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Abstract
Two-region image segmentation is the process of dividing an image into two regions 
of interest, i.e., the foreground and the background. To this aim, Chan et al. (SIAM 
J Appl Math 66(5):1632–1648, 2006) designed a model well suited for smooth 
images. One drawback of this model is that it may produce a bad segmentation when 
the image contains oscillatory components. Based on a cartoon-texture decomposi-
tion of the image to be segmented, we propose a new model that is able to produce 
an accurate segmentation of images also containing noise or oscillatory informa-
tion like texture. The novel model leads to a non-smooth constrained optimization 
problem which we solve by means of the ADMM method. The convergence of the 
numerical scheme is also proved. Several experiments on smooth, noisy, and tex-
tural images show the effectiveness of the proposed model.
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1 Introduction

Image segmentation is a fundamental task in image processing and computer vision. It 
consists in dividing an image into non-overlapping regions of shared features, such as 
intensity, smoothness, and texture, which are related to the final goal of the segmenta-
tion. Thus, the division into regions is not unique, and the image segmentation can be 
regarded as a strongly ill-posed problem.

Let f be an image defined in a domain Ω ⊂ ℝ
d ( d ≥ 2 ), segmenting f consists in 

finding a decomposition of the domain Ω into a set of non-empty pairwise-disjoint 
regions Ωi , i = 1,… ,m.

A segmentation of f can be expressed through a curve C∗ that matches the bounda-
ries of the decomposition of Ω , i.e. C∗ =

m⋃
i=1

�Ωi and/or a piecewise-constant function 

f ∗ defined on Ω that approximates f.
The research on image segmentation has made several advances in the last decades 

and various approaches have been developed, including thresholding, region growing, 
edge detection and variational methods [1–3]. Variational models, based on optimiz-
ing energy functionals, have been widely investigated, proving to be very effective on 
different images; curve evolution [4], anisotropic diffusion [5] and the Mumford-Shah 
model [6] are good representatives of these methods. Other recent approaches to image 
segmentation include learning-based methods, which often exploit deep-learning tech-
niques [7–9], watershed [10], random walk methods [11], graph cuts [12, 13], epide-
miological models on images [14]. However, in this case, a large amount of data must 
be available to train learning networks, thus making those approaches impractical in 
some applications.

Two-region segmentation is here considered, where the domain of the given image 
f̄  is separated in two regions of interest, so m = 2 and Ω = Ωin ∪ Ωout , i.e. Ωin and Ωout 
are the foreground and the background of the image, respectively. Although the choice 
of m = 2 significantly simplifies the segmentation problem, it has a lot of application 
fields, such as biological and medical imaging, text extraction, compression of screen 
content and mixed content documents, and can be used as a computational kernel for 
more complex segmentation tasks [15–20].

A widely-used two-region model was introduced by Chan and Vese in [21] and, 
together with its variations, is regarded as state of the art in the segmentation com-
munity. These models are currently used in medical and astronomical application 
fields and have lately been associated with machine learning frameworks (see, e.g. [8, 
22–26]). The Chan-Vese model is a special case of the most popular Mumford-Shah 
one [6] restricted to piecewise constant functions. The solution is the best approxima-
tion to f̄  among all the functions that take only two values, cin and cout . As is the case 
of many variational models for image processing, the model results in a non-convex 
optimization problem and may have various local minima. Chan et al. [27] propose a 
convexed relaxation model, here denoted as CEN, which considers the case of f taking 
values in [0, 1], and sets one of the two regions as

Ωin = {x ∶ f (x) > 𝛼} for a.e. 𝛼 ∈ (0, 1).
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The CEN model first computes the values cin and cout , and then, given 𝜆 > 0 , it 
determines f by solving the convex minimization problem

We note that the aforementioned models assume that each image region is defined as 
a smooth or constant function. However, images may not be piecewise smooth or flat 
as a whole, but they may contain some non-smooth regions. In practice, imposing 
smoothness on such kind of images may lead to a destructive averaging of the image 
content [28], which can produce an inaccurate segmentation. Exploiting information 
on the non-smooth structure of an image can help to improve the CEN model to be 
effective on a larger set than the one of smooth-images as done, e.g. in [29], thanks 
to the introduction of spatially-varying regularization methods.

In this paper we will design a new model for two-region image segmentation that, 
starting from a rough cartoon-texture decomposition f̄ = ū + v̄ of the initial image, 
produces a cartoon-texture-driven decomposition of ū as ū = u + v and simultane-
ously provides a segmentation of u. In the new model a Kullback-Leibler divergence 
term is used to force v to be close to v̄ , thus allowing it to further extract smaller-
scale oscillatory components from the starting cartoon part ū . Thanks to this addi-
tional term, the segmentation process is shown to have improved robustness with 
respect to noise and texture in the initial image.

The rest of the paper is organized as follows: in Sect. 2 we recall the cartoon-tex-
ture decomposition of an image, in Sect. 3 we introduce the proposed model, which 
results in a non-smooth convex optimization problem, and in Sect. 4 we introduce 
an ADMM scheme for the problem solution and analyze its convergence. Sect. 5 is 
devoted to numerical experiments and comparison with the original CEN model and 
with state-of-the-art models suited for textural image segmentation. Finally, we draw 
our conclusions in Sect. 6.

2  Cartoon‑texture decomposition

An image f is usually described as a superposition of two components, i.e.,

where u is the geometric component and v is the oscillatory one. The geometric 
component, commonly referred to as ‘cartoon’, consists of the piecewise-constant 
parts of an image, including homogeneous regions, contours, and sharp edges. In 
contrast, the oscillatory component includes the patterns which can be observed 
in the image, such as texture or noise. Both texture and noise can indeed be seen 
as repeated patterns of small scale details, with noise being characterized by ran-
dom and uncorrelated values. The cartoon-texture decomposition of an image plays 
an important role in computer vision [30], with a wide range of applications to, 
e.g., image restoration, segmentation, image editing, and remote sensing. It is an 
underdetermined linear inverse problem with many solutions, usually described by 

(1)min
0≤f≤1 �Ω

|∇f | dx + 𝜆�Ω

(
(cin − f̄ (x))2f (x) + (cout − f̄ (x))2(1 − f (x))

)
dx.

f = u + v,
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variational models able to force the cartoon and the texture into different functional 
spaces in order to produce the required decomposition.

Following the idea of Meyer [31], the general image decomposition problem can 
be formulated as

where X and Y are suitable function spaces and g1 and g2 are functionals that model 
the cartoon regions and the texture patterns, respectively. Several choices have been 
proposed in literature for both X,  Y and g1, g2 [32, 33]. A widely used choice to 
model the cartoon is g1(u) = TV(u) , due to its ability to induce piecewise smooth 
u with bounded variations [34, 35]. Some alternative approaches impose a sparse 
representation of the cartoon under a given system, such as wavelet frames [36] or 
curvelet systems [37]. Modeling the texture component is a more complex task, due 
to the difficulty of conceptualizing mathematical properties able to encompass all 
the texture types. Many models use the space of oscillatory functions equipped with 
appropriate norms able to represent textured or oscillatory patterns [34, 35, 38]. An 
alternative approach assumes that, under suitable conditions, textures can be sparsi-
fied, i.e., a texture patch can be represented by few atoms in a given dictionary or by 
specific transforms [39].

Since the existing methods for cartoon-texture decomposition are beyond the 
scope of this paper, here we simply assume that we are able to obtain a decomposi-
tion of the given image:

with the aim of using the different information on the two components to improve 
the effectiveness of the CEN model. In our experiments we will consider the algo-
rithm described in [40]. Figure 1 shows the decomposition produced by one itera-
tion of the algorithm, which results in

where L� is a low-pass filter, ∗ is the convolution operator, � ∶ [0, 1] ⟶ [0, 1] is 
an increasing function that is constant and equal to zero near zero and constant and 
equal to 1 near 1, and ��(x) is the relative reduction rate of local TV

(2)
min

(u,v)∈X×Y
g1(u) + g2(v)

s.t. u + v = f ,

(3)f̄ = ū + v̄,

(4)ū(x) = 𝜔(𝜌𝜎(x))L𝜎 ∗ f̄ + (1 − 𝜔(𝜌𝜎(x)))f̄ , v̄(x) = f̄ (x) − ū(x),

original image cartoon texture

Fig. 1  Cartoon-texture decomposition of airplane image after the application of (4)-(5)
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with LTV𝜎(f̄ (x)) =
(
L𝜎 ∗ |∇f̄ |).

We note that the cartoon-texture decomposition produced by (4) is not unique, 
but it depends on the choice of � [40]. Anyway, we will show that a rough decom-
position is enough for our model, hence there’s no need for an accurate tuning of �.

3  The C‑TETRIS model

We here introduce the Cartoon-Texture Evolution for Two-Region Image Segmenta-
tion (C-TETRIS) model. As mentioned in the previous sections, starting from the 
decomposition (3), the main idea behind C-TETRIS is to simultaneously produce 
the segmentation of ū and its cartoon-texture decomposition. In detail, it decom-
poses ū as ū = u + v , where v is enforced to be close to v̄ , and computes a segmenta-
tion of u by solving the problem

where ECEN represents the objective function of problem (1), DKL(v;v̄) denotes the 
Kullback-Leibler (KL) divergence of v from v̄ , defined as

where we set

and 𝜇 > 0 . The KL divergence measures the amount of information lost if v̄ is used 
to approximate v and appears in many models of imaging science, where it is usually 
employed as a fidelity term. Simply speaking, the C-TETRIS model extracts from ū 
the “remaining texture” and produces its best approximation among all the functions 
that take only two values.

In the following we consider the discrete version of (6). Let

be a discretization of Ω consisting of an nx × ny grid of pixels and

(5)𝜌𝜎(x) =
LTV𝜎(f̄ (x)) − LTV𝜎(L𝜎 ∗ f̄ (x))

LTV𝜎(f̄ (x))
∈ [0, 1]

(6)
min

u,cin,cout ,v
ECEN(u, cin, cout;ū) + 𝜇DKL(v;v̄)

s.t. 0 ≤ u ≤ 1,

u + v = ū,

(7)DKL(v;v̄) = ∫Ω

v(x) log

(
v(x)

v̄(x)

)
dx,

v(x) log

(
v(x)

v̄(x)

)
=

{
0 v(x) = 0,

∞ v̄(x) = 0,

Ωnx,ny
=
{
(i, j) ∶ 0 ≤ i ≤ nx − 1, 0 ≤ j ≤ ny − 1

}

|∇xu|i,j = |�+
x
u|i,j, |∇yu|i,j = |�+

y
u|i,j
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where �+
x
 and �+

y
 are the forward finite-difference operators in the x- and y-directions, 

with unit spacing, and the values ui,j with indices outside Ωnx,ny
 are defined by repli-

cation. The discrete version of the (6) leads to the following non-smooth constrained 
optimization problem:

where we denoted by ECEN the discrete version of ECEN , defined as

and we denoted with DKL the discrete version of the Kullback-Leibler divergence 
DKL , defined as

It is worth noting that the first term in ECEN corresponds to the discrete Total Vari-
ation (TV) of the image u. We here opted for the use of a modified version of the 
TV functional, in which the �2 norm is replaced by the �1 one (as proposed in [41]), 
since in the case of image restoration it is known to produce sharper piece-wise con-
stant images. Nevertheless, a preliminary comparison between the models equipped 
with the �1 and the �2 version, respectively, showed no difference in terms of seg-
mentation quality.

4  Minimizing the C‑TETRIS model

We here focus on the solution of the minimization problem in (8). One can 
observe that, although the problem is in general nonconvex, it becomes con-
vex when either the pair (cin, cout) or the pair (u, v) are fixed. Suppose, for the 
moment, that the values of cin, cout have been determined and consider the mini-
mization problem in u and v only, which can be written as

where we defined, for each (i, j),

(8)
min

u,cin,cout ,v
ECEN(u, cin, cout;ū) + 𝜇DKL(v;v̄)

s.t. 0 ≤ u ≤ 1,

u + v = ū,

ECEN(u, cin, cout;ū) =
∑
i,j

(|∇xu|i,j + |∇yu|i,j
)
+

+ 𝜆
∑
i,j

(
ui,j(cin − ūi,j)

2 + (1 − ui,j) (cout − ūi,j)
2
)
,

DKL(v;v̄) =
∑
i,j

vi,j log

(
vi,j

v̄i,j

)
.

(9)
min
u,v

∑
i,j

(|∇xu|i,j + |∇yu|i,j
)
+ 𝜆 r⊤u + 𝜇DKL(v;v̄)

s.t. 0 ≤ u ≤ 1,

u + v = ū,
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Problem (9) is a non-smooth convex optimization problem subject to linear and 
bound constraints which we propose to solve by the Alternate Directions Method of 
Multipliers (ADMM) [42]. To this aim, we reformulate problem (9) as

Starting from (10), it is straightforward to check that the objective function and the 
constraints of the problem can be split in two blocks. Indeed, by introducing the 
variable z = [d⊤

x
, d⊤

y
, v⊤]⊤ , one can further reformulate (10) as

where we defined

and we used �[0,1](u) to indicate the characteristic function of the hypercube 
[0, 1]nx×ny.

Consider the Lagrangian and the augmented Lagrangian functions associated 
with problem (11), defined respectively as

where 𝜌 > 0 , and � is a vector of Lagrange multipliers.
Starting from given estimates u0 , z0 , and �0 , at each iteration k ADMM updates 

the estimates as

Since F(u) and G(z) in (11) are closed, proper and convex, and H has full rank, the 
convergence of ADMM can be proved by exploiting the classical result from [43], 
which we report in the following.

ri,j ≡ ri,j(cin, cout) =
(
cin − ūi,j

)2
−
(
cout − ūi,j

)2
.

(10)

min
u,dx,dy,v

‖dx‖1 + ‖dy‖1 + 𝜆 r⊤u + 𝜇DKL(v;v̄)

s.t. dx = ∇xu,

dy = ∇yu,

u + v = ū,

0 ≤ u ≤ 1.

(11)
min
u,z

F(u) + G(z)

s.t. H u − z = b,

F(u) = 𝜆 r⊤u + 𝜒[0,1](u), G(z) = ‖dx‖1 + ‖dy‖1 + 𝜇DKL(v;v̄),

H =
�
∇⊤

x
, ∇⊤

y
, −I

�⊤
, and b = [0, 0, −ū⊤]⊤,

L(u, z, 𝜉) = F(u) + G(z) + 𝜉⊤(H u − z − b),

LA(u, z, 𝜉;𝜌) = F(u) + G(z) + 𝜉⊤(H u − z − b) +
𝜌

2
‖H u − z − b‖2

2
,

(12)

uk+1 = argmin
u

LA(u, z
k, �k;�),

zk+1 = argmin
z

LA(u
k+1, z, �k;�),

�k+1 = �k + �
(
H uk+1 − zk+1

)
.
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Theorem 1 Consider problem (11) where F(u) and G(z) are closed, proper and con-
vex functions and H has full rank. Consider the summable sequences {𝜀k}, {𝜈k} ⊂ ℝ+ 
and let

If there exists a saddle point (u∗, z∗, �∗) of L(u, z, �) , then uk → u∗ , zk → z∗ and 
�k → �∗ . If such saddle point does not exist, then at least one of the sequences {zk} 
or {�k} is unbounded.

Theorem 1 guarantees the convergence of the ADMM scheme even if the sub-
problems are solved inexactly, provided that the inexactness of the solution can be 
controlled.

So far we have been concerned with the solution of problem (9) when the values 
of cin and cout are known in advance which, however, is not the case in practice. By 
following the example of [27], we adopt a two-step scheme in which we alternate 
updates of u and z, determining the shape of the two regions, and updates of cin and 
cout . Observe that, by fixing u = uk and z = zk , the restriction of problem (8) to cin 
and cout can be written as the unconstrained convex quadratic optimization problem

Hence, we propose to update the values of cin and cout after each ADMM step by tak-
ing the exact minimizer of problem (13), i.e., by setting

It is worth pointing out that such a modification alters the original ADMM scheme 
making it an inexact alternate minimization scheme for the problem in u, z, cin , and 
cout . Nevertheless, as also shown for the original CEN model, the experiments car-
ried out in this work show that in all the cases under analysis the values of cin and 
cout stagnate after the first few iterations, thus recovering in practice the convergence 
properties shown for the case of fixed cin and cout.

4.1  Solving the ADMM subproblems

We will now focus on how the subproblems in (12) can be solved in practice. First, 
by expliciting the form of the augmented Lagrangian functions, we can rewrite the 
ADMM scheme as

‖‖‖‖u
k+1 − argmin

u

LA(u, z
k, �k;�)

‖‖‖‖ ≤ �k,

‖‖‖‖‖
zk+1 − argmin

z

LA(u
k+1, z, �k;�)

‖‖‖‖‖
≤ �k,

�k+1 = �k + �
(
H uk+1 − zk+1

)
.

(13)min
cin,cout

∑
i,j

(
uk
i,j
(cin − ūi,j)

2 + (1 − uk
i,j
) (cout − ūi,j)

2
)
.

(14)ck
in
=

∑
i,j u

k
i,j
ūi,j∑

i,j u
k
i,j

, and ck
out

=

∑
i,j(1 − uk

i,j
)ūi,j∑

i,j(1 − uk
i,j
)

.
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It is straightforward to check that the minimization problem over z can be split into 
three independent minimization problems, respectively on dx , dy , and v, leading to 
the following scheme

where we split the Lagrange multipliers vector � as 𝜉 = [𝜉⊤
x
, 𝜉⊤

y
, 𝜉⊤

v
]⊤ . The scheme 

presented in (15) can be further simplified by exploiting the linearity of the con-
straints H u − z = b , as suggested in [44]. In detail, by introducing the vectors 
bk
x
=

�k
x

�
 , bk

y
=

�k
y

�
 , and bk

v
= −

𝜉k
v

𝜌
− ū , one can rewrite (15) equivalently as

uk+1 = argmin
0≤u≤1

𝜆 r⊤u + (𝜉k)⊤
(
H u − zk − b

)
+

𝜌

2

‖‖‖H u − zk − b
‖‖‖
2

2
,

zk+1 = argmin
z

G(z) + (𝜉k)⊤
(
H uk+1 − z − b

)
+

𝜌

2

‖‖‖H uk+1 − z − b
‖‖‖
2

2
,

𝜉k+1 = 𝜉k + 𝜌
(
H uk+1 − zk+1 − b

)
.

(15)

uk+1 = argmin
0≤u≤1

𝜆 r⊤u + (𝜉k)⊤
�
H u − zk − b

�
+

𝜌

2

���H u − zk
���
2

2
,

dk+1
x

= argmin
dx

‖dx‖1 + (𝜉k
x
)⊤
�
∇xu

k+1 − dx
�
+

𝜌

2

���∇xu
k+1 − dx

���
2

2
,

dk+1
y

= argmin
dy

‖dy‖1 + (𝜉k
y
)⊤
�
∇yu

k+1 − dy
�
+

𝜌

2

���∇yu
k+1 − dy

���
2

2
,

vk+1 = argmin
v

𝜇DKL(v;v̄) + (𝜉k
v
)⊤
�
−uk+1 − v + ū

�
+

𝜌

2

���u
k+1 + v − ū

���
2

2
,

𝜉k+1 = 𝜉k + 𝜌
�
H uk+1 − zk+1 − b

�
,

(16)
uk+1 = argmin

0≤u≤1
𝜆 r⊤u +

𝜌

2

‖‖‖∇xu − dk
x
+ bk

x

‖‖‖
2

2

+
𝜌

2

‖‖‖∇yu − dk
y
+ bk

y

‖‖‖
2

2
+

𝜌

2

‖‖‖u + vk + bk
v

‖‖‖
2

2
,

(17)dk+1
x

= argmin
dx

‖dx‖1 + �

2

���∇xu
k+1 − dx + bk

x

���
2

2
,

(18)dk+1
y

= argmin
dy

‖dy‖1 + �

2

���∇yu
k+1 − dy + bk

y

���
2

2
,

(19)vk+1 = argmin
v

𝜇DKL(v;v̄) +
𝜌

2

‖‖‖u
k+1 + v + bk

v

‖‖‖
2

2
,
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Problem (16) is a strongly convex bound-constrained quadratic optimization prob-
lem. To obtain an approximate solution uk+1 , by following [29, 45], we consider the 
optimality conditions of the unconstrained version of the problem, i.e., the solution 
to the linear system

where Δ represents the finite-difference discretization of the Laplacian. We first 
solve the system by Gauss-Seidel method and then project the solution in [0, 1]nx×ny.

As regards the updates in (17)-(19), one has to note that they are proximal opera-
tors [46, 47] of closed proper and convex functions. In detail, the proximal operator 
in (17) and (18) can be computed in closed form by means of the well-known soft-
thresholding operator, defined as

Finally, the proximal operator in (19) can be computed as

where W(x) is the Lambert W function satisfying W(y)eW(y) = y which, although not 
available in closed form, can be approximated with high precision.

5  Numerical experiments

In this section, we test the effectiveness of C-TETRIS in producing two-region seg-
mentation on various image sets. The first set contains three pairs of real-life images 
with corresponding ground truth coming from the database [48]: man is a smooth 
image whereas flowerbed and stone show an object foreground on a textured back-
ground. The second set consists of four images available from the Berkeley database 
[49] which are in general considered to be smooth: the real-life images airplane and 
squirrel, and the medical images brain and ultrasound. The third set of images con-
sists of noisy versions of the famous cameraman image from MIT Image Library1 
which we use to test the robustness of the C-TETRIS model with respect to the 
noise. The fourth and last set of images consists of three textural images: tiger and 
bear, taken from [49], and spiral, taken from [21]. We here provide some further 
details on the numerical experiments. The C-TETRIS algorithm was implemented in 

(20)

bk+1
x

= bk
x
+ ∇x u

k+1 − dk+1
x

,

bk+1
y

= bk
y
+ ∇y u

k+1 − dk+1
y

,

bk+1
v

= bk
v
+ uk+1 + vk+1 − ū.

(−Δ + I)u = −
𝜆 r

𝜌
+ (∇⊤

x
(bk

x
− dk

x
)) + (∇⊤

y
(bk

y
− dk

y
)) + (bk

v
− vk),

[S(x, �)]i,j = sign(xi,j) ⋅max
(|xi,j| − � , 0

)
.

[prox𝛾DKL(x,x̃)
(x)]i,j = 𝛾W(𝛾−1x̃i,je

𝛾−1xi,j−x̃
−1
i,j ),

1 https:// libgu ides. mit. edu/ findi ngima ges.

https://libguides.mit.edu/findingimages
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MATLAB using the Image Processing Toolbox, where the cartoon-texture decom-
position was initially performed by one iteration of the algorithm described in [40], 
using a Gaussian filter with � = 2 as L� , and the following function � [40]:

where the weights l1 and l2 have been set to 0.25 and 0.5, respectively. We would like 
to remark that extensive testing showed that the accuracy of the produced segmenta-
tion is only slightly influenced by the variation of the Gaussian smoothing param-
eter, � , or by the number of steps performed to obtain the cartoon-texture decom-
position. Among the several available implementations of CEN we chose the one2 
proposed by the authors of [45]. Although the code is written in C programming 
language, a MEX interface is available for testing in MATLAB. This implementa-
tion is based on split Bregman iterations with the following stopping criterion:

where

��� is a given tolerance and ����� is the maximum number of SB iterations. In 
order to make a fair comparison, all the algorithms presented in the next section use 
the stopping criterion (22), where we set ����� = 50 and ��� = 10−6 ( ��� = 10−8 
for the noisy images). The parameter � in (1) and in (9), has a scaling role and was 
set according to the level of required details in the segmentation. In particular, in 
each test for CEN model we used the value proposed by the authors in the avail-
able code, which we indicate as �CEN , based on this empirical rule: �CEN = 10a with 
a ∈ {−1, 0, 1} from larger to smaller regularization/smoothing. To balance the pres-
ence of the KL term, for C-TETRIS we perform a grid search and select a parameter 
� with a variation of at most 5% from �CEN . The parameter � was set as � = 10c with 
c ∈ {−2,−1, 0} . Finally, the Bregman parameter � was set to 1.

Before proceeding with the experiments on the four image sets described 
above, we show an example of the functioning of the proposed model. We con-
sider an image for each of the four sets and report in Fig.  2 the starting cartoon-
texture decomposition and the components u and v after the first ADMM iteration, 
at an intermediate iteration and at the last iteration. We note that, as the ADMM 
advances, the remaining texture is progressively subtracted from the cartoon, allow-
ing a clearer distinction of background and foreground.

(21)𝜔(x) =

⎧
⎪⎨⎪⎩

0, x ≤ l1,

(x − l1)∕(l2 − l1), l1 < x < l2,

1, x ≥ l2,

(22)|����k − ����
k−1| ≤ ��� and k > �����,

����
k =

��(f k)

��(f k) ⋅ ��(f k−1)
, ��(f k) =

∑
i,j

(f k
i,j
− f

(k−1)

i,j
)2,

2 http:// htmlp review. github. io/? https:// github. com/ xbres son/ old_ codes/ blob/ master/ codes. html.

http://htmlpreview.github.io/?https://github.com/xbresson/old_codes/blob/master/codes.html
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5.1  Results on ground truth images

First of all, in order to assess the accuracy of the C-TETRIS segmentation model, 
a comparison with ground truth data is presented in Fig. 3. The quality of the pro-
duced segmentations confirms the greater ability of C-TETRIS with respect to CEN 
in separating foreground objects from the background, especially on the flowerbed 
and stone images, where textured background is present. Furthermore, quantitative 
analysis measuring the similarity between the segmented images and the corre-
sponding ground truth is given in Table 1. The segmentation errors have been evalu-
ated using four traditional measures3. The Rand Index (RI) [50] counts the fraction 
of pairs of pixels whose labellings are consistent between the computed segmenta-
tion and the ground truth, the Global Consistency Error (GCE) [51] measures the 
distance between two segmentations assuming that one segmentation must be a 
refinement of the other, the Variation of Information (VI) [52] computes the dis-
tance between two segmentations as the average conditional entropy of one segmen-
tation given the other, and the Boundary Displacement Error (BDE) [53] computes 
the average boundary pixels displacement error between two segmented images4. 
As we can note in Table 1, the segmentations produced by C-TETRIS, have smaller 
values of CGE, VI, and BDE, than the ones produced by CEN, as well as they pre-
sent the highest values of the RI measures, showing a greater consistency with 
the corresponding ground truth in the partitioning of foreground objects from the 
background.

5.2  Results on smooth images

In Fig. 4, we show a comparison between C-TETRIS and CEN on the segmentation 
of the set of smooth images.

For the sake of completeness we report also the segmentation results produced 
by CEN on the cartoon of the images. In general, the segmentations produced by 
C-TETRIS are comparable with or better than the ones produced by CEN. The 
segmentation of airplane shows the great effectiveness of the proposed model to 
separate accurately a non-uniform background from the object, due to the ability 
of C-TETRIS to remove the remaining texture in the cartoon, as showed in Fig. 2. 
We note that in general there are no significant differences in the quality of the seg-
mentation results between CEN applied to the original image and CEN applied to 
the cartoon. However, in the case of ultrasound the segmentation on the cartoon 
produces unreliable result, due to the loss of contrast introduced by decomposition. 

Fig. 2  Details of the evolution of the cartoon (u) and the texture part (v) performed by C-TETRIS on 
images airplane, cameraman with 15% of salt & pepper noise, and tiger. The segmentations produced on 
the last iteration for each image are showed in Fig. 3, 4, 5, and 6, respectively

▸

3 The software used for the four measures of segmentation error is available at: https:// people. eecs. berke 
ley. edu/ yang/ softw are/ lossy segme ntati on/.
4 The error of one boundary pixel is defined as its distance from the closest pixel in the other boundary 
image.

https://people.eecs.berkeley.edu/yang/software/lossysegmentation/
https://people.eecs.berkeley.edu/yang/software/lossysegmentation/
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In Table 2, two global metrics are listed to measure the contrast between the given 
image and its cartoon. In particular we used

and the Michelson formula [54]:

where fmax , fmin and fmean are the maximum, the minimum and the mean value 
respectively of the given image intensity. We can note that the cartoon part of ultra-
sound shows the largest reduction of the both metrics with respect to the original 
image.

m1 = fmax − fmin

m2 = (fmax − fmean)∕(fmax + fmean)

original image ground truth CEN C-TETRIS

flowerbed

man

stone

Fig. 3  Segmentations of images with ground truth by CEN and C-TETRIS
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5.3  Results on noisy images

In Fig. 5 a comparison between C-TETRIS and CEN on the set of noisy images is 
shown. The cameraman image was corrupted by different source of noise using the 
MATLAB imnoise function. In detail: the option ‘gaussian’ was used with 
different values for the standard deviation to obtain images affected by Gaussian 
noise with signal-to-noise ratio (SNR) equal to 20 and 15, respectively; by rescal-
ing the pixels of the original image and using the option ‘poisson’ we obtained 
images affected by Poisson noise with SNR equal to 35 and 30, respectively; finally, 
the option ‘salt & pepper’ was used to create images affected by impulsive 
noise on 5% and 15% of the pixels. We note that C-TETRIS is more accurate in 
separating background and foreground, especially when the noise level increases. In 
this case, indeed, the noise is recognised as texture part and classified as foreground.

original image cartoon CEN
CEN on
cartoon

C-TETRIS

airplane

squirrel

brain

ultrasound

Fig. 4  Segmentations of smooth images by CEN and C-TETRIS. The results of the segmentation pro-
duced by CEN on the cartoon part of the image are also shown



20 L. Antonelli et al.

1 3

5.4  Results on textural images

Here we analyze the results of the C-TETRIS model on images containing textural 
components which require a two-region segmentation. We compared C-TETRIS 
with the Spatially Adaptive Regularization (SpAReg) model [29], which modifies 
the CEN model as follows:

where each entry of the matrix Λ = (�i,j) weighs the pixel (i,  j) according to local 
texture information as follows:

(��)i,j was defined applying the Eq. (5) to the given image f̄  , and 0 < 𝜆min < 𝜆max < ∞ 
is a suitable range to drive the level of regularization, depending on the image to 
be segmented. In all the tests we set 𝜆min ≤ 𝜆CEN < 𝜆max . We also include in the 
comparison a well-known segmentation model designed for textural images [55], 
that we denote as HTB. While C-TETRIS and SpAReg, being based on the original 
CEN model, classify foreground and background as regions with different intensi-
ties, the HTB model classifies them as regions with different textural components. 
In detail, it finds a contour that maximizes the KL distance between the probability 
density functions of the regions inside and outside the evolving (closed) active con-
tour, which is aimed at separating textural objects of interest from the background. 
The feature used to characterize the texture is based on principal curvatures � of the 
intensity image considered as a 2-D manifold embedded in ℝ3 . In detail, the objec-
tive function of the HTB model is

where pin, pout are the probability distribution of the texture feature � in Ωin and 
Ωout , respectively, assuming a Gaussian distribution. We consider the implementa-
tion of HTB model provided in [45].

Figure 6 compares the segmentations produced by C-TETRIS with the ones pro-
duced by SpAReg and HTB, respectively. Firstly, we note that C-TETRIS outperforms 

(23)
min
f

∑
i,j

(|∇xf |i,j + |∇yf |i,j + 𝜆i,j (r
⊤f )i,j

)

s.t. 0 ≤ f ≤ 1

(24)�i,j = max

{
�min

�max
, 1 − (��)i,j

}
�max .

KL(pin, pout) =
∑
i,j

((pin)i,j − (pout)i,j) (log (pin)i,j − log (pout)i,j),

Fig. 5  Segmentations of cameraman with different sources and noise levels by CEN and C-TETRIS. 
Gaussian and Poissonian noise are applied with different SNR values, whereas salt and pepper noise is 
added with different percentages (see section 5.3 for details)

▸
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original image CEN C-TETRIS

gaussian noise
(SNR = 20)

gaussian noise
(SNR = 15)

poissonian noise
(SNR = 35)

poissonian noise
(SNR = 30)

salt & pepper
(5%)

salt & pepper
(15%)
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both SpAReg and HTB on tiger and spiral, where the textural object region was well 
identified and separated from the background. On the bear test image, C-TETRIS 
seems to identify the main object better than SpAReg; however, it mistakenly includes 
in the foreground region some parts of the background below the bear. Both models are 
outperformed by HTB, which is the only model able to include the upper part of the 
image in the background region. In our opinion, the inaccurate result produced by the 

original image C-TETRIS SpAReg HTB

tiger

bear

spiral

Fig. 6  Segmentations of textural images by C-TETRIS, SpAReg, and HTB

Table 1  Measures of segmentation error produced by CEN and C-TETRIS on figures displayed in Fig. 3

Image Model RI GCE VI BDE

Flowerbed CEN 9.5843e-01 3.8905e-02 2.6408e-01 5.5895e+01
C-TETRIS 9.7375e-01 2.5570e-02 1.8955e-01 4.5199e+00

Man CEN 7.8042e-01 2.1254e-01 1.0630e+00 1.9497e+01
C-TETRIS 7.9876e-01 1.7726e-01 8.8154e-01 1.1459e+01

Stone CEN 8.9000e-01 1.0601e-01 6.1420e-01 2.4565e+01
C-TETRIS 9.1917e-01 7.4804e-02 4.5966e-01 1.1604e+01
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other two models is mainly due to the inhomogeneity of the background intensity that 
adverses its separation from the foreground region.

6  Conclusion

In this paper, a new model named Cartoon-Texture Evolution for Two-Region Image 
Segmentation (C-TETRIS) is proposed. C-TETRIS intends to improve the CEN model, 
which is specifically designed for smooth images, to produce good results on a wider 
set of images. Indeed, starting from a rough cartoon-texture decomposition of the 
image to be segmented, f̄ = ū + v̄ , where ū and v̄ describe the cartoon and the texture 
components respectively, C-TETRIS is able to simultaneously produce a decomposi-
tion of ū as ū = u + v , where v is enforced to be close to v̄ and the best approximation 
among all the functions that take only two values of u. This is realized by combining 
the CEN model on u and a Kullback-Leibler divergence of v from v̄ . The proposed 
model leads to a non-smooth constrained optimization problem solved by means of 
the ADMM method, for which a convergence result is provided. Numerical experi-
ments show that, as the ADMM advances, C-TETRIS progressively subtracts from ū 
the remaining texture, leading to a clearer distinction between background and fore-
ground of the image. The experiments show that the proposed model is able to produce 
accurate two-region segmentation, comparable with or better than the one produced 
by state-of-the-art segmentation models, for several images also corrupted by noise 
or containing textural components. Furthermore, C-TETRIS seems to be independent 
of the type and level of noise. Future work will deal with the extension of the pro-
posed combination of cartoon-texture decomposition and KL divergence term to more 
advanced image segmentation models.
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Table 2  Global metrics of 
the image contrast (defined in 
Sect. 5.2) evaluated on the set of 
smooth images and their cartoon 
part displayed in Fig. 4

Image Contrast metrics

m1 m2

Airplane 1. 0.257
Cartoon 0.996 0.264
Squirrel 1. 0.423
Cartoon 0.992 0.442
Brain 1. 0.649
Cartoon 1. 0.645
Ultrasound 1. 0.465
Cartoon 0.953 0.445



24 L. Antonelli et al.

1 3

Data availability The authors confirm that all data generated or analysed during this study are included in 
this article. The repositories of image tests are also reported.

Declarations 

Conflict of interest The authors have no financial or proprietary interests in any material discussed in this 
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

 1. Zhang, J., Chen, K., Yu, B., Gould, D.A.: A local information based variational model for selec-
tive image segmentation. Inverse Problems Imaging 8, 293–320 (2014). https:// doi. org/ 10. 3934/ ipi. 
2014.8. 293

 2. Gwet, D.L.L., Otesteanu, M., Libouga, I.O., Bitjoka, L., Popa, G.D.: A review on image segmenta-
tion techniques and performance measures. Int. J. Inf. Control Comput. Sci. 12.0(12) (2018). https:// 
doi. org/ 10. 5281/ zenodo. 25799 76

 3. Antonelli, L., De Simone, V., di Serafino, D.: A view of computational models for image segmenta-
tion (2021). arXiv: 2102. 05533 v3

 4. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cam-
bridge (1999)

 5. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans.  Pat-
tern Anal. Mach. Intell. 12(7), 629–639 (1990). https:// doi. org/ 10. 1109/ 34. 56205

 6. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated vari-
ational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989). https:// doi. org/ 10. 1002/ cpa. 
31604 20503

 7. Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D.: Image segmen-
tation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 1–1 (2021). https:// doi. 
org/ 10. 1109/ TPAMI. 2021. 30599 68

 8. Rashmi, R., Prasad, K., Udupa, C.B.K.: Multi-channel Chan-Vese model for unsupervised segmen-
tation of nuclei from breast histopathological images. Comput. Biol. Med. 136, 104651 (2021). 
https:// doi. org/ 10. 1016/j. compb iomed. 2021. 104651

 9. Liu, Y., Duan, Y., Zeng, T.: Learning multi-level structural information for small organ segmenta-
tion. Signal Process. 193, 108418 (2022). https:// doi. org/ 10. 1016/j. sigpro. 2021. 108418

 10. Challa, A., Danda, S., Sagar, B.S.D., Najman, L.: Watersheds for semi-supervised classification. 
IEEE Signal Process. Lett. 26(5), 720–724 (2019). https:// doi. org/ 10. 1109/ LSP. 2019. 29051 55

 11. Aletti, G., Benfenati, A., Naldi, G.: A semiautomatic multi-label color image segmentation coupling 
dirichlet problem and colour distances. J. Imaging 7(10) (2021). https:// doi. org/ 10. 3390/ jimag ing71 
00208

 12. Niazi, M., Rahbar, K., Sheikhan, M., Khademi, M.: Entropy-based kernel graph cut for textural 
image region segmentation. Multimedia Tools Appl. 81(9), 13003–13023 (2022)

 13. He, K., Wang, D., Wang, B., Feng, B., Li, C.: Foreground extraction combining graph cut and his-
togram shape analysis. IEEE Access 7, 176248–176256 (2019). https:// doi. org/ 10. 1109/ ACCESS. 
2019. 29575 04

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3934/ipi.2014.8.293
https://doi.org/10.3934/ipi.2014.8.293
https://doi.org/10.5281/zenodo.2579976
https://doi.org/10.5281/zenodo.2579976
http://arxiv.org/abs/2102.05533v3
https://doi.org/10.1109/34.56205
https://doi.org/10.1002/cpa.3160420503
https://doi.org/10.1002/cpa.3160420503
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1016/j.compbiomed.2021.104651
https://doi.org/10.1016/j.sigpro.2021.108418
https://doi.org/10.1109/LSP.2019.2905155
https://doi.org/10.3390/jimaging7100208
https://doi.org/10.3390/jimaging7100208
https://doi.org/10.1109/ACCESS.2019.2957504
https://doi.org/10.1109/ACCESS.2019.2957504


25

1 3

Cartoon-texture evolution for two-region image segmentation  

 14. Bampis, C.G., Maragos, P., Bovik, A.C.: Graph-driven diffusion and random walk schemes for 
image segmentation. IEEE Trans. Image Process. 26(1), 35–50 (2017). https:// doi. org/ 10. 1109/ TIP. 
2016. 26216 63

 15. Wang Z., Q.J. Zhu L.: Roi extraction in dermatosis images using a method of Chan-Vese segmenta-
tion based on saliency detection. In: Kidwelly, P. (ed.) Mobile, Ubiquitous, and Intelligent Comput-
ing. Lecture Notes in Electrical Engineering, vol. 274, pp. 197–203 (2004).

 16. Zhang, J., Kasturi, R.: Extraction of text objects in video documents: Recent progress. In: 2008 The 
Eighth IAPR International Workshop on Document Analysis Systems, pp. 5–17 (2008). https:// doi. 
org/ 10. 1109/ DAS. 2008. 49

 17. Minaee, S., Wang, Y.: Screen content image segmentation using sparse decomposition and total 
variation minimization. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 
3882–3886 (2016). https:// doi. org/ 10. 1109/ ICIP. 2016. 75330 87

 18. Minaee, S., Fotouhi, M., Khalaj, B.H.: A geometric approach for fully automatic chromosome seg-
mentation (2011). arxiv: 1112. 4164 [cs.CV]

 19. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE 
Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001). https:// doi. org/ 10. 1109/ 34. 969114

 20. Gregoretti, F., Cesarini, E., Lanzuolo, C., Oliva, G., Antonelli, L.: An automatic segmentation 
method combining an active contour model and a classification technique for detecting Polycomb-
group proteins in high-throughput microscopy images. Methods Mol. Biol. 1480, 181–197 (2016). 
https:// doi. org/ 10. 1007/ 978-1- 4939- 6380-5_ 16

 21. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 
(2001). https:// doi. org/ 10. 1007/3- 540- 48236-9_ 13

 22. Nguyen, K.L., Tekitek, M.M., Delachartre, P., Berthier, M.: Multiple relaxation time lattice Boltz-
mann models for multigrid phase-field segmentation of tumors in 3D ultrasound images. SIAM J. 
Imaging Sci. 12(3), 1324–1346 (2019). https:// doi. org/ 10. 1137/ 18M12 3462X

 23. Roberts, M., Spencer, J.: Reformulation for selective image segmentation. Math. Imaging Vis. 61, 
1173–1196 (2019). https:// doi. org/ 10. 1007/ s10851- 019- 00893-0

 24. Babu, K.R., Nagajaneyulu, P.V., Prasad, K.S.: Performance analysis of cnn fusion based brain 
tumour detection using chan-vese and level set segmentation algorithms. Int. J. Signal Imaging Syst. 
Eng. 12(1–2), 62–70 (2020). https:// doi. org/ 10. 1504/ IJSISE. 2020. 113571

 25. Yousefirizi, F., Rahmim, A.: Consolidating deep learning framework with active contour model for 
improved PET-CT segmentation. J. Nucl. Med. 62(supplement 1), 1415–1415 (2021) https:// jnm. 
snmjo urnals. org/ conte nt

 26. Zhao, W., Wang, W., Feng, X., Han, Y.: A new variational method for selective segmentation of 
medical images. Signal Process. 190, 108292 (2022). https:// doi. org/ 10. 1016/j. sigpro. 2021. 108292

 27. Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image seg-
mentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006). https:// doi. org/ 10. 
1137/ 04061 5286

 28. Wang, J., Chan, K.L.: Incorporating patch subspace model in Mumford-Shah type active contours. 
IEEE Trans. Image Process. 22(11), 4473–4485 (2013). https:// doi. org/ 10. 1109/ TIP. 2013. 22743 85

 29. Antonelli, L., De Simone, V., di Serafino, D.: Spatially adaptive regularization in image segmenta-
tion. Algorithms 13(226) (2020). https:// doi. org/ 10. 3390/ a1309 0226

 30. Xu, R., Xu, Y., Quan, Y.: Structure-texture image decomposition using discriminative patch recur-
rence. IEEE Trans. Image Process. 30, 1542–1555 (2021). https:// doi. org/ 10. 1109/ TIP. 2020. 30436 
65

 31. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fif-
teenth Dean Jacqueline B. Lewis Memorial Lectures. American Mathematical Society, New York 
(2001)

 32. Le Guen, V.: Cartoon + Texture image decomposition by the TV-L1 model. Image Process. On Line 
4, 204–219 (2014). https:// doi. org/ 10. 5201/ ipol. 2014. 103

 33. Aujol, J., Gilboa, G., Chan, T., O., S.: Structure-texture image decomposition-modeling, algo-
rithms, and parameter selection. Int. J. Comput. Vis. 67, 111–136 (2006). https:// doi. org/ 10. 1007/ 
s11263- 006- 4331-z

 34. Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimi-
zation and the H 1 . Multiscale Model. Simul. 1(3), 349–370 (2003). https:// doi. org/ 10. 1137/ S1540 
34590 241624

 35. Aujol, J., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63, 
85–104 (2005). https:// doi. org/ 10. 1007/ s11263- 005- 4948-3

https://doi.org/10.1109/TIP.2016.2621663
https://doi.org/10.1109/TIP.2016.2621663
https://doi.org/10.1109/DAS.2008.49
https://doi.org/10.1109/DAS.2008.49
https://doi.org/10.1109/ICIP.2016.7533087
http://arxiv.org/abs/1112.4164
https://doi.org/10.1109/34.969114
https://doi.org/10.1007/978-1-4939-6380-5_16
https://doi.org/10.1007/3-540-48236-9_13
https://doi.org/10.1137/18M123462X
https://doi.org/10.1007/s10851-019-00893-0
https://doi.org/10.1504/IJSISE.2020.113571
https://jnm.snmjournals.org/content
https://jnm.snmjournals.org/content
https://doi.org/10.1016/j.sigpro.2021.108292
https://doi.org/10.1137/040615286
https://doi.org/10.1137/040615286
https://doi.org/10.1109/TIP.2013.2274385
https://doi.org/10.3390/a13090226
https://doi.org/10.1109/TIP.2020.3043665
https://doi.org/10.1109/TIP.2020.3043665
https://doi.org/10.5201/ipol.2014.103
https://doi.org/10.1007/s11263-006-4331-z
https://doi.org/10.1007/s11263-006-4331-z
https://doi.org/10.1137/S154034590241624
https://doi.org/10.1137/S154034590241624
https://doi.org/10.1007/s11263-005-4948-3


26 L. Antonelli et al.

1 3

 36. Fadili, M.J., Starck, J.-L., Bobin, J., Moudden, Y.: Image decomposition and separation using sparse 
representations: an overview. Proc. IEEE 98(6), 983–994 (2010). https:// doi. org/ 10. 1109/ JPROC. 
2009. 20247 76

 37. Ono, S., Miyata, T., Yamada, I., Yamaoka, K.: Image recovery by decomposition with component-
wise regularization. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95-A(12), 2470–2478 
(2012). https:// doi. org/ 10. 1587/ trans fun. E95.A. 2470

 38. Duval, V., Aujol, J.F., Vese, L.A.: Mathematical modeling of textures: application to color image 
decomposition with a projected gradient algorithm. J. Math. Imaging Vis. 37(3), 232–248 (2010). 
https:// doi. org/ 10. 1007/ s10851- 010- 0203-9

 39. Xu, R., Quan, Y., Xu, Y.: Image cartoon-texture decomposition using isotropic patch recurrence 
(2018). arXiv:1811.04208

 40. Buades, A., Le, T.M., Morel, J., Vese, L.A.: Fast cartoon + texture image filters. IEEE Trans. Image 
Process. 19(8), 1978–1986 (2010). https:// doi. org/ 10. 1109/ TIP. 2010. 20466 05

 41. Esedoḡlu, S., Osher, S.J.: Decomposition of images by the anisotropic Rudin-Osher-Fatemi model. 
Commun. Pure Appl. Math. 57(12), 1609–1626 (2004). https:// doi. org/ 10. 1002/ cpa. 20045

 42. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learn-
ing via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 
(2011). https:// doi. org/ 10. 1561/ 22000 00016

 43. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point 
algorithm for maximal monotone operators. Math. Program. 55(1), 293–318 (1992). https:// doi. org/ 
10. 1007/ BF015 81204

 44. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging 
Sci. 2(2), 323–343 (2009)

 45. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmen-
tation and surface reconstruction. J. Sci. Comput. 45(1–3), 272–293 (2010). https:// doi. org/ 10. 1007/ 
s10915- 009- 9331-z

 46. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014). https:// doi. 
org/ 10. 1561/ 24000 00003

 47. Beck, A.: First-order Methods in Optimization/Amir Beck, Tel-Aviv University, Tel-Aviv. Israel. 
MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Mathematical 
Optimization Society, Philadelphia (2017)

 48. Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for inter-
active image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition 
(2010)

 49. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmen-
tation. IEEE Trans.  Pattern Anal. Mach. Intell. 33(5), 898–916 (2011). https:// doi. org/ 10. 1109/ 
TPAMI. 2010. 161

 50. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J.  Ame. Stat. Assoc. 
66(336), 846–850 (1971)

 51. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its 
application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceed-
ings of Eighth IEEE International Conference on Computer Vision, 2001 (ICCV 2001), vol. 2, pp. 
416–423 (2001). https:// doi. org/ 10. 1109/ ICCV. 2001. 937655

 52. Meilă, M.: Comparing clusterings by the variation of information. In: Schölkopf, B., Warmuth, 
M.K. (eds.) Learning Theory and Kernel Machines, pp. 173–187. Springer, Berlin (2003)

 53. Freixenet, J., Muñoz, X., Raba, D., Martí, J., Cufí, X.: Yet another survey on image segmentation: 
Region and boundary information integration. In: Proceedings of the 7th European Conference on 
Computer Vision-Part III. ECCV ’02, pp. 408–422. Springer, Berlin (2002)

 54. Michelson, A.A.: Studies in Optics. The University of Chicago Press, Chicago (1927)
 55. Houhou, N., Thiran, J.-P., Bresson, X.: Fast texture segmentation based on semi-local region 

descriptor and active contour. Numer. Math. 2(4), 445–468 (2009). https:// doi. org/ 10. 4208/ nmtma. 
2009. m9007s

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.1109/JPROC.2009.2024776
https://doi.org/10.1109/JPROC.2009.2024776
https://doi.org/10.1587/transfun.E95.A.2470
https://doi.org/10.1007/s10851-010-0203-9
https://doi.org/10.1109/TIP.2010.2046605
https://doi.org/10.1002/cpa.20045
https://doi.org/10.1561/2200000016
https://doi.org/10.1007/BF01581204
https://doi.org/10.1007/BF01581204
https://doi.org/10.1007/s10915-009-9331-z
https://doi.org/10.1007/s10915-009-9331-z
https://doi.org/10.1561/2400000003
https://doi.org/10.1561/2400000003
https://doi.org/10.1109/TPAMI.2010.161
https://doi.org/10.1109/TPAMI.2010.161
https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.4208/nmtma.2009.m9007s
https://doi.org/10.4208/nmtma.2009.m9007s

	Cartoon-texture evolution for two-region image segmentation
	Abstract
	1 Introduction
	2 Cartoon-texture decomposition
	3 The C-TETRIS model
	4 Minimizing the C-TETRIS model
	4.1 Solving the ADMM subproblems

	5 Numerical experiments
	5.1 Results on ground truth images
	5.2 Results on smooth images
	5.3 Results on noisy images
	5.4 Results on textural images

	6 Conclusion
	Acknowledgements 
	References




