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Abstract
In this paper, mixed-integer nonsmooth constrained optimization problems are con-
sidered, where objective/constraint functions are available only as the output of a 
black-box zeroth-order oracle that does not provide derivative information. A new 
derivative-free linesearch-based algorithmic framework is proposed to suitably han-
dle those problems. First, a scheme for bound constrained problems that combines a 
dense sequence of directions to handle the nonsmoothness of the objective function 
with primitive directions to handle discrete variables is described. Then, an exact 
penalty approach is embedded in the scheme to suitably manage nonlinear (possibly 
nonsmooth) constraints. Global convergence properties of the proposed algorithms 
toward stationary points are analyzed and results of an extensive numerical experi-
ence on a set of mixed-integer test problems are reported.
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1  Introduction

The following mixed-integer nonlinearly constrained problem is considered

where x ∈ ℝ
n ,   l, u ∈ ℝ

n ,   and Ic ∪ Iz = {1, 2,… , n} , with Ic ∩ Iz = � and Ic, Iz ≠ ∅

.1 We assume li < ui for all i ∈ Ic ∪ Iz , and li, ui ∈ ℤ for all i ∈ Iz . Moreover, the 
functions f ∶ ℝ

n → ℝ and g ∶ ℝ
n → ℝ

m , which may be nondifferentiable, are sup-
posed to be Lipschitz continuous with respect to xi for all i ∈ Ic , i.e., for all x, y ∈ ℝ

n 
a constant L > 0 exists such that

The following sets are defined

Throughout the paper X is assumed to be a compact set. Therefore, li and ui cannot 
be infinite.

Remark 1  Note that X ∩ Z is compact too. In fact, let us consider any sequence 
{xk} ⊆ X ∩ Z such that xk → x̄ . Since X is compact, x̄ ∈ X . Furthermore, for k suffi-
ciently large, the integer components of xk are fixed, then x̄ ∈ Z . Hence, x̄ ∈ X ∩ Z , 
meaning that X ∩ Z is compact too.

Problem (1.1) can hence be reformulated as follows

The objective and constraint functions in (1.3) are assumed to be of black-box 
zeroth-order type, which is to say that the analytical expression is unknown, and 
the function value corresponding to a given point is the only available information. 
Therefore, black-box Mixed-Integer Nonlinear Programs (MINLPs) are considered, 

(1.1)

min
x∈ℝn

f (x)

s.t. g(x) ≤ 0,

l ≤ x ≤ u,

xi ∈ ℝ for all i ∈ Ic,

xi ∈ ℤ for all i ∈ Iz,

(1.2)�f (x) − f (y)� ≤ L‖x − y‖, with xi = yi, for all i ∈ Iz.

X: = {x ∈ ℝn:l ≤ x ≤ u},  : = {x ∈ ℝn:g(x) ≤ 0},
: = {x ∈ ℝn:xi ∈ ℤ with i ∈ Iz}.

(1.3)
min
x∈ℝn

f (x)

s.t. x ∈ F ∩ Z ∩ X.

1  Note that the assumption Ic, Iz ≠ ∅ is not a restrictive one. Indeed, when Iz = � , i.e., there are no dis-
crete variables (respectively Ic = � , i.e., there are no continuous variables), the theory exactly follows 
from [21] (respectively [35]).



295

1 3

Derivative‑free methods for mixed‑integer nonsmooth…

a class of challenging problems frequently arising in real-world applications. Those 
problems are usually solved through tailored derivative-free optimization algorithms 
(see, e.g., [8, 12, 15, 30] and references therein for further details) able to properly 
manage the presence of both continuous and discrete variables.

The optimization methods for black-box MINLPs that we consider in here can 
be divided into two main classes: direct-search and model-based methods. The 
direct-search methods for MINLPs usually share two main features: they perform 
an alternate minimization between continuous and discrete variables, and use a fixed 
neighborhood to explore the integer lattice. In particular, [4] adapts the Generalized 
Pattern Search (GPS), proposed in [50], to solve problems with categorical variables 
(those variables include integer variables as a special case), so-called mixed vari-
able problems. The approach in [4] has been then extended to address problems with 
general constraints [1] and stochastic objective function [49]. In [1], constraints are 
tackled by using a filter approach similar to the one described in [5]. Derivative-
free methods for categorical variables and general constraints have also been stud-
ied in [37] and [2]. In particular, [37] proposes a general algorithmic framework 
whose global convergence holds for any continuous local search (e.g., a pattern 
search) satisfying suitable properties. The Mesh Adaptive Direct Search (MADS), 
originally introduced in [6] for nonsmooth problems under general constraints, is 
extended in [2] to solve mixed variable problems. Constraints are tackled through 
an extreme barrier approach in this case. The original MADS algorithm has been 
recently extended in [11] to solve problems with “granular variables, i.e., variables 
with fixed number of decimals”, and nonsmooth objective function over the continu-
ous variables. In addition to the previous references [1, 2, 4, 5, 11, 37, 50], another 
work that is worth mentioning is [45], where a mesh-based direct-search algorithm 
is proposed for bound constrained mixed-integer problems involving nonsmooth and 
noncontinuous objectives.

In [33], three algorithms are proposed for bound constrained MINLP problems. 
Unlike the aforementioned works, the discrete neighborhood does not have a fixed 
structure, but depends on a linesearch-type procedure. The first algorithm in [33] 
performs a distributed minimization over all the variables by updating the current 
iterate as soon as a point ensuring a sufficient decrease of the objective function is 
found. It was extended in [34], which deals with the constrained case by adopting a 
sequential penalty approach, and [52], where the maximal positive basis is replaced 
with a minimal positive basis based on a direction-rotation technique. Bound con-
strained MINLP problems are also considered in [23], which extends the algorithm 
for continuous smooth and nonsmooth objective functions introduced in [22].

Some other direct-search methods not directly connected with MINLP prob-
lems are reported for their influence on algorithm development. In [21], the 
authors propose a new linesearch-based method for nonsmooth nonlinearly con-
strained optimization problems, ensuring convergence towards Clarke-Jahn sta-
tionary points. The constraints are tackled through an exact penalty approach. In 
[17] and [18], the authors analyze the benefit in terms of efficiency deriving from 
different ways of incorporating the simplex gradient into direct-search algorithms 
(e.g., GPS and MADS) for minimizing objective functions which not necessarily 
require continuous differentiability. In [51], the authors analyze the convergence 
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properties of direct-search methods applied to the minimization of discontinuous 
functions.

Model-based methods are also widely used in derivative-free optimization 
to solve MINLPs. In [16], the authors describe an open-source library, called 
RBFOpt, that uses surrogate models based on radial basis functions for handling 
bound constrained MINLPs. The same class of problems is also tackled in [44] 
through quadratic models. This paper extends to the mixed-integer case the trust-
region derivative-free algorithm BOBYQA introduced in [46] for continuous 
problems. Surrogate models employing radial basis functions are used in [43] to 
describe an algorithm, called SO-MI, able to converge to global optimizers of 
the problem almost surely. A similar algorithm, called SO-I, is proposed by the 
same authors in [42] to address integer global optimization problems. In [41], the 
authors propose an algorithm for MINLP problems that modifies the sampling 
strategy used in SO-MI and uses also an additional local search. Finally, Kriging 
models were effectively used in [27] and [25] to develop new sequential algo-
rithms. Models can also be used to boost direct-search methods. For example, in 
NOMAD, i.e., the software package that implements the MADS algorithm (see 
[9, 32]), a surrogate-based model is used to generate promising points.

In [31] and [35] methods for black-box problems with only unrelaxable inte-
ger variables are devised. In particular, the authors in [31] propose a method for 
minimizing convex black-box integer problems that uses secant functions interpo-
lating previous evaluated points. In [35], a new method based on a nonmonotone 
linesearch and primitive directions is proposed to solve a more general problem 
where the objective function is allowed to be nonconvex. The primitive direc-
tions allow the algorithm to escape bad local minima, thus providing the potential 
to find a global optimum, even if this typically requires the exploration of large 
neighborhoods.

In this paper, new derivative-free linesearch-type algorithms for mixed-integer 
nonlinearly constrained problems with possibly nonsmooth functions are proposed. 
The strategies successfully tested in [21] and [35] for continuous and integer prob-
lems, respectively, are combined to devise a globally convergent algorithmic frame-
work that allows tackling the mixed-integer case. Continuous and integer variables 
are suitably handled by means of specific local searches in this case. On the one 
hand, a dense sequence of search directions is used to explore the subspace related to 
the continuous variables and detect descent directions, whose cone can be arbitrarily 
narrow due to nonsmoothness. On the other hand, a set of primitive discrete direc-
tions is adopted to guarantee a thorough exploration of the integer lattice in order 
to escape bad local minima. A first algorithm for bound constrained problems is 
developed, then it is adapted to handle the presence of general nonlinear constraints 
by using an exact penalty approach. Since only the violation of such constraints is 
included in the penalty function, the algorithm developed for bound constrained 
problems can be easily adapted to minimize the penalized problem.

With regard to the convergence results, it can be proved that particular sequences 
of iterates yielded by the two algorithms converge to suitably defined stationary 
points of the problem considered. In the generally constrained case, this result is 
based on the equivalence between the original problem and the penalized problem.
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The paper is organized as follows. In Sect. 2, we report some definitions and pre-
liminary results. In Sect. 3, we describe the algorithm proposed for mixed-integer 
problems with bound constraints and we analyze its convergence properties. The 
same type of analysis is reported in Sect. 4 for the algorithm addressing mixed-inte-
ger problems with general nonlinear constraints. Section 5 describes the results of 
extensive numerical experiments performed for both algorithms. Finally, in Sect. 6 
we include some concluding remarks and we discuss future work.

2 � Notation and preliminary results

Given a vector v ∈ ℝ
n , we introduce the subvectors vc ∈ ℝ

|Ic| and vz ∈ ℝ
|Iz| , given 

by

where vi denotes the i-th component of v. When a vector is an element of an infinite 
sequence of vectors {vk} , the i-th component will be denoted as (vk)i , in order to 
avoid possible ambiguities. Moreover, throughout the paper we denote by ‖ ⋅ ‖ the 
Euclidean norm.

The search directions considered in the algorithms proposed in the next sections 
have either a null continuous subvector or a null discrete subvector, meaning that we 
do not consider directions that update both continuous and discrete variables simul-
taneously. We first report the definition of primitive vector, used to characterize the 
subvectors of the search directions related to the integer variables. Then we move on 
to the properties of the subvectors related to the continuous variables.

From [35] we report the following definition of primitive vector.

Definition 1  (Primitive vector) A vector v ∈ ℤ
n is called primitive if the greatest 

common divisor of its components {v1, v2,… , vn} is equal to 1.

Since the objective and constraint functions of the problem considered are 
assumed to be nonsmooth when fixing the discrete variables, proving convergence 
to a stationary point requires particular subsequences of the continuous subvectors 
of the search directions to be provided with the density property. Since the feasible 
descent directions can form an arbitrarily narrow cone (see, e.g., [3] and [6]), a finite 
number of search directions is indeed not sufficient. The unit sphere with respect to 
the continuous variables with center in the origin is denoted as

Then, the definition of a dense subsequence of directions given in [21] is extended 
to the mixed-integer case.

Definition 2  (Dense subsequence) Let K be an infinite subset of indices (possibly 
K = {0, 1,…} ) and {sk} ⊂ S(0, 1) a given sequence of directions. The subsequence 

vc =
[
vi
]
i∈Ic

and vz =
[
vi
]
i∈Iz

,

S(0, 1) ≜ {s ∈ ℝ
n ∶ ‖sc‖ = 1 and‖sz‖ = 0}.



298	 T. Giovannelli et al.

1 3

{sk}K is said to be dense in S(0, 1) if, for any s̄ ∈ S(0, 1) and for any 𝜖 > 0 , there 
exists an index k ∈ K such that ‖sk − s̄‖ ≤ 𝜖.

Similarly to what is done in [2], the definition of generalized directional deriva-
tive, which is also called Clarke directional derivative, given in [14] is extended to 
the mixed-integer case. This allows providing necessary optimality conditions for 
Problem (1.3). We also recall the definition of generalized gradient.

Definition 3  (Generalized directional derivative and generalized gradient) Let 
h ∶ ℝ

n → ℝ be a Lipschitz continuous function near x ∈ ℝ
n with respect to its con-

tinuous variables xc [see, e.g., (1.2)]. The generalized directional derivative of h at x 
in the direction s ∈ ℝ

n , with si = 0 for i ∈ Iz , is

To simplify the notation, the generalized gradient of h at x w.r.t the continuous 
variables can be redefined as

Moreover, let us denote the orthogonal projection over the set X as 
[x][l,u] = max{l, min{u, x}} and the interior of a set C as 

◦

C . These concepts will be 
used throughout the paper.

2.1 � The bound constrained case

First, a simplified version of Problem  (1.1) is considered, where only bound con-
straints are present in the definition of the feasible set. The resulting problem will 
also allow tackling the nonlinearly constrained case. An exact penalty approach is 
indeed adopted to deal with the general nonlinear constraints, thus giving rise to a 
bound constrained problem in the end. In particular, the following formulation is 
considered in this section:

Such a problem can be reformulated as follows

(2.1)hCl
c
(x;s) = lim sup

yc → xc, yz = xz, t ↓ 0

h(y + ts) − h(y)

t
.

�ch(x) ={v ∈ ℝ
n ∶ vi = 0, i ∈ Iz, and hCl

c
(x;s) ≥ sTv for all s ∈ ℝ

n,

with si = 0 for i ∈ Iz}.

min
x∈ℝn

f (x)

s.t. l ≤ x ≤ u,

xi ∈ ℝ for all i ∈ Ic,

xi ∈ ℤ for all i ∈ Iz.

(2.2)
min
x∈ℝn

f (x)

s.t. x ∈ X ∩ Z.
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When considering Problem (2.2), the basic concept of feasible direction must 
be specialized to take into proper account the presence of discrete variables along 
with continuous ones. In particular, for discrete variables, primitive directions 
can be used to define the set of feasible directions. We hence suitably adapt the 
definition of feasible primitive direction set given in [35] to the mixed-integer 
case.

Definition 4  (Set of feasible primitive directions) Given a point x ∈ X ∩ Z,

is the set of feasible primitive directions at x with respect to X ∩ Z.

We introduce two definitions of neighborhood related to the discrete variables 
and we recall the definition of neighborhood related to the continuous variables. 
They are used to formally define local minimum points.

Definition 5  (Discrete neighborhood) Given a point x̄ ∈ X ∩ Z , the discrete neigh-
borhood of x̄ is

Definition 6  (Continuous neighborhood) Given a point x̄ ∈ X ∩ Z and a scalar 𝜌> 0 , 
the continuous neighborhood of x̄ is

Then, the definition of local minimum points for the bound constrained Problem 
(2.2) is reported. Basically, a point is referred to as a local minimum when: 

	 (i)	 it is a local minimum w.r.t. the continuous variables;
	 (ii)	 it is a local minimum w.r.t. its discrete neighborhood.

Definition 7  (Local minimum point) A point x∗ ∈ X ∩ Z is a local minimum point 
of Problem (2.2) if, for some 𝜖 > 0,

Now, taking into account the presence of the bound constraints in Problem (2.2), 
the cone of feasible continuous directions is introduced. This set is used to define 
stationary points for Problem (2.2).

Definition 8  (Cone of feasible continuous directions) Given a point x ∈ X ∩ Z , the 
set

Dz(x) = {d ∈ ℤ
n ∶ dz is a primitive vector, di = 0 for all i ∈ Ic, and

x + d ∈ X ∩ Z}

B
z
(x̄) = {x ∈ X ∩ Z ∶ x = x̄ + d, with d ∈ Dz(x̄)}.

B
c
(x̄;𝜌) =

�
x ∈ X ∶ xz = x̄z and ‖xc − x̄c‖ ≤ 𝜌

�
.

(2.3)f (x∗) ≤ f (x) for all x ∈ B
c
(x∗;�),

(2.4)f (x∗) ≤ f (x) for all x ∈ B
z
(x∗).
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is the cone of feasible continuous directions at x with respect to X ∩ Z.

Now, the definition of Clarke–Jahn generalized directional derivative given in 
[28, Section 3.5] is extended to the mixed-integer case. As opposed to the Clarke 
directional derivative, in this definition the limit superior is considered only for 
points y and y + ts in X ∩ Z , thus requiring stronger assumptions.

Definition 9  (Clarke–Jahn generalized directional derivative) Given a point 
x ∈ X ∩ Z with continuous subvector xc , the Clarke–Jahn generalized directional 
derivative of function f along direction s ∈ Dc(x) is given by:

Finally, a few basic stationarity definitions are reported which will be used in the 
convergence analysis. More specifically, it will be proved that limit points of the 
sequence generated by the proposed algorithmic framework exist which are station-
ary for Problem (2.2).

Definition 10  (Stationary point) A point x∗ ∈ X ∩ Z is a stationary point of Prob-
lem (2.2) when

Definition 11  (Clarke stationary point) A point x∗ ∈ X ∩ Z is a Clarke stationary 
point of Problem (2.2) when it satisfies

2.2 � The nonsmooth nonlinearly constrained case

In this subsection, Problem  (1.3) is considered. A local minimum point for this 
problem is defined as follows.

Dc(x) = {s ∈ ℝ
n ∶ si = 0 for all i ∈ Iz,

si ≥ 0 for all i ∈ Ic and xi = li,

si ≤ 0 for all i ∈ Ic and xi = ui,

si ∈ ℝ for all i ∈ Ic and li < xi < ui, }

(2.5)
f ◦
c
(x;s) = lim sup

yc → xc, yz = xz, y ∈ X ∩ Z

t ↓ 0, y + ts ∈ X ∩ Z

f (y + ts) − f (y)

t

(2.6)f ◦
c
(x∗;s) ≥ 0, for all s ∈ Dc(x∗),

(2.7)f (x∗) ≤ f (x), for all x ∈ B
z
(x∗).

(2.8)f Cl
c
(x∗;s) ≥ 0 for all s ∈ Dc(x∗),

(2.9)f (x∗) ≤ f (x) for all x ∈ B
z
(x∗).
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Definition 12  (Local minimum point) A point x∗ ∈ F ∩ Z ∩ X is a local minimum 
point of Problem (1.3) if, for some 𝜖 > 0,

Exploiting the necessary optimality conditions introduced in [21], the follow-
ing KKT stationarity definition can be stated. This definition will also be used in 
the convergence analysis. More specifically, it will be proved that, using a simple 
penalty approach, limit points of the sequence generated by the proposed algo-
rithmic framework exist which are KKT stationary for Problem (1.3).

Definition 13  (KKT stationary point) A point x∗ ∈ F ∩ Z ∩ X is a KKT stationary 
point of Problem (1.3) if there exists a vector �∗ ∈ ℝ

m such that, for every s ∈ Dc(x∗)

,

and

3 � An algorithm for bound constrained problems

In this section, an algorithm for solving the mixed-integer bound constrained 
problem defined in Problem (2.2) is proposed, and its convergence proper-
ties are analyzed. The optimization over the continuous and discrete variables 
is performed by means of two local searches based on linesearch algorithms 
that explore the feasible search directions similarly to the procedures proposed 
in [21, 33, 34, 36]. In particular, the Projected Continuous Search described in 
Algorithm 1 and the Discrete Search described in Algorithm 2 are the methods 
adopted to investigate the directions associated with the continuous and discrete 
variables, respectively. The idea behind the line searches is to return a positive 
stepsize � , namely to update the current iterate, whenever a point providing a suf-
ficient reduction of the objective function is found. In Algorithm 1 the sufficient 
decrease is controlled by the parameter � , while in Algorithm  2 the same role 
is played by � . Once such a point is determined, an expansion step is performed 
in order to explore if the sufficient reduction may be achieved through a larger 
stepsize.

(2.10)
f (x∗) ≤f (x) for all x ∈ B

c
(x∗;�) ∩ F,

f (x∗) ≤f (x) for all x ∈ B
z
(x∗) ∩ F.

(2.11)max

{
𝜉⊤s ∶ 𝜉 ∈ 𝜕cf (x

∗) +

m∑

i=1

𝜆∗
i
𝜕cgi(x

∗)

}
≥ 0,

(2.12)(�∗)Tg(x∗) = 0 and �∗ ≥ 0,

(2.13)f (x∗) ≤ f (x) for all x ∈ B
z
(x∗) ∩ F.
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The algorithm for bound constrained problems proposed in this section is called 
DFNDFL because its two main phases are inspired by two previously proposed 
algorithms. These two algorithms are named, respectively, DFN (an algorithm 
for continuous nonsmooth optimization, see [21]) and DFLINT (an algorithm for 
mixed-integer optimization, see [35]). They can be both freely downloaded from the 
DFL library at http://​www.​iasi.​cnr.​it/​~liuzzi/​DFL. DFNDFL performs an alternate 
minimization along continuous and discrete variables and is hence divided into two 
phases (see Algorithm 3 for a detailed scheme). Starting from a point x0 ∈ X ∩ Z , 
in Phase 1 the minimization over the continuous variables is performed by using 
the Projected Continuous Search (Step 7). If the line search fails, i.e., �c

k
= 0 , the 

tentative stepsize for continuous search directions is reduced (Step 9), otherwise the 
current iterate is updated (Step 11). Then, in Phase 2.A, the directions in the set 
D ⊂ Dz(x̃k) , where x̃k is the current iterate obtained at the end of Phase 1, are inves-
tigated through the Discrete Search (Step 16). If the stepsize returned by the line 
search performed along a given primitive direction is 0, the corresponding tentative 
stepsize is halved (Step 18), otherwise the current iterate is updated (Step 20). The 
directions in D are explored until either a point leading to a sufficient decrease in 
the objective function is found or D contains no direction to explore. Note that the 

http://www.iasi.cnr.it/%7eliuzzi/DFL
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strategy starts with a subset of Dz(x0) , namely D, and gradually adds directions to 
it (see Phase 2.B) throughout the iterations. This choice enables the algorithm to 
reduce the computational cost. If x̃k obtained at the end of Phase 1 is not modified 
in Phase 2.A or a direction in Dk along which the Discrete Search does not fail with 
𝛼̃
(d)

k
= 1 exists, Dk+1 is set equal to Dk and D is set equal to Dk+1 (Step 32). Other-

wise, �k is reduced (Step 24) and, if all the feasible primitive discrete directions at x̃k 
have been generated, Dk+1 and D are not changed compared to the previous iteration 
(Step 26). Instead, when Dk ⊂ Dz(x̃k) , Dk is enriched with new feasible primitive 
discrete directions (Steps 28–29) and the initial tentative stepsizes of the new direc-
tions are set equal to 1.

It is worth noticing that the positive parameter �k plays an important role in the 
algorithm, since it rules the sufficient decrease of the objective function value within 
the Discrete Search. The update of the parameter is performed at Step 24. More 
specifically, we shrink the value of the parameter when both the current iterate is not 
updated in Phase 2.A and the Discrete Search fails (with 𝛼̃(d)

k
= 1 ) along each direc-

tion in Dk . Hence, Algorithm DFNDFL is not the mere union of the two algorithms 
DFN [21], for continuous nonsmooth problems, and DFLINT [35], for integer prob-
lems. In order to prove convergence of the proposed algorithm to stationary points, 
optimization with respect to the discrete variables (i.e., phase 2.A of DFNDFL) 
must be indeed carried out by guaranteeing sufficient decrease with respect to the 
parameter �k . Such a parameter is possibly decreased in phase 2.B of the algorithm 
(when the whole iteration “fails”) and eventually goes to zero.

The following propositions guarantee that the algorithm is well-defined. In 
particular, Proposition 1 follows the same reasoning as [21, Proposition 2.4].

Proposition 1  The Projected Continuous Search cannot infinitely cycle between  
Step 4 and Step 6.

Proof  We assume by contradiction that in the Projected Continuous Search an infi-
nite monotonically increasing sequence of positive numbers {�j} exists such that 
�j → ∞ for j → ∞ and

Since by the instructions of the procedures we have that [w + 𝛽jp̃][l,u] ∈ X ∩ Z , 
the previous relation is in contrast with the compactness of X, by definition of com-
pact set, and with the continuity of function f. These arguments conclude the proof. 	
� ◻

Proposition 2  The Discrete Search cannot infinitely cycle between  Step 2 and Step 
4.

f ([w + 𝛽jp̃][l,u]) ≤ f (w) − 𝛾𝛽2
j
.
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Proof  First, note that since X ∩ Z is compact, the maximum stepsize 𝛼̄ computed 
at Step 0 is finite. Let us consider the j-th iteration of the Discrete search, we have 
𝛽 = 2j min{𝛼̄, 𝛼̃} . Now, given the termination condition at Step 3, index j cannot 
exceed ⌈log(𝛼̄∕min{𝛼̄, 𝛼̃})⌉ , thus concluding the proof 	�  ◻

The following proposition shows that the Projected Continuous Search returns 
stepsizes that eventually go to zero. This proposition will be used to prove sta-
tionarity with respect to the continuous variables.

Proposition 3  Let  {�c
k
} and  {𝛼̃c

k
} be the sequences yielded by Algorithm DFNDFL. 

Then

Proof  The proof follows with minor modifications from the proof of Proposition 2.5 
in [21] by considering that also here inequality (2.5) of [21] holds. 	�  ◻

The following proposition will be used to show that every limit point of a par-
ticular subsequence of iterates is a local minimum with respect to the discrete 
variables.

Proposition 4  Let  {�k} be the sequence produced by Algorithm DFNDFL. Then

Proof  By the instruction of Algorithm DFNDFL, it follows that 0 < 𝜉k+1 ≤ 𝜉k for all 
k, meaning that the sequence {�k} is monotonically nonincreasing. Hence, {�k} con-
verges to a limit M ≥ 0 . Suppose, by contradiction, that M > 0 . This implies that an 
index k̄ > 0 exists such that

 for all k ≥ k̄ . Moreover, for every index k ≥ k̄ , a direction d ∈ Dz(x̃k) exists such 
that

where the inequalities follow from the instructions of Algorithms 2–3 and the equal-
ity follows from (3.2). Relation (3.3) implies f (xk) → −∞ , which is in contrast with 
the assumption that f is continuous on the compact set X. This concludes the proof. 	
� ◻

Remark 2  By the preceding proposition and the updating rule of the parameter �k 
used in Algorithm DFNDFL, it follows that the set

(3.1)lim
k→∞

max{𝛼c
k
, 𝛼̃c

k
} = 0.

lim
k→∞

�k = 0.

(3.2)�k+1 = �k = M

(3.3)f (xk+1) ≤ f (x̃k + 𝛼
(d)

k
d) ≤ f (x̃k) − 𝜉k = f (x̃k) −M ≤ f (xk) −M,

H = {k ∶ 𝜉k+1 < 𝜉k}
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is infinite.

The previous result is used to prove the next lemma, which in turn is essential 
to prove the global convergence result related to the continuous variables. This 
lemma states that the asymptotic convergence properties of the sequence {sk} 
still hold when the projection operator is adopted. Its proof closely resembles the 
proof in [21, Lemma 2.6].

Lemma 1  Let {xk} and {sk} be the sequence of points and the sequence of continu-
ous search directions produced by Algorithm DFNDFL, respectively, and {�k} be a 
sequence such that 𝜂k > 0 , for all k. Further, let K be a subset of indices such that

with x̄ ∈ X ∩ Z and s̄ ∈ Dc(x̄) , s̄ ≠ 0 . Then, 

	 (i)	 for all k ∈ K sufficiently large, 

	 (ii)	 the following limit holds 

 where 

Proof  Since xk ∈ X ∩ Z and (3.4) holds, we have necessarily that (xk)z = x̄z for 
k ∈ K sufficiently large. Now, the proof follows with minor modifications from the 
proof of Lemma 2.6 in [21]. 	�  ◻

The convergence result related to the continuous variables is proved in the next 
proposition. It will be used in the main convergence result at the end of the section. 
It basically states that every limit point of the subsequence of iterates defined by the 
set H (see Remark 2) is a stationary point with respect to the continuous variables.

Proposition 5  Let {xk} be the sequence of points produced by Algorithm DFNDFL. 
Let H ⊆ {1, 2,…} be defined as in Remark 2 and let x̄ ∈ X ∩ Z be any accumulation 

(3.4)lim
k→∞,k∈K

xk = x̄,

(3.5)lim
k→∞,k∈K

sk = s̄,

(3.6)lim
k→∞,k∈K

�k = 0.

[xk + �ksk][l,u] ≠ xk,

lim
k→∞,k∈K

vk = s̄,

(3.7)vk =
[xk + �ksk][l,u] − xk

�k
.
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point of {xk}H . If the subsequence {sk}H , with (sk)i = 0 for i ∈ Iz , is dense in the unit 
sphere (see Definition 2), then x̄ satisfies

Proof  For any accumulation point x̄ of {xk}H , let K ⊆ H be an index set such that

Notice that, for all k ∈ K , (x̃k)z = (xk)z and 𝛼̃(d)

k
= 1 , d ∈ Dk , by the instructions of 

Algorithm DFNDFL. Hence, for all k ∈ K , by recalling (3.9), the discrete variables 
are no longer updated.

Now, recalling Proposition 3 and Lemma 1, and repeating the proof of [21, Prop-
osition 2.7], it can be shown that no direction s̄ ∈ Dc(x̄) ∩ S(0, 1) can exist such that

thus concluding the proof. 	� ◻

The next proposition states that every limit point of the subsequence of iterates 
defined by the set H (see Remark 2) is a local minimum with respect to the discrete 
variables. It will be used in the main convergence result at the end of the section.

Proposition 6  Let {xk} , {x̃k} , and {�k} be the sequences produced by Algorithm 
DFNDFL. Let H ⊆ {1, 2,…} be defined as in Remark  2 and x∗ ∈ X ∩ Z be any 
accumulation point of {xk}H , then

Proof  Let K ⊆ H be an index set such that

For every k ∈ K ⊆ H , we have

meaning that the discrete variables are no longer updated by the Discrete Search.
Let us consider any point x̄ ∈ B

z
(x∗) . By the definition of discrete neighborhood 

B
z
(x∗) , a direction d̄ ∈ Dz(x∗) exists such that

Recalling the steps in Algorithm DFNDFL, we have, for all k ∈ H sufficiently 
large, that

(3.8)f ◦
c
(x̄;s) ≥ 0 for all s ∈ Dc(x̄).

(3.9)lim
k→∞,k∈K

xk = x̄.

(3.10)f ◦
c
(x̄;s̄) < 0,

f (x∗) ≤ f (x̄), for all x̄ ∈ B
z
(x∗).

lim
k→∞,k∈K

xk = x∗.

(x̃k)z =(xk)z,

𝛼̃
(d)

k
=1, d ∈ Dk,

(3.11)x̄ = x∗ + d̄.

(3.12)(x∗)z = (xk)z = (x̃k)z.
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Further, by Proposition 3, we have

Then, for all k ∈ K sufficiently large, (3.11) and (3.12) imply

Hence, for all k ∈ K sufficiently large, by the definition of discrete neighborhood 
we have d̄ ∈ Dz(x̃k) and

Then, since k ∈ K ⊆ H , by the definition of H we have

Now, by Proposition 4, and taking the limit for k → ∞ , with k ∈ K , in (3.13), the 
result follows. 	�  ◻

Now, the main convergence result of the algorithm can be proved.

Theorem 1  Let {xk} be the sequence of points generated by Algorithm DFNDFL. Let 
H ⊆ {1, 2,…} be defined as in Remark 2 and let {sk}H , with (sk)i = 0 for i ∈ Iz , be a 
dense subsequence in the unit sphere. Then, 

	 (i)	 a limit point of {xk}H exists;
	 (ii)	 every limit point x∗ of {xk}H is stationary for Problem (2.2).

Proof  As regards point (i), since {xk}H belongs to the compact set X ∩ Z , it admits 
limit points. The prove of point (ii) follows by considering Propositions 5 and 6 . 	
� ◻

4 � An algorithm for nonsmooth nonlinearly constrained problems

In this section, the nonsmooth nonlinearly constrained problem defined in Prob-
lem (1.3) is considered. The nonlinear constraints are handled through a simple 
penalty approach (see, e.g., [21]). In particular, given a positive parameter 𝜀 > 0 , 
the following penalty function is introduced

which allows to define the following bound constrained problem

lim
k→∞,k∈K

x̃k = x∗.

(xk + d̄)z = (x̃k + d̄)z = (x∗ + d̄)z = (x̄)z.

x̃k + d̄ ∈ X ∩ Z.

(3.13)f (x̃k + d̄) > f (x̃k) − 𝜉k.

P(x;�) = f (x) +
1

�

m∑

i=1

max
{
0, gi(x)

}
,
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Hence, only the nonlinear constraints are penalized and the minimization is 
performed over the set X ∩ Z . The algorithm described in Sect. 3 is thus suited 
for solving this problem, as highlighted in the following remark.

Remark 3  Observe that, for any 𝜀 > 0 , the structure and properties of Problem (4.1) 
are the same as Problem (2.2). The Lipschiz continuity with respect to the continu-
ous variables of the penalty function P(x;�) follows by the Lipschitz continuity of f 
and gi , with i ∈ {1,… ,m} . In particular, called Lf  and Lgi the Lipschitz constants 
of f and gi , respectively, we have that the Lipschitz constant of the penalty function 
P(x;�) is

To prove the equivalence between Problem (1.3) and Problem (4.1), we report 
an extended version of the Mangasarian-Fromowitz Constraint Qualification 
(EMFCQ) [24, 39] for Problem (1.3), which takes into account its mixed-integer 
structure. This condition states that at a point that is infeasible for Problem (1.3), 
a direction feasible with respect to X ∩ Z (according to Definitions 4 and 8) that 
guarantees a reduction in the constraint violation exists.

Assumption 7  (EMFCQ for mixed-integer problems) Let us consider Problem (1.3). 
For any x ∈ (X ∩ Z) ⧵

◦

F  , one of the following conditions holds: 

	 (i)	 a direction s ∈ Dc(x) exists such that 

 for all �gi ∈ �cgi(x) with i ∈ {h ∈ {1, 2,… ,m} ∶ gh(x) ≥ 0};
	 (ii)	 a direction d̄ ∈ Dz(x) exists such that 

In order to prove the main convergence properties of the algorithm in this case, 
the equivalence between the original constrained Problem (1.3) and the penalized 
Problem (4.1) must be established first. The proof of this result is very technical and 
quite similar to analogous results from [21]. We report it in the Appendix for the 
sake of major clarity.

Exploiting this technical result, the algorithm proposed in Sect.  3 can be used 
to solve Problem (4.1), provided that the penalty parameter is sufficiently small, as 
stated in the next proposition. The algorithmic scheme designed for solving Prob-
lem (1.3) is obtained from Algorithm DFNDFL by replacing f(x) with P(x;�) , where 

(4.1)
min
x∈ℝn

P(x;�)

s.t. x ∈ X ∩ Z.

L ≤ Lf +
1

�

m∑

i=1

Lgi .

(𝜉gi)⊤s < 0,

m∑

i=1

max{0, gi(x + d̄)} <

m∑

i=1

max{0, gi(x)}.



310	 T. Giovannelli et al.

1 3

𝜀 > 0 is a sufficiently small value. We point out that in this new scheme both the 
linesearch procedures are performed by replacing f(x) with P(x;�) as well. We refer 
to this new scheme as DFNDFL–CON.

Proposition 8  Let Assumption  7 hold and let {xk} be the sequence produced by 
Algorithm  DFNDFL–CON. Let H ⊆ {1, 2,…} be defined as in Remark  2 and let 
{sk}H , with (sk)i = 0for i ∈ Iz , be a dense subsequence in the unit sphere. Then, 
{xk}H admits limit points. Furthermore, a threshold value �∗ exists such that for all 
� ∈ (0, �∗] every limit point x∗ of {xk}H is stationary for Problem (1.3).

Proof  The proof follows from Proposition 14 and Theorem 1. 	�  ◻

5 � Numerical experiments

In this section, results of the numerical experiments performed on a set of test prob-
lems selected from the literature are reported. In particular, state-of-the-art solvers 
are used as benchmarks to test the efficiency and reliability of the proposed algo-
rithm. First, the bound constrained case is considered, then nonlinearly constrained 
problems are tackled. In both cases, to improve the performance of DFNDFL, a 
modification to Phase 1 is introduced by drawing inspiration from the algorithm CS-
DFN proposed in [21] for continuous nonsmooth problems. In particular, recalling 
that Ic ∪ Iz = {1, 2,… , n} , the change consists in investigating the set of coordinate 
directions {±e1,±e2 … ,±e|I

c|} before exploring a direction from the sequence {sk} . 
Since this set is constant over the iterations, the actual stepsizes �(i)

k
 and tentative 

stepsizes 𝛼̃(i)

k
 can be stored for each coordinate direction i, with i ∈ {1, 2,… , n} . 

These stepsizes are reduced whenever the projected continuous line search, i.e., 
Algorithm  1, does not determine any point that satisfies the sufficient decrease 
condition. When their values become sufficiently small, a direction from the dense 
sequence sk is explored. This improvement allows the algorithm to benefit from the 
presence of the stepsizes �(i)

k
 and 𝛼̃(i)

k
 , whose values depend on the knowledge across 

the iterations of the sensitivity of the objective function over the coordinate direc-
tions. The use of those coordinate directions hence allows to somehow capture the 
local behaviour of the function through the actual/tentative stepsizes. So, we can 
take advantage of the information gathered in previous iterations through those 
stepsizes when searching for a new point. Furthermore, we can use the dense set of 
directions only when really needed (i.e., only when approaching a point where the 
function is actually nonsmooth). Therefore, the efficiency of the modified DFNDFL 
is expected to be higher.

The codes related to the DFNDFL and DFNDFL–CON algorithms, together with 
the test problems used in the experiments are freely available for download at the 
Derivative-Free Library web page http://​www.​iasi.​cnr.​it/​~liuzzi/​DFL/.

http://www.iasi.cnr.it/%7eliuzzi/DFL/
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5.1 � Algorithms for benchmarking

The algorithms selected as benchmarks are listed below:

–	 DFL box (see [33]), a derivative-free linesearch algorithm for bound constrained 
problems.

–	 DFL gen (see [34]), a derivative-free linesearch algorithm for nonlinearly con-
strained problems.

–	 RBFOpt (see [16]), an open-source library RBFOpt for solving black-box bound 
constrained optimization problems with expensive function evaluations.

–	 NOMAD v.3.9.1 (see [9]), a software package which implements the MADS 
algorithm.

–	 MISO (Mixed-Integer Surrogate Optimization) framework, a model-based 
approach using surrogates [41].

All the algorithms reported above support mixed-integer problems, thus being 
suited for the comparison with the algorithm proposed in this work. The maximum 
allowable number of function evaluations in each experiment is 5000. All the codes 
have been run on an Intel Core i7 10th generation CPU PC running Windows 10 
with 16GB of memory. More precisely, all the test problems, DFNDFL, DFL box, 
DFL gen and RBFOpt are coded in python and have been run using python 3.8. 
NOMAD, on the other hand, is delivered as a collection of C++ codes and has been 
run using the provided PyNomad python interface. As for MISO, it is coded in mat-
lab and has been run using Matlab R2020b but using the python coded problems 
through the matlab python engine.

As regards the parameters used in both DFNDFL and DFL, the values used in the 
experiments are � = 10−6, � = 0.5, �0 = 1 , and � = 0.5 . Moreover, the initial tenta-
tive stepsizes along the coordinate directions ±ei and sk of the modified DFNDFL 
are

while for the discrete directions d the initial tentative stepsize 𝛼̃(d)

0
 is fixed to 1.

Another computational aspect that needs to be further discussed is the gen-
eration of the continuous and discrete directions. Indeed, in Phases 1 and 2 of 
DFNDFL, new search directions might be generated to thoroughly explore neigh-
borhoods of the current iterate. To this end, a dense sequence of directions {sk} 
is required in Phase 1 to explore the continuous variables and, in particular, the 
Sobol sequence [13, 48] is used. Similarly, in Phase 2, new primitive discrete 
directions must be generated when some suitable conditions hold. In these cases, 
the Halton sequence [26] is used.

As concerns the parameters used for running RBFOpt and NOMAD, while 
the former is executed by using the default values, for the latter two different 

𝛼̃i
0
=(ui − �

i)∕2 for all i ∈ Ic,

𝛼̃0 =
1

n

n∑

i=1

𝛼̃i
0
,
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algorithms are considered. The first one is based on the default settings, while 
the second one results from disabling the usage of models in the search phase, 
which precisely is obtained by setting DISABLE MODELS. This second version 
is denoted in the remainder of this document as NOMAD (w/o mod).

5.2 � Test problems

The comparison between Algorithm DFNDFL and some state-of-the-art solvers 
is reported for 24 bound constrained problems. The first 16 problems, which are 
related to minimax and nonsmooth unconstrained optimization problems, have 
been selected from [38, Sections 2 and 3], while the remaining 8 problems have 
been chosen from [41, 42]. The problems are listed in Table  1 along with the 
respective number of continuous ( nc ) and discrete ( nz ) variables.

Since the problems from [38] are unconstrained, in order to suit the class of 
problems addressed in this work, the following bound constraints are considered 
for each variable

where x̃0 is the starting point. Furthermore, since the problems in [38] have only 
continuous variables, the rule applied to obtain mixed-integer problems is to con-
sider a number of integer variables equal to nz = ⌊n∕2⌋ and a number of continuous 
variables equal to nc = ⌈n∕2⌉ , where n denotes the dimension of each original prob-
lem and ⌊⋅⌋ and ⌈⋅⌉ are the floor and ceil operators, respectively.

More specifically, let us consider both the continuous bound constrained opti-
mization problems from [38], whose formulation is

and the original mixed-integer bound constrained problems from [41, 42], which can 
be stated as

The resulting mixed-integer problem we deal with in here can be formulated as 
follows

�
i = (x̃0)

i − 10 ≤ x̃i ≤ (x̃0)
i + 10 = ui for all i ∈ {1, 2,… , n},

(5.1)
min
x∈ℝn

f̃ (x̃)

s.t. �i ≤ x̃i ≤ ui for all i ∈ {1, 2,… , n},

x̃i ∈ ℝ for all i ∈ {1, 2,… , n},

(5.2)

min
x∈ℝn

f̃ (x̃)

s.t. �i ≤ x̃i ≤ ui for all i ∈ {1, 2,… , n},

xi ∈ ℝ for all i ∈ Ic,

xi ∈ ℤ for all i ∈ Iz.
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where f (x) = f̃ (x̃) with

Moreover, the starting point x0 adopted for Problem (5.3) is

As concerns constrained mixed-integer optimization problems, the performances 
of Algorithm  DFNDFL–CON are assessed on 204 problems with general nonlin-
ear constraints. Such problems are obtained by adding to the 34 bound-constrained 
problems defined by Problem (5.3) the 6 classes of constraints reported below and 
proposed in [29]

(5.3)

min
x∈ℝn

f (x)

s.t. �i ≤ xi ≤ ui for all i ∈ Ic,

0 ≤ xi ≤ 100 for all i ∈ Iz,

xi ∈ ℝ for all i ∈ Ic,

xi ∈ ℤ for all i ∈ Iz,

x̃i =

{
xi, for all i ∈ Ic,

�
i + xi(ui − �

i)∕100, for all i ∈ Iz.

(x0)
i =

{
(ui − �

i)∕2 for all i ∈ Ic,

50 for all i ∈ Iz.

Table 1   Bound constrained test 
problems collection

Problem name Source nc nz Problem name Source nc nz

gill [38] 5 5 goffin [38] 25 25
l1hilb(20) [38] 10 10 l1hilb(30) [38] 15 15
l1hilb(40) [38] 20 20 l1hilb(50) [38] 25 25
maxl [38] 10 10 maxq(20) [38] 10 10
maxq(30) [38] 15 15 maxq(40) [38] 20 20
maxq(50) [38] 25 25 maxquad [38] 5 5
mxhilb [38] 25 25 osborne 2 [38] 6 5
polak 2 [38] 5 5 polak 3 [38] 6 5
shell dual [38] 8 7 steiner 2 [38] 6 6
tr48 [38] 24 24 watson [38] 10 10
wong2 [38] 5 5 wong3 [38] 10 10
SO-I prob. 7 [42] 5 5 SO-I prob. 9 [42] 6 6
SO-I prob.10 [42] 15 15 SO-I prob.13 [42] 5 5
SO-I prob.15 [42] 6 6 MISO prob. 6 [41] 8 7
MISO prob. 8 [41] 5 10 MISO prob.10 [41] 30 30
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Thus, the number of general nonlinear constraints ranges from 1 to 59.

5.3 � Data and performance profiles

The comparison among the algorithms is carried out by using data and performance 
profiles, which are benchmarking tools widely used in derivative-free optimization 
(see [20, 40]). In particular, given a set S of algorithms, a set P of problems, and a 
convergence test, data and performance profiles provide complementary informa-
tion to assess the relative performance among the different algorithms in S when 
applied to solve problems in P. Specifically, data profiles allow gaining insight 
on the percentage of problems that are solved (according to the convergence test 
defined below) by each algorithm within a given budget of function evaluations. On 
the other hand, performance profiles allow assessing how well an algorithm per-
forms with respect to the others. For each s ∈ S and p ∈ P , the number of function 
evaluations required by algorithm s to satisfy the convergence condition on problem 
p is denoted as tp,s . Given a tolerance 0 < 𝜏 < 1 the convergence test is

where:

–	 f (xk) is the objective function value computed at xk . When dealing with prob-
lems with general constraints, we set to +∞ the value of the objective function at 
infeasible points;

–	 f̂ (x0) is the objective function value of the worst feasible point determined by all 
the solvers (note that in the bound-constrained case, f̂ (x0) = f (x0));

–	 fL is the smallest feasible objective function value computed by any algorithm on 
the considered problem within the given number of 5000 function evaluations.

The above convergence test requires the best point to achieve a sufficient reduc-
tion from the value f̂ (x0) of the objective function at the starting point. Note that 
the smaller the value of the tolerance � is, the higher accuracy is required at the 
best point. In particular, three levels of accuracy are considered in this paper for the 
parameter � , namely, � ∈ {10−1, 10−3, 10−5}.

Performance and data profiles of solver s can be formally defined as follows

gj(x) = (3 − 2xj+1)xj+1 − xj − 2xj+2 + 1 ≤ 0, for all j ∈ {1, 2,… , n − 2}

gj(x) = (3 − 2xj+1)xj+1 − xj − 2xj+2 + 2.5 ≤ 0 for all j ∈ {1, 2,… , n − 2}

gj(x) = x2
j
+ x2

j+1
+ xjxj+1 − 2xj − 2xj+1 + 1 ≤ 0 for all j ∈ {1, 2,… , n − 1}

gj(x) = x2
j
+ x2

j+1
+ xjxj+1 − 1 ≤ 0 for all j ∈ {1, 2,… , n − 1}

gj(x) = (3 − 0.5xj+1)xj+1 − xj − 2xj+2 + 1 ≤ 0 for all j ∈ {1, 2,… , n − 2}

g1(x) =
n−2∑
j=1

((3 − 0.5xj+1)xj+1 − xj − 2xj+2 + 1) ≤ 0

f (xk) ≤ fL + 𝜏(f̂ (x0) − fL),
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where np is the dimension of problem p. While � indicates that the number of func-
tion evaluations required by algorithm s to achieve the best solution is �–times the 
number of function evaluations needed by the best algorithm, � denotes the num-
ber of simplex gradient estimates, with np + 1 being the number associated with 
one simplex gradient. Important features for the comparison are �s(1) , which is a 
measure of the efficiency of the algorithm, since it is the percentage of problems for 
which the algorithm s performs the best, and the height reached by each profile as 
the value of � or � increases, which measures the reliability of the solver.

5.3.1 � The bound constrained case

Figure  1 reports performance and data profiles related to the comparison of the 
algorithms that do not employ models, namely DFNDFL, DFL box and NOMAD 
(without models). In this case, DFNDFL turns out to be the most efficient and 
reliable algorithm, regardless of the accuracy required. DFL box is more efficient 
than NOMAD for all values of � , whereas NOMAD is (slightly) more reliable for 
� = 10−1 and 10−3 . It is worth noticing that the remarkable percentage of prob-
lems solved for � = 1 is an important result for DFNDFL since it shows that using 
more sophisticated directions than DFL box does not lead to a significant loss of 
efficiency. We also point out that the initial continuous and primitive search direc-
tions used by DFNDFL are the coordinate directions, which are the same as the ones 
employed in DFL box, thus leading to the same behavior of the algorithms in the 
first iterations. For each value of � , despite the remarkable efficiency, DFL box does 
not show a strong reliability, which is significantly improved by DFNDFL.

Next we compare DFNDFL against solvers that make use of sophisticated mod-
els to improve the search. In particular, we considered NOMAD (using models), 
RBFOpt and MISO. We point out that these three solvers exploit different kinds 
of models. In particular, NOMAD takes advantage of quadratic models whereas 
RBFOpt and MISO make use of radial basis function models. It is important to 
highlight that both MISO and RBFOpt are designed for a low budget of function 
evaluations, (i.e., to obtain large improvements at the very beginning of the search); 
they do not have the capability of finding very accurate local solutions, thus they are 
in general not expected to be competitive for high precision.

Figure 2 reports performance and data profiles for the three considered levels of 
accuracy when DFNDFL is compared with the algorithms that make use of models.

From the performance and data profiles, we can note that DFNDFL is competi-
tive with the other methods for low precisions, and gives better results than the other 
methods, both in terms of efficiency and reliability, when precision gets higher.

�s(�) =
1

|P|
|||||

{
p ∈ P ∶

tp,s

min{tp,s� ∶ s� ∈ S}
≤ �

}|||||
,

ds(�) =
1

|P|
|||
{
p ∈ P ∶ tp,s ≤ �(np + 1)

}|||,
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These numerical results highlight that DFNDFL has a remarkable efficiency and 
compares favorably to the state-of-the-art-solvers in terms of reliability, thus con-
firming and strengthening the properties of DFL box and providing a noticeable con-
tribution to the derivative-free optimization solvers for bound constrained problems.

5.3.2 � The nonlinearly constrained case

The algorithms adopted for comparison in this case are DFL gen and the two ver-
sions of NOMAD (w/ and w/o models). We point out that the handling of the con-
straints in NOMAD is performed by the progressive/extreme barrier approach (see 
[7, 10, 32]) by specifying the PEB constraints type. We would like to highlight that 
we only used NOMAD and the constrained version of DFL box (namely DFL gen) 
in this further comparison, due to their better performances in the bound constrained 
case and the explicit handling of nonlinearly constrained problems.

Figure  3 reports performance and data profiles, for the comparison of 
DFNDFL–CON, DFL gen and NOMAD (not using models). The figure quite clearly 
shows that DFNDFL–CON is the most efficient and reliable algorithm, and the differ-
ence with the other algorithms significantly grows as the level of accuracy increases. 
It is important to highlight that using the primitive directions allows our algorithm to 

Fig. 1   Performance and data profiles for the comparison among DFNDFL, DFL box, NOMAD (not 
using models) on the 34 bound constrained problems
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improve the strategy of DFL, which only uses the set of coordinate directions. This 
results in a larger percentage of problems solved by DFNDFL–CON, even when com-
pared with NOMAD (w/ mod).

Finally, Fig.  4 reports the comparison between DFNDFL–CON and NOMAD 
using models on the set of 204 constrained problems. Also in this case, it emerges that 
DFNDFL–CON is competitive with NOMAD both in terms of data and performance 
profiles.

To conclude, these numerical results show that DFNDFL–CON has remarkable effi-
ciency and reliability when compared to state-of-the-art-solvers.

6 � Conclusions

In this paper, new linesearch-based methods for mixed-integer nonsmooth opti-
mization problems have been developed assuming that first-order information 
on the problem functions is not available. First, a general framework for bound 

Fig. 2   Performance and data profiles for the comparison among DFNDFL, NOMAD (using models), 
RBFOpt and MISO on the 34 bound constrained problems
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constrained problems has been described. Then, an exact penalty approach has 
been proposed and embedded into the framework for the bound constrained 
case, thus allowing to tackle the presence of nonlinear (possibly nonsmooth) 
constraints. Two different sets of directions are adopted to deal with the mixed 
variables. On the one hand, a dense sequence of continuous search directions is 
required to detect descent directions. On the other hand, primitive directions are 
employed to suitably explore the integer lattice thus avoiding to get trapped into 
bad points.

Numerical experiments have been performed on both bound and nonlinearly 
constrained problems. The results highlight that the proposed algorithms have 
good performances when compared with some state-of-the-art-solvers, thus pro-
viding a good tool for handling the considered class of derivative-free optimiza-
tion problems.

Fig. 3   Performance and data profiles for the comparison among DFNDFL–CON, DFL gen, NOMAD 
(w/o models) on the 204 nonlinearly constrained problems
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Appendix

The following result simply establishes a connection between minimum points, 
stationary points and Clarke stationary points of Problem (2.2). It will be used 
here to relate Problem (1.3) and Problem (4.1).

Lemma 2  Any local minimum point of Problem (2.2) is a stationary point. Further-
more, any stationary point for Problem (2.2) is a Clarke stationary point.

Proof  By Definition 7 a local minimum is stationary with respect to the continuous 
variables. Thus, it is stationary according to Definition 10.

Since, by (2.1) and (2.5), we have that

it follows that a stationary point is also a Clarke stationary point. 	�  ◻

First of all, we report a technical proposition which will be useful in the 
following.

f Cl
c
(x∗;s) ≥ f ◦

c
(x∗;s) ≥ 0,

Fig. 4   Performance and data profiles for the comparison between DFNDFL–CON, and NOMAD (w/ 
models) on the 204 nonlinearly constrained problems
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Proposition 9  Let {xk} ⊂ X ∩ Z for all k, and  {xk} → x̄ ∈ X ∩ Z for k → ∞ . Then, 
for k sufficiently large,

Proof  Since xk ∈ X ∩ Z and xk → x̄ , we have necessarily that (xk)z = x̄z for k suf-
ficiently large. Furthermore, for k sufficiently large, we also have that the following 
inclusions hold:

Now, the result follows by considering d̄ ∈ Dc(x̄) and recalling the definition of 
Dc(x̄) (i.e., Definition 8) and the above inclusions. 	�  ◻

We first prove the equivalence between local minimum points and global mini-
mum points of the two problems. Then, we prove that any Clarke stationary point 
of Problem (4.1) (according to Definition 11) is a stationary point for Problem (1.3) 
(according to Definition 13).

Proposition 10  Let Assumption 7 hold. A threshold value 𝜀∗ > 0 exists such that the 
function P(x;�) has no Clarke stationary points in (X ∩ Z) ⧵ F  for any � ∈ (0, �∗].

Proof  The proof of this proposition is very similar to the proof of [21, Proposition 
B.1]. However, we report it since the presence of discrete variables slightly changes 
the reasoning. By contradiction, we assume that for any integer k, an �k ≤ 1∕k and 
a stationary point for Problem (4.1) xk ∈ (X ∩ Z) ⧵ F  exist. Then, let us consider a 
limit point x̄ ∈ (X ∩ Z) ⧵

◦

F  of the sequence {xk} and, without loss of generality, let 
us call the corresponding subsequence as {xk} as well. Then, since xk → x̄ , the dis-
crete variables remain fixed, i.e. (xk)i = x̄i , for all i ∈ Iz and k sufficiently large. Now, 
the proof continues by separately assuming that point (i) or (ii) of Assumption  7 
holds.

First we assume that point (i) of Assumption 7 holds at x̄ . Therefore, a direction 
s̄ ∈ Dc(x̄) exists such that

In particular, it follows that

where I(x̄) =
{
i ∈ {1, 2,… ,m} ∶ gi(x̄) = 𝜙̄(x̄)

}
 , 

𝜙̄(x) = max
{
0, g1(x), g2(x),… , gm(x)

}
 and � is a positive scalar. Note that x̄ ∉ F  

implies 𝜙̄(x̄) > 0.
By Proposition 9, it follows that s̄ ∈ Dc(xk) . Moreover, since xk satisfies the Defi-

nition 10 of stationary point, we have that

Dc(x̄) ⊆ Dc(xk).

N(xk) = {i ∈ Ic ∶ li < (xk)i < ui} ⊇ N(x̄) = {i ∈ Ic ∶ li < x̄i < ui},

L(xk) = {i ∈ Ic ∶ (xk)i = li} ⊆ L(x̄) = {i ∈ Ic ∶ x̄i = li},

U(xk) = {i ∈ Ic ∶ (xk)i = ui} ⊆ U(x̄) = {i ∈ Ic ∶ x̄i = ui}.

(𝜉gi)
⊤s̄ < 0 for all 𝜉gi ∈ 𝜕cgi(x̄) with i ∈ {h ∈ {1, 2,… ,m} ∶ gh(x̄) ≥ 0}.

(A.1)max
𝜉
gi ∈ 𝜕cgi (x̄)

i ∈ I(x̄)

(𝜉gi)
⊤s̄ = −𝜂 < 0,
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By [14], we know that

and

where � i ≥ 0 for all i ∈ I(xk) and Co(A) denotes the convex hull of a set A (see [47, 
Theorem 3.3]).

Therefore, by (A.2)–(A.4), �f
k
∈ �cf (xk) ,   �

gi
k
∈ �cgi(xk) and � i

k
 with i ∈ I(xk) exist 

such that

Since m is a finite number, there exists a subsequence of {xk} such that I(xk) = Ī.
Then, recalling that (xk)i = x̄i , for all i ∈ Iz and for k sufficiently large, and since 

a locally Lipschitz continuous function has a generalized gradient which is locally 
bounded, it results that the sequences {�f

k
} and {�gi

k
} , with i ∈ Ī , are bounded. Hence, 

we get that 

Now the upper semicontinuity of �cf  and �cgi , with i ∈ Ī , at x̄ (see Proposition 
2.1.5 in [14]) implies that 𝜉f ∈ 𝜕cf (x̄) and 𝜉gi ∈ 𝜕cgi(x̄) for all i ∈ Ī.

The continuity of the problem functions guarantees that for k sufficiently large

and, in turn, this implies that for k sufficiently large

Since I(xk) ⊆ I(x̄) , we have that

(A.2)0 ≤ PCl(xk;𝜀, s̄) = max
𝜉∈𝜕cP(xk ;𝜀)

𝜉⊤s̄.

(A.3)𝜕cP(xk;𝜀) ⊆ 𝜕cf (xk) +
1

𝜀
𝜕c(max

{
0, g1(xk), g2(xk),… , gm(xk)

}
)

(A.4)𝜕(max
{
0, g1(xk), g2(xk),… , gm(xk)

}
) ⊆ Co

(
{𝜕cgi(xk) ∶ i ∈ I(xk)}

)
,

(A.5)

(
𝜉
f

k
+

1

𝜀k

∑

i∈I(xk)

𝛽 i
k
𝜉
gi
k

)⊤

s̄ ≥ 0,

∑

i∈I(xk)

𝛽 i
k
= 1 and 𝛽 i

k
≥ 0.

(A.6a)𝜉
f

k
→ 𝜉f ,

(A.6b)𝜉
gi
k
→ 𝜉gi for all i ∈ Ī,

(A.6c)𝛽 i
k
→ 𝛽 i for all i ∈ Ī.

{i ∶ gi(x̄) − 𝜙(x̄) < 0} ⊆ {i ∶ gi(xk) − 𝜙(xk) < 0},

{i ∶ gi(xk) − 𝜙(xk) = 0} = I(xk) ⊆ I(x̄) = {i ∶ gi(x̄) − 𝜙(x̄) = 0}.

(A.7)Ī ⊆ I(x̄).
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Finally, for k sufficiently large, (A.1), (A.6), and (A.7) imply

and (A.5), multiplied by �k , implies

Equations (A.8) and (A.9) yield

which, by using (A.6), gives rise to a contradiction when �k → 0.
Now we assume that point (ii) of Assumption 7 holds at x̄ . Let d̄ ∈ Dz(x̄) be the 

direction such that

recalling that (xk)i = x̄i , for all i ∈ Iz and for k sufficiently large, we have that for k 
sufficiently large Dz(x̄) = Dz(xk) , so that d̄ ∈ Dz(xk) . By definition of stationary point 
and discrete neighborhood, we have

Hence,

Multiplying by � and considering that �k → 0 , if we take the limit for k → ∞ we 
have that

The latter equation is in contradiction with (A.10). 	� ◻

Now, we can prove that there exists a threshold value 𝜀̄ for the penalty param-
eter such that, for any 𝜀 ∈ (0, 𝜀̄) , any local minimum of the penalized problem is 
also a local minimum of the original problem. In particular, the following two 
propositions are analogous to [19, Theorems 10 and 11].

(A.8)
(
𝜉
gi
k

)⊤
s̄ ≤ −

𝜂

2
for all i ∈ Ī,

(A.9)

(
𝜀k𝜉

f

k
+
∑

i∈Ī

𝛽 i
k
𝜉
gi
k

)⊤

s̄ ≥ 0.

0 ≤

(
𝜀k𝜉

f

k
+
∑

i∈Ī

𝛽 i
k
𝜉
gi
k

)⊤

s̄ ≤
(
𝜀k𝜉

f

k

)⊤

s̄ −
𝜂

2
.

(A.10)
m∑

i=1

max{0, gi(x̄ + d̄)} <

m∑

i=1

max{0, gi(x̄)}.

P(xk;𝜀k) ≤ P(xk + d̄;𝜀k), where xk + d̄ ∈ B
z
(xk).

f (xk) +
1

𝜀k

m∑

i=1

max{0, gi(xk)} ≤ f (xk + d̄) +
1

𝜀k

m∑

i=1

max{0, gi(xk + d̄)}.

m∑

i=1

max{0, gi(x̄)} ≤

m∑

i=1

max{0, gi(x̄ + d̄)}.
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Proposition 11  Let Assumptions 7 hold. Given Problem (1.3) and considering Prob-
lem (4.1), a threshold value 𝜀̄ > 0 exists such that for every 𝜀 ∈ (0, 𝜀̄] , any local min-
imum point x̄ of Problem (4.1) is also a local minimum of Problem (1.3).

Proof  Let x̄ be any local minimum point of P(x;�) on X ∩ Z . By Lemma 2, we have 
that x̄ is also a Clarke stationary point.

Now Proposition  10 implies that a threshold value 𝜀∗ > 0 exists such that 
x̄ ∈ F ∩ Z ∩ X for any � ∈ (0, �∗] . Therefore, P(x̄;𝜀) = f (x̄) which implies that x̄ is 
also a local minimum point for Problem 1.3. 	� ◻

Proposition 12  Let Assumption 7 hold. Given Problem (1.3) and considering Prob-
lem (4.1), a threshold value 𝜀̄ > 0 exists such that for every 𝜖 ∈ (0, 𝜀̄) , any global 
minimum point x̄ of Problem (4.1) is also a global minimum point of Problem (1.3) 
and viceversa.

Proof  We start by proving that any global minimum point of Problem (4.1) is also a 
global minimum point of Problem (1.3). Proceeding by contradiction, let us assume 
that for any integer k a positive scalar 𝜀k < 1∕k and a point xk exist such that xk is a 
global minimum point of P(xk;�k) but it is not a global minimum point of f(x). If we 
denote as x̂ a global minimum point of f(x), we have that

Since xk are global minimum points, by Lemma 2 they are also stationary points 
of P(x;�k) according to Clarke definition for the continuous variables. By Propo-
sition  10 there exists a threshold value 𝜀∗ > 0 such that xk ∈ F ∩ X ∩ Z for any 
�k ∈ (0, �∗] . Therefore, P(xk;�k) = f (xk) . By (A.11), it follows that f (xk) ≤ f (x̂) , con-
tradicting the assumption that xk is not a global minimum point of f(x).

Now we prove that any global minimum point x̄ of Problem (1.3) is also a global 
minimum point of Problem (4.1) for any 𝜀 ∈ (0, 𝜀̄ ). Since x̄ ∈ F ∩ Z ∩ X , we have 
that P(x̄;𝜀) = f (x̄) . By the previous proof, a global minimizer x� of P(x;�) is feasible 
for Problem (1.3), hence P(x�;�) = f (x�) . Furthermore, it is also a global minimum 
point of Problem (1.3), thus we have f (x𝜀) = f (x̄) . Therefore, since P(x𝜀;𝜀) = f (x̄) , x̄ 
is also a global minimum point of P(x;�) . 	�  ◻

In order to give stationarity results for Problem (4.1), we have the following 
proposition.

Proposition 13  For any 𝜀 > 0 , every stationary point x̄ of Problem (4.1) according 
to Clarke, such that x̄ ∈ F ∩ Z ∩ X , is also a stationary point of Problem (1.3).

Proof  Since x̄ is, by assumption, a stationary point of Problem (4.1) according to 
Clarke (see Lemma 2), then we have by definition of Clarke stationarity that for all 
s ∈ Dc(x̄),

(A.11)P(xk;𝜀k) ≤ P(x̂;𝜀k) = f (x̂).
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and

Hence, by A.12, there exists 𝜉s ∈ 𝜕cP(x̄;𝜀) such that (𝜉s)⊤s ≥ 0 for all s ∈ Dc(x̄) . 
Now, we recall that

for some �i , with i ∈ I(x) , such that 
∑

i∈I(x) �i = 1 and �i ≥ 0 for all i ∈ I(x) . Hence, 
we have that 𝜉s ∈ 𝜕cf (x̄) +

1

𝜀

∑
i∈I(x̄) 𝛽i𝜕cgi(x̄) . Then, denoting �i = �i∕� with i ∈ I(x̄) , 

and assuming �i = 0 for all i ∉ I(x̄) , we can write, for all s ∈ Dc(x̄),

Recalling that x̄ is feasible for Problem (1.3), by (A.13) we have

Considering that x̄ ∈ F ∩ Z ∩ X , (A.14), (A.15), and (A.16) prove that x̄ is a 
KKT stationary point for Problem (1.3), thus concluding the proof. 	�  ◻

Proposition 14  Let Assumption 7 hold. Then, a threshold value 𝜀∗ > 0 exists such 
that, for every � ∈ (0, �∗] , every stationary point x̄ of Problem (4.1) is stationary 
(according to Definition 13) for Problem (1.3).

Proof  Since x̄ is stationary for Problem (4.1), we have by Definition 10 that

and

Then, by Definitions 3 and 9 , we have that

By (A.17), it follows that

(A.12)PCl(x̄;𝜀, s) = max
{
𝜉⊤s ∶ 𝜉 ∈ 𝜕cP(x̄;𝜀)

}
≥ 0,

(A.13)P(x̄;𝜀) ≤ P(x;𝜀) for all x ∈ B
z
(x̄).

𝜕cP(x;𝜀) ⊆ 𝜕cf (x) +
1

𝜀

∑

i∈I(x)

𝛽i𝜕cgi(x),

(A.14)max

{
𝜉⊤s ∶ 𝜉 ∈ 𝜕cf (x̄) +

m∑

i=1

𝜆i𝜕cgi(x̄)

}
≥ 0,

(A.15)(𝜆)Tg(x̄) = 0 and 𝜆 ≥ 0.

(A.16)f (x̄) ≤ f (x) for all x ∈ B
z
(x̄),

(A.17)P◦(x̄;𝜀, s) ≥ 0 for all s ∈ Dc(x̄),

(A.18)P(x̄;𝜀) ≤ P(x;𝜀) for all x ∈ B
z
(x̄).

lim sup
yc→x̄c,yz=x̄z,t↓0

P(y + ts;𝜀) − P(y;𝜀)

t
= PCl(x̄;𝜀, s)

≥ P◦(x̄;𝜀, s) for all s ∈ Dc(x̄).
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The proof follows by considering Propositions 10, 13 and (A.18). 	�  ◻
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