. In the first case, we
obtain

123



Optimal control of the stationary Kirchhoff equation 489

Ly(y, u, p) δy =
∫

Ω

ϕy(x, y) δy dx +
∫

Ω

∇δy · ∇ p dx +
∫

Ω

2 b f p (∇ y , ∇δy)(
u + b ‖∇ y‖2)2 dx

for δy ∈ H1
0 (Ω) ∩ W 2,q(Ω). Integration by parts yields

Ly(y, u, p) δy

=
∫

Ω

ϕy(x, y) δy dx +
∫

Ω

∇δy · ∇ p dx +
(
∇ y
∫

Ω

2 b f p(
u + b ‖∇ y‖2)2 dx , ∇δy

)

=
∫

Ω

ϕy(x, y) δy dx −
∫

Ω

�p δy dx −
(
�y
∫

Ω

2 b f p(
u + b ‖∇ y‖2)2 dx , δy

)
.

Notice that Ly(y, u, p) δy = 0 for all δy ∈ H1
0 (Ω) ∩ W 2,q(Ω) represents the strong

form of the adjoint equation, which reads

⎧⎪⎨
⎪⎩

−�p − �y
∫

Ω

2 b f p(
u + b ‖∇ y‖2)2 dx = −ϕy(x, y) in Ω,

p = 0 on ∂Ω.

(3.4)

We point out that (3.4) is again a nonlocal equation. Given u ∈ Uad and y ∈ H1
0 (Ω)∩

W 2,q(Ω), (3.4) has a unique solution p ∈ H1
0 (Ω)∩W 2,q(Ω). This can be shown either

by direct arguments as in Theorem 2.5, or by exploiting that the bounded invertibility
of Ey implies that of its adjoint, see the proof of Theorem 3.2.

The derivative of the Lagrangian with respect to the control is given by

Lu(y, u, p) δu = λ (u , δu)H1(Ω) +
∫

Ω

f p(
u + b ‖∇ y‖2)2 δu dx

for δu ∈ H1(Ω).
It is now standard to derive the following system of necessary optimality conditions.

Theorem 3.3 Suppose that (y, u) ∈ (H1
0 (Ω) ∩ W 2,q(Ω)

)× Uad is a locally optimal
solution of problem (2.1) for any q ∈ [1,∞). Then there exists a unique adjoint state
p ∈ H1

0 (Ω) ∩ W 2,q(Ω) for all q ∈ [1,∞) such that the following system holds:

{−�p − �y
∫
Ω

2 b f p

(u+b ‖∇ y‖2)2 dx = −ϕy(x, y) in Ω,

p = 0 on ∂Ω,
(3.5a)

⎧⎪⎨
⎪⎩

λ

∫
Ω

∇u · ∇(v − u) dx +
∫

Ω

( f p(
u + b ‖∇ y‖2)2 + λ u

)
(v − u) dx ≥ 0

for all v ∈ Uad,

(3.5b)

{
−�y = f

u+b ‖∇ y‖2 in Ω,

y = 0 on ∂Ω.
(3.5c)
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Notice that (3.5b) is a nonlinear obstacle problem for the control variable u origi-
nating from the bound constraints in Uad and the presence of the H1-control cost term
in the objective. Until recently, the Newton differentiability of the associated solution
map was not known. In order to apply a generalized Newton method, we therefore
chose to relax and penalize the bound constraints via a quadratic penalty in the fol-
lowing section. This is also known as Moreau–Yosida regularization of the indicator
function pertaining to Uad.

Recently, the authors in [5] proved a Newton differentiability result for the solution
map of unilateral obstacle problems. This approach offers a promising alternative
route to solving (3.5) numerically. It would amount to introducing a fourth unknown
satisfying z = − f p

(u+b ‖∇ y‖2)2 and replacing (3.5b) by u = G(z), where G stands for the

solution map of the obstacle problem

λ

∫
Ω

∇u · (∇v − u) + u (v − u) − z (v − u) dx ≥ 0 for all v ∈ Uad.

We leave the details for future work.

3.3 Moreau–Yosida penalty approximation

TheMoreau–Yosida penalty approximation of problem (2.1) consists of the following
modifications.

(1) We remove the constraints ua ≤ u ≤ ub from Uad and work with controls in
H1(Ω) which do not necessarily belong to L∞(Ω).

(2) We add the penalty term 1
2ε

∫
Ω(ua − u)2+ + (u − ub)2+ dx to the objective. Here

v+ = max{0, v} is the positive part function and ε > 0 is the penalty parameter.
(3) We replace the control-to-state relation y = S(u) by

y = S
(
ua/2 + ηε(u − ua/2)

)
,

where ηε is a family of monotone and convex C3 approximations of the positive
part function satisfying ηε(t) = t for t > ε, ηε(t) = 0 for t < −ε for some
ε ∈ (0, u0/2) and η′

ε ∈ [0, 1] everywhere.
An example of such a function is ηε(t) = ε η( t

ε
), where

η(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for t ≤ −1,

15
(
t4
12 + t5

10 + t6
30

)
+ 1+t

2 − 1
4 for − 1 < t < 0,

15
(
t4
12 − t5

10 + t6
30

)
+ 1+t

2 − 1
4 for 0 ≤ t < 1,

t for t ≥ 1.

Notice that modification (3) is required since the control-to-state map S is guaran-
teed to be defined only for positive controls; compare Theorem 2.5. Therefore, we use
ua/2+ηε(u−ua/2) ≥ ua/2 as an effective control. In addition, ua/2+ηε(u−ua/2) =
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u holds for all u ∈ Uad, provided that ε is small enough.We now consider the following
relaxed problem:

Minimize Jε(y, u):=J (y, u) + 1

2ε

∫
Ω

(ua − u)2+ + (u − ub)
2+ dx

where y = S(ua/2 + ηε(u − ua/2))

and u ∈ H1(Ω).

(Pε)

The relation between (Pε) and the original problem (2.1) is clarified in the following
theorem.

Theorem 3.4

(i) For all ε > 0, problem (Pε) possesses a globally optimal solution (ȳε, ūε) ∈(
H1
0 (Ω) ∩ W 2,q(Ω)

)× H1(Ω) for all q ∈ [1,∞).
(ii) For any sequence εn ↘ 0, there is a subsequence of (ȳεn , ūεn ) which converges

weakly to some (y∗, u∗) in W 2,q(Ω) × H1(Ω). Moreover, u∗ ∈ Uad holds and
(y∗, u∗) is a globally optimal solution of (2.1).

Proof Statement (i) can be proved in a straightforward manner using a similar proce-
dure as in Theorem 2.8. The proof of statement (ii) is divided into several steps. As in
the proof of Theorem 2.8, we define β to be the globally optimal value of the objective
in (2.1). Similarly, we let βε denote the globally optimal value of the objective in (Pε).
Suppose that εn ↘ 0 is any sequence.

Step (1): We show that
{(
ȳεn , ūεn

)}
is bounded in W 2,q(Ω) × H1(Ω).

Suppose that (ȳ, ū) is a globally optimal solution of (2.1). Owing to the
definition of βε, we have

βε ≤ Jε(ȳ, ū) = J (ȳ, ū) + 1

2ε

∫
Ω

(ua − ū)2+ + (ū − ub)
2+ dx

= J (ȳ, ū) = β.

(∗)

The next-to-last equality is true since ū ∈ Uad holds and therefore, the
penalty term vanishes. Moreover, we obtain

J (ȳεn , ūεn ) ≤ J (ȳεn , ūεn ) + 1

2εn

∫
Ω

(
ua − ūεn

)2
+ + (ūεn − ub

)2
+ dx

= βεn ≤ β,

where the last inequality follows from (*). Since

ȳεn = S
(
ua/2 + ηεn (ūεn − ua/2)

)

holds, we obtain ‖ȳεn‖W 2,q (Ω) ≤ C as in the proof of Theorem 2.6. There-
fore, ȳεn is also bounded in C(Ω) and consequently,

∫
Ω

ϕ(x, ȳεn ) dx is
bounded below, see (2.5). Finally,
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J (ȳεn , ūεn ) =
∫

Ω

ϕ(x, ȳεn ) dx + λ

2
‖ūεn‖2H1(Ω)

≤ β

implies that ‖ūεn‖H1(Ω) is bounded.
Step (2): FromStep (1) it follows that there exists a subsequence {(ȳεn , ūεn )}, denoted

with the same subscript, such that (ȳεn , ūεn )⇀(y∗, u∗) in W 2,q(Ω) ×
H1(Ω). We show that u∗ ∈ Uad holds.
We have already shown that βεn ≤ β holds, therefore

∫
Ω

(
ua − ūεn

)2
+ + (ūεn − ub

)2
+ dx ≤ 2εn

[
β − J (ȳεn , ūεn )

]
.

Taking the lim sup in this inequality as n → ∞, we find

0 ≤ lim sup
n→∞

∫
Ω

(
ua − ūεn

)2
+ + (ūεn − ub

)2
+ dx

≤ 0 − 2 lim inf
n→∞ εn J (ȳεn , ūεn ).

(∗∗)

From (ȳεn , ūεn )⇀(y∗, u∗) in W 2,q(Ω) × H1(Ω) we conclude ūεn → u∗
in L2(Ω) and

J (y∗, u∗) ≤ lim inf
n→∞ J (ȳεn , ūεn ) (∗ ∗ ∗)

as in the proof of Theorem 2.8. Passing with n → ∞ in (**) yields

∫
Ω

(
ua − u∗)2

+ + (u∗ − ub
)2
+ dx = 0

and consequently, u∗ ∈ Uad follows.
Step (3): To obtain the convergence ηεn (ūεn − ua/2) → u∗ − ua/2 in L2(Ω), it

suffices to note that the assumptions onηε imply that, for all t ∈ R,ηεn (t) →
max{0, t} holds as n → ∞ and that ηεn has a Lipschitz constant of 1 for all
n. In combination with u∗ ≥ ua , the triangle inequality, and the dominated
convergence theorem, this gives

‖ηεn (ūεn − ua/2) − (u∗ − ua/2)‖L2(Ω)

≤ ‖ηεn (ūεn − ua/2) − ηεn (u
∗ − ua/2)‖L2(Ω)

+ ‖ηεn (u
∗ − ua/2) − (u∗ − ua/2)‖L2(Ω)

≤ ‖ūεn − u∗‖L2(Ω)

+ ‖ηεn (u
∗ − ua/2) − max{0, u∗ − ua/2}‖L2(Ω) → 0

as desired. The continuity of S on Uad w.r.t. the L2(Ω)-topology now
implies

ȳεn = S
(
ua/2 + ηεn

(
ūεn − ua/2

))→ S
(
u∗) .
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From Step (2) we have the weak convergence of ȳεn to y∗. The uniqueness
of the weak limit shows y∗ = S(u∗).

Step (4): Since J (ȳεn , ūεn ) ≤ β holds, we obtain J (y∗, u∗) ≤ β by invoking (***).
Moreover, since (y∗, u∗) is admissible for (2.1), the definition of β implies
J (y∗, u∗) = β, which completes the proof. �


3.4 First-order optimality conditions for the penalized problem

The derivation of optimality conditions for (Pε) proceeds along the same lines as
in Sect. 3.2 and the details are omitted. Notice that the use of the cut-off function
in the control-to-state map resolves the difficulty with differentiability of this map
with respect to H1(Ω)-topology in appropriate function spaces. For simplicity, we
drop the index ·ε from now on and denote states, controls, and associated adjoint
states by (y, u, p).We obtain the following regularized system of necessary optimality
conditions.

Theorem 3.5 Suppose that (y, u) ∈ (H1
0 (Ω) ∩ W 2,q(Ω)

)× H1(Ω) is a locally opti-
mal solution of problem (Pε) for any q ∈ [1,∞). Then there exists a unique adjoint
state p ∈ H1

0 (Ω)∩W 2,q(Ω) for all q ∈ [1,∞) such that the following system holds:

{−�p − �y
∫
Ω

2 b f p

(ua/2+ηε(u−ua/2)+b ‖∇ y‖2)2 dx = −ϕy(x, y) in Ω,

p = 0 on ∂Ω,
(3.6a)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ

∫
Ω

∇u · ∇v dx +
∫

Ω

( f p η′
ε(u − ua/2)(

ua/2 + ηε(u − ua/2) + b ‖∇ y‖2)2 + λ u
)
v dx

− 1

ε

∫
Ω

(
(ua − u)+ − (u − ub)+

)
v dx = 0 for all v ∈ H1(Ω),

(3.6b){
−�y = f

ua/2+ηε(u−ua/2)+b ‖∇ y‖2 in Ω,

y = 0 on ∂Ω.
(3.6c)

Remark 3.6 We note that under a second-order sufficient condition, which is not inves-
tigated in this paper, every solution of (3.6) is a strict localminimizer of (Pε).According
to Theorem 3.4, applied to a modified problem with a suitable localization term, the
localminimizer of the penalized problemunder consideration converges to a localmin-
imizer of the original optimal control problem as ε → 0. This technique is well known;
see for instance [4, Section 4]. Therefore, under second-order sufficient optimality con-
ditions, the solutions of the optimality system of (Pε) converge to the solutions of the
optimality system of (2.1).

Corollary 3.7 The terms

(
f p η′

ε(u − ua/2)(
ua/2 + ηε(u − ua/2) + b ‖∇ y‖2)2 + λ u

)
− 1

ε

(
(ua − u)+ − (u − ub)+

)

123



494 M. Hashemi et al.

in (3.6b) belong to L∞(Ω) and therefore, any locally optimal control of (Pε) belongs
to W 2,q(Ω) for any q ∈ [1,∞).

Proof We only elaborate on the case N = 3 since the cases N ∈ {1, 2} are sim-
ilar. We first consider the numerator of the first term. Here f ∈ L∞(Ω) holds by
Assumption 2.1 and p ∈ L∞(Ω) by virtue of the embedding W 2,q(Ω) ↪→ L∞(Ω)

for q > 3/2. Moreover, η′
ε maps into [0, 1] and therefore η′

ε(u − ua) belongs to
L∞(Ω) as well. The denominator is bounded below by ua/2, and therefore, the first
term belongs to L∞(Ω).
The second term, 1

ε

(
(ua − u)+ −(u − ub)+

)
, belongs to L6(Ω) due to the embedding

H1(Ω) ↪→ L6(Ω). Inserting this into (3.6b) with the differential operator λ (−�+id)
and the remaining terms on the right-hand side shows u ∈ W 2,6(Ω), which in turn
embeds into L∞(Ω).
Repeating this procedure one more time implies u ∈ W 2,q(Ω). �


4 Generalized Newtonmethod

In this section we show that the optimality system (3.6) of the penalized problem
is differentiable in a generalized sense, referred to as Newton differentiability. This
allows us to formulate a generalized Newton method. Due to its similarity with the
concept of semismoothness, see [23], such methods are sometimes referred to as a
semismooth Newton method.

Definition 4.1 ([13, Definition 1], [16, Definition 8.10]). Let X and Y be two Banach
spaces and D be an open subset of X . The mapping F : D ⊂ X → Y is called Newton
differentiable on the open subset V ⊂ D if there exists a map G : V → L(X ,Y ) such
that, for every x ∈ V ,

lim
h→0

1

‖h‖X ‖F(x + h) − F(x) − G(x + h)h‖Y = 0.

In this case G is said to be a Newton derivative of F on V .

We formulate the optimality system (3.6) in terms of an operator equation F = 0
where

F : X :=
(
W 2,q(Ω) ∩ H1

0 (Ω)
)

×W 2,q
� (Ω)×

(
W 2,q(Ω) ∩ H1

0 (Ω)
)

→ Lq(Ω)3=:Y
(4.1)

and q ∈ [max{1, N/2},∞) is arbitrary but fixed.
Here W 2,q

� (Ω) is defined as
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W 2,q
� (Ω):=

{
u ∈ W 2,q(Ω)

∣∣∣∣ ∂u∂n = 0 on ∂Ω

}
.

The component F1 represents the adjoint equation (3.6a) in strong form, i. e.,

F1(y, u, p) = −�p − �y
∫

Ω

2 b f p(
ua/2 + ηε(u − ua/2) + b ‖∇ y‖2)2 dx + ϕy(x, y).

The continuous Fréchet differentiability of F1 is a standard result, which uses
Lemma 2.3 and the embedding W 2,q(Ω) ↪→ L∞(Ω). The directional derivative
is given by

F ′
1(y, u, p) (δy, δu, δ p)

= −�δ p − �δy
∫

Ω

2 b f p(
ua/2 + ηε(u − ua/2) + b ‖∇ y‖2)2 dx

− �y
∫

Ω

2 b f δ p(
ua/2 + ηε(u − ua/2) + b ‖∇ y‖2)2 dx

+ �y
∫

Ω

4 b f p
(
η′

ε(u − ua/2) δu + 2 b (∇ y , ∇δy)
)

(
ua/2 + ηε(u − ua/2) + b ‖∇ y‖2)3 dx + ϕyy(x, y) δy.

Similarly, F3 represents the state equation (3.6c), i. e.,

F3(y, u, p) = −�y − f

ua/2 + ηε(u − ua/2) + b ‖∇ y‖2

and its continuous Fréchet derivative is given by

F ′
3(y, u, p)(δy, δu, δ p) = −�δy + f

[
η′

ε(u − ua/2) δu + 2 b (∇ y , ∇δy)
]

(
ua/2 + ηε(u − ua/2) + b ‖∇ y‖2)2 .

Finally, in order to define F2 we integrate (3.6b) by parts, which is feasible due to
Corollary 3.7. This results in the equivalent formulation F2 = 0, where

F2(y, u, p) = −λ�u + f p η′
ε(u − ua/2)(

ua/2 + ηε(u − ua/2) + b ‖∇ y‖2)2 + λ u

− 1

ε
(max{ua − u, 0} − max{u − ub, 0}) ,

and the boundary conditions ∂u
∂n = 0, which are included in the definition ofW 2,q

� (Ω).
In order to establish the Newton differentiability of F2, we invoke the following

classical result.
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Theorem 4.2 ([13, Proposition 4.1], [16, Example 8.14]). The mapping

max{0, ·} : L p(Ω) → Lq(Ω), 1 ≤ q < p ≤ ∞

is Newton differentiable on L p(Ω) with generalized derivative

Gmax : L p(Ω) → L(L p(Ω), Lq(Ω))

given by

Gmax(u) δu =
{

δu(x), where u(x) ≥ 0,

0, where u(x) < 0.

Using Theorem 4.2 and the embedding W 2,q(Ω) ↪→ L∞(Ω), it follows that F2 is
Newton differentiable on the entire space X with generalized derivative

G2(y, u, p)(δy, δu, δ p)

= −λ�δu + f δ p η′
ε(u − ua/2) + f p η′′

ε (u − ua/2) δu(
ua/2 + ηε(u − ua/2) + b ‖∇ y‖2)2 + λ δu

− 2 f p η′
ε(u − ua/2)

[
η′

ε(u − ua/2) δu + 2 b (∇ y , ∇δy)
]

(
ua/2 + ηε(u − ua/2) + b ‖∇ y‖2)3 + 1

ε
χA(u)δu.

Here χA stands for the indicator function of the set

A(u) = {x ∈ Ω | ua − u ≥ 0 or u − ub ≥ 0}.

We are now in a position to state a basic generalized Newton method; see Algo-
rithm 4.3. Following well-known arguments, we can show its local well-posedness
and superlinear convergence to local minimizers satisfying second-order sufficient
conditions. We refrain from repeating the details and refer the interested reader to,
e. g., [16, Chapter 7], [14, Chapter 2.4-−2.5] and [23, Chapter 10]. It is also possible
to globalize the method using a line search approach; see, e. g., [15].

Algorithm 4.3 (Basic semismooth Newton method for the solution of problem (Pε)).

Input: initial guess (y0, u0, p0) ∈ X
Output: approximate stationary point of (Pε)

1: Set k:=0
2: while not converged do
3: Determine the active set A(uk)
4: Solve the Newton system

G1(yk, uk, pk)(δy, δu, δ p) = −F1(yk, uk, pk)

G2(yk, uk, pk)(δy, δu, δ p) = −F2(yk, uk, pk)

G3(yk, uk, pk)(δy, δu, δ p) = −F3(yk, uk, pk)

(4.2)
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5: Update the iterates by setting

yk+1:=yk + δy, uk+1:=uk + δu, pk+1:=pk + δ p

6: Set k:=k + 1
7: end while

An appropriate criterion for the convergence of Algorithm 4.3 is the smallness of
‖F1(yk, uk, pk)‖Lq (Ω), ‖F2(yk, uk, pk)‖Lq (Ω) and ‖F3(yk, uk, pk)‖Lq (Ω), either in
absolute terms or relative to the initial values.

Remark 4.4 We remark that all previous results can be generalized to convex domains
Ω ⊂ R

N where 1 ≤ N ≤ 3. In this case, we can invoke the H2-regularity result
for the Poisson problem on convex domains from [12, Theorem 3.2.1.3] in the proof
of Theorem 2.5. Consequently, we have to replace q ∈ [1,∞) by q = 2 in Theo-
rem 2.5 and all subsequent results. The requirement N ≤ 3 ensures the validity of the
embedding H2(Ω) ↪→ C(Ω).

5 Discretization and implementation

In this sectionwe address the discretization of the relaxedoptimal control problem (Pε).
We then follow a discretize–then–optimize approach and derive the associated discrete
optimality system, as well as a discrete version of the generalized Newton method.
In order to simplify the implementation, we employ the original control-to-state map
y = S(u). In other words, we choose ηε = id in (Pε), which no longer approximates
the positive part function. Consequently, the controls appearing in the control-to-state
map are no longer guaranteed to be bounded below by ua . This simplification is
justified a posteriori, provided that the control iterates happen to remain positive and
bounded away fromzero and thus still permit the state equation to be uniquely solvable,
or rather its linearized counterpart appearing in the generalized Newton method. We
numerically observed this to be the case for all examples. In addition, we allow the
addition of an upper bound on the constraint in our implementation, which is treated
via the same penalty approach as the lower bound.

Our discretization method of choice is the finite element method. We employ
piecewise linear, globally continuous finite elements on geometrically conforming
triangulations of the domain Ω . More precisely, we use the space

Vh :={v ∈ H1(Ω) ∩ C(Ω) | v is linear on all triangles} ⊂ H1(Ω)

to discretize the control, the state and adjoint state variables. We use the usual
Lagrangian basis and refer to the basis functions as {ϕ j }, where j = 1, . . . , NV

and NV denotes the number of vertices in the mesh. The coefficient vector, e. g., for
the discrete control variable u ∈ Vh , will be denoted by u, so we have

u =
NV∑
j=1

u jϕ j .
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In order to formulate the discrete optimal control problem, we introduce the mass and
stiffness matrices M and K as follows:

Mi j =
∫

Ω

ϕi ϕ j dx and Ki j =
∫

Ω

∇ϕi · ∇ϕ j dx .

We also make use of the diagonally lumped mass matrix Mlumped with entries

Mlumpedi i = ∑NV
j=1Mi j . Suppose that the right-hand side f and coefficient b have

been discretized and represented by their coefficient vectors f and b in Vh . Using the
lumped mass matrix, the weak formulation (2.4) of the state equation can be written
in preliminary discrete form as

Ky = Mlumped

[
fi

ui + bi (yTKy)

]NV

i=1
.

In order to incorporate the Dirichlet boundary conditions, we introduce the boundary
projector PΓ . This is a diagonal NV × NV -matrix which has ones along the diagonal
in entries pertaining to boundary vertices, and zeros otherwise. We also introduce
the interior projector PΩ :=id − PΓ . We can thus state the discrete form of the state
equation (2.4) as

PΩKy − PΩMlumped

[
fi

ui + bi (yTKy)

]NV

i=1
+ PΓ y = 0. (5.1)

In order to simplify the notation, we introduce further diagonal matrices

F:= diag(f), B:= diag(b) and D(y,u):= diag(u) + (yTKy)B.

Using these matrices, we can write (5.1) more compactly as

e(y,u):=PΩKy − PΩMlumped FD(y,u)−11 + PΓ y = 0, (5.2)

where 1 and 0 denote column vectors of all ones and all zeros, respectively.
To be specific, we focus on a tracking-type objective and choose ϕ(x, y) = 1

2 (y −
yd)2 in (1.4) and thus also in (Pε). In addition, we distinguish two positive control cost
parameters λ1 and λ2, which leads to discrete problems of the form

J (y,u) = 1

2
(y − yd )TM(y − yd ) + λ1

2
uTKu + λ2

2
uTMu

+ 1

2ε
(ua − u)T+Mlumped(ua − u)+ + 1

2ε
(u − ub)T+Mlumped(u − ub)+ (5.3)

and the Lagrangian of our discretized problem becomes

L(y,u,p) = 1

2
(y − yd)TM(y − yd) + λ1

2
uTKu + λ2

2
uTMu
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+ 1

2ε
(ua − u)T+Mlumped(ua − u)+ + 1

2ε
(u − ub)T+Mlumped(u − ub)+

+pTPΩKy − pTPΩMlumped FD(y,u)−11 + pTPΓ y. (5.4)

Before we state the first- and second-order derivatives of the Lagrangian, we address
the nonlinear term D(y,u)−1 first. We obtain

d

dy
D(y,u)−1δy = −2 (yTK δy)BD(y,u)−2

and thus
d

dy
D(y,u)−11 = −2BD(y,u)−21 yTK,

d

du
D(y,u)−1δu = −D(y,u)−2 diag(δu)

and thus
d

du
D(y,u)−11 = −D(y,u)−2.

Therefore, the first-order derivatives of L (written as column vectors) are given by

Ly(y,u,p) = M(y − yd) + KPΩp

+ 2Ky 1TD(y,u)−2BFMlumped PΩp + PΓ p, (5.5a)

and

Lu(y,u,p) = λ1Ku + λ2Mu − 1

ε
DA−(u)MlumpedDA−(u) (ua − u)

+ 1

ε
DA+(u)MlumpedDA+(u) (u − ub) + FD(y,u)−2Mlumped PΩp.

(5.5b)

Here DA+(u) and DA−(u) are diagonal (active-set) matrices with entries

[DA+(u)]i i =
{
1 where [ua − u]i ≥ 0,

0 otherwise,

[DA−(u)]i i =
{
1 where [u − ub]i ≥ 0,

0 otherwise,

and we set DA(u) = DA+(u) + DA−(u).
In order to solve the discrete optimality system consisting of (5.1) and (5.5),

we employ a finite-dimensional semismooth Newton method (Algorithm 5.1). This
requires the evaluation of first-order derivatives of the state equation (5.1) as well
as second-order derivatives of the Lagrangian (5.4). The following expressions are
obtained.

ey(y,u) = PΩK + 2PΩ Mlumped FBD(y,u)−21 yTK + PΓ , (5.6a)
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eu(y,u) = PΩMlumpedD(y,u)−2F, (5.6b)

Lyy(y,u,p) = M − 8pTPΩMlumped FB2D(y,u)−31K y yTK

+ 2pTPΩMlumped FBD(y,u)−21K, (5.6c)

Lyu(y,u,p) = −4KypTPΩMlumped FD(y,u)−3B, (5.6d)

Luu(y,u,p) = λ1K + λ2M + 1

ε
DA(u)MlumpedDA(u)

− 2 diag(Mlumped p)D(y,u)−3F. (5.6e)

Notice that the expression for Luu is the generalized derivative of Lu in the sense of
Definition 4.1.

The discrete generalized Newton system has the following form:

⎡
⎣Lyy(y,u,p) Lyu(y,u,p) ey(y,u)T

Luy(y,u,p) Luu(y,u,p) eu(y,u)T

ey(y,u) eu(y,u) 0

⎤
⎦
⎛
⎝δy

δu
δp

⎞
⎠ = −

⎛
⎝Ly(y,u,p)

Lu(y,u,p)

e(y,u)

⎞
⎠ . (5.7)

The well-posedness of the system (5.7) can be shown in a neighborhood of a locally
optimal solution satisfying second-order sufficient optimality conditions, under the
additional assumption that u remains positive. This is a well established technique
and it applies both to the continuous as well as to the discrete setting; see for instance
[3, 20, 21]. In contrast to standard optimal control problems which do not feature a
nonlocal PDE, some of the blocks in (5.7) are no longer sparse. This comment applies
to ey due to the second summand in (5.6a), to Lyy due to the second summand in
(5.6c) as well as to Lyu given by (5.6d). For a high performance implementation,
it is therefore important to not assemble the blocks in (5.7) as matrices, but rather
to provide matrix–vector products and use a preconditioned iterative solver such as
Minres ([19]) to solve (5.7). This aspect, however, is beyond the scope of this paper
and we defer the design and analysis of a suitable preconditioner to future work. For
the time being we resort to the direct solution of (5.7) using Matlab’s direct solver,
which is still feasible on moderately fine discretizations of two-dimensional domains.

Our implementation of the semismooth Newton method is described in Algo-
rithm 5.1. In contrast to Algorithm 4.3, we added an additional step in which we solve
the discrete nonlinear state equation (5.2) for yk+1 once per iteration for increased
robustness; see Line 6 in Algorithm 5.1. Notice that the preliminary linear update
to yk+1 in Line 5 is still useful since it provides an initial guess for the subsequent
solution of e(yk+1,uk+1) = 0. We mention that nonlinear state updates have been
analyzed in the closely related context of SQPmethods, e. g., in [7, 24]. We also added
a rudimentary damping strategy which improves the convergence behavior. In our
examples, it suffices to choose γ = 1/2 when ‖Lu(yk,uk,pk)‖(K+M)−1 > 1/10 and
γ = 1 otherwise.

The stopping criterion we employ in Line 2 measures the three components of the
residual, i. e., the right-hand side in (5.7).Since each component represents an element
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of the dual space of H1(Ω), we evaluate the (squared) H1(Ω)∗-norm of all residual
components, which amounts to

R2(y,u,p):=‖Ly(y,u,p)‖2
(K+M)−1

+ ‖Lu(y,u,p)‖2
(K+M)−1 + ‖e(y,u)‖2

(K+M)−1 . (5.8)

Algorithm 5.1 is stopped when

R(y,u,p) ≤ 10−6 (5.9)

is reached. Moreover, we impose a tolerance of ‖e(y,u)‖(K+M)−1 ≤ 10−10 for the
solution of the forward problem in Line 6.

Algorithm 5.1 (Discrete semismooth Newton method with nonlinear state update for
the solution of a discretized instance of problem (Pε)).
Input: initial guess (y0,u0,p0) ∈ Vh × Vh × Vh
Output: approximate stationary point of the discretized instance of (Pε)

1: Set k:=0
2: while not converged do
3: Determine the active sets A+(uk) and A−(uk)
4: Solve the Newton system (5.7) for (δy, δu, δp), given (yk,uk,pk)
5: Update the iterates by setting

yk+1:=yk + γ δy, uk+1:=uk + γ δu, pk+1:=pk + γ δp

where γ ∈ (0, 1] is a suitable damping parameter.
6: Solve the nonlinear state equation (5.2) for the state yk+1, given the control uk+1

7: Set k:=k + 1
8: end while

6 Numerical experiments

In this section we describe a number of numerical experiments. The first experiment
serves the purposeof demonstrating the influenceof the non-locality parameterb. In the
second experiment, we numerically confirm the mesh independence of our algorithm.
The third experiment is dedicated to studying the impact of the penalty parameter ε.
As mentioned in Sect. 5, our implementation of Algorithm 5.1 employs a direct solver
for the linear systems arising in Line 4 and is therefore only suitable for relatively
coarse discretization of two-dimensional domains. Unless otherwise mentioned, the
following experiments are obtained on a mesh discretizing a square domain with
NV = 665 vertices and NT = 1248 triangles. Notice that convex domains are covered
by our theory due to Remark 4.4. The typical run-time for Algorithm 5.1 is around 3
s.
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6.1 Influence of the non-locality parameter

Our initial example builds on the two-dimensional problem presented in [8]. The
problem domain is Ω = (−0.5, 0.5)2; notice that this is slightly incorrectly stated in
[8]. Moreover, we have right-hand side f (x, y) ≡ 100 and desired state yd(x, y) ≡ 0.
The lower bound for the control is given as ua(x, y) = −3x − 3y + 10 and the
upper bound is ub ≡ ∞. Moreover, the control cost parameters are λ1 = 0 and
λ2 = 4 ·10−5. We choose ε = 10−2 as our penalty parameter. The coefficient function
determining the degree of non-locality is set to b(x, y) = α (x2 + y2), where α varies
in {0, 100, 101, 102, 103}. We point out that these settings violate Assumption 2.1 due
to λ1 = 0, i. e., the cost term is only of L2-type, and since b is not uniformly positive
inside Ω . The lack of an upper bound in this example is of no concern because we
could assign a posteriori a sufficiently large upper bound which does not become
active. Nonetheless, we present this experiment in order to reproduce the results in
[8], which correspond to the case α = 1.

For each value of α, we start from an initial guess constructed as follows. We
initialize u0 to the lower bound ua and set y0 to the numerical solution of the forward
problem with control u0. The adjoint state is initialized to p0 = 0.

Figure 1 shows some of the optimal state and control functions obtained. We notice
that the solution in case of a local problem (α = 0) is visually indistinguishable from
the setting α = 1 considered in [8]. We therefore compare it to the case α = 103

of significantly more pronounced non-local effects. Clearly, an increase in the non-
local parameter aids the control in this example, so the control effort can decrease,
as reflected in Fig. 1. Also, we observe that the number of iterations of the discrete
semismooth Newton method (Algorithm 5.1) decreases slightly as α increases; see
Table 1.

6.2 Dependence on the discretization

In this experiment we study the dependence of the number of semismooth Newton
steps in Algorithm 5.1 on the refinement level of the underlying discretization. To this
end, we consider a coarse mesh and two uniform refinements; see Table 2.

The problem is similar as in Sect. 6.1. The domain is Ω = (−0.5, 0.5)2. We use
f (x, y) ≡ 100 as right-hand side and the desired state is yd(x, y) ≡ 0. The lower
bound for the control is nowgiven as ua(x, y) = −10x−10y+20 and the upper bound
is ub = ua+5.Moreover, the control cost parameters areλ1 = 10−7 andλ2 = 4·10−5.
We choose ε = 10−2 as our penalty parameter. The coefficient function determining
the degree of non-locality is set to b(x, y) ≡ 10.Notice thatAssumption 2.1 is satisfied
for this experiment.

For each mesh, we start from an initial guess constructed as follows. We initialize
u0 to the lower bound ua and set y0 to the numerical solution of the forward problem
with control u0. The adjoint state is initialized to p0 = 0. In this example, both the
lower and upper bounds are relevant on all mesh levels. Nonetheless, we observe a
mesh-independent convergence behavior; see Fig. 2.
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0 1 2 3 4 5 6 7 8 9
iteration

10-15

10-10

10-5

100
norm of Ly
norm of Lu
norm e

0 1 2 3 4 5 6
iteration

10-15

10-10

10-5

100
norm of Ly
norm of Lu
norm e

Fig. 1 Optimal states y (top row), optimal controls u (middle row) and convergence history (bottom row)
obtained for the example from Sect. 6.1 for α = 1 (left column) and α = 103 (right column). The three
norms shown in the convergence plots correspond to the three terms in (5.8), i. e., ‖Ly(y,u, p)‖(K+M)−1 ,
‖Lu(y, u, p)‖(K+M)−1 and ‖e(y,u)‖(K+M)−1

Table 1 Number of iterations of
the discrete semismooth Newton
method (Algorithm 5.1) for
various values of the
non-locality parameter α in the
example from Sect. 6.1

α Iterations

0.00e+00 10

1.00e+00 9

1.00e+01 7

1.00e+02 7

1.00e+03 6
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Table 2 Number of iterations of
the discrete semismooth Newton
method (Algorithm 5.1) for
various mesh levels in the
example from Sect. 6.2

Level NV NT Iterations

1 177 312 11

2 665 1248 8

3 2577 4992 8

0 2 4 6 8 10 12
iteration

10-10

10-5

100

mesh level 1
mesh level 2
mesh level 3

Fig. 2 The convergence plot (left column) shows the total residual norm R(y, u, p) as in (5.8) on all mesh
levels for the example from Sect. 6.2. The control on the finest level is shown in the right column. Nodes
where u = ub and u = ua holds are shown in red and blue, respectively

Table 3 Number of iterations of the discrete semismooth Newton method (Algorithm 5.1, without
warmstart) for various values of the penalty parameter ε in the example from Sect. 6.3. The terms
‖(ua − u)+‖L∞(Ω) and ‖(u − ub)+‖L∞(Ω) refer to the maximal positive nodal values of ua − u and
u − ub , respectively

ε Iterations ‖(ua − u)+‖L∞(Ω) ‖(u − ub)+‖L∞(Ω)

1.00e+00 4 1.32e−03 6.36e−05

1.00e−01 4 1.32e−04 6.37e−06

1.00e−02 6 1.32e−05 6.39e−07

1.00e−03 10 1.32e−06 6.40e−08

1.00e−04 13 1.32e−07 6.40e−09

6.3 Influence of the penalty parameters

In this final experiment, we study the behavior of Algorithm 5.1 and the solutions
to the penalized problem (Pε) in dependence of the penalty parameter ε. We solve
similar problems as before, with domainΩ = (−0.5, 0.5)2, right-hand side f (x, y) ≡
100 and desired state yd(x, y) ≡ 0. The lower bound for the control is ua(x, y) =
−10x − 10y + 20 and the upper bound is ub = ua + 8. Moreover, the control
cost parameters are λ1 = 10−7 and λ2 = 4 · 10−5. The penalty parameter varies
in {100, 10−1, 10−2, 10−3, 10−4}. The coefficient function determining the degree of
non-locality is set to b(x, y) ≡ 10.
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0 2 4 6 8 10 12 14
iteration

10-10

10-5

100

penalty parameter 1.00e+00
penalty parameter 1.00e-01
penalty parameter 1.00e-02
penalty parameter 1.00e-03
penalty parameter 1.00e-04

0 0.5 1 1.5 2 2.5 3 3.5 4
iteration

10-10

10-5

100

penalty parameter 1.00e+00
penalty parameter 1.00e-01
penalty parameter 1.00e-02
penalty parameter 1.00e-03
penalty parameter 1.00e-04

Fig. 3 The convergence plot shows the total residual norm R(y, u, p) as in (5.8) for all values of the penalty
parameter ε. In the left plot, the same initial guess was used for all penalty parameters. With warmstarting,
convergence can be achieved in one semismooth Newton step

The construction of an initial guess is the same as in Sect. 6.2. The experiment is split
into twoparts. First,we considerAlgorithm5.1withoutwarmstarts. The corresponding
results are shown in Table 3. As expected, the number of Newton steps increases as
ε ↘ 0 while the norm of the bound violation decreases. Second, we repeat the same
experiment with warmstarts. That is, we use the initialization as described above only
for the initial value of ε. Subsequent runs of Algorithm 5.1 are initialized with the final
iterates obtained for the previous value of ε. This strategy is very effective, as shown
in Fig. 3 (right column).
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A Comment on the proof of existence of an optimal solution in [8]

We believe that the proof concerning the existence of an optimal solution in Theo-
rem 2.5 of [8] contains a flaw. That proof uses the direct method of the calculus of
variations and begins by constructing two sequences {un} and {yn} satisfying the state
equation (2.3) and converging weakly in L2(Ω). The proof then proceeds to show
that the weak limit satisfies the state equation as well. That claim, however, is incor-
rect. Indeed, we construct below a counterexample showing that the control-to-state
map is not continuous in any meaningful sense w.r.t. the weak L2-convergence of the
controls. We acknowledge that this argument was suggested by one of the reviewers.

It suffices to consider (2.3) in the setting Ω = (0, 1) ⊂ R with data b ≡ 1 and f ≡
1.We consider the sequence of controls {un} ⊂ L2(Ω) defined by un(x):=1+2χ(nx),
where

χ(x):=
{
0, 0 ≤ x ≤ 1/2,

1, 1/2 < x ≤ 1.

This sequence clearly satisfiesun⇀ū:=2 in L2(Ω); see, for instance, [6, Theorem2.6].
We now show that yn :=S(un) does not converge to S(ū)=:ȳ. To this end, we note

that {yn} is bounded in H2(Ω) and thus a subsequence (which we denote the same)
converges weakly in H2(Ω) and strongly in H1

0 (Ω) to some y∗ ∈ H2(Ω) ∩ H1
0 (Ω).

This implies that

∥∥∥∥ 1

un + ‖∇ yn‖2L2(Ω)

− 1

un + ‖∇ y∗‖2
L2(Ω)

∥∥∥∥
2

L2(Ω)

=
∥∥∥∥

‖∇ y∗‖2
L2(Ω)

− ‖∇ yn‖2L2(Ω)(
un + ‖∇ yn‖2L2(Ω)

)(
un + ‖∇ y∗‖2

L2(Ω)

)
∥∥∥∥
2

L2(Ω)

≤ C
(‖∇ y∗‖2L2(Ω)

− ‖∇ yn‖2L2(Ω)

)2 → 0

for n → ∞. The estimate employs that the terms in the denominator are bounded
below by 1. Consequently,

− �yn = 1

un + ‖∇ yn‖2L2(Ω)

= 1

un + ‖∇ y∗‖2
L2(Ω)

+ rn (A.1)

holds with some ‖rn‖L2(Ω) → 0. Since
(
un + ‖∇ y∗‖2

L2(Ω)

)−1 oscillates between

the values
(
1 + ‖∇ y∗‖2L2(Ω)

)−1 and
(
3 + ‖∇ y∗‖2L2(Ω)

)−1, the right-hand side of

(A.1) converges weakly in L2(Ω) to the function 1
2

(
1 + ‖∇ y∗‖2L2(Ω)

)−1 + 1
2

(
3 +

‖∇ y∗‖2L2(Ω)

)−1. The passage to the limit implies

−�y∗ = 1

2

( 1

1 + ‖∇ y∗‖2
L2(Ω)

+ 1

3 + ‖∇ y∗‖2
L2(Ω)

)
.
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Now if S(ū) = ȳ = y∗ held, then

−�y∗ = 1

2

( 1

1 + ‖∇ y∗‖2
L2(Ω)

+ 1

3 + ‖∇ y∗‖2
L2(Ω)

)
= 1

2 + ‖∇ y∗‖2
L2(Ω)

would follow. This, however, is impossible due to the strict convexity of the function
(0,∞) � t �→ 1/

(
t + ‖∇ y∗‖2

L2(Ω)

)
.

Consequently, ȳ �= y∗ andwe obtain that un⇀u in L2(Ω) does not imply S(un) →
S(u) in any meaningful sense. Therefore, the proof of Theorem 2.5 of [8] cannot be
correct, since it implies the weak L2-continuity of the control-to-state map. The issues
appears to be in step four of the proof on page 779, where the authors conclude that∑

i∈In
λi ai (xm) − â(xm) ≥ δ

holds for all n ∈ N. This, however, is not the case, and therefore, the desired contra-
diction is not obtained.

Given the lack of weak L2-continuity of the control-to-state operator, the direct
method of the calculus of variations cannot be applied in the setting of [8], where only
an L2-cost term is present.We overcome this issue by choosing a stronger norm for the
control cost term, so that we can use the strong L2-continuity of the control-to-state
map proved in Theorem 2.6.
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