
Vol.:(0123456789)

Computational Optimization and Applications (2022) 83:593–614
https://doi.org/10.1007/s10589-022-00405-8

1 3

A generalized shortest path tour problem with time 
windows

L. Di Puglia Pugliese1 · D. Ferone2 · P. Festa3 · F. Guerriero2 

Received: 15 December 2021 / Accepted: 25 July 2022 / Published online: 10 August 2022 
© The Author(s) 2022

Abstract
This paper studies a generalization of the shortest path tour problem with time win-
dows (GSPTPTW). The aim is to find a single-origin single-destination shortest path, 
which has to pass through an ordered sequence of not necessarily disjoint node-sub-
sets. Each node has a time window for each node-subset to which it belongs. We 
investigate the theoretical properties of GSPTPTW and propose a dynamic program-
ming approach to solve it. Numerical results collected on a large set of new bench-
mark instances highlight the effectiveness of the proposed solution approach.

Keywords Generalized shortest path tour problem · Disjoint subsets · Time 
windows · Dynamic programming

1 Introduction

The Shortest Path Tour Problem (SPTP) is a constrained version of the Shortest 
Path Problem (SPP), and it was firstly introduced in [1]. Disjoint subsets of nodes 
T1,… , TN characterize SPTP, which aims at finding a shortest path from a source 
node s to a destination node d, where a solution path must visit the disjoint subsets 
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Tk, k = 1,… ,N according to their order. A subset Tk is said to be visited if at least 
one node belonging to Tk appears in a solution path. In [2], the author proved that 
SPTP is polynomially solvable by reducing it to SPP. Later, a dynamic program-
ming algorithm and a “depth-first tour search algorithm” were proposed in [3, 4], 
respectively.

The scientific literature addressed several variants of SPTP. Forward SPTP was 
studied in [5, 6], in which it is possible to visit a node in Tk if and only if at least 
a node of each previous subsets T1,… , Tk−1 has been already visited. This variant 
of the problem remains solvable in polynomial time. The Constrained SPTP was 
studied for the first time in [7]. The authors proved the NP-hardness of Constrained 
SPTP. In this variant, each arc must appear at most once in any feasible solution 
path. Mathematical formulations and solution approaches for this version of SPTP 
have been proposed in [8–10]. Recently, [11] proposed a branch-and-price approach, 
too. SPTP with Time Windows (SPTPTW) was addressed for the first time in [12]. 
The authors proved that the problem is NP-hard and proposed a dynamic program-
ming labeling-based algorithm for its solution.

SPTPTW shares some similarities, depicted in the following, with the shortest 
path problem with time windows (SPPTW) and the generalized vehicle routing 
problem with time windows (GVRPTW) [13]. SPPTW, introduced in [14], aims at 
finding a path from a source to a destination node with the smallest cost, such that 
each node visited along the path is served within its time window. Given its practical 
and theoretical importance, SPPTW has attracted significant attention from many 
researchers over the years [15] and both exact and heuristic strategies have been pro-
posed for its solution (see, e.g., [16–19]). As for SPTPTW, only the nodes belonging 
to the subsets Tk, k = 1,… ,N have to be served within their time window. GVRPTW 
is a particular instance of the generalized vehicle routing [20], where the set of nodes 
is partitioned into sets of customers, and each set must be visited (served) exactly 
once. Differently from SPTPTW, the sets are not ordered and the decisions involved 
by the solution process of the problem are both node selection and node sequencing.

In this paper, we extend the work [12] related to SPTPTW. In particular, we study 
a generalization of SPTPTW (GSPTPTW), where the assumption on the disjoint 
subsets Tk , k = 1,… ,N is relaxed. Thus, we admit that a node v can belong to dif-
ferent subsets Tk with possibly different time windows. It follows that node v can be 
used to serve any of the subsets it belongs to within the associated time window. 
Note that GSPTPTW is not a forward variant.

GSPTPTW models several real situations in which a node can belong to several 
subsets. Different events, like exhibitions or live performances, can be held in the 
same physical place. On the one hand, such events can take place at different hours, 
and hence the same place (node) is included in different subsets, that represent dif-
ferent time slots of the time horizon. On the other hand, the interesting events can 
take place in parallel in the same place, hence this place (node) is included in differ-
ent subsets with the same time window. In this case, the subsets represent different 
interesting events. Another application is photographic tour planning. In this con-
text, the sun position can either positively or negatively influence the quality of the 
photos, e.g., it could be better to shoot during either sunrise or sunset. Each type of 
landscape can be modeled as a subset Tk , and each node belonging to Tk represents 
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the different best shooting hours. Moreover, a courier has to deliver parcels to sev-
eral customers with different time availability in the same place (for example in a 
condominium). In this case, the subsets represent the possible availability of the cus-
tomers to pick up the parcels, modeled as time windows, and the nodes represent the 
customers. Thus, a node can be included into several subsets, modeling the different 
time availability of the customer to pick up the parcels. One can also consider a 
courier that has to deliver parcels to several intermediate depots of the same com-
pany. Each depot can pick up the parcels in different time slots. Thus, we can model 
the different time slots as subsets Tk and put into each subset the depots open in the 
associated time slot. The courier chooses the depot to deliver the parcels among all 
the open ones for each time slot.

The contribution of the paper is threefold. (1) We analyze the theoretical proper-
ties of GSPTPTW, proving that GSPTPTW has the same complexity as SPTPTW. It 
is a non-trivial result since relaxing the assumption on disjoint subsets the general-
ized problem maintains the same complexity of the more constrained variant. (2) 
We retrieve a polynomial procedure to transform any instance of GSPTPTW to an 
instance of SPTPTW. This result allows us to use solution approaches developed for 
SPTPTW to address GSPTPTW. (3) We define a solution strategy to directly solve 
GSPTPTW by exploiting a dynamic programming reformulation of GSPTPTW. The 
collected numerical results underline that solving GSPTPTW directly, by using the 
proposed dynamic programming approach, is more efficient than solving the corre-
sponding SPTPTW, with the state-of-the-art algorithm proposed in [12].

Hence, the present work completes the theoretical study carried out for the SPT-
PTW in [12]. Indeed, this paper and [12] represent together an overall overview on 
both theoretical and application aspects related to SPTP with time restrictions.

The paper is organized as follows. In Sect. 2, the problem is formally described. 
Section 3 presents the proposed solution approach based on dynamic programming. 
Section 4 shows the computational results carried out considering several network 
topologies. Finally, Sect. 5 concludes the paper providing some directions for future 
research.

2  The generalized shortest path tour problem with time windows

GSPTPTW is defined on a directed graph G(V, A), where V is the set of n nodes and 
A = {(i, j) ∈ V × V|i, j ∈ V ∧ i ≠ j} is the set of m arcs. Let s, d ∈ V  be the source 
and the destination nodes, respectively. Subsets Tk ⊆ V , k = 1,… ,N are given. Let 
T =

⋃N

k=1
Tk ⊆ V  be the set of nodes included in at least one subset Tk, k = 1,… ,N . 

In SPTP and its variant with time windows, the subsets Tk are disjoint, i.e., 
Th ∩ Tl = �,∀h, l = 1,… ,N, h ≠ l . In GSPTPTW the disjunction constraint is 
relaxed, and this means that a node can belong to several subsets Tk . Without loss of 
generality, we assume that T1 = {s} and TN = {d}.

A non-negative cost cij and a non-negative transit time tij are associated with each 
arc (i, j) ∈ A . A service time sk

i
 and a time window 

[
ek
i
, lk
i

]
 is associated with each 
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node i ∈ Tk , where ek
i
 and lk

i
 are respectively the earliest and the latest feasible arrival 

time to node i when it is used to serve subset Tk.
Given two distinct nodes i1 and iv , a path �i1iv = ⟨i1,… , iv⟩ is an ordered sequence 

of nodes from i1 to iv , such that 
(
il, il+1

)
∈ A, l = 1,… , v − 1 . The cost c

(
�i1iv

)
 of the 

path �i1iv is defined as the sum of the cost associated with its arcs, i.e., 

c
�
�i1iv

�
=
∑v−1

l=1
cilil+1.

GSPTPTW aims at finding a path �∗
sd

 from the source node s ∈ V  to the destina-
tion node d ∈ V  in the directed graph G with the smallest cost. An optimal path 
�∗
sd

 must visit sequentially the subsets Tk, k = 1,… ,N . We note that the subsets 
Tk, k = 1,… ,N , must be visited in exactly the same order in which they are defined.

Let �il be the arrival time at node il, l = 1,… , v , a path �sd is said to be a feasible 
solution for GSPTPTW if it satisfies the following requirements:

Nodes igk , k = 1,… ,N , are called service nodes, since they are used to serve the 
subsets Tk, k = 1,… ,N , respectively. A subpath �igk igk+1 , k = 1,… ,N − 1 , is part of a 
feasible path �sd and is used to connect service nodes igk and igk+1 . On the one hand, it 

can be composed of not-service nodes, i.e., �igk igk+1 =
⟨
igk , u,… , igk+1

⟩
 . On the other 

hand, not-service nodes are not needed to connect igk and igk+1 , i.e., 

�igk igk+1
=
⟨
igk , igk+1

⟩
.

Equation (2) force each service node belonging to a path �sd to be visited within 
the time window (waiting at a service node is allowed). In a feasible path, the nodes 
can be visited more than once. However, N nodes, including the source and the des-
tination, must be service nodes, one for every subset Tk, k = 1,… ,N and the order 
imposed by the definition of the subsets must be guaranteed. Thus, a node i, belong-
ing to some subset Tk , can be present in a feasible path �sd as either a service node 
or a not-service node. In addition, since a node can be part of several subsets Tk , a 
feasible path can be composed of repeated service nodes. Indeed, a node can be used 
to serve any of the subsets to which it belongs.

Given a path �si , let

• k be the index of the first subset Tk not served in �si;
• i− be the node that precedes node i in �si;
• Ψ(j, q) be a binary predicate indicating whether or not node j serves the subset Tq 

in �si.

Starting with �s = 0 , the arrival time to a service node igk ∈ �si is defined as follows:

(1)
∃ g1,… , gN ∶ g1 ≤ g2 ≤ … ≤ gN ,

ig1 ∈ �sd ∩ T1, ig2 ∈ �sd ∩ T2,… , igN ∈ �sd ∩ TN ,

(2)ek
igk

≤ �igk
≤ lk

igk
,∀k = 1,… ,N.
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whereas, the arrival time to a not-service node i is defined by the following equation:

When a node i ∈ �sd can be used to serve a subset Tk , we have to mark i as either 
a service node or a not-service node. In the former case, we have to consider time 
window constraint and service time calculating �i as Eq.  (3). If node i is marked 
as not-service node, then Eq. (4) is used to determine the arrival time �i . Note that 
when a node i ∈ T  is used as not-service node, the time window is irrelevant. More-
over each node i ∈ V ⧵ T  is always a not-service node since it does not belong to 
any subset Tk, k = 1,… ,N.

For the sake of clarity, Fig. 1 depicts a toy GSPTPTW instance with s = 1 and 
d = 8 . In this simple example, all transit times and all service times are set equal 
to 1. The costs are reported on the arcs. The path �1

18
= ⟨1, 2, 3, 4, 5, 8⟩ is a feasible 

path tour; the node 2 is the service node for T2 and T3 , and the node 3 is the service 
node for T4 . The cost of �1

18
 is c(�1

18
) = 10 . The instance presents a second feasible 

path tour �2
18

= ⟨1, 2, 3, 4, 6, 7, 5, 8⟩ . This path is a feasible path tour, because the 
nodes 2, 6 and 5 are selected as service nodes for sets T2 , T3 and T4 , respectively. The 
cost of �2

18
 is c(�2) = 8 , and the solution is optimal.

It is worth observing that node 2 belongs to two consecutive sets, i.e., T2 and T3 . 
Hence node 2 can be used as service node for both sets. It exists a feasible solution 
to GSPTPTW for the instance reported in Fig. 1 that is �3

18
= ⟨1, 2, 2, 3, 4, 6, 7, 5, 8⟩ 

where node 2 is a service node for both T2 and T3 and node 5 is the service node for 
set T4 , with cost c(�3) = 8.

Since GSPTPTW is a generalization of SPTPTW, each SPTPTW instance is also 
a particular GSPTPTW instance, where each node belongs to at most one subset. By 
this consideration, it follows that the proof in [12] to assert the NP-hardness of SPT-
PTW still remains valid for GSPTPTW. Therefore, the following result holds:

Theorem 1 GSPTPTW is an NP-hard problem.

(3)�igk
= max

{
ek
igk
, �k

i−
gk

+ ti−
gk
igk

+ Ψ(i−
gk
, k − 1) ⋅ sk−1

i−
gk

}
;

(4)�i = �i− + ti−i + Ψ(i−, k − 1) ⋅ sk−1
i−

.

Fig. 1  A toy example
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In addition, we can prove that GSPTPTW is not harder than SPTPTW.

Theorem 2 GSPTPTW can be polynomially reduced to SPTPTW. Starting from an 
instance of GSPTPTW, i.e., IG

⟨
V ,A,

{
Tk
}N

k=1

⟩
 it is possible to define an instance 

I

⟨
V �,A�,

{
T �
k

}N

k=1

⟩
 of SPTPTW. The following two properties are verified. 

1. Subsets T �
k
, k = 1,… ,N are disjoint sets.

2. There exists a feasible path �sd for GSPTPTW if and only if there exists a path �′
sd

 
for SPTPTW such that c(��

sd
) = c(�sd).

Proof First, we describe the steps to construct an instance I
⟨
V �,A�,

{
T �
k

}N

k=1

⟩
 start-

ing from IG
⟨
V ,A,

{
Tk
}N

k=1

⟩
 . Let K(v) be the set of indices k such that v ∈ Tk and let 

T = {v ∈ T ∶ |K(v)| > 1} . The following operations can be performed:

• for each node v ∈ T  , generate |K(v)| nodes, i.e., V � = V ∪ {vk}v∈T,k∈K(v)
;

• set e�k
vk
= ek

v
 ; l�k

vk
= lk

v
 ; s�k

vk
= sk

v
, ∀v ∈ T, k ∈ K(v);

• A� = A ∪ {(v, vk), (vk, v)}v∈T,k∈K(v) with cvvk = cvkv = tvvk = tvkv = 0;
• T �

k
= Tk ∪ {vk} ⧵ {v}, ∀v ∈ T ∩ Tk, k ∈ K(v).

It follows that the dimension of the instance I  is greater than that of IG . In particu-
lar, we have

• �V �� = �V� +∑
v∈T

�K(v)�;
• �A�� = �A� + 2

∑
v∈T

�K(v)�;
• |T �

k
| = |Tk|.

It is worth observing that the new nodes vk are linked to the graph through arc (v, vk) 
and (vk, v) . This means that to reach node vk , node v must be traversed.

Property 1 follows. Indeed, each node v such that |K(v)| > 1 is not present 
in any T �

k
, k ∈ K(v) and the duplicated nodes vk of v are added to the associated 

T �
k
, ∀k ∈ K(v).
Property 2 can be proved as follows. 

⇒  Given a feasible path �sd for GSPTPTW, it is possible to construct a path �′
sd

 in 
G�(V �,A�) , such that c(��

sd
) = c(�sd) . Let Ks(v) be the set of indices k for which 

node v ∈ Tk is a service node for the path �sd . A feasible path �′
sd

 for the con-
structed instance of SPTPTW can be obtained by adding subpaths ⟨v, vk, v⟩ , for 
all k ∈ Ks(v) . Node v is marked as not-service node, since v ∉

⋃N

k=1
T �
k
 , and 

the duplicated nodes vk,∀k ∈ Ks(v) are marked as service nodes for the sub-
sets T �

k
,∀k ∈ Ks(v) . Since tvvk = tvkv = 0 , path �′

sd
 is feasible with respect to time 
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window constraints. Thus, paths �sd and �′
sd

 represent the same feasible solu-
tion. In addition, being c

�⟨v, vk, v⟩
�
= 0 , it follows that c(��

sd
) = c(�sd).

⇐  Let �′
sd

 be a feasible path in G�(V �,A�) with cost c(��
sd
) , and let vk be the service 

node for T ′
k
 in the path �′

sd
.

  For each k = 1,… ,N , vk may or may not belong to Tk in G. In the first 
case, vk is a service node also for Tk . In the second case, vk ∉ Tk because 
there exists in G a node v with |K(v) > 1| and vk has been created dur-
ing the construction of the instance I. By construction, the path �′

sd
 must 

include the sub-path �vk = ⟨v, vk, v⟩ , that has both cost and travel time 
equal to 0. Therefore, the path �sd can be obtained replacing �vk with the 
node v that is selected as service node for Tk . The path �sd remains feasi-
ble with respect to the edge traversal constrains, since we are traversing a 
subset of edges of �′

sd
 . Moreover, it remains feasible respect to the time 

windows, since the service time of v is equal to the service time of vk and 
the travel time of �vk is 0. Finally, c(��

sd
) = c(�sd) because c(�vk ) = 0.

  ◻
Figure  2 reports the graph G′ obtained by applying the construction procedure 

described in Theorem 2 to the toy instance of Fig. 1. Nodes 22 ( 62 ) and 23 ( 63 ) are the 
copies of node 2 (6) associated with subsets T ′

2
 and T ′

3
 , respectively. The dotted arcs 

are those included to connect node 2 (6) with its copies characterized by both cost 
and time equal to zero. The optimal solution is �∗

18
= ⟨1, 2, 22, 2, 3, 4, 6, 63, 6, 7, 5, 8⟩ , 

with service nodes {1, 22, 63, 5, 8} and cost c(�∗
18
) = 8.

From Theorems 1 and 2, the following result holds.

Fig. 2  The graph obtained by applying Theorem 2 to the toy example depicted in Fig. 1
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Theorem 3 GSPTPTW belongs to the same class of complexity of SPTPTW.

Theorem 3 is a strong result. Indeed, it claims that relaxing the disjoint assump-
tion on the subset Tk, k = 1,… ,N allows to maintain the same complexity. Thus, 
assuming that Tk, k = 1,… ,N , are not disjoint subsets does not compromise the 
computational effort for solving SPTP and its variants.

3  Generalized dynamic programming

We represent the solution space of GSPTPTW as a state-space S(Y ,Γ) composed of a set 
of states Y and a set of transitions Γ . Each state yh

i
∈ Y corresponds to a feasible subpath 

�h
si
 from the source node s to node i ∈ V . The superscript h means that we consider the 

h− th subpath to reach node i ∈ V . The state yh
i
(�h

si
, ch

i
, �h

i
, rh

i
) is associated with the sub-

path �h
si
 with cost ch

i
= c(�h

si
) , arrival time �h

i
 , and rh

i
= k which represents the index of 

the last served subset Tk along the subpath �h
si
 . A transition �hq

ij
=
⟨
yh
i
, y

q

j

⟩
∈ Γ exists if 

(i, j) ∈ A and both conditions (1) and (2) are satisfied. In particular, the transitions are 

enabled by control �s

(
�
hq

ij

)
 that allows transition �hq

ij
 with j marked as service node; and 

control �ns

(
�
hq

ij

)
 that allows transition �hq

ij
 with j marked as not-service node.

Definition 1 Control �s

(
�
hq

ij

)
 is a boolean function that allows the existence of 

transition �hq
ij

 . In particular, if the following conditions hold

then �s

(
�
hq

ij

)
= true and transition �hq

ij
∈ Γ , otherwise �s

(
�
hq

ij

)
= false and �hq

ij
∉ Γ.

Definition 2 Control �ns

(
�
hq

ij

)
 is a boolean function that allows the existence of 

transition �hq
ij

 . In particular, if (i, j) ∈ A , then �ns

(
�
hq

ij

)
= true and transition �hq

ij
∈ Γ , 

otherwise �ns

(
�
hq

ij

)
= false and �hq

ij
∉ Γ.

Let Ȳ  be the set of generated states and let Mj be the number of states associated 
with node j. Algorithm 1 depicts the steps to generate the state-space S(Y ,Γ) . To 
handle the case where a node belongs to two consecutive sets, Lines 2–9 insert null 
cost loops. The introduction of these loops allows to obtain tour of the form �3

18
 for 

the instance reported in Fig. 1. 

(5)(i, j) ∈ A,

(6)j ∈ Trh
i
+1,

(7)�
q

j
= max

{
e
rh
i
+1

j
, �h

i
+ tij

}
≤ l

rh
i
+1

j
,
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It is worth observing that the construction of the state-space S(Y ,Γ) implicitly 
determines all feasible solutions. Thus, among all final states, i.e., those associated 
with the destination node d, an optimal path �∗

sd
 is associated with that at minimum 

cost, i.e., �∗
sd
= argminyh

d
∈Y

{
ch
d

}
 . It follows that Algorithm  1 implicitly solves 

GSPTPTW. Thus, it can be used to determine an optimal solution �∗
sd

 to GSPTPTW.
Algorithm 1 has exponential time and exponential space complexity. However, 

not all states associated with feasible solutions have to be generated, rather only 
those with the potential of generating an optimal solution. In the following, we pre-
sent some state-space reduction techniques that have a positive impact, as shown 
by the computational results, on the practical behavior of the proposed solution 
approach.

3.1  State‑space reduction

The state-space S(Y ,Γ) can be reduced by eliminating states whose transitions 
do not allow to conduct to potentially optimal final states. This reduction can be 
done by applying the dominance rule proposed by [12], given below for the sake of 
completion.

Definition 3 Given two states yh
i
 and yq

i
 associated with subpath from node s to 

node i. State yh
i
 dominates state yq

i
 if the following conditions hold

and at least one inequality is strictly satisfied.

The dominated states are not generated.

Definition 4 Two states yh
i
 and yq

i
 are said to be equivalent if ch

i
= c

q

i
 , �h

i
= �

q

i
 , and 

rh
i
= r

q

i
.

If a state yq
i
 is generated and there exists an equivalent state yh

i
 , then the state yq

i
 

is not stored in Y. This rule does not compromise the optimality of the final solu-
tion determined. Indeed, the same feasible sequence of controls and states is gener-
ated starting from equivalent states. In addition, having the same cost, also the final 
states, associated with complete paths, present the same cost. It is also worth to note 
that discarding equivalent paths allows to prevent cycling on zero cost and zero time 
cycles, if any.

In addition, we can extend the cost and time boundings proposed in [12].

Cost bounding Given an upper bound Λ on the optimal solution cost c(�∗
sd
) , all states 

yh
i
 such that ch

i
≥ Λ can not be included in Y. The upper bound Λ can be computed 

ch
i
≤ c

q

i
,

�h
i
≤ �

q

i
,

rh
i
≥ r

q

i
,
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by solving the generalized SPTP (GSPTP) where the transit and service times are 
minimized and the time window constraints are removed. In order to improve the 
cost bounding, given a state yh

i
 , we can compute a valid lower bound on the cost of 

a partial path from node i to node d, named lbh
i
 . In particular, it represents the mini-

mum shortest path tour cost to reach the destination node d starting from i. In this 
case, a state yh

i
 can be omitted if ch

i
+ lbh

i
≥ Λ . The lower bound lbh

i
 is computed in 

what follows

where ci,k
SPT

 is the minimum cost associated with the generalized shortest path tour 
without time window constraints from node i serving Tk to node d, considering the 
subsets Tk, Tk+1,… , TN , and cij

SP
 is the cost of the shortest path from node i to node j.

It is worth observing that both ci,k
SPT

 and cij
SP

 can be computed in polynomial time 
before applying Algorithm 1. Indeed, GSPTP can be polynomially reduced to SPTP 
by applying Theorem  2, whereas cij

SP
 is computed by applying any algorithm for 

SPP. Even though ci,k
SPT

 and cij
SP

 can be computed in polynomial time, it is necessary 
to determine ci,k

SPT
 for each node i ∈ T  and k ∈ K(i) , and cij

SP
 for each pair of nodes 

i, j ∈ V .

Time bounding Let tij
SP

 be the shortest transit time from node i to node j. A state yh
i
 

can not be generated if for all j ∈ Trh
i
+1 , the associated time windows are violated, 

i.e., the state yh
i
 is omitted if 𝜏h

i
+ t

ij

SP
> l

rh
i
+1

j
,∀j ∈ Trh

i
+1.

Algorithm  2 depicts the steps of the proposed solution approach for solving 
GSPTPTW.

(8)lbh
i
=

⎧
⎪⎨⎪⎩

c
i,rh

i

SPT
, if i is marked as service node for Trh

i
;

minj∈T
rh
i
+1

�
c
ij

SP
+ c

j,rh
i
+1

SPT

�
, otherwise,
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3.2  A∗ implementation

A∗ technique [21] is widely used to address constrained and multiobjective short-
est path problems [22–24]. In this technique, the cost of each state is evaluated by 
considering an approximate extension that allows to evaluate the cost of a complete 
solution starting from the partial path associated with the state. The cost of each 
state yh

i
 is defined as f h

i
= ch

i
+ gh

i
 , where gh

i
 is the approximation cost from node i to 

node d. Hence, A ∗ technique allows to better identify states that have the potential to 
generate the optimal sequence of controls and states. This behavior is observed also 
for the problem at hand (see Sect. 4.3.1). In our context, a valid approximation cost 
gh
i
 is represented by the cost of a shortest path tour solution, i.e., gh

i
 can be set equal 

to lbh
i
 computed in (8).

4  Computational results

We evaluate the performance of the proposed generalized dynamic programming 
approach with the aim of showing how the characteristics of the addressed problem 
influence the behavior of the proposed solution strategy. We compare the solution 
approach GDPB described in Algorithm 2 for GSPTPTW with DPB, the labelling 
procedure with cost and time bounding proposed in [12] for solving SPTPTW. In 
particular, starting from an instance of GSPTPTW, we apply Theorem 2 to construct 

Table 1  Characteristics of the 
random networks

Problem Nodes Arcs Density

R1 300 1500 5
R2 300 3000 10
R3 300 4500 15
R4 500 2500 5
R5 500 5000 10
R6 500 7500 15
R7 1000 5000 5
R8 1000 10,000 10
R9 1000 15,000 15

Table 2  Characteristics of the 
grid networks

Problem Dimension Nodes Arcs

G1 25 × 25 625 2400
G2 30 × 30 900 3480
G3 50 × 50 2500 9800
G4 25 × 50 1250 4850
G5 30 × 60 1800 7020
G6 50 × 100 5000 19700
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an equivalent instance of SPTPTW, then the DPB is used to solve the latter. We also 
analyze the benefit of using A ∗ technique, proved to be efficient for several instances 
of SPP, and SPTPTW. The algorithms that implement A ∗ technique are referred in 
the sequel as GDPBA∗ and DPBA∗.

4.1  Implementation details

All the algorithms were implemented in C++, compiled with g++ 9.4.0 
under Ubuntu 20.04 using the flag -O3, and the experiments were run on a 
INTEL i5-6400@2.70 GHz processor with 8 GB of RAM. The Y set was imple-
mented with the std::priority_queue of the standard C++ library, using a 
std::vector as container.

For DPB and GDPB, the comparison value is the label cost ch
i
 , meanwhile for 

DPBA∗ and GDPBA∗ the comparison value is the label cost plus the lower bound 
defined in Eq. (8), i.e., ch

i
+ lbh

i
 . In both cases, the top of the heap stores the label 

with the minimum comparison value.
In addition to Y, to quickly access the labels of each node i, an n-dimensional 

array D of std::list is used to store pointers to the labels associated with each 
node. Therefore, when a new state yh

i
 is generated for the node i, the list D[i] is 

scanned to check if it exists a label that dominates yh
i
 . If it is not the case, D[i] is 

scanned again to mark as dominated all the labels that are dominated by yh
i
 . These 

dominated labels are removed by D[i] (in constant time since D[i] is a std::list), 
but they are not removed from Y. Indeed, when the algorithm extracts a label from 
Y, it checks if the label is marked as dominated and, in this case, it discards the label 
without analyzing the forward star.

4.2  Instances generation

The instances are constructed from the benchmarks for SPTP proposed by [3], who 
considered three topologies of networks: complete, random, and grid networks. 
More specifically, the set of networks proposed in [3] is composed of three complete 
networks, characterized by 100, 300, and 500 nodes, respectively; nine random net-
works; and six grid networks, whose characteristics (i.e., number of nodes, number 
of arcs, and density defined as the ratio between the number of arcs and the number 
of nodes) are reported in Tables 1 and 2, respectively.

Table 3  Comparison between 
the average performance 
considering A ∗ at varying the 
networks topologies

DPB vs DPBA∗ GDPB vs GDPBA∗

Speed up l Speed up l

Complete 1.08 1.06 1.10 1.09
Grid 2.04 52.34 1.55 58.23
Random 1.07 1.47 1.06 1.77
AVG 1.56 9.09 1.25 9.48
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A number of 12 instances are built for each network considering different number 
of subsets N, i.e., N ∈ {5, 10, 15, 20} , and different number of nodes belonging to 
each subset, i.e., |Tk| =

⌊
�

n

N

⌋
 with � ∈

{
1

3
,
1

2
, 1
}

 . In order to generate the instances 
for GSPTPTW, we modify the instances for SPTP considering different parameters 
%T  and %n , where

• %T ∈ {20, 30, 40} defines the percentage of subsets T whose nodes belong to any 
other subset.

• %n ∈ {20, 45, 60} defines the percentage of nodes shared among the subsets T.

In particular, the conversion procedure takes as input an instance of SPTP and gives 
as output an instance of GSPTPTW applying the following modifications:

• for all h = 2,… ,N − 1 , randomly pick %n⋅|Th|
100

 nodes of Th with uniform probabil-
ity, and insert them in %T⋅N

100
 different subsets Ti, i ≠ h;

• generate time windows applying the procedure used in [12] for SPTPTW.

The parameters %T and %n characterize GSPTPTW instances. Indeed, for %T = %n 
= 0 , GSPTPTW instances are actually instances of SPTPTW. Thus, the higher the 
value of %T and %n, the higher the difference between GSPTPTW and SPTPTW 
instances.

4.3  Numerical results

In this section, we present the numerical results collected on the considered 
instances. We first analyze the effectiveness of using A ∗ technique (DPBA∗ and 
GDPBA∗ ) with respect to the Dijkstra-like rule (DPB and GDPB). Then, we show 
the behavior of the proposed algorithms with respect to %T and %n. The behavior of 
the algorithms is evaluated by considering the following parameters:

Table 4  Numerical results comparing the algorithms with and without A ∗ technique

tp ta t #l tp ta t #l

GDPB GDPBA∗

Complete 5.34 27.48 32.82 19339.37 5.45 24.46 29.91 17646.60
Grid 6.02 6.24 12.26 107088.02 7.55 0.37 7.92 1838.97
Random 0.44 0.15 0.59 2660.77 0.44 0.12 0.55 1502.22
AVG 3.93 11.29 15.22 43029.39 4.48 8.32 12.80 6995.93

DPB DPBA∗

Complete 6.88 27.84 34.72 38593.49 6.84 25.20 32.04 36305.68
Grid 16.55 19.55 36.10 233130.99 16.59 1.13 17.72 4453.53
Random 1.06 0.47 1.53 6945.48 1.06 0.37 1.43 4711.58
AVG 8.16 15.95 24.12 92889.99 8.16 8.90 17.06 15156.93



607

1 3

A generalized shortest path tour problem with time windows  

• tp, the execution time, in seconds, required by the preprocessing. It represents 
the time needed to compute the bounds for GDPB and GDPBA∗ , whereas, for 
DPB and DPBA∗ , tp is the time to construct the graph by following Theorem 2 
and the time to compute the bounds;

• ta, the execution time, in seconds, of the dynamic programming algorithm;
• t, the overall execution time, i.e., t = tp + ta;
• #l, the number of examined states/labels.

4.3.1  Evaluation of A ∗ technique

Preliminaries Before to examine in details the numerical results considering tp, ta, 
t, and #l, we give an overview of the effectiveness in using A ∗ techniques at vary-
ing the network topologies. In particular, in Table 3 we shows the speed up and the 
number of labels generated without A ∗ over those generated when A ∗ is considered 
(column l).

Table  3 highlights that the highest benefit obtained by using A ∗ technique is 
observed for grid networks, followed by complete and random ones. In particular, 
for grid networks, a huge reduction in the number of labels examined is observed. 
This behavior influences the overall execution time. Indeed, the speed up is 2.04 and 
1.55 for DPBA∗ and GDPBA∗ , respectively.

Table 5  Average numerical results at varying %T

DPBA∗ GDPBA∗

%T tp ta t #l tp ta t #l

Complete 20 4.88 37.82 42.69 38404.45 4.10 36.42 40.52 21695.16
30 7.15 22.27 29.42 34876.04 5.61 21.78 27.39 16671.06
40 8.49 15.52 24.02 35636.56 6.62 15.19 21.81 14573.59
AVG 6.84 25.20 32.04 36305.68 5.45 24.46 29.91 17646.60

Random 20 0.70 0.22 0.93 3807.44 0.37 0.11 0.48 1636.64
30 1.07 0.36 1.43 4747.70 0.44 0.11 0.56 1463.13
40 1.39 0.52 1.92 5579.62 0.50 0.13 0.63 1406.91
AVG 1.06 0.37 1.43 4711.58 0.44 0.12 0.55 1502.23

Grid 20 10.72 1.20 11.92 4726.24 5.22 0.48 5.70 2342.29
30 18.44 1.09 19.52 4487.44 7.73 0.34 8.07 1768.11
40 20.68 1.10 21.78 4142.77 9.70 0.30 10.00 1406.52
AVG 16.61 1.13 17.74 4452.15 7.55 0.37 7.92 1838.97

AVG 20 5.43 13.07 18.51 15646.04 3.23 12.33 15.56 8558.02
30 8.88 7.90 16.79 14703.72 4.59 7.41 12.00 6634.10
40 10.19 5.72 15.90 15119.65 5.61 5.21 10.81 5795.67
AVG 8.17 8.90 17.07 15156.47 4.48 8.32 12.80 6995.93
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Detailed results Table 4 shows the average values of tp, ta, t, and #l at varying the 
network topologies. The results collected clearly show the benefit in terms of both 
execution time and number of generated labels obtained using A ∗ technique. This 
consideration is valid for both DPB and GDPB.

In particular, DPBA∗ is 1.56 times faster than DPB, on average. This behavior 
is justified by the smaller number of generated labels. Indeed, DPBA∗ shows for #l 
a value that is 9.09 times lower than the value of #l observed for DPB, on average. 
The same trend is observed for GDPBA∗ . In particular, GDPBA∗ is 1.25 times faster 
than GDPB, and the former examines 9.48 times less number of labels than the lat-
ter, on average. We observe that the A ∗ technique is more performing for DPB than 
for GDPB.

Table  4 highlights the better behavior of GDPB and GDPBA∗ with respect to 
DPB and DPBA∗ , respectively. In particular, GDPB is 1.58 times faster than DPB. 
This behavior is justified by the number of generated labels. Indeed, GDPB examines 
2.15 times less number of labels than DPB, on average. The same trend is observed 
when A ∗ is applied. In particular, GDPBA∗ is 1.33 times faster than DPBA∗ and the 
former examines 2.16 times less number of labels than those generated by DPBA∗ . 
One can readily see that the better performance of GDPB is mitigated when the A ∗ 
technique is included. However, GDPBA∗ remains the best performing algorithm.

Due to the high effectiveness of using A ∗ technique, in the following we consider 
DPBA∗ and GDPBA∗ to analyze the behavior of both the algorithms at varying %T 
and %n.

4.3.2  Evaluation at varying %T

Table 5 shows the average results, varying %T for both DPBA∗ and GDPBA∗ . For 
the sake of clarity, first, we analyze the behavior of DPBA∗ and GDPBA∗ separately, 
then we compare the two algorithms at varying the parameter %T.

Results for DPBA ∗ varying %T Table 5 shows that the higher %T, the lower t, on 
average. Indeed, the overall execution time t for %T = 40 is 1.05 and 1.16 times 
lower than that observed for %T equal to 30 and 20, respectively. We observe that 
the preprocessing phase follows an inverted trend. Indeed, it requires more compu-
tational overhead for higher value of %T, on average. In particular, tp for %T = 40 
is 1.14 and 1.87 times higher than that observed for %T equal to 30 and 20, respec-
tively. This is an expected trend since the higher %T, the higher the number of nodes 
belonging to different subsets Tk . On the one hand, this increases the number of 
bounds to be computed, on the other hand, more nodes have to be included in the 
modified graph (see Theorem 2).

The execution time required by the algorithm, i.e., ta, decreases for high value of 
%T. Indeed, ta for %T equal to 40 is 1.38 and 2.28 times lower than that observed for 
%T equal to 30 and 20, respectively.
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The decreasing of ta for higher value of %T suffices the increasing of tp, thus an 
overall reduction of computational overhead t is observed for high values of %T.

The higher %T, the higher tp. This trend is observed for each topology of net-
work. Looking at Table 5, the trend of ta at varying %T is strongly influenced by 
the results obtained on complete network. Indeed, this topology of network is the 
hardest to solve. In particular, DPBA∗ requires ta = 25.20 s, whereas, it is equal to 
0.37 and 1.13 for random and grid networks, respectively. For random networks, ta 
follows the same trend of tp, whereas, for grid networks, ta does not follow a regular 
trend varying %T. The values of ta decrease for increasing values of %T for com-
plete networks. This trend influences the average one.

Results for GDPBA ∗ at varying %T Table 5 shows that the computational overhead 
of GDPBA∗ decreases when %T increases. In particular, the value of t when %T is 
equal to 40 is 1.13 and 1.62 times lower than that observed for %T equal to 30 and 
20, respectively, on average.

This behavior is influenced by ta. In particular, ta for %T = 40 is 1.42 and 2.36 
times lower than that observed for %T equal to 30 and 20, respectively. The observed 
trend for ta is related to the number of examined labels. Indeed, GDPBA∗ examines 
for %T = 40, 1.47 and 1.14 times lower number of labels than those generated with 
%T equal to 30 and 20, respectively.

The preprocessing execution time follows the same trend observed for DPBA∗ . 
Indeed, tp for %T = 40 is 1.22 and 1.73 times higher than that observed for %T 

Table 6  Average numerical results varying %n

DPBA∗ GDPBA∗

%n tp ta t #l tp ta t #l

Complete 30 5.05 30.27 35.33 34473.55 4.23 29.51 33.74 19281.23
45 6.90 23.01 29.91 35281.75 5.45 22.27 27.72 17038.40
60 8.57 22.33 30.90 39161.75 6.66 21.61 28.27 16620.19
AVG 6.84 25.20 32.04 36305.68 5.45 24.46 29.91 17646.60

Random 30 0.72 0.20 0.92 3840.78 0.37 0.10 0.47 1426.10
45 1.03 0.36 1.39 4769.10 0.44 0.12 0.55 1506.55
60 1.42 0.55 1.97 5524.87 0.50 0.14 0.64 1574.03
AVG 1.06 0.37 1.43 4711.58 0.44 0.12 0.55 1502.23

Grid 30 11.04 1.03 12.08 4467.88 5.42 0.41 5.83 2096.85 [t]
45 17.07 1.00 18.07 4190.53 7.43 0.32 7.75 1697.53
60 21.74 1.36 23.09 4704.46 9.80 0.40 10.20 1722.54 [b]
AVG 16.62 1.13 17.75 4454.29 7.55 0.37 7.92 1838.97

AVG 30 5.60 10.50 16.11 14260.74 3.34 10.01 13.35 7601.39 [t]
45 8.33 8.12 16.46 14747.13 4.44 7.57 12.01 6747.49
60 10.58 8.08 18.65 16463.69 5.66 7.38 13.04 6638.92 [b]
AVG 8.17 8.90 17.07 15157.19 4.48 8.32 12.80 6995.93
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equal to 30 and 20. We highlight that for GDPBA∗ the preprocessing refers only to 
the computation of the bounds.

The decreasing of ta for increasing values of %T is higher than the increasing of 
tp, thus an overall decreasing of t is observed for high values of %T.

The trend of tp varying %T is the same for each topology of network. Whereas, ta 
follows the average trend for both complete and grid networks. For the random ones, 
a clear trend is not observed. Since the most difficult instances to be solved are those 
based on complete networks, the average trend is influenced by the results obtained 
for the latters.

Comparing DPBA∗ and GDPBA∗ at varying %T Table 5 highlights that GDPBA∗ out-
performs DPBA∗ for each value of %T. Indeed, GDPBA∗ is 1.18, 1.39, and 1.47 
times faster than DPBA∗ for %T equals to 20, 30, and 40, respectively, on average. 
We highlight that the speed up of GDPBA∗ with respect to DPBA∗ increases for 
increasing value of %T. This is an expected trend, since the higher %T, the higher 
the difference between GSPTPTW and SPTPTW instances. Thus, the tailored algo-
rithm GDPBA∗ for the GSPTPTW behaves better than DPBA∗ applied on the SPT-
PTW instances constructed from the GSPTPTW ones.

The worst behavior of DPBA∗ is mainly due to the preprocessing phase. Indeed, 
tp for DPBA∗ is 1.68, 1.97, and 1.81 times higher that that observed by GDPBA∗ for 
%T equal to 20, 30, and 40, respectively. In addition, considering only ta, GDPBA∗ 
behaves the best. In particular, ta for GDPBA∗ is 1.06, 1.06, and 1.09 times lower 
than that observed for DPBA∗ , considering %T equal to 20, 30, and 40, respectively. 
This behavior is justified by the number of labels examined by GDPBA∗ . In par-
ticular, the latter generates, on average, 1.82, 2.21, and 2.60 times lower labels than 
those generated by DPBA∗ for %T equal to 20, 30, and 40, respectively.

The difference between the two approaches are quite impressive for grid net-
works. In particular, GDPBA∗ is 2.09, 2.41, and 2.17 times faster than DPBA∗ and 
the former examines 2.01, 2.53, and 2.94 times less labels than those generated by 
the latter for %T equal to 20, 30, and 40, respectively.

4.3.3  Evaluation at varying %n

Table 6 reports the average results at varying the parameter %n for each topology of 
network.

We first analyse the behavior of DPBA∗ and GDPBA∗ separately, then a compari-
son between the two algorithms is provided considering the values of %n.

Results for  DPBA∗ at varying %n Table  6 shows that the higher %n, the higher the 
computational overhead. Indeed, t for %n = 60 is 1.15 and 1.13 times higher than the 
value of t observed for %n equal to 45 and 30, respectively. This behavior is influ-
enced by the preprocessing time. Indeed, the higher %n, the higher tp. An inverted 
trend is observed for ta. In particular, ta shows the same value for %n equal to both 
60 and 45. Whereas, ta for %n = 30 is 1.29 times higher than ta for %n equal to 60. 
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This behavior is justified by the number of examined labels. In particular, DPBA∗ 
for %n equal to 60, examines a number of labels 1.11 and 1.15 times higher than 
those generated with %n equal to 45 and 30, respectively.

The trend of tp at varying %n is the same for each topology of network. In par-
ticular, it increases when %n increases. This is an expected trend. Indeed, for higher 
value of %n, on the one hand, a higher number of bounds have to be computed, on 
the other hand, a higher number of copies of the nodes have to be included in the 
modified graph.

The profile of ta at varying %n is different for the three topologies of networks. In 
particular, ta decreases for increases values of %n for complete networks. An clear 
trend is not observed for both random and grid networks. This behavior is related to 
the number of generated labels (see column #l of Table 6).

Results for GDPBA∗ at varying %n The overall computational overhead t seems to not 
be influenced by the value of %n. Indeed, it is not possible to drawn a trend on aver-
age. However, looking at tp and ta, Table 6 highlights a strong correlation between 
both tp and ta and %n. In particular, tp increases when %n increases. An inverted 
trend is observed for ta. The latter behavior is justified by the number of examined 
labels. Indeed, #l for %n equal to 60 is 1.01 and 1.14 times lower than the values of 
#l observed for %n equal to 45 and 30, respectively.

The average trend is influenced by the behavior of GDPBA∗ for both complete 
and grid networks. Indeed, ta increases for lower value of %n due to the increasing 
of generated labels. The trend is inverted for random networks but the average com-
putational overhead is lower than that observed for both complete and grid networks.

Comparing DPBA ∗ and GDPBA∗ at varying %n Table 6 shows the better behavior 
of GDPBA∗ than DPBA∗ , see column t. Indeed, the former is 1.07, 2.23, and 2.57 
times faster than the latter for %n equal to 30, 45, and 60, respectively, on average.

As observed in the previous sections, the preprocessing for DPBA∗ requires more 
computational overhead than that observed for GDPBA∗ , and the difference of tp 
between the two algorithms increases for increasing values of %n. This justifies the 
good behavior of GDPBA∗ for higher values of %n. However, considering only ta, 
GDPBA∗ remains the best performing algorithm. Indeed, we observe a speed up 
equal to 1.02, 1.03, and 1.03 for complete networks, 2.09, 3.04, and 3.96 for random 
networks, and 2.53, 3.12, and 3.42 for grid networks, considering values of %n equal 
to 30, 45, and 60, respectively.

4.4  Final remarks

The numerical results highlight the effectiveness of the proposed solution approach 
tailored for GSPTPTW, i.e., GDPBA∗ . For high values of both %T and %n, GSPT-
PTW instances are more demanding in terms of computational effort to be solved to 
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optimality. Whilst GDPBA∗ behaves quite similar to DPBA∗ for low values of both 
%T and %n, the former remarkably outperforms DPBA∗ for high values of both %T 
and %n.

5  Conclusions and future work

In this paper, we presented the Generalized Shortest Path Tour Problem with Time 
Windows (GSPTPTW) where the assumption on disjoint subsets Tk, k = 1,… ,N is 
relaxed. Thus, each node can belong to different subsets Tk and have a possibly dif-
ferent time window associated with each subset it belongs. We prove that GSPT-
PTW belongs to the same class of complexity of SPTPTW. This is a strong result 
since it is possible to consider any definition of subsets Tk without compromising 
the complexity. We also presented a polynomial procedure to reduce a GSPTPTW 
instance to a SPTPTW instance.

We proposed a dynamic programming algorithm for solving GSPTPTW, named 
GDPB, and extended the cost and time bounding procedures proposed in [12]. 
GDPB was compared with DPB, the labelling procedure of [12], which was used to 
solve SPTPTW instances derived from GSPTPTW instances, by applying the pro-
posed polynomial reduction procedure. In addition, we implemented an A ∗ version 
of both GDPB and DPB.

We conducted an extensive experimental phase, in order to both study the impact 
of A ∗ technique and compare the two algorithms. We considered instances generated 
from benchmarks for SPTP. The results showed that A ∗ technique strongly increases 
the efficiency of the approaches. Indeed, A ∗ speeds up both GDPB and DPB due to 
a reduction of the number of generated labels.

The numerical results reveal that GDPB outperforms DPB. This behaviour is 
justified by the lower computational overhead of both the preprocessing phase and 
the generalized dynamic programming approach. In addition, the higher the number 
of nodes belonging to different subsets, the better the performance of GDPB with 
respect to DPB.

As future work, it could be interesting to study GSPTPTW with uncertain data, 
using the concept of simheuristics [25] or robust opitmization [26, 27].
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