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Abstract
Deep Image Prior (DIP) is currently among the most efficient unsupervised deep 
learning based methods for ill-posed inverse problems in imaging. This novel frame-
work relies on the implicit regularization provided by representing images as the 
output of generative Convolutional Neural Network (CNN) architectures. So far, 
DIP has been shown to be an effective approach when combined with classical and 
novel regularizers. Unfortunately, to obtain appropriate solutions, all the models 
proposed up to now require an accurate estimate of the regularization parameter. 
To overcome this difficulty, we consider a locally adapted regularized unconstrained 
model whose local regularization parameters are automatically estimated for addi-
tively separable regularizers. Moreover, we propose a novel constrained formulation 
in analogy to Morozov’s discrepancy principle which enables the application of a 
broader range of regularizers. Both the unconstrained and the constrained models 
are solved via the proximal gradient descent-ascent method. Numerical results dem-
onstrate the robustness with respect to image content, noise levels and hyperparam-
eters of the proposed models on both denoising and deblurring of simulated as well 
as real natural and medical images.
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1  Introduction

The task of image restoration aims at recovering a clean and sharp unknown image 
u ∈ ℝ

n given a blurry and/or noisy measurement g ∈ ℝ
m.

Mathematically, the restoration process can be modelled as a linear inverse 
problem:

where H ∈ ℝ
m×n is a known forward operator and � ∈ ℝ

m is the noise corrupting 
the data. In this work, we consider a zero-mean Additive White Gaussian Noise 
(AWGN) component with standard deviation ��.

Linear inverse problems are well-known to be ill-posed [3], therefore finding u 
from (1) by simply inverting H is useless due to the lack of stability and/or unique-
ness properties. The task is usually reformulated as the problem of finding an esti-
mate u∗ of the desired u as accurate as possible via a well-posed problem. In the last 
decades, several approaches have been proposed, ranging from classical variational 
regularization methods to deep learning based approaches [20, 23, 30, 37].

Variational regularization methods compute u∗ as the solution of the following 
regularized optimization problem:

where the first and the second terms are referred to as data fidelity and regulariza-
tion, respectively. The hyperparameter � is a positive scalar typically called regu-
larization parameter. More generally, the data fidelity term measures how a given 
image adheres to the model (1). Its definition usually depends on the type of noise 
affecting the acquired g and, upon AWGN assumptions, it is frequently defined as an 
�2-norm functional. The regularization term R ∶ ℝ

n
→ ℝ reflects prior information 

on the desired solution, such as its regularity and/or sparsity [21], whereas the hypa-
rameter � weights the strength of the regularization.

Very recently, supervised deep learning based methods have shown state-of-the-
art performances in the field of imaging inverse problems [32] due to their capability 
to learn the correlation between degraded images and their cleaned counterparts by 
exploiting high representative models like Deep Neural Network architectures and 
an outer training set of degraded-cleaned example pairs. However, in general, these 
supervised approaches have several issues, including the lack of generalization when 
not trained with enough data. Moreover, in many real applications, such as medical 
imaging, it is practically impossible to build a labeled dataset with both ground truth 
and degraded data [41].

All these reasons have motivated researchers to inspect unsupervised deep learn-
ing approaches which avoid the usage of the training sets [12, 13, 25, 26, 38]. Deep 
Image Prior (DIP) [38] is among the most promising methods belonging to this 

(1)find u ∈ ℝ
n s.t. Hu + � = g,

(2)u∗ ∈ argmin
u∈ℝn

1

2
‖Hu − g‖2

2
+ �R(u),
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class. The DIP framework leverages the fact that the architecture of a deep Con-
volutional Neural Network (CNN) generator reproduces natural images more easily 
than random noise, thus inducing implicit regularization. Given a CNN generator 
f ∶ ℝ

s ×ℝ
N
→ ℝ

n whose weights are denoted by � ∈ ℝ
s and a random input vec-

tor z ∈ ℝ
N sampled from a uniform distribution, the DIP approach [38] looks for a 

set of weights �∗ , combining the following minimization problem

with an early stopping procedure. More specifically, the weights �∗ are obtained by 
applying standard gradient-based iterative algorithms to the problem (3) and early 
stopping the iterative process before overfitting the degraded image g . The restored 
image u∗ is then computed as f (�∗, z).

Up to now, researchers have mostly worked on a theoretical analysis of DIP [1, 
10, 11] as well as on boosting its performance. Inspired by standard variational reg-
ularization methods, in [2, 7, 8, 29, 31, 39] the authors improved the DIP perfor-
mance by adding an explicit penalization term R to the objective in (3). Hence, the 
optimization problem (3) is replaced by the following regularized one:

As an example, in [2, 29, 39] R is set as the standard Total Variation (TV) [35], 
whereas in [31] the authors consider the RED regularizer [34]. In more details, the 
definition of TV comes from the assumption that natural images often admit very 
sparse approximations in the gradient domain. Hence, given a vectorized image 
u ∈ ℝ

n , the TV regularizer is defined as follows:

where by D = (Dh;Dv) ∈ ℝ
2n×n we denote the discrete gradient such that Dh ∈ ℝ

n , 
Dv ∈ ℝ

n are the first order finite difference discrete operators along the horizontal 
and vertical axes, respectively. On the other hand, the RED regularizer [34] is based 
on the so called regularization by denoising principle, i.e. the capability of denoisers 
to induce regularization. It is defined as follows:

where �(⋅) is chosen as any off-the-shelf denoiser. In [34], by assuming the differ-
entiability, local homogeneity, Jacobian symmetry and filter passivity of �(⋅) , the 
authors prove that R is convex, differentiable and, moreover, ∇R(u) = u − �(u) . 
Hereafter we denote by DeepRED the method proposed in [31] to solve problem (4) 
when R is set as the RED regularizer.

The selection of the regularization parameter � in (4) is an essential issue that 
this approach inherits from the class of variational regularization methods [37, 

(3)argmin
�∈ℝs

1

2
‖Hf (�, z) − g‖2

2

(4)argmin
�∈ℝs

1

2
‖Hf (�, z) − g‖2

2
+ �R(f (�, z)).

(5)TV(u) ∶= ‖Du‖1,2 ∶=
n�
i=1

��(�
�
u)i�2 + �(�

�
u)i�2

�1∕2
,

(6)R(u) =
1

2
uT (u − �(u)),
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43]. A wise choice of regularization parameter is obviously crucial for obtaining 
useful approximate solutions to ill-posed problems. Indeed, replacing (3) with 
(4) induces better regularized solutions, provided a suitable value for � depend-
ing both on the level of degradation of the acquired image and on the considered 
problem. In the literature there exist various strategies for choosing the param-
eter � , such as the Morozov’s discrepancy principle, the generalized cross-val-
idation (GCV) [14], the L-curve method [17], and the unbiased predictive risk 
estimator [28]. However, it is well-known that such strategies can present differ-
ent limitations: they are not at all easy to apply for every regularizer; they can 
provide either over or under smoothed solutions; they may often require to solve 
(4) many times for different values of � , making the overall procedure computa-
tionally expensive. For these reasons, manually tuning the regularization param-
eter by trial-and-error procedures is common in the regularized DIP framework 
[2, 7, 29, 31, 39], leading to an high demanding workload.

Contributions In this work, we provide two different DIP based optimiza-
tion models which share the property of automatically balancing the effect of 
the regularization. First, we consider an unconstrained model as the one in (4) 
where the regularization term is additively separable. The strength of the regu-
larization is pixelwise weighted by a set (one for each pixel) of local regulariza-
tion parameters whose definition is based on local patterns. Following the idea 
of estimating the regularization parameter iteratively suggested in [16, 40], we 
automatically estimate the set of local regularization parameters according to 
the Uniform PENalty (UPEN) principle [5]. Furthermore, we propose to refor-
mulate the standard regularized unconstrained DIP optimization problem (4) as 
a constrained one, whose constraints impose that the residual ‖Hf (�∗, z) − g‖2 is 
almost equal to the standard deviation of the noise affecting the acquired data, 
in accordance to the discrepancy principle. As evident, this approach strictly 
depends on an estimation of the noise level in the corrupted image. However, in 
real applications, choosing a reasonable value of the noise level is usually much 
easier than finding a suitable value of the regularization parameter � . Indeed, 
many efficient algorithms to estimate the noise level are known in the literature 
[19, 24] and successfully exploited in many fields [15, 36]. To consider auto-
matically regularized DIP-based optimization models is an interesting issue in 
the DIP framework, since so far, to the best of our knowledge, no one work-
ing in this context has been focused on this aspect. Both the unconstrained and 
constrained models are solved via a modified and more efficient version of the 
proximal gradient descent-ascent (PGDA) method in which the computation 
of the gradient step is split in two blocks. Finally, we show that, upon suitable 
assumptions [6], some convergence results for the arising iterative schemes can 
be provided.

Organization of the paper In Sect.  2, we introduce both the unconstrained 
and the constrained models and we illustrate the resulting PGDA schemes. In 
Sect.  3, we present several numerical experiments on synthetic as well as real 
blurred and noisy natural and medical images and we compare the results with 
the standard DIP [38] and DeepRED [31].
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2 � Novel automatically regularized DIP‑based optimization models

In this section, we introduce the unconstrained and the constrained optimization mod-
els to face the regularized DIP problem and we show how they can be treated within 
the PGDA framework.

2.1 � Unconstrained model

The approaches described in [2, 29, 39] consider the unconstrained model (4) setting 
the regularizer as the handcrafted Total Variation with a single regularization param-
eter, which does not allow to adapt the regularization to the local image patterns. Con-
versely, we consider a flexible space variant regularizer and a set of local regularization 
parameters �i for i = 1… n weighting the strength of the regularization for each pixel. 
The resulting unconstrained model reads:

where Ii ⊂ {1,… , l} = I such that Ii ∩ Ij = � for every i, j = 1… n with i ≠ j and ⋃n

i=1
Ii = I , Ri are real-valued functions representing the local components of the 

regularizer, A ∶ ℝ
n
→ ℝ

l is a generic operator and l is a positive integer such that 
l ≥ n . The functions Ri and the local parameters �i usually represent local energies 
defined on a neighbourhood of the i-th pixel thus forcing prior information based 
on local patterns. Practically, these local parameters are automatically chosen along 
the iterations as explained in Remark 1. Considering a vector v in ℝl , for every 
i = 1,… n we denote vIi ∈ ℝ

|Ii| as the vector specified by the components of v whose 
indexes are in Ii . Examples of regularization terms belonging to this class are the 
Tikhonov-like and the Total Variation ones. For instance, in the Tikhonov-based 
regularizers, A is usually chosen as the identity or the laplacian operators, whereas 
Ri ∶ ℝ → ℝ is chosen as the square function. Concerning the isotropic Total Vari-
ation, A represents the discrete gradient and Ri ∶ ℝ

2
→ ℝ is chosen as the �2-norm 

function.
By adding an auxiliary variable v ∶= Af (�, z) , the optimization problem (7) is 

equivalent to the following formulation:

In order to solve problem (8), we introduce the corresponding augmented Lagran-
gian function defined as

(7)argmin
�∈ℝs

1

2
‖Hf (�, z) − g‖2

2
+

n�
i=1

�iRi((Af (�, z))Ii ),

(8)
argmin
�∈ℝs,v∈ℝl

&
1

2
‖Hf (�, z) − g‖2

2
+

n�
i=1

�iRi(vIi)

s.t. Af (�, z) = v.
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where �v is a positive scalar, called penalty parameter and �v is the Lagrangian 
parameter associated with the constraint Af (�, z) = v . Some papers [8, 31] address 
the minimization of the regularized DIP optimization problem (4) by seeking the 
saddle points of the related augmented Lagrangian function through the ADMM 
algorithm. However, an highly inexact version of ADMM is practically implemented 
since the updating step for the weights � is, in general, solved inexactly by applying 
only one iteration of a gradient-based method. For this reason, instead of ADMM, 
we take into account another class of methods tailored for minimax problems. In 
more detail, by denoting with x ≡ [�;v] , we handle the saddle point problem

by means of the class of alternating proximal gradient descent-ascent (PGDA) meth-
ods [6, 9, 27] (see Appendix 1 for a survey of these algorithms). By introducing the 
notation R(x) =

∑n

i=1
�iRi(vIi) and defining

upon suitable initialization of the involved variables, the k-th iteration of the alter-
nating PGDA iterative algorithm described in [6] to solve (10) reads as follows:

where �x and ��v
 are proper positive learning rates. By definition of proximal opera-

tor, the vector xk+1 in the first step of (11) can be written as in the following:

Hence, in view of the notation introduced above,

Due to the separability of the objective in (12) with respect to the variables � and v 
and by assuming convexity of R and �x =

1

�v
 , iteration (11) can be rewritten as

(9)
L(�, v,�v) =

1

2
‖Hf (�, z) − g‖2

2
+

n�
i=1

�iRi(vIi)

+
�v

2
‖Af (�, z) − v‖2

2
+ ⟨�v,Af (�, z) − v⟩,

(10)min
x∈ℝs+l

max
�v∈ℝ

l
L(x,�v)

K(x,�v) =
1

2
‖Hf (�, z) − g‖2

2
+

�v

2
‖Af (�, z) − v‖2

2
+ ⟨�v,Af (�, z) − v⟩,

(11)

{
xk+1 = prox�xR(x

k − �x∇xK(x
k,�k

v
))

�k+1
v

= �k
v
+ ��v

∇�v
K(xk+1,�k

v
)

xk+1 = argmin
x

�xR(x) +
1

2
‖x − (xk − �x∇xK(x

k,�k
v
))‖2

2
.

(12)

xk+1 = argmin
�∈ℝs,v∈ℝl

�xR(x) +
1

2

�����

�
�

v

�
−

�
�k − �x∇�K(x

k, �k
v
)

vk − �x∇vK(x
k, �k

v
)

������

2

2

= argmin
�∈ℝs,v∈ℝl

�xR(x) +
1

2
‖� − (�k − �x∇�K(x

k,�k
v
))‖2

2

+
1

2
‖v − (vk − �x∇vK(x

k,�k
v
))‖2

2
.
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Concerning the optimization problem in the second step of (13), if the proximal map 
of Ri can be easily computed for all i = 1… n , then the problem can be efficiently 
solved in a closed form by applying the proximity operator of Ri to the n compo-
nents of Af (�k, z) +

�k
v

�v
 . Such hypotheses on Ri are not so restrictive. For example 

both Tikhonov-like and isotropic Total Variation regularizers satisfy these assump-
tions since the Ri are set as the square or �2-norm functions.

Remark 1  In our implementation, we chose to vary the set of local regularization 
parameters �i along the iterations. In particular, their formulation is inspired by [5] 
and reads:

This entails that the smaller is the value of the local component function the greater 
is the regularization provided at pixel i. We remark that, in the experimentation, 
we set these parameters to a certain value when the denominator decreases below a 
fixed threshold.

2.1.1 � Practical and theoretical details of algorithm (13)

We point out that, taking into account the separable nature of problem (12) and the 
optimization efficiency, in the practical implementation, we exploit the already com-
puted value for �k+1 in the update of vk+1 . In Sect. 3.6 we compare the behaviour of 
the standard alternating PGDA method (13) and that of the implemented version 
which employs �k+1 for the computation of vk+1 on one of the problem under analy-
sis. The two versions of the alternating PGDA are comparable, even if the standard 
one needs higher memory requirements.

Remark 2  Under the hypotheses that the function K(x, y) is �-weakly convex and 
L-Lipschitz in the first component uniformly in the second one, and the regularizer 
R is proper, convex and lower semicontinuous and LR-Lipschitz continuous on its 
domain, and since K(x, y) is concave and has Lipschitz continuous gradient in the 
second component uniformly in the first one, then the convergence result [6, 

(13)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�k+1 = �k − �x∇�K(x
k,�k

v
)

vk+1 = argmin
v∈ℝl

�xR(x) +
1

2
‖v − (vk − �x∇vK(x

k,�k
v
))‖2

2
=

= argmin
v∈ℝl

n�
i=1

�iRi(vIi) +
1

2�x

������
v −

�
Af (�k, z) +

�k
v

�v

�������

2

2

�k+1
v

= �k
v
+ ��v

(Af (�k+1, z) − vk+1).

(14)�k
i
=

1

2n

‖Hf (�k+1, z) − g‖2
2

Ri

�
(Af (�k+1, z))Ii

� .
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Theorem 3.7] can be invoked. Such theorem ensures that an �-stationary point [6, 
Definition (6)] of (9) can be visited in a finite number of iterations depending on � . 
Both the invoked theorem and definition are recalled in Appendix 1 (see Definition 
() and Theorem ()). We point out that the learning rates �x and ��v

 are required to be 
bounded by proper constants which we do not know in practice. For this reason, we 
decide to fix �x =

1

��v

= �v . The choice of �v is discussed in the following remark.

Remark 3  The value of the penalty parameter �v is hand-tuned. However, in the 
experimental part (Sect. 3) we empirically show that the choice of this hyperparam-
eter does not affect the performance of the method as much as the choice of the reg-
ularization parameter when dealing with model (4). In detail, we empirically dem-
onstrate that the performance of the proposed model is not sensitive to this penalty 
parameter �v for all considered test problems if chosen in a reasonable set. Moreover 
none of the considered value for �v makes the algorithm divergent.

2.2 � Constrained model

The starting point of this approach is again the regularized DIP optimization prob-
lem in (4). Differently from the unconstrained model described in Sect. 2.1, we here 
assume R ∶ ℝ

n
→ ℝ is a generic regularizer. The constrained model we refer to, in 

the following, reads as:

where D��
 is defined as:

with � being a positive scalar and �� being the standard deviation of the noise affect-
ing g . This constrained model (15) exploits the Morozov’s discrepancy principle by 
simply extending [18, 33]. If R◦f  is convex, this model is equivalent to (4) for a suit-
able � ≥ 0 . In particular, by the KKT complementary condition, the discrepancy 
principle seeks a 𝜆 > 0 , such that the minimizer of (15) lies on the boundary of D��

 . 
However, this hypothesis of convexity appears too restrictive for the DIP framework. 
Nevertheless, under milder assumptions, the KKT conditions ensure that a local 
optimum for (15) is a stationary point for (4) provided a particular � ≥ 0 . Therefore, 
we focus on problem (15) since it allows us to avoid the dependence on the choice of 
the regularization parameter � . Finally, we cannot theoretically guarantee that the 
solution of (15) satisfies the discrepancy principle (namely, lies on the boundary of 
D��

 ), but in Sect. 3 we empirically verify that our approaches implicitly enforce it. 
We stress that our general approach (15), largely differs from model (4) proposed in 
the literature, since it overcomes the problem of tuning the regularization parameter 
provided the noise standard deviation �� . In practice, it is sufficient to consider a 
good estimate of �� which can be computed by applying the efficient algorithms 
described in [19, 24].

(15)argmin
�∈ℝs

R(f (�, z)) s.t. f (�, z) ∈ D��
,

(16)D��
∶= {f (�, z) ∈ ℝ

n � ‖Hf (�, z) − g‖2
2
≤ ��2

�
m},
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In order to solve (15), we propose to consider the alternating PGDA method. By 
introducing two auxiliary variables t ∶= f (�, z) and r ∶= Hf (�, z) − g , two positive 
penalty parameters �t and �r , the augmented Lagrangian functional is defined as:

where iB�
 is the indicator function of the ball B𝛿 ⊂ ℝ

m , centered in 0 ∈ ℝ
m , of radius 

� ∶=
√
��2m , and �t, �r are the Lagrangian parameters related to the auxiliary vari-

ables. Given the notation x = [�, t, r] and y = [�t,�r] , and by setting

and

the augmented Lagrangian function (17) has the form:

The general iteration of the alternating PGDA iterative algorithm to solve

can be written as:

where �x and �y are proper positive learning rates. By following the approach 
employed in Sect. 2.1 for the unconstrained case, the vector xk+1 in the first step of 
(19) can be rewritten as

(17)
L(�, t, r;�t,�r) = R(t) + iB�

(r) + ⟨�t, f (�, z) − t⟩ + �t

2
‖t − f (�, z)‖2

+ ⟨�r,Hf (�, z) − g − r⟩ + �r

2
‖r − (Hf (�, z) − g)‖2,

K(x, y) =
�t

2
‖t − f (�, z)‖2 + �r

2
‖r − (Hf (�, z) − g)‖2

+ ⟨�t, f (�, z) − t⟩ + ⟨�r,Hf (�, z) − g − r⟩

R(x) = R(t) + iB�
(r),

L(�, t, r;�t,�r) ≡ L(x, y) ≡ K(x, y) +R(x).

(18)min
x∈ℝs+n+m

max
y∈ℝn+m

L(x, y)

(19)

{
xk+1 = prox�xR(x

k − �x∇xK(x
k, yk))

yk+1 = yk + �y∇yK(x
k+1, yk)

(20)

xk+1 = argminx �xR(x) +
1

2

�������

⎡⎢⎢⎣

�

t

r

⎤⎥⎥⎦
−

⎡⎢⎢⎣

�k − �x∇�K(x
k, yk)

tk − �x∇tK(x
k, yk)

rk − �x∇rK(x
k, yk)

⎤⎥⎥⎦

�������

2

2

= argminx �xR(t) + iB�
(r) +

1

2
‖� − (�k − �x∇�K(x

k, yk))‖2
2

+
1

2
‖t − (tk − �x∇tK(x

k, yk))‖2
2

+
1

2
‖r − (rk − �x∇rK(x

k, yk))‖2
2
.
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As a consequence, by selecting �t = �r =
1

�x
,

Similarly to the standard DIP framework solving (3), the first step in (21) updates 
the network’s weights performing one back-propagation step. The update of t , pro-
vided by the second step reported in (21), strictly depends on the choice of the regu-
larizer. However, the minimization problem to find tk+1 is mathematically equivalent 

to the proximal map of �xR in f (�k, z) +
�k
t

�t
 , therefore it can admit a closed form 

solution or it can be solved through either fixed point or gradient descent strategies 
as in [31]. The update of r is a simple projection of Hf (�k, z) − g +

�k
r

�r
 onto the ball 

B� . From the practical point of view, in the updating steps for tk+1 and rk+1 in (21), 
we exploit the already computed vector �k+1 for improving the optimization effi-
ciency, as already discussed in Sect. 2.1.1. As for the convergence properties of the 
scheme (21), analogous conclusions to those of Remark 2 hold also in this case. 
Finally, we point out that the penalty parameters �t and �r are hand-tuned. However, 
the considerations highlighted for the penalty �v in Remark 3 also apply to these two 
hyperparameters.

3 � Results

In this section, we show the results of some numerical experiments carried out to 
highlight the main benefits of the suggested unconstrained and constrained mod-
els and to evaluate their effectiveness in solving image deblurring and denoising 
tasks on synthetic natural images as well as real medical ones. We perform sev-
eral tests by varying the level of degradation, evaluate the performances through 
qualitative visual comparisons and quantitatively by PSNR and SSIM metrics. 
Finally, we discuss about the effectiveness of our implementation with respect to 
the standard PGDA.
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3.1 � Implementation and evaluation details

Implementation details Regarding the choice of the regularizer, both models allow 
a certain freedom of choice. For the unconstrained model, we consider the hand-
crafted space variant Total Variation and in the following we refer to it as DIP-WTV. 
We stress that in this case we consider the model (7) by assuming all Ri are set equal 
to the 2D �2-norm for i = 1… n and A is taken equal to the discrete gradient, hence 
l = 2n and Ii = {i, n + i} for each i = 1,… , n . Upon these assumptions the set of 
regularization parameters is defined according to the formula given by (14). Con-
cerning the constrained optimization model (15), we set the regularizer R equal to 
the RED regularizer [34]. We refer to this approach as cDIP-RED in the following. 
The cDIP-RED approach requires the knowledge of standard deviation of the noise 
affecting the acquired image. As already mentioned, we point out that we estimate 
the noise standard deviation by applying the algorithm described in [19], even for 
the simulated tests where we do know it. The parameter � in (15) is set equal to 1 
for all the experiments. For both models and for all the experiments performed we 
stop the related PGDA iterative process after 5000 iterations. We remark that both 
the DIP-WTV and the cDIP-RED approaches are based on a modified version of 
the alternating PGDA scheme, as clarified is Sect. 2.1.1. In Sect. 3.6 we discuss this 
choice on one of the problem under analysis. As deep neural network architecture f 
we consider a generative CNN Encoder–Decoder architecture with skip connections 
by concatenation as suggested in [38], whereas the input z is taken as a random input 
tensor sampled from a uniform distribution. The input z is a 3D tensor having the 
same dimension of the unknown image and 32 channels, the number of weights � is 
about 2 millions.

In the experiments, we follow the common practice in the DIP framework [31, 
38] and use the Adam [22] algorithm implemented in PyTorch with the default 
parameters to update � in (13) and (21). As typically done, we also perturb in each 
iteration the input z by a component sampled from a Gaussian distribution with zero 
mean and standard deviation equal to 1

30
 and we compute the final output as the aver-

age of all iterates.
Competitors We compare the proposed approaches DIP-WTV and cDIP-RED 

with the standard DIP [38] and the DeepRED [31] algorithms. We point out that 
in [31] the authors prove that DeepRED outperforms other several approaches as 
far as the deblurring and denoising tasks are concerned. Moreover, we underline 
that in their implementation1, to enforce the regularization, the authors implement 
a strategy that increases the magnitude of the regularization parameter � along the 
iterations when the computed solution starts overfitting the corrupted image. More 
precisely, when the PSNR value between the restored image and the degraded image 
is greater than a given threshold � the regularization parameter is increased by add-
ing a constant.

Test set In Fig. 1, we depict the images used in the numerical simulations. We 
consider a test set of five red-green-blue (RGB) natural images belonging to the 

1  https://​github.​com/​GaryM​ataev/​DeepR​ED

https://github.com/GaryMataev/DeepRED
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Set5 dataset [4], two black-white (BW) natural images and one chest CT image of 
a patient affected by COVID-19 already post-processed into a 2D image after the 
acquisition. We treat all the images belonging to Set5 as ground truths as well as 
the watercastle BW image. In our experiments, the simulated acquired images are 
created by applying the image formation model (1) to the related ground truths. 
In particular, to simulate blurred data we assume that H represents the discretiza-
tion of a convolutional product with a Gaussian kernel of standard deviation �H . 
We remark that the level of degradation of the simulated acquisition is specified by 
the magnitudes of �� and �H . Finally, we stress that the skyscraper BW image and 
the real chest CT image are affected by artifacts. Since no ground truths are avail-
able for these images, the comparisons among the methods are carried out through 
visual inspection. The codes and the images used for these numerical experiments 
are available online2.

3.2 � Stability w. r. t. hyperparameters and empirical convergence

In this section, we describe the advantages which the models previously suggested 
bring over the considered competitors. In the first part, we empirically show the pro-
posed approaches avoid the typical noise overfitting of DIP. Then, we underline how 
the suggested methods are more robust with respect to the choice of the hyperpa-
rameters than DeepRED. Finally, we empirically demonstrate that solutions of the 
proposed approaches satisfy the Morozov’s discrepancy principle.

No overfitting In the first test, we highlight the sensitivity of the standard DIP 
algorithm with respect to the choice of the optimal number of iterations to be per-
formed and we compare it with DIP-WTV and cDIP-RED. For all experiments in 

Butterfly Bird Head Woman

Baby Watercastle Skyscraper chest CT

Fig. 1   The test images employed in the numerical experiments. Butterfly: RGB image 256 × 256 pixels, 
Bird: RGB image 288 × 288 pixels, Head: RGB image 256 × 256 pixels, Woman: RGB 224 × 320 pixels, 
Baby: RGB 512 × 512 pixels, Watercastle: BW 320 × 480 pixels, Skyscraper: BW 256 × 256 pixels, chest 
CT: BW 512 × 512 pixels

2  https://​github.​com/​pcasc​arano/​cDIP-​RED-​DIP-​WTV

https://github.com/pcascarano/cDIP-RED-DIP-WTV
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this section we set the penalty parameters �v = 1 , �t = 0.5 and �r = 1 . We consider 
the woman, bird, and baby images and we simulate the noisy acquisitions by cor-
rupting the ground truths with an AWGN component of standard deviation �� = 35 . 
Then, we apply DIP, DIP-WTV, and cDIP-RED and in the upper panel of Fig. 2 we 
depict the behaviour of the PSNR metric along the performed iterations. In order 
to analyze the relation between the noise level of the simulated acquisition and the 
optimal number of iterations to be performed by DIP, DIP-WTV and cDIP-RED, in 
lower panel of Fig. 2, we report the behavior of the PSNR metric along the itera-
tions while the level of corruption changes. In particular, we consider the butterfly 
test images and we corrupt it by AWGN with �� = 25, 35, 50 . As a general com-
ment, Fig. 2 shows that standard DIP starts overfitting the corrupted image along 
the iterative process. Moreover, for the DIP approach, this test highlights that the 
number of iterations to reach the best PSNR strongly depends on the image consid-
ered (Fig. 2a), and on the level of corruption (Fig. 2d). Conversely, the DIP-WTV 
(Fig. 2b and e) and cDIP-RED (Fig. 2c and f) schemes do not overfit the corrupted 
data while the PSNR does not decrease.

No regularization parameter is required The DeepRED algorithm overcomes 
the problem of overfitting by adding the RED regularizer to the objective mini-
mized by the standard DIP, provided a proper value for the regularization param-
eter � . In this section, we highlight the sensitivity of the DeepRED algorithm 
with respect to the choice of the hyparameters defining the sequence of the regu-
larization parameters, namely the threshold � and the starting value of the regu-
larization parameter �0 . In Fig. 3a, we show the behaviour of the PSNR for dif-
ferent values of the threshold � . The degraded image is obtained by corrupting 

(a)DIP (b)DIP-WTV (c) cDIP-RED

(d)DIP (e)DIP-WTV (f) cDIP-RED

Fig. 2   The PSNR values achieved by DIP, DIP-WTV and cDIP-RED along the iterations. In (a)-(b)-(c) 
the DIP, DIP-WTV and cDIP-RED are tested on three different RGB images degraded setting �� = 35 . In 
(d)-(e)-(f) DIP, DIP-WTV and cDIP-RED, respectively, are tested on the butterfly RGB image corrupted 
with different noise levels
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the butterfly image with an AWGN component setting �� = 35 . The parameter �0 
is fixed equal to 0.005 while the increasing factor equals 0.03. For high values 
of the threshold the regularization contribution is too weak thus the PSNR starts 
decreasing, which means DeepRED starts overfitting the degraded image. For 
low values of the threshold, the regularization parameter starts becoming high 
thus too much regularization is enforced. The best compromise for this butterfly 
test problem is � = 22 . However, in our experiments we observe that this value 
depends once again on both the image and the noise level considered and can-
not be fixed a priori. In Fig. 3b, we report the PSNR behaviour obtained by fix-
ing � = 22 and by changing the starting value of the regularization parameter �0 . 
We observe the output of the DeepRED in 5000 iterates largely depends on the 
choice of this hyperparameter. We stress that DeepRED is implemented in the 
ADMM framework which requires the tuning of the penalty parameter. In our 
experiments, the DeepRED penalty parameter is set equal to 0.5 as suggested by 
the authors in [31].

The main feature of DIP-WTV and cDIP-RED is that the introduced regular-
ization has no parameters to be estimated. In the case of DIP-WTV, the space 

γ λ0

βv

(a) DeepRED varying (b)DeepRED varying

(c) DIP-WTV varying (d) cDIP-RED varying βt and βr

Fig. 3   The PSNR values achieved by DIP, DIP-WTV and cDIP-RED along the iterations for the butterfly 
RGB image with �� = 35



139

1 3

Constrained and unconstrained deep image prior optimization…

variant regularization parameters are automatically estimated along the iterations, 
whereas the constrained formulation of cDIP-RED allows to automatically esti-
mate the strength of the regularization by the Morozov’s discrepancy principle.

Stability w.r.t. penalty parameters �v , �t and �r We remark that for the DIP-WTV 
and cDIP-RED approaches we just need to fix the penalties �v , �t and �r . However, 
in order to prove the stability of these methodologies with respect to the choice of 
these parameters, in Fig. 3c and d we depict the PSNR behaviour provided by DIP-
WTV and cDIP-RED on the previous test image by setting different values for �v , �t 
and �r . We stress that the range for the penalties for DIP-WTV and cDIP-RED has 
been deduced by the values suggested in [31] for their ADMM implementation.

From these figures we can conclude that for the DIP-WTV and the cDIP-RED 
methods the penalty parameters affect the convergence speed, but the PSNR behav-
iour of both the approaches is stable along the iterations and no noise-overfitting 
is present for any of the configurations considered. Moreover, we also observed 
that these different configurations provide comparable restorations in terms of vis-
ual quality in 5000 iterations. We observe that to maximize the performances of 
the cDIP-RED method we should set 𝛽t < 𝛽r . This is due to the fact that a bigger 
value of �r provides more consistency with the initial data. Finally, we stress that the 
PSNR behaviour reported in Fig. 3c and d for the particular butterfly test problem 
are common to all the other tests performed.

All these considerations allow us to state that DIP-WTV and cDIP-RED are more 
robust than DIP and DeepRED with respect to the choice of the hyperparameters 
values. Moreover, independently on the penalties parameters setting, if compared to 
the standard DIP, we can stop DIP-WTV and cDIP-RED being confident that these 
methods do not overfit noise.

Satisfying the Morozov’s discrepancy principle In Fig. 4, we consider once again 
the denoising test on the butterfly image described previously. We analyze the 
behaviour of the constraint ratio ‖f (�(k), z) − g‖∕� as a function of the iterations 
number. We remark that a constraint ratio equal to 1 entails the corresponding iter-
ate is almost at the boundary of D��

 defined in (16). We observe that DIP and Deep-
RED (setting � = 24 ) slowly overfit the simulated noisy acquisition and converge to 
an interior point of D��

 . On the other hand, DeepRED (with � = 22 ), DIP-WTV and 
cDIP-RED converge to a solution which lies on the boundary of D��

 and hence 

Fig. 4   The constraint ratio’s 
trend along the iterations 
obtained by applying DIP, 
DeepRED (with � = 22 and 
� = 24 ), DIP-WTV and cDIP-
RED to the butterfly RGB image 
corrupted by AWGN with 
�� = 35
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implicitly satisfy the discrepancy principle. We stress that we empirically observe 
the same behaviour for all the other experiments performed. As a general comment, 
this test confirms once again how the performances of DeepRED largely depend on 
the choice of the hyperparameter � defining the strength of the regularization. More-
over, we empirically show a more robust convergent behaviour of DIP-WTV and 
cDIP-RED avoiding costly parameter tuning.

3.3 � Denoising task

We validate DIP-WTV and cDIP-RED by comparing them with DIP and DeepRED 
on the Set5 [4] dataset for the denoising task. The starting noisy images are created 
by corrupting the ground truth images with an AWGN component of standard devia-
tion equals to 25 and 50. We remark once again that for the cDIP-RED approach we 
estimate the noise standard deviation even if we know its value. The performances 
are evaluated by means of the PSNR metric and, in addition, by a visual compari-
son. In particular, Figs. 5 and 6 report the restored baby and butterfly images start-
ing from the data with the highest level of corruption considered. In Table  1 we 
report the mean values of the PSNR metric on Set5. For the DIP algorithm we have 
selected for each image the number of iteration maximizing the PSNR value. For 

Table 1   PSNR mean values for 
the Set5 for two level of noise. 
In blue we highlight the best 
PSNR value

�� Noisy DIP DeepRED DIP-WTV cDIP-RED

PSNR 25 25.46 32.29 32.91 32.48 32.95
50 19.89 27.87 28.15 27.98 28.34

(a) GT (b) noisy (c) DIP

(d) DeepRED (e) DIP-WTV (f) cDIP-RED

Fig. 5   Restored images for the baby test problem setting �� = 50 . The PSNR values are: Noisy: 19.84 
dB, DIP: 27.85 dB, DeepRED: 28.32 dB, DIP-WTV: 28.26 dB, cDIP-RED: 28.43 dB
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DeepRED we set the ADMM penalty equal to 0.5, whereas we have selected the 
threshold � and the starting regularization parameter �0 in order to maximize the 
PSNR for each image. For DIP-WTV and cDIP-RED we set for all the images �v = 1 
and �t = 0.5 and �r = 1 , respectively. For DeepRED, DIP-WTV and cDIP-RED the 
restored images have been obtained performing 5000 iterations.

The results reported in Table 1 show that cDIP-RED outperforms DIP and pro-
vides slightly better performances with respect to DeepRED in terms of PSNR 
metric. We remark that cDIP-RED does not require any hand-tuning of the regu-
larization parameter. Concerning DIP-WTV, we observe that it provides better per-
formances than DIP. Moreover, we stress that it has shown more robustness to the 
choice of the hyperparameters with respect to the DeepRED and it has the lowest 
number of hyperparameters to be set. Unfortunately, the handcrafted Total Variation 
regularizer is not as effective as RED regularization for natural images, which mani-
fests in lower PSNR scores for DIP-WTV. In Figs. 5 and 6, we report the simulated 
noisy acquisitions of the baby and butterfly images setting �� = 50 and the restored 
images obtained by DIP, DeepRED, DIP-WTV and cDIP-RED. Moreover, in the 
captions, we highlight the PSNR values. As a general comment, the DIP algorithm 
struggles to recover the image texture. The cDIP-RED restorations look sharper 

(a) GT (b) noisy (c) DIP

(d) DeepRED (e) DIP-WTV (f) cDIP-RED

Fig. 6   Restored images for the butterfly test problem setting �� = 50 . The PSNR values are: Noisy: 19.88 
dB, DIP: 27.81 dB, DeepRED: 28.13 dB, DIP-WTV: 28.01 dB, cDIP-RED: 28.69 dB

Table 2   PSNR and SSIM mean values for the Set5 considering Gaussian blur with �
H
= 2 and the noise-

level �� = 10 . In blue we highlight the best PSNR and SSIM values

Blurred DIP DeepRED DIP-WTV cDIP-RED

PSNR 25.93 30.08 30.81 30.56 30.90
SSIM 0.81 0.91 0.92 0.92 0.93
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and more faithful to the ground truth than the ones obtained by DeepRED and DIP-
WTV as underlined by the close-ups.

(a)GT (b) noisy (c) DIP

(d)DeepRED (e)DIP-WTV (f) cDIP-RED

Fig. 7   Restored images for the watercastle test problem with noise level 5 and blur 1.6. The PSNR and 
SSIM values are: Noisy: 22.87 dB–0.76, DIP: 25.81 dB–0.87, DeepRED: 26.23 dB– 0.89, DIP-WTV: 
25.87 dB–0.88, cDIP-RED: 26.28 dB–0.89

Compressed acquisition Blurry and noisy DIP

DeepRED DIP-WTV cDIP-RED

(a) (b) (c)

(d) (e) (f)

Fig. 8   Restored images for the skyscraper test problem with noise level 10 and blur 0.8
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3.4 � Deblurring task

In this section, we compare DIP-WTV and cDIP-RED with DIP and DeepRED 
on the Set5 [4] dataset for the deblurring task. The starting degraded images are 
constructed by setting the standard deviation of the noise �� = 10 and the standard 
deviation of the Gaussian blur �H = 2 . The performances have been evaluated by 
means of the PSNR and SSIM metrics. In Table 2, we report the mean values of 
the PSNR and SSIM metrics. Moreover, we consider the skyscraper and the water-
castle images and we add blur and noise by setting �� = 10 and �H = 0.8 for the 
first image, �� = 5 and �H = 1.6 for the second. The simulated degraded acqui-
sitions are drawn in Figs. 7b and 8b, respectively. In Figs. 8 and 7, we report the 
results obtained by applying DIP, DeepRED, DIP-WTV and cDIP-RED and in the 
caption we report the PSNR and SSIM metrics. For the DIP and DeepRED we set 
all the hyperparameters in order to maximize the PSNR. For DIP-WTV and cDIP-
RED we set for all the tests �v = 1.5 and �t = 1.5 and �r = 2 , respectively. For Deep-
RED, DIP-WTV, and cDIP-RED the restored images have been obtained perform-
ing 5000 iterations. From Table 2 we observe again that DeepRED and cDIP-RED 
reach comparable performances on Set5. However, we stress that, differently from 
DeepRED, the cDIP-RED scheme does not require to fix the regularization param-
eter. Moreover, DIP-WTV outperforms the standard DIP. For the watercastle image, 
DeepRED, and cDIP-RED reach similar performances in terms of PSNR and SSIM 
metrics, however the DeepRED restoration looks noisier than the one provided by 
cDIP-RED. Finally, DIP-WTV always performs better than the standard DIP.

Concerning the skyscraper we do not have a ground truth available, therefore 
we can compare the results only through visual inspection. Indeed, it is clear from 
Fig. 8a that the skyscraper image is affected by jpeg-compression artifacts. In order 
to simulate a more realistic acquisition, we further corrupt this compressed image 
with blur and noise (Fig. 7b). The close-ups in Fig. 8 highlight that the output cDIP-
RED suppress the artifacts and outperforms the restorations provided by DIP, Deep-
RED and DIP-WTV in terms of visual quality. In particular, cDIP-RED can retrieve 
better the details and remove the artifacts and the noise.

3.5 � Artifact removal for a chest CT image

Finally, we show how our methods can be effective for retrieving one real medical 
chest CT image of a patient affected by COVID-19 [42]. In Fig. 9a we report the 
acquired data together with the close-ups of two details (inflammation zones) in the 
lungs backside where are visible the effects of the interstitial pneumonia caused by 
COVID-19 disease. From these panels the standard artifacts related to the discrete 
angles sampling typical of the CT application are clearly visible. In Fig. 9b and c, 
we show the restored images provided by our DIP-WTV and cDIP-RED approaches, 
respectively. Generally, all finer structures, such as the inflammation details, alve-
oli and bronchioles, are sufficiently well retrieved, as highlighted by the close-ups. 
Finally, it is evident that the restoration provided by cDIP-RED looks sharper than 
the one restored by DIP-WTV.
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3.6 � Standard and modified versions of the alternating PGDA method

As already mentioned, both the unconstrained and the constrained models devel-
oped in this work have been solved by means of a modified version of the alternat-
ing PGDA algorithm. In this section we compare the performance of the standard 
PGDA and that of the employed modified variant on a denoising problem, by a way 
of example. Particularly, in this analysis we focus on the sole cDIP-RED approach, 
since analogous considerations can be deduced for DIP-WTV. In the comparison 
we consider cDIP-RED exploiting the modified PGDA scheme, and its counterpart 
which uses the standard PGDA algorithm. In this section, the latter approach is sim-
ply denoted by PGDA. We consider the same parameters for cDIP-RED and PGDA. 
In Fig.  10a we report the PSNR values obtained along the iterations by applying 
PGDA and cDIP-RED on the denoising problem related to the woman image cor-
rupted with AWGN with standard deviation �� = 35 . It is evident that the achieved 
values are comparable and the differences between the two methods are very lim-
ited. The same considerations can be derived from the behaviour of the constraint 
ratio generated by the two approaches under consideration and depicted in Fig. 10b: 
the two curves are almost indistinguishable. Finally, we remark that exploiting the 
already computed values of to perform the successive variables updates, avoids stor-
ing the intermediate values and, for this reason, allows a lower memory requirement.

(a) Acquired chest CT

(b) DIP-WTV (c) cDIP-RED

Fig. 9   Reconstructed images for the real CT problem. In (a) we report the acquired data, in (b–c) we 
report the restored images obtained by DIP-WTV and cDIP-RED, respectively
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4 � Conclusion

In this paper, we propose a constrained and an unconstrained DIP optimization 
models which automatically estimate the strength of the regularization. The uncon-
strained one uses a space variant handcrafted regularizer whose local regularization 
parameters are adaptively defined along the optimization process, whereas the con-
strained model is tailored for a generic regularizer and implicitly forces solutions sat-
isfying the discrepancy principle. Particularly, we used the space variant Total Vari-
ation and the RED regularizer in the implementation for the unconstrained and the 
constrained models, respectively. The main strengths of the developed frameworks 
are threefold: it is not required to set proper values for the regularization param-
eter, the schemes implemented are more robust with respect to the selection of the 
hyperparameters than other state-of-the-art DIP-based methods, and both schemes 
avoid the typical overfitting behaviour of the DIP framework. The numerical experi-
ments on image denoising and deblurring show comparable results of the developed 
approaches with respect to state-of-the-art strategies with the great advantage of 
avoiding costly parameter tuning. Finally, since in the literature highly inexact ver-
sion of ADMM have been used to solve the regularized DIP models, framing the 
problem in the PGDA setting opens new possibilities to the theoretical convergence 
analysis and a more faithful match between theory and practical implementation.

A: The alternating proximal gradient descent‑ascent method

The alternating proximal gradient descent-ascent (PGDA) method has been pro-
posed [6, 9, 27] to face a saddle point problem of the form

(22)min
x∈ℝd

max
y∈ℝn

Φ(x, y) +R(x) − h(y),

(a) PSNR (b) Constraint ratio

Fig. 10   The PSNR values and the constraint ratio’s trend achieved by PGDA and cDIP-RED along the 
iterations for the woman RGB image with �� = 35
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where the hypotheses on the coupling function Φ ∶ ℝ
d ×ℝ

n
→ ℝ , and the regular-

izers R ∶ ℝ
d
→ ℝ ∪ {+∞} and h ∶ ℝ

n
→ ℝ ∪ {+∞} are stated in the following 

assumptions. We consider the approach developed in [6].

Assumption 1  The coupling function Φ is 

	 (i)	 �-weakly convex in the first component uniformly in the second one, i.e. 

	 (ii)	 concave and ∇Φ is L∇Φ-Lipschitz continuous in the second component uni-
formly in the first one, i.e. 

Assumption 2  The function Φ is L-Lipschitz in the first component uniformly over 
dom h in the second one, i.e.

Assumption 3  The regularizers R and h are proper, convex and lower 
semicontinuous. 

	 (i)	 Additionally, R is LR-Lipschitz continuous on its domain, which is assumed 
to be open.

	 (ii)	 Furthermore, h has bounded domain dom h such that the diameter of dom h is 
bounded by Ch.

It is worth to remark that both the problems (10) and (18) can be cast as in (22) with 
Φ(x, y) = K(x, y) , where, for the first problem, y = �v . The regularizer h is not present 
neither in the formulation (10) nor in the (18) one.

Before introducing the PGDA scheme, we need to clarify which is the notion of 
solution for problem (22) we mean. Indeed, if the minimax problem is not convex-con-
cave, the notion of saddle point is too strong. As done in [6], we focus on the stationar-
ity of the so called max function given by

which can be proved to be a �-weakly convex function for some � ≥ 0 . To focus on 
the max function makes sense in our framework: indeed, for the problem (10), the 
relevant variable, corresponding to the needed weights, is the primal one, i.e., x . In 
order to define optimality in terms of the max function we need to define the regu-
larized max function:

Φ(⋅, y) +
�

2
|| ⋅ ||2 is convex for all y ∈ ℝ

n

||∇Φ(x, y) − ∇Φ(x, y�)|| ≤ L∇Φ||y − y�||, ∀ x ∈ ℝ
d,∀ y, y� ∈ ℝ

n.

||Φ(x, y) − Φ(x�, y)|| ≤ L||x − x�||, ∀ x, x� ∈ ℝ
d, y ∈ dom h.

�(x) = max
y∈ℝn

Φ(x, y) − h(y), where � ∶ ℝ
d
→ ℝ,

(23)m(x) = �(x) +R(x), where m ∶ ℝ
d
→ ℝ ∪ {∞}.
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In the PGDA framework, the max function is in general nonsmooth, which makes 
it nonobvious how to define near stationarity. For this reason, a smooth approxima-
tion of m, known as Moreau envelope m� , parametrized by a positive scalar � , has 
been introduced. In more detail, for the proper, �-weakly convex and lower semicon-
tinuous function m, the Moreau envelope of m with the parameter � ∈ (0, �−1) is the 
function from ℝd

→ ℝ defined by

The Moreau envelope allows to naturally define a notion of near stationarity even for 
nonsmooth and �-weakly convex functions.

Definition 1  For an 𝜀 > 0 and a � ∈ (0, �−1) , a point x is �-stationary for m if 
||∇m�(x)|| ≤ �.

Now the algorithm and its convergence properties can be introduced. For initial 
values (x0, y0) ∈ domR × dom h , the alternating PGDA method reads as

where �x and �y are proper positive learning rates.

Theorem  1  Let Assumptions 1, 2 and 3 hold true and the function m is lower 
bounded. The iterates generated by the algorithm (24) with 𝜂x = O(𝜀4) <

1

2𝜌
 , 

�y =
1

L∇Φ
 and � =

1

2�
 visit an �-stationary point in at most K = O(�−6)
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