
Vol.:(0123456789)

Computational Optimization and Applications (2022) 83:593–614
https://doi.org/10.1007/s10589-022-00405-8

1 3

A generalized shortest path tour problem with time
windows

L. Di Puglia Pugliese1 · D. Ferone2 · P. Festa3 · F. Guerriero2 

Received: 15 December 2021 / Accepted: 25 July 2022 / Published online: 10 August 2022
© The Author(s) 2022

Abstract
This paper studies a generalization of the shortest path tour problem with time win-
dows (GSPTPTW). The aim is to find a single-origin single-destination shortest path,
which has to pass through an ordered sequence of not necessarily disjoint node-sub-
sets. Each node has a time window for each node-subset to which it belongs. We
investigate the theoretical properties of GSPTPTW and propose a dynamic program-
ming approach to solve it. Numerical results collected on a large set of new bench-
mark instances highlight the effectiveness of the proposed solution approach.

Keywords  Generalized shortest path tour problem · Disjoint subsets · Time
windows · Dynamic programming

1  Introduction

The Shortest Path Tour Problem (SPTP) is a constrained version of the Shortest
Path Problem (SPP), and it was firstly introduced in [1]. Disjoint subsets of nodes
T1,… , TN characterize SPTP, which aims at finding a shortest path from a source
node s to a destination node d, where a solution path must visit the disjoint subsets

 *	 F. Guerriero
	 francesca.guerriero@unical.it

	 L. Di Puglia Pugliese
	 luigi.dipugliapugliese@icar.cnr.it

	 D. Ferone
	 danieleferone@gmail.com

	 P. Festa
	 paola.festa@unina.it

1	 Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche, Rende, Italy
2	 Department of Mechanical, Energy and Management Engineering, University of Calabria,

Rende, Italy
3	 Department of Mathematics and Applications, University of Napoli Federico II, Naples, Italy

http://orcid.org/0000-0002-3887-1317
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-022-00405-8&domain=pdf

594	 L. Di Puglia Pugliese et al.

1 3

Tk, k = 1,… ,N according to their order. A subset Tk is said to be visited if at least
one node belonging to Tk appears in a solution path. In [2], the author proved that
SPTP is polynomially solvable by reducing it to SPP. Later, a dynamic program-
ming algorithm and a “depth-first tour search algorithm” were proposed in [3, 4],
respectively.

The scientific literature addressed several variants of SPTP. Forward SPTP was
studied in [5, 6], in which it is possible to visit a node in Tk if and only if at least
a node of each previous subsets T1,… , Tk−1 has been already visited. This variant
of the problem remains solvable in polynomial time. The Constrained SPTP was
studied for the first time in [7]. The authors proved the NP-hardness of Constrained
SPTP. In this variant, each arc must appear at most once in any feasible solution
path. Mathematical formulations and solution approaches for this version of SPTP
have been proposed in [8–10]. Recently, [11] proposed a branch-and-price approach,
too. SPTP with Time Windows (SPTPTW) was addressed for the first time in [12].
The authors proved that the problem is NP-hard and proposed a dynamic program-
ming labeling-based algorithm for its solution.

SPTPTW shares some similarities, depicted in the following, with the shortest
path problem with time windows (SPPTW) and the generalized vehicle routing
problem with time windows (GVRPTW) [13]. SPPTW, introduced in [14], aims at
finding a path from a source to a destination node with the smallest cost, such that
each node visited along the path is served within its time window. Given its practical
and theoretical importance, SPPTW has attracted significant attention from many
researchers over the years [15] and both exact and heuristic strategies have been pro-
posed for its solution (see, e.g., [16–19]). As for SPTPTW, only the nodes belonging
to the subsets Tk, k = 1,… ,N have to be served within their time window. GVRPTW
is a particular instance of the generalized vehicle routing [20], where the set of nodes
is partitioned into sets of customers, and each set must be visited (served) exactly
once. Differently from SPTPTW, the sets are not ordered and the decisions involved
by the solution process of the problem are both node selection and node sequencing.

In this paper, we extend the work [12] related to SPTPTW. In particular, we study
a generalization of SPTPTW (GSPTPTW), where the assumption on the disjoint
subsets Tk , k = 1,… ,N is relaxed. Thus, we admit that a node v can belong to dif-
ferent subsets Tk with possibly different time windows. It follows that node v can be
used to serve any of the subsets it belongs to within the associated time window.
Note that GSPTPTW is not a forward variant.

GSPTPTW models several real situations in which a node can belong to several
subsets. Different events, like exhibitions or live performances, can be held in the
same physical place. On the one hand, such events can take place at different hours,
and hence the same place (node) is included in different subsets, that represent dif-
ferent time slots of the time horizon. On the other hand, the interesting events can
take place in parallel in the same place, hence this place (node) is included in differ-
ent subsets with the same time window. In this case, the subsets represent different
interesting events. Another application is photographic tour planning. In this con-
text, the sun position can either positively or negatively influence the quality of the
photos, e.g., it could be better to shoot during either sunrise or sunset. Each type of
landscape can be modeled as a subset Tk , and each node belonging to Tk represents

595

1 3

A generalized shortest path tour problem with time windows﻿	

the different best shooting hours. Moreover, a courier has to deliver parcels to sev-
eral customers with different time availability in the same place (for example in a
condominium). In this case, the subsets represent the possible availability of the cus-
tomers to pick up the parcels, modeled as time windows, and the nodes represent the
customers. Thus, a node can be included into several subsets, modeling the different
time availability of the customer to pick up the parcels. One can also consider a
courier that has to deliver parcels to several intermediate depots of the same com-
pany. Each depot can pick up the parcels in different time slots. Thus, we can model
the different time slots as subsets Tk and put into each subset the depots open in the
associated time slot. The courier chooses the depot to deliver the parcels among all
the open ones for each time slot.

The contribution of the paper is threefold. (1) We analyze the theoretical proper-
ties of GSPTPTW, proving that GSPTPTW has the same complexity as SPTPTW. It
is a non-trivial result since relaxing the assumption on disjoint subsets the general-
ized problem maintains the same complexity of the more constrained variant. (2)
We retrieve a polynomial procedure to transform any instance of GSPTPTW to an
instance of SPTPTW. This result allows us to use solution approaches developed for
SPTPTW to address GSPTPTW. (3) We define a solution strategy to directly solve
GSPTPTW by exploiting a dynamic programming reformulation of GSPTPTW. The
collected numerical results underline that solving GSPTPTW directly, by using the
proposed dynamic programming approach, is more efficient than solving the corre-
sponding SPTPTW, with the state-of-the-art algorithm proposed in [12].

Hence, the present work completes the theoretical study carried out for the SPT-
PTW in [12]. Indeed, this paper and [12] represent together an overall overview on
both theoretical and application aspects related to SPTP with time restrictions.

The paper is organized as follows. In Sect. 2, the problem is formally described.
Section 3 presents the proposed solution approach based on dynamic programming.
Section 4 shows the computational results carried out considering several network
topologies. Finally, Sect. 5 concludes the paper providing some directions for future
research.

2 � The generalized shortest path tour problem with time windows

GSPTPTW is defined on a directed graph G(V, A), where V is the set of n nodes and
A = {(i, j) ∈ V × V|i, j ∈ V ∧ i ≠ j} is the set of m arcs. Let s, d ∈ V be the source
and the destination nodes, respectively. Subsets Tk ⊆ V , k = 1,… ,N are given. Let
T =

⋃N

k=1
Tk ⊆ V be the set of nodes included in at least one subset Tk, k = 1,… ,N .

In SPTP and its variant with time windows, the subsets Tk are disjoint, i.e.,
Th ∩ Tl = �,∀h, l = 1,… ,N, h ≠ l . In GSPTPTW the disjunction constraint is
relaxed, and this means that a node can belong to several subsets Tk . Without loss of
generality, we assume that T1 = {s} and TN = {d}.

A non-negative cost cij and a non-negative transit time tij are associated with each
arc (i, j) ∈ A . A service time sk

i
 and a time window

[
ek
i
, lk
i

]
 is associated with each

596	 L. Di Puglia Pugliese et al.

1 3

node i ∈ Tk , where ek
i
 and lk

i
 are respectively the earliest and the latest feasible arrival

time to node i when it is used to serve subset Tk.
Given two distinct nodes i1 and iv , a path �i1iv = ⟨i1,… , iv⟩ is an ordered sequence

of nodes from i1 to iv , such that
(
il, il+1

)
∈ A, l = 1,… , v − 1 . The cost c

(
�i1iv

)
 of the

path �i1iv is defined as the sum of the cost associated with its arcs, i.e.,

c
�
�i1iv

�
=
∑v−1

l=1
cilil+1.

GSPTPTW aims at finding a path �∗
sd

 from the source node s ∈ V to the destina-
tion node d ∈ V in the directed graph G with the smallest cost. An optimal path
�∗
sd

 must visit sequentially the subsets Tk, k = 1,… ,N . We note that the subsets
Tk, k = 1,… ,N , must be visited in exactly the same order in which they are defined.

Let �il be the arrival time at node il, l = 1,… , v , a path �sd is said to be a feasible
solution for GSPTPTW if it satisfies the following requirements:

Nodes igk , k = 1,… ,N , are called service nodes, since they are used to serve the
subsets Tk, k = 1,… ,N , respectively. A subpath �igk igk+1 , k = 1,… ,N − 1 , is part of a
feasible path �sd and is used to connect service nodes igk and igk+1 . On the one hand, it

can be composed of not-service nodes, i.e., �igk igk+1 =
⟨
igk , u,… , igk+1

⟩
 . On the other

hand, not-service nodes are not needed to connect igk and igk+1 , i.e.,

�igk igk+1
=
⟨
igk , igk+1

⟩
.

Equation (2) force each service node belonging to a path �sd to be visited within
the time window (waiting at a service node is allowed). In a feasible path, the nodes
can be visited more than once. However, N nodes, including the source and the des-
tination, must be service nodes, one for every subset Tk, k = 1,… ,N and the order
imposed by the definition of the subsets must be guaranteed. Thus, a node i, belong-
ing to some subset Tk , can be present in a feasible path �sd as either a service node
or a not-service node. In addition, since a node can be part of several subsets Tk , a
feasible path can be composed of repeated service nodes. Indeed, a node can be used
to serve any of the subsets to which it belongs.

Given a path �si , let

•	 k be the index of the first subset Tk not served in �si;
•	 i− be the node that precedes node i in �si;
•	 Ψ(j, q) be a binary predicate indicating whether or not node j serves the subset Tq

in �si.

Starting with �s = 0 , the arrival time to a service node igk ∈ �si is defined as follows:

(1)
∃ g1,… , gN ∶ g1 ≤ g2 ≤ … ≤ gN ,

ig1 ∈ �sd ∩ T1, ig2 ∈ �sd ∩ T2,… , igN ∈ �sd ∩ TN ,

(2)ek
igk

≤ �igk
≤ lk

igk
,∀k = 1,… ,N.

597

1 3

A generalized shortest path tour problem with time windows﻿	

whereas, the arrival time to a not-service node i is defined by the following equation:

When a node i ∈ �sd can be used to serve a subset Tk , we have to mark i as either
a service node or a not-service node. In the former case, we have to consider time
window constraint and service time calculating �i as Eq. (3). If node i is marked
as not-service node, then Eq. (4) is used to determine the arrival time �i . Note that
when a node i ∈ T is used as not-service node, the time window is irrelevant. More-
over each node i ∈ V ⧵ T is always a not-service node since it does not belong to
any subset Tk, k = 1,… ,N.

For the sake of clarity, Fig. 1 depicts a toy GSPTPTW instance with s = 1 and
d = 8 . In this simple example, all transit times and all service times are set equal
to 1. The costs are reported on the arcs. The path �1

18
= ⟨1, 2, 3, 4, 5, 8⟩ is a feasible

path tour; the node 2 is the service node for T2 and T3 , and the node 3 is the service
node for T4 . The cost of �1

18
 is c(�1

18
) = 10 . The instance presents a second feasible

path tour �2
18

= ⟨1, 2, 3, 4, 6, 7, 5, 8⟩ . This path is a feasible path tour, because the
nodes 2, 6 and 5 are selected as service nodes for sets T2 , T3 and T4 , respectively. The
cost of �2

18
 is c(�2) = 8 , and the solution is optimal.

It is worth observing that node 2 belongs to two consecutive sets, i.e., T2 and T3 .
Hence node 2 can be used as service node for both sets. It exists a feasible solution
to GSPTPTW for the instance reported in Fig. 1 that is �3

18
= ⟨1, 2, 2, 3, 4, 6, 7, 5, 8⟩

where node 2 is a service node for both T2 and T3 and node 5 is the service node for
set T4 , with cost c(�3) = 8.

Since GSPTPTW is a generalization of SPTPTW, each SPTPTW instance is also
a particular GSPTPTW instance, where each node belongs to at most one subset. By
this consideration, it follows that the proof in [12] to assert the NP-hardness of SPT-
PTW still remains valid for GSPTPTW. Therefore, the following result holds:

Theorem 1  GSPTPTW is an NP-hard problem.

(3)�igk
= max

{
ek
igk
, �k

i−
gk

+ ti−
gk
igk

+ Ψ(i−
gk
, k − 1) ⋅ sk−1

i−
gk

}
;

(4)�i = �i− + ti−i + Ψ(i−, k − 1) ⋅ sk−1
i−

.

Fig. 1   A toy example

598	 L. Di Puglia Pugliese et al.

1 3

In addition, we can prove that GSPTPTW is not harder than SPTPTW.

Theorem 2  GSPTPTW can be polynomially reduced to SPTPTW. Starting from an
instance of GSPTPTW, i.e., IG

⟨
V ,A,

{
Tk
}N

k=1

⟩
 it is possible to define an instance

I

⟨
V �,A�,

{
T �
k

}N

k=1

⟩
 of SPTPTW. The following two properties are verified.

1.	 Subsets T �
k
, k = 1,… ,N are disjoint sets.

2.	 There exists a feasible path �sd for GSPTPTW if and only if there exists a path �′
sd

for SPTPTW such that c(��

sd
) = c(�sd).

Proof  First, we describe the steps to construct an instance I
⟨
V �,A�,

{
T �
k

}N

k=1

⟩
 start-

ing from IG
⟨
V ,A,

{
Tk
}N

k=1

⟩
 . Let K(v) be the set of indices k such that v ∈ Tk and let

T = {v ∈ T ∶ |K(v)| > 1} . The following operations can be performed:

•	 for each node v ∈ T  , generate |K(v)| nodes, i.e., V � = V ∪ {vk}v∈T,k∈K(v)
;

•	 set e�k
vk
= ek

v
 ; l�k

vk
= lk

v
 ; s�k

vk
= sk

v
, ∀v ∈ T, k ∈ K(v);

•	 A� = A ∪ {(v, vk), (vk, v)}v∈T,k∈K(v) with cvvk = cvkv = tvvk = tvkv = 0;
•	 T �

k
= Tk ∪ {vk} ⧵ {v}, ∀v ∈ T ∩ Tk, k ∈ K(v).

It follows that the dimension of the instance I is greater than that of IG . In particu-
lar, we have

•	 �V �� = �V� +∑
v∈T

�K(v)�;
•	 �A�� = �A� + 2

∑
v∈T

�K(v)�;
•	 |T �

k
| = |Tk|.

It is worth observing that the new nodes vk are linked to the graph through arc (v, vk)
and (vk, v) . This means that to reach node vk , node v must be traversed.

Property 1 follows. Indeed, each node v such that |K(v)| > 1 is not present
in any T �

k
, k ∈ K(v) and the duplicated nodes vk of v are added to the associated

T �
k
, ∀k ∈ K(v).
Property 2 can be proved as follows.

⇒	� Given a feasible path �sd for GSPTPTW, it is possible to construct a path �′
sd

 in
G�(V �,A�) , such that c(��

sd
) = c(�sd) . Let Ks(v) be the set of indices k for which

node v ∈ Tk is a service node for the path �sd . A feasible path �′
sd

 for the con-
structed instance of SPTPTW can be obtained by adding subpaths ⟨v, vk, v⟩ , for
all k ∈ Ks(v) . Node v is marked as not-service node, since v ∉

⋃N

k=1
T �
k
 , and

the duplicated nodes vk,∀k ∈ Ks(v) are marked as service nodes for the sub-
sets T �

k
,∀k ∈ Ks(v) . Since tvvk = tvkv = 0 , path �′

sd
 is feasible with respect to time

599

1 3

A generalized shortest path tour problem with time windows﻿	

window constraints. Thus, paths �sd and �′
sd

 represent the same feasible solu-
tion. In addition, being c

�⟨v, vk, v⟩
�
= 0 , it follows that c(��

sd
) = c(�sd).

⇐	� Let �′
sd

 be a feasible path in G�(V �,A�) with cost c(��
sd
) , and let vk be the service

node for T ′
k
 in the path �′

sd
.

	� For each k = 1,… ,N , vk may or may not belong to Tk in G. In the first
case, vk is a service node also for Tk . In the second case, vk ∉ Tk because
there exists in G a node v with |K(v) > 1| and vk has been created dur-
ing the construction of the instance I. By construction, the path �′

sd
 must

include the sub-path �vk = ⟨v, vk, v⟩ , that has both cost and travel time
equal to 0. Therefore, the path �sd can be obtained replacing �vk with the
node v that is selected as service node for Tk . The path �sd remains feasi-
ble with respect to the edge traversal constrains, since we are traversing a
subset of edges of �′

sd
 . Moreover, it remains feasible respect to the time

windows, since the service time of v is equal to the service time of vk and
the travel time of �vk is 0. Finally, c(��

sd
) = c(�sd) because c(�vk) = 0.

 ◻
Figure 2 reports the graph G′ obtained by applying the construction procedure

described in Theorem 2 to the toy instance of Fig. 1. Nodes 22 ( 62 ) and 23 ( 63 ) are the
copies of node 2 (6) associated with subsets T ′

2
 and T ′

3
 , respectively. The dotted arcs

are those included to connect node 2 (6) with its copies characterized by both cost
and time equal to zero. The optimal solution is �∗

18
= ⟨1, 2, 22, 2, 3, 4, 6, 63, 6, 7, 5, 8⟩ ,

with service nodes {1, 22, 63, 5, 8} and cost c(�∗
18
) = 8.

From Theorems 1 and 2, the following result holds.

Fig. 2   The graph obtained by applying Theorem 2 to the toy example depicted in Fig. 1

600	 L. Di Puglia Pugliese et al.

1 3

Theorem 3  GSPTPTW belongs to the same class of complexity of SPTPTW.

Theorem 3 is a strong result. Indeed, it claims that relaxing the disjoint assump-
tion on the subset Tk, k = 1,… ,N allows to maintain the same complexity. Thus,
assuming that Tk, k = 1,… ,N , are not disjoint subsets does not compromise the
computational effort for solving SPTP and its variants.

3 � Generalized dynamic programming

We represent the solution space of GSPTPTW as a state-space S(Y ,Γ) composed of a set
of states Y and a set of transitions Γ . Each state yh

i
∈ Y corresponds to a feasible subpath

�h
si
 from the source node s to node i ∈ V . The superscript h means that we consider the

h− th subpath to reach node i ∈ V . The state yh
i
(�h

si
, ch

i
, �h

i
, rh

i
) is associated with the sub-

path �h
si
 with cost ch

i
= c(�h

si
) , arrival time �h

i
 , and rh

i
= k which represents the index of

the last served subset Tk along the subpath �h
si
 . A transition �hq

ij
=
⟨
yh
i
, y

q

j

⟩
∈ Γ exists if

(i, j) ∈ A and both conditions (1) and (2) are satisfied. In particular, the transitions are

enabled by control �s

(
�
hq

ij

)
 that allows transition �hq

ij
 with j marked as service node; and

control �ns

(
�
hq

ij

)
 that allows transition �hq

ij
 with j marked as not-service node.

Definition 1  Control �s

(
�
hq

ij

)
 is a boolean function that allows the existence of

transition �hq
ij

 . In particular, if the following conditions hold

then �s

(
�
hq

ij

)
= true and transition �hq

ij
∈ Γ , otherwise �s

(
�
hq

ij

)
= false and �hq

ij
∉ Γ.

Definition 2  Control �ns

(
�
hq

ij

)
 is a boolean function that allows the existence of

transition �hq
ij

 . In particular, if (i, j) ∈ A , then �ns

(
�
hq

ij

)
= true and transition �hq

ij
∈ Γ ,

otherwise �ns

(
�
hq

ij

)
= false and �hq

ij
∉ Γ.

Let Ȳ be the set of generated states and let Mj be the number of states associated
with node j. Algorithm 1 depicts the steps to generate the state-space S(Y ,Γ) . To
handle the case where a node belongs to two consecutive sets, Lines 2–9 insert null
cost loops. The introduction of these loops allows to obtain tour of the form �3

18
 for

the instance reported in Fig. 1.

(5)(i, j) ∈ A,

(6)j ∈ Trh
i
+1,

(7)�
q

j
= max

{
e
rh
i
+1

j
, �h

i
+ tij

}
≤ l

rh
i
+1

j
,

601

1 3

A generalized shortest path tour problem with time windows﻿	

602	 L. Di Puglia Pugliese et al.

1 3

It is worth observing that the construction of the state-space S(Y ,Γ) implicitly
determines all feasible solutions. Thus, among all final states, i.e., those associated
with the destination node d, an optimal path �∗

sd
 is associated with that at minimum

cost, i.e., �∗
sd
= argminyh

d
∈Y

{
ch
d

}
 . It follows that Algorithm 1 implicitly solves

GSPTPTW. Thus, it can be used to determine an optimal solution �∗
sd

 to GSPTPTW.
Algorithm 1 has exponential time and exponential space complexity. However,

not all states associated with feasible solutions have to be generated, rather only
those with the potential of generating an optimal solution. In the following, we pre-
sent some state-space reduction techniques that have a positive impact, as shown
by the computational results, on the practical behavior of the proposed solution
approach.

3.1 � State‑space reduction

The state-space S(Y ,Γ) can be reduced by eliminating states whose transitions
do not allow to conduct to potentially optimal final states. This reduction can be
done by applying the dominance rule proposed by [12], given below for the sake of
completion.

Definition 3  Given two states yh
i
 and yq

i
 associated with subpath from node s to

node i. State yh
i
 dominates state yq

i
 if the following conditions hold

and at least one inequality is strictly satisfied.

The dominated states are not generated.

Definition 4  Two states yh
i
 and yq

i
 are said to be equivalent if ch

i
= c

q

i
 , �h

i
= �

q

i
 , and

rh
i
= r

q

i
.

If a state yq
i
 is generated and there exists an equivalent state yh

i
 , then the state yq

i

is not stored in Y. This rule does not compromise the optimality of the final solu-
tion determined. Indeed, the same feasible sequence of controls and states is gener-
ated starting from equivalent states. In addition, having the same cost, also the final
states, associated with complete paths, present the same cost. It is also worth to note
that discarding equivalent paths allows to prevent cycling on zero cost and zero time
cycles, if any.

In addition, we can extend the cost and time boundings proposed in [12].

Cost bounding  Given an upper bound Λ on the optimal solution cost c(�∗
sd
) , all states

yh
i
 such that ch

i
≥ Λ can not be included in Y. The upper bound Λ can be computed

ch
i
≤ c

q

i
,

�h
i
≤ �

q

i
,

rh
i
≥ r

q

i
,

603

1 3

A generalized shortest path tour problem with time windows﻿	

by solving the generalized SPTP (GSPTP) where the transit and service times are
minimized and the time window constraints are removed. In order to improve the
cost bounding, given a state yh

i
 , we can compute a valid lower bound on the cost of

a partial path from node i to node d, named lbh
i
 . In particular, it represents the mini-

mum shortest path tour cost to reach the destination node d starting from i. In this
case, a state yh

i
 can be omitted if ch

i
+ lbh

i
≥ Λ . The lower bound lbh

i
 is computed in

what follows

where ci,k
SPT

 is the minimum cost associated with the generalized shortest path tour
without time window constraints from node i serving Tk to node d, considering the
subsets Tk, Tk+1,… , TN , and cij

SP
 is the cost of the shortest path from node i to node j.

It is worth observing that both ci,k
SPT

 and cij
SP

 can be computed in polynomial time
before applying Algorithm 1. Indeed, GSPTP can be polynomially reduced to SPTP
by applying Theorem 2, whereas cij

SP
 is computed by applying any algorithm for

SPP. Even though ci,k
SPT

 and cij
SP

 can be computed in polynomial time, it is necessary
to determine ci,k

SPT
 for each node i ∈ T and k ∈ K(i) , and cij

SP
 for each pair of nodes

i, j ∈ V .

Time bounding  Let tij
SP

 be the shortest transit time from node i to node j. A state yh
i

can not be generated if for all j ∈ Trh
i
+1 , the associated time windows are violated,

i.e., the state yh
i
 is omitted if 𝜏h

i
+ t

ij

SP
> l

rh
i
+1

j
,∀j ∈ Trh

i
+1.

Algorithm 2 depicts the steps of the proposed solution approach for solving
GSPTPTW.

(8)lbh
i
=

⎧
⎪⎨⎪⎩

c
i,rh

i

SPT
, if i is marked as service node for Trh

i
;

minj∈T
rh
i
+1

�
c
ij

SP
+ c

j,rh
i
+1

SPT

�
, otherwise,

604	 L. Di Puglia Pugliese et al.

1 3

3.2 � A∗ implementation

A∗ technique [21] is widely used to address constrained and multiobjective short-
est path problems [22–24]. In this technique, the cost of each state is evaluated by
considering an approximate extension that allows to evaluate the cost of a complete
solution starting from the partial path associated with the state. The cost of each
state yh

i
 is defined as f h

i
= ch

i
+ gh

i
 , where gh

i
 is the approximation cost from node i to

node d. Hence, A ∗ technique allows to better identify states that have the potential to
generate the optimal sequence of controls and states. This behavior is observed also
for the problem at hand (see Sect. 4.3.1). In our context, a valid approximation cost
gh
i
 is represented by the cost of a shortest path tour solution, i.e., gh

i
 can be set equal

to lbh
i
 computed in (8).

4 � Computational results

We evaluate the performance of the proposed generalized dynamic programming
approach with the aim of showing how the characteristics of the addressed problem
influence the behavior of the proposed solution strategy. We compare the solution
approach GDPB described in Algorithm 2 for GSPTPTW with DPB, the labelling
procedure with cost and time bounding proposed in [12] for solving SPTPTW. In
particular, starting from an instance of GSPTPTW, we apply Theorem 2 to construct

Table 1   Characteristics of the
random networks

Problem Nodes Arcs Density

R1 300 1500 5
R2 300 3000 10
R3 300 4500 15
R4 500 2500 5
R5 500 5000 10
R6 500 7500 15
R7 1000 5000 5
R8 1000 10,000 10
R9 1000 15,000 15

Table 2   Characteristics of the
grid networks

Problem Dimension Nodes Arcs

G1 25 × 25 625 2400
G2 30 × 30 900 3480
G3 50 × 50 2500 9800
G4 25 × 50 1250 4850
G5 30 × 60 1800 7020
G6 50 × 100 5000 19700

605

1 3

A generalized shortest path tour problem with time windows﻿	

an equivalent instance of SPTPTW, then the DPB is used to solve the latter. We also
analyze the benefit of using A ∗ technique, proved to be efficient for several instances
of SPP, and SPTPTW. The algorithms that implement A ∗ technique are referred in
the sequel as GDPBA∗ and DPBA∗.

4.1 � Implementation details

All the algorithms were implemented in C++, compiled with g++ 9.4.0
under Ubuntu 20.04 using the flag -O3, and the experiments were run on a
INTEL i5-6400@2.70 GHz processor with 8 GB of RAM. The Y set was imple-
mented with the std::priority_queue of the standard C++ library, using a
std::vector as container.

For DPB and GDPB, the comparison value is the label cost ch
i
 , meanwhile for

DPBA∗ and GDPBA∗ the comparison value is the label cost plus the lower bound
defined in Eq. (8), i.e., ch

i
+ lbh

i
 . In both cases, the top of the heap stores the label

with the minimum comparison value.
In addition to Y, to quickly access the labels of each node i, an n-dimensional

array D of std::list is used to store pointers to the labels associated with each
node. Therefore, when a new state yh

i
 is generated for the node i, the list D[i] is

scanned to check if it exists a label that dominates yh
i
 . If it is not the case, D[i] is

scanned again to mark as dominated all the labels that are dominated by yh
i
 . These

dominated labels are removed by D[i] (in constant time since D[i] is a std::list),
but they are not removed from Y. Indeed, when the algorithm extracts a label from
Y, it checks if the label is marked as dominated and, in this case, it discards the label
without analyzing the forward star.

4.2 � Instances generation

The instances are constructed from the benchmarks for SPTP proposed by [3], who
considered three topologies of networks: complete, random, and grid networks.
More specifically, the set of networks proposed in [3] is composed of three complete
networks, characterized by 100, 300, and 500 nodes, respectively; nine random net-
works; and six grid networks, whose characteristics (i.e., number of nodes, number
of arcs, and density defined as the ratio between the number of arcs and the number
of nodes) are reported in Tables 1 and 2, respectively.

Table 3   Comparison between
the average performance
considering A ∗ at varying the
networks topologies

DPB vs DPBA∗ GDPB vs GDPBA∗

Speed up l Speed up l

Complete 1.08 1.06 1.10 1.09
Grid 2.04 52.34 1.55 58.23
Random 1.07 1.47 1.06 1.77
AVG 1.56 9.09 1.25 9.48

606	 L. Di Puglia Pugliese et al.

1 3

A number of 12 instances are built for each network considering different number
of subsets N, i.e., N ∈ {5, 10, 15, 20} , and different number of nodes belonging to
each subset, i.e., |Tk| =

⌊
�

n

N

⌋
 with � ∈

{
1

3
,
1

2
, 1
}

 . In order to generate the instances
for GSPTPTW, we modify the instances for SPTP considering different parameters
%T and %n , where

•	 %T ∈ {20, 30, 40} defines the percentage of subsets T whose nodes belong to any
other subset.

•	 %n ∈ {20, 45, 60} defines the percentage of nodes shared among the subsets T.

In particular, the conversion procedure takes as input an instance of SPTP and gives
as output an instance of GSPTPTW applying the following modifications:

•	 for all h = 2,… ,N − 1 , randomly pick %n⋅|Th|
100

 nodes of Th with uniform probabil-
ity, and insert them in %T⋅N

100
 different subsets Ti, i ≠ h;

•	 generate time windows applying the procedure used in [12] for SPTPTW.

The parameters %T and %n characterize GSPTPTW instances. Indeed, for %T = %n
= 0 , GSPTPTW instances are actually instances of SPTPTW. Thus, the higher the
value of %T and %n, the higher the difference between GSPTPTW and SPTPTW
instances.

4.3 � Numerical results

In this section, we present the numerical results collected on the considered
instances. We first analyze the effectiveness of using A ∗ technique (DPBA∗ and
GDPBA∗ ) with respect to the Dijkstra-like rule (DPB and GDPB). Then, we show
the behavior of the proposed algorithms with respect to %T and %n. The behavior of
the algorithms is evaluated by considering the following parameters:

Table 4   Numerical results comparing the algorithms with and without A ∗ technique

tp ta t #l tp ta t #l

GDPB GDPBA∗

Complete 5.34 27.48 32.82 19339.37 5.45 24.46 29.91 17646.60
Grid 6.02 6.24 12.26 107088.02 7.55 0.37 7.92 1838.97
Random 0.44 0.15 0.59 2660.77 0.44 0.12 0.55 1502.22
AVG 3.93 11.29 15.22 43029.39 4.48 8.32 12.80 6995.93

DPB DPBA∗

Complete 6.88 27.84 34.72 38593.49 6.84 25.20 32.04 36305.68
Grid 16.55 19.55 36.10 233130.99 16.59 1.13 17.72 4453.53
Random 1.06 0.47 1.53 6945.48 1.06 0.37 1.43 4711.58
AVG 8.16 15.95 24.12 92889.99 8.16 8.90 17.06 15156.93

607

1 3

A generalized shortest path tour problem with time windows﻿	

•	 tp, the execution time, in seconds, required by the preprocessing. It represents
the time needed to compute the bounds for GDPB and GDPBA∗ , whereas, for
DPB and DPBA∗ , tp is the time to construct the graph by following Theorem 2
and the time to compute the bounds;

•	 ta, the execution time, in seconds, of the dynamic programming algorithm;
•	 t, the overall execution time, i.e., t = tp + ta;
•	 #l, the number of examined states/labels.

4.3.1 � Evaluation of A ∗ technique

Preliminaries  Before to examine in details the numerical results considering tp, ta,
t, and #l, we give an overview of the effectiveness in using A ∗ techniques at vary-
ing the network topologies. In particular, in Table 3 we shows the speed up and the
number of labels generated without A ∗ over those generated when A ∗ is considered
(column l).

Table 3 highlights that the highest benefit obtained by using A ∗ technique is
observed for grid networks, followed by complete and random ones. In particular,
for grid networks, a huge reduction in the number of labels examined is observed.
This behavior influences the overall execution time. Indeed, the speed up is 2.04 and
1.55 for DPBA∗ and GDPBA∗ , respectively.

Table 5   Average numerical results at varying %T

DPBA∗ GDPBA∗

%T tp ta t #l tp ta t #l

Complete 20 4.88 37.82 42.69 38404.45 4.10 36.42 40.52 21695.16
30 7.15 22.27 29.42 34876.04 5.61 21.78 27.39 16671.06
40 8.49 15.52 24.02 35636.56 6.62 15.19 21.81 14573.59
AVG 6.84 25.20 32.04 36305.68 5.45 24.46 29.91 17646.60

Random 20 0.70 0.22 0.93 3807.44 0.37 0.11 0.48 1636.64
30 1.07 0.36 1.43 4747.70 0.44 0.11 0.56 1463.13
40 1.39 0.52 1.92 5579.62 0.50 0.13 0.63 1406.91
AVG 1.06 0.37 1.43 4711.58 0.44 0.12 0.55 1502.23

Grid 20 10.72 1.20 11.92 4726.24 5.22 0.48 5.70 2342.29
30 18.44 1.09 19.52 4487.44 7.73 0.34 8.07 1768.11
40 20.68 1.10 21.78 4142.77 9.70 0.30 10.00 1406.52
AVG 16.61 1.13 17.74 4452.15 7.55 0.37 7.92 1838.97

AVG 20 5.43 13.07 18.51 15646.04 3.23 12.33 15.56 8558.02
30 8.88 7.90 16.79 14703.72 4.59 7.41 12.00 6634.10
40 10.19 5.72 15.90 15119.65 5.61 5.21 10.81 5795.67
AVG 8.17 8.90 17.07 15156.47 4.48 8.32 12.80 6995.93

608	 L. Di Puglia Pugliese et al.

1 3

Detailed results  Table 4 shows the average values of tp, ta, t, and #l at varying the
network topologies. The results collected clearly show the benefit in terms of both
execution time and number of generated labels obtained using A ∗ technique. This
consideration is valid for both DPB and GDPB.

In particular, DPBA∗ is 1.56 times faster than DPB, on average. This behavior
is justified by the smaller number of generated labels. Indeed, DPBA∗ shows for #l
a value that is 9.09 times lower than the value of #l observed for DPB, on average.
The same trend is observed for GDPBA∗ . In particular, GDPBA∗ is 1.25 times faster
than GDPB, and the former examines 9.48 times less number of labels than the lat-
ter, on average. We observe that the A ∗ technique is more performing for DPB than
for GDPB.

Table 4 highlights the better behavior of GDPB and GDPBA∗ with respect to
DPB and DPBA∗ , respectively. In particular, GDPB is 1.58 times faster than DPB.
This behavior is justified by the number of generated labels. Indeed, GDPB examines
2.15 times less number of labels than DPB, on average. The same trend is observed
when A ∗ is applied. In particular, GDPBA∗ is 1.33 times faster than DPBA∗ and the
former examines 2.16 times less number of labels than those generated by DPBA∗ .
One can readily see that the better performance of GDPB is mitigated when the A ∗
technique is included. However, GDPBA∗ remains the best performing algorithm.

Due to the high effectiveness of using A ∗ technique, in the following we consider
DPBA∗ and GDPBA∗ to analyze the behavior of both the algorithms at varying %T
and %n.

4.3.2 � Evaluation at varying %T

Table 5 shows the average results, varying %T for both DPBA∗ and GDPBA∗ . For
the sake of clarity, first, we analyze the behavior of DPBA∗ and GDPBA∗ separately,
then we compare the two algorithms at varying the parameter %T.

Results for DPBA  ∗ varying %T Table 5 shows that the higher %T, the lower t, on
average. Indeed, the overall execution time t for %T = 40 is 1.05 and 1.16 times
lower than that observed for %T equal to 30 and 20, respectively. We observe that
the preprocessing phase follows an inverted trend. Indeed, it requires more compu-
tational overhead for higher value of %T, on average. In particular, tp for %T = 40
is 1.14 and 1.87 times higher than that observed for %T equal to 30 and 20, respec-
tively. This is an expected trend since the higher %T, the higher the number of nodes
belonging to different subsets Tk . On the one hand, this increases the number of
bounds to be computed, on the other hand, more nodes have to be included in the
modified graph (see Theorem 2).

The execution time required by the algorithm, i.e., ta, decreases for high value of
%T. Indeed, ta for %T equal to 40 is 1.38 and 2.28 times lower than that observed for
%T equal to 30 and 20, respectively.

609

1 3

A generalized shortest path tour problem with time windows﻿	

The decreasing of ta for higher value of %T suffices the increasing of tp, thus an
overall reduction of computational overhead t is observed for high values of %T.

The higher %T, the higher tp. This trend is observed for each topology of net-
work. Looking at Table 5, the trend of ta at varying %T is strongly influenced by
the results obtained on complete network. Indeed, this topology of network is the
hardest to solve. In particular, DPBA∗ requires ta = 25.20 s, whereas, it is equal to
0.37 and 1.13 for random and grid networks, respectively. For random networks, ta
follows the same trend of tp, whereas, for grid networks, ta does not follow a regular
trend varying %T. The values of ta decrease for increasing values of %T for com-
plete networks. This trend influences the average one.

Results for GDPBA  ∗ at varying %T Table 5 shows that the computational overhead
of GDPBA∗ decreases when %T increases. In particular, the value of t when %T is
equal to 40 is 1.13 and 1.62 times lower than that observed for %T equal to 30 and
20, respectively, on average.

This behavior is influenced by ta. In particular, ta for %T = 40 is 1.42 and 2.36
times lower than that observed for %T equal to 30 and 20, respectively. The observed
trend for ta is related to the number of examined labels. Indeed, GDPBA∗ examines
for %T = 40, 1.47 and 1.14 times lower number of labels than those generated with
%T equal to 30 and 20, respectively.

The preprocessing execution time follows the same trend observed for DPBA∗ .
Indeed, tp for %T = 40 is 1.22 and 1.73 times higher than that observed for %T

Table 6   Average numerical results varying %n

DPBA∗ GDPBA∗

%n tp ta t #l tp ta t #l

Complete 30 5.05 30.27 35.33 34473.55 4.23 29.51 33.74 19281.23
45 6.90 23.01 29.91 35281.75 5.45 22.27 27.72 17038.40
60 8.57 22.33 30.90 39161.75 6.66 21.61 28.27 16620.19
AVG 6.84 25.20 32.04 36305.68 5.45 24.46 29.91 17646.60

Random 30 0.72 0.20 0.92 3840.78 0.37 0.10 0.47 1426.10
45 1.03 0.36 1.39 4769.10 0.44 0.12 0.55 1506.55
60 1.42 0.55 1.97 5524.87 0.50 0.14 0.64 1574.03
AVG 1.06 0.37 1.43 4711.58 0.44 0.12 0.55 1502.23

Grid 30 11.04 1.03 12.08 4467.88 5.42 0.41 5.83 2096.85 [t]
45 17.07 1.00 18.07 4190.53 7.43 0.32 7.75 1697.53
60 21.74 1.36 23.09 4704.46 9.80 0.40 10.20 1722.54 [b]
AVG 16.62 1.13 17.75 4454.29 7.55 0.37 7.92 1838.97

AVG 30 5.60 10.50 16.11 14260.74 3.34 10.01 13.35 7601.39 [t]
45 8.33 8.12 16.46 14747.13 4.44 7.57 12.01 6747.49
60 10.58 8.08 18.65 16463.69 5.66 7.38 13.04 6638.92 [b]
AVG 8.17 8.90 17.07 15157.19 4.48 8.32 12.80 6995.93

610	 L. Di Puglia Pugliese et al.

1 3

equal to 30 and 20. We highlight that for GDPBA∗ the preprocessing refers only to
the computation of the bounds.

The decreasing of ta for increasing values of %T is higher than the increasing of
tp, thus an overall decreasing of t is observed for high values of %T.

The trend of tp varying %T is the same for each topology of network. Whereas, ta
follows the average trend for both complete and grid networks. For the random ones,
a clear trend is not observed. Since the most difficult instances to be solved are those
based on complete networks, the average trend is influenced by the results obtained
for the latters.

Comparing DPBA∗ and GDPBA∗ at varying %T  Table 5 highlights that GDPBA∗ out-
performs DPBA∗ for each value of %T. Indeed, GDPBA∗ is 1.18, 1.39, and 1.47
times faster than DPBA∗ for %T equals to 20, 30, and 40, respectively, on average.
We highlight that the speed up of GDPBA∗ with respect to DPBA∗ increases for
increasing value of %T. This is an expected trend, since the higher %T, the higher
the difference between GSPTPTW and SPTPTW instances. Thus, the tailored algo-
rithm GDPBA∗ for the GSPTPTW behaves better than DPBA∗ applied on the SPT-
PTW instances constructed from the GSPTPTW ones.

The worst behavior of DPBA∗ is mainly due to the preprocessing phase. Indeed,
tp for DPBA∗ is 1.68, 1.97, and 1.81 times higher that that observed by GDPBA∗ for
%T equal to 20, 30, and 40, respectively. In addition, considering only ta, GDPBA∗
behaves the best. In particular, ta for GDPBA∗ is 1.06, 1.06, and 1.09 times lower
than that observed for DPBA∗ , considering %T equal to 20, 30, and 40, respectively.
This behavior is justified by the number of labels examined by GDPBA∗ . In par-
ticular, the latter generates, on average, 1.82, 2.21, and 2.60 times lower labels than
those generated by DPBA∗ for %T equal to 20, 30, and 40, respectively.

The difference between the two approaches are quite impressive for grid net-
works. In particular, GDPBA∗ is 2.09, 2.41, and 2.17 times faster than DPBA∗ and
the former examines 2.01, 2.53, and 2.94 times less labels than those generated by
the latter for %T equal to 20, 30, and 40, respectively.

4.3.3 � Evaluation at varying %n

Table 6 reports the average results at varying the parameter %n for each topology of
network.

We first analyse the behavior of DPBA∗ and GDPBA∗ separately, then a compari-
son between the two algorithms is provided considering the values of %n.

Results for DPBA∗ at varying %n  Table 6 shows that the higher %n, the higher the
computational overhead. Indeed, t for %n = 60 is 1.15 and 1.13 times higher than the
value of t observed for %n equal to 45 and 30, respectively. This behavior is influ-
enced by the preprocessing time. Indeed, the higher %n, the higher tp. An inverted
trend is observed for ta. In particular, ta shows the same value for %n equal to both
60 and 45. Whereas, ta for %n = 30 is 1.29 times higher than ta for %n equal to 60.

611

1 3

A generalized shortest path tour problem with time windows﻿	

This behavior is justified by the number of examined labels. In particular, DPBA∗
for %n equal to 60, examines a number of labels 1.11 and 1.15 times higher than
those generated with %n equal to 45 and 30, respectively.

The trend of tp at varying %n is the same for each topology of network. In par-
ticular, it increases when %n increases. This is an expected trend. Indeed, for higher
value of %n, on the one hand, a higher number of bounds have to be computed, on
the other hand, a higher number of copies of the nodes have to be included in the
modified graph.

The profile of ta at varying %n is different for the three topologies of networks. In
particular, ta decreases for increases values of %n for complete networks. An clear
trend is not observed for both random and grid networks. This behavior is related to
the number of generated labels (see column #l of Table 6).

Results for GDPBA∗ at varying %n  The overall computational overhead t seems to not
be influenced by the value of %n. Indeed, it is not possible to drawn a trend on aver-
age. However, looking at tp and ta, Table 6 highlights a strong correlation between
both tp and ta and %n. In particular, tp increases when %n increases. An inverted
trend is observed for ta. The latter behavior is justified by the number of examined
labels. Indeed, #l for %n equal to 60 is 1.01 and 1.14 times lower than the values of
#l observed for %n equal to 45 and 30, respectively.

The average trend is influenced by the behavior of GDPBA∗ for both complete
and grid networks. Indeed, ta increases for lower value of %n due to the increasing
of generated labels. The trend is inverted for random networks but the average com-
putational overhead is lower than that observed for both complete and grid networks.

Comparing DPBA  ∗ and GDPBA∗ at varying %n Table 6 shows the better behavior
of GDPBA∗ than DPBA∗ , see column t. Indeed, the former is 1.07, 2.23, and 2.57
times faster than the latter for %n equal to 30, 45, and 60, respectively, on average.

As observed in the previous sections, the preprocessing for DPBA∗ requires more
computational overhead than that observed for GDPBA∗ , and the difference of tp
between the two algorithms increases for increasing values of %n. This justifies the
good behavior of GDPBA∗ for higher values of %n. However, considering only ta,
GDPBA∗ remains the best performing algorithm. Indeed, we observe a speed up
equal to 1.02, 1.03, and 1.03 for complete networks, 2.09, 3.04, and 3.96 for random
networks, and 2.53, 3.12, and 3.42 for grid networks, considering values of %n equal
to 30, 45, and 60, respectively.

4.4 � Final remarks

The numerical results highlight the effectiveness of the proposed solution approach
tailored for GSPTPTW, i.e., GDPBA∗ . For high values of both %T and %n, GSPT-
PTW instances are more demanding in terms of computational effort to be solved to

612	 L. Di Puglia Pugliese et al.

1 3

optimality. Whilst GDPBA∗ behaves quite similar to DPBA∗ for low values of both
%T and %n, the former remarkably outperforms DPBA∗ for high values of both %T
and %n.

5 � Conclusions and future work

In this paper, we presented the Generalized Shortest Path Tour Problem with Time
Windows (GSPTPTW) where the assumption on disjoint subsets Tk, k = 1,… ,N is
relaxed. Thus, each node can belong to different subsets Tk and have a possibly dif-
ferent time window associated with each subset it belongs. We prove that GSPT-
PTW belongs to the same class of complexity of SPTPTW. This is a strong result
since it is possible to consider any definition of subsets Tk without compromising
the complexity. We also presented a polynomial procedure to reduce a GSPTPTW
instance to a SPTPTW instance.

We proposed a dynamic programming algorithm for solving GSPTPTW, named
GDPB, and extended the cost and time bounding procedures proposed in [12].
GDPB was compared with DPB, the labelling procedure of [12], which was used to
solve SPTPTW instances derived from GSPTPTW instances, by applying the pro-
posed polynomial reduction procedure. In addition, we implemented an A ∗ version
of both GDPB and DPB.

We conducted an extensive experimental phase, in order to both study the impact
of A ∗ technique and compare the two algorithms. We considered instances generated
from benchmarks for SPTP. The results showed that A ∗ technique strongly increases
the efficiency of the approaches. Indeed, A ∗ speeds up both GDPB and DPB due to
a reduction of the number of generated labels.

The numerical results reveal that GDPB outperforms DPB. This behaviour is
justified by the lower computational overhead of both the preprocessing phase and
the generalized dynamic programming approach. In addition, the higher the number
of nodes belonging to different subsets, the better the performance of GDPB with
respect to DPB.

As future work, it could be interesting to study GSPTPTW with uncertain data,
using the concept of simheuristics [25] or robust opitmization [26, 27].

Funding  Open access funding provided by Universitá della Calabria within the CRUI-CARE Agreement.

Data availability  The data and the codes that support the findings of this study are available at the follow-
ing link: https://​doi.​org/​10.​6084/​m9.​figsh​are.​12444​791.

Declarations 

Conflict of interest  The authors have no conflict of interests to declare.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article

https://doi.org/10.6084/m9.figshare.12444791

613

1 3

A generalized shortest path tour problem with time windows﻿	

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/

References

	 1.	 Bajaj, C.P.: Some constrained shortest-route problems. Math. Methods Oper. Res. 15(1), 287–301
(1971). https://​doi.​org/​10.​1007/​BF019​39836

	 2.	 Festa, P.: Complexity analysis and optimization of the shortest path tour problem. Optim. Lett. 6,
163–175 (2012). https://​doi.​org/​10.​1007/​s11590-​010-​0258-y

	 3.	 Festa, P., Guerriero, F., Laganà, D., Musmanno, R.: Solving the shortest path tour problem. Eur. J.
Oper. Res. 230, 464–474 (2013). https://​doi.​org/​10.​1016/j.​ejor.​2013.​04.​029

	 4.	 Bhat, S., Rouskas, G.N.: Service-concatenation routing with applications to network functions vir-
tualization. In: 2017 26th International Conference on Computer Communication and Networks
(ICCCN), pp. 1–9. (2017). https://​doi.​org/​10.​1109/​icccn.​2017.​80384​63

	 5.	 Carrabs, F., Cerulli, R., Festa, P., Laureana, F.: On the forward shortest path tour problem. In:
Sforza, A., Sterle, C. (eds.) Optimization and Decision Science: Methodologies and Applications,
pp. 529–537. Springer, Berlin (2017). https://​doi.​org/​10.​1007/​978-3-​319-​67308-0_​53

	 6.	 Carrabs, F., D’Ambrosio, C., Ferone, D., Festa, P., Laureana, F.: The constrained forward shortest
path tour problem: mathematical modeling and grasp approximate solutions. Networks 78(1), 17–31
(2021). https://​doi.​org/​10.​1002/​net.​22010

	 7.	 Ferone, D., Festa, P., Guerriero, F., Laganà, D.: The constrained shortest path tour problem. Com-
put. Oper. Res. 74, 64–77 (2016). https://​doi.​org/​10.​1016/j.​cor.​2016.​04.​002

	 8.	 de Andrade, R.C., Saraiva, R.D.: An integer linear programming model for the constrained shortest
path tour problem. Electr. Notes Discrete Math. 69, 141–148 (2018). https://​doi.​org/​10.​1016/j.​endm.​
2018.​07.​019

	 9.	 Ferone, D., Festa, P., Guerriero, F.: An efficient exact approach for the constrained shortest path tour
problem. Optim. Methods Softw. 35, 1–20 (2020). https://​doi.​org/​10.​1080/​10556​788.​2018.​15480​15

	10.	 Saraiva, R.D., de Andrade, R.C.: Constrained shortest path tour problem: models, valid inequalities,
and lagrangian heuristics. Int. Trans. Oper. Res. 28(1), 222–261 (2021)

	11.	 Martin, S., Magnouche, Y., Juvigny, C., Leguay, J.: Constrained shortest path tour problem: branch-
and-price algorithm. Comput. Oper. Res. 144, 105819 (2022). https://​doi.​org/​10.​1016/j.​cor.​2022.​
105819

	12.	 Di Puglia Pugliese, L., Ferone, D., Festa, P., Guerriero, F.: Shortest path tour problem with time
windows. Eur. J. Oper. Res. 282(1), 334–344 (2020). https://​doi.​org/​10.​1016/j.​ejor.​2019.​08.​052

	13.	 Moccia, L., Cordeau, J.-F., Laporte, G.: An incremental tabu search heuristic for the generalized
vehicle routing problem with time windows. J. Oper. Res. Soc. 63(2), 232–244 (2012). https://​doi.​
org/​10.​1057/​jors.​2011.​25

	14.	 Desrosiers, J., Pelletier, P., Soumis, F.: Plus court chemin avec contraintes d’horaires. RAIRO-Oper.
Res. 17(4), 357–377 (1983). https://​doi.​org/​10.​1051/​ro/​19831​70403​571

	15.	 Di Puglia Pugliese, L., Guerriero, F.: A survey of resource constrained shortest path problems: exact
solution approaches. Networks 62(3), 183–200 (2013). https://​doi.​org/​10.​1002/​net.​21511

	16.	 Desrochers, M., Soumis, F.: A generalized permanent labelling algorithm for the shortest path prob-
lem with time windows. INFOR Inf. Syst. Oper. Res. 26(3), 191–212 (1988). https://​doi.​org/​10.​
1080/​03155​986.​1988.​11732​063

	17.	 Gallo, G., Pallottino, S.: Shortest path algorithms. Ann. Oper. Res. 13(1), 1–79 (1988). https://​doi.​
org/​10.​1007/​bf022​88320

	18.	 Guerriero, F., Di Puglia Pugliese, L., Macrina, G.: A rollout algorithm for the resource constrained
elementary shortest path problem. Optim. Methods Softw. 34(5), 1056–1074 (2019). https://​doi.​org/​
10.​1080/​10556​788.​2018.​15513​91

	19.	 Powell, W.B., Chen, Z.: A generalized threshold algorithm for the shortest path problem with time
windows. In: Pardalos, P.M., Du, D. (Eds.), Network Design: Connectivity and Facilities Location,
Proceedings of a DIMACS Workshop, Princetin, New Jersey, USA, April 28–30, 1997, Vol. 40 of

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF01939836
https://doi.org/10.1007/s11590-010-0258-y
https://doi.org/10.1016/j.ejor.2013.04.029
https://doi.org/10.1109/icccn.2017.8038463
https://doi.org/10.1007/978-3-319-67308-0_53
https://doi.org/10.1002/net.22010
https://doi.org/10.1016/j.cor.2016.04.002
https://doi.org/10.1016/j.endm.2018.07.019
https://doi.org/10.1016/j.endm.2018.07.019
https://doi.org/10.1080/10556788.2018.1548015
https://doi.org/10.1016/j.cor.2022.105819
https://doi.org/10.1016/j.cor.2022.105819
https://doi.org/10.1016/j.ejor.2019.08.052
https://doi.org/10.1057/jors.2011.25
https://doi.org/10.1057/jors.2011.25
https://doi.org/10.1051/ro/1983170403571
https://doi.org/10.1002/net.21511
https://doi.org/10.1080/03155986.1988.11732063
https://doi.org/10.1080/03155986.1988.11732063
https://doi.org/10.1007/bf02288320
https://doi.org/10.1007/bf02288320
https://doi.org/10.1080/10556788.2018.1551391
https://doi.org/10.1080/10556788.2018.1551391

614	 L. Di Puglia Pugliese et al.

1 3

DIMACS Series in Discrete Mathematics and Theoretical Computer Science, DIMACS/AMS, pp.
303–318. (1998). https://​doi.​org/​10.​1090/​dimacs/​040/​18

	20.	 Ghiani, G., Improta, G.: An efficient transformation of the generalized vehicle routing problem. Eur.
J. Oper. Res. 122(1), 11–17 (2000). https://​doi.​org/​10.​1016/​S0377-​2217(99)​00073-9

	21.	 Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum
cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968). https://​doi.​org/​10.​1109/​TSSC.​
1968.​300136

	22.	 Pulido, F.-J., Mandow, L., Pérez-de-la Cruz, J.-L.: Dimensionality reduction in multiobjective short-
est path search. Comput. Oper. Res. (2015). https://​doi.​org/​10.​1016/j.​cor.​2015.​05.​007

	23.	 de las Casas, P.M., Kraus, L., Sedeño-Noda, A., Borndörfer, R.: Targeted multiobjective DIJKSTRA
algorithm (2021). arXiv:​2110.​10978

	24.	 Ferone, D., Festa, P., Fugaro, S., Pastore, T.: A dynamic programming algorithm for solving the
k-color shortest path problem. Optim. Lett. 15(6), 1973–1992 (2020). https://​doi.​org/​10.​1007/​
s11590-​020-​01659-z

	25.	 Ferone, D., Festa, P., Gruler, A., Juan, A.A.: Combining simulation with a grasp metaheuristic for
solving the permutation flow-shop problem with stochastic processing times. In: Winter Simulation
Conference (WSC), pp. 2205–2215 (2016). https://​doi.​org/​10.​1109/​WSC.​2016.​78222​62

	26.	 Di Puglia Pugliese, L., Guerriero, F., Poss, M.: The resource constrained shortest path problem with
uncertain data: a robust formulation and optimal solution approach. Comput. Oper. Res. 107, 140–
155 (2019). https://​doi.​org/​10.​1016/j.​cor.​2019.​03.​010

	27.	 Pessoa, A.A., Di Puglia Pugliese, L., Guerriero, F., Poss, M.: Robust constrained shortest path prob-
lems under budgeted uncertainty. Networks 66(2), 98–111 (2015). https://​doi.​org/​10.​1002/​net.​21615

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1090/dimacs/040/18
https://doi.org/10.1016/S0377-2217(99)00073-9
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/j.cor.2015.05.007
http://arxiv.org/abs/2110.10978
https://doi.org/10.1007/s11590-020-01659-z
https://doi.org/10.1007/s11590-020-01659-z
https://doi.org/10.1109/WSC.2016.7822262
https://doi.org/10.1016/j.cor.2019.03.010
https://doi.org/10.1002/net.21615

	A generalized shortest path tour problem with time windows
	Abstract
	1 Introduction
	2 The generalized shortest path tour problem with time windows
	3 Generalized dynamic programming
	3.1 State-space reduction
	3.2 A implementation

	4 Computational results
	4.1 Implementation details
	4.2 Instances generation
	4.3 Numerical results
	4.3.1 Evaluation of A  technique
	4.3.2 Evaluation at varying %T
	4.3.3 Evaluation at varying %n

	4.4 Final remarks

	5 Conclusions and future work
	References

