
Vol.:(0123456789)

Computational Optimization and Applications (2022) 81:127–159
https://doi.org/10.1007/s10589-021-00339-7

1 3

Bregman primal–dual first‑order method and application
to sparse semidefinite programming

Xin Jiang1  · Lieven Vandenberghe1

Received: 23 February 2021 / Accepted: 24 November 2021 / Published online: 4 December 2021
© The Author(s) 2021

Abstract
We present a new variant of the Chambolle–Pock primal–dual algorithm with Breg-
man distances, analyze its convergence, and apply it to the centering problem in
sparse semidefinite programming. The novelty in the method is a line search pro-
cedure for selecting suitable step sizes. The line search obviates the need for esti-
mating the norm of the constraint matrix and the strong convexity constant of the
Bregman kernel. As an application, we discuss the centering problem in large-scale
semidefinite programming with sparse coefficient matrices. The logarithmic barrier
function for the cone of positive semidefinite completable sparse matrices is used
as the distance-generating kernel. For this distance, the complexity of evaluating
the Bregman proximal operator is shown to be roughly proportional to the cost of
a sparse Cholesky factorization. This is much cheaper than the standard proximal
operator with Euclidean distances, which requires an eigenvalue decomposition.

Keywords  Primal–dual algorithm · First-order algorithm · Semidefinite
programming · Bregman divergence

1  Introduction

Optimization methods based on Bregman distances offer the possibility of matching
the Bregman distance to the structure in the problem, with the goal of reducing the
complexity per iteration. In this paper, we apply this idea to the centering problem in
sparse semidefinite programming. The paper is motivated by the difficulty of exploiting
sparsity in large-scale semidefinite programming in general and, for proximal methods,

Research supported in part by NSF Grant ECCS 1509789.

 *	 Xin Jiang
	 jiangxjames@ucla.edu

	 Lieven Vandenberghe
	 vandenbe@ucla.edu

1	 Electrical and Computer Engineering, UCLA, Los Angeles, CA, USA

http://orcid.org/0000-0003-1231-8529
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-021-00339-7&domain=pdf

128	 X. Jiang, L. Vandenberghe

1 3

the need for eigendecompositions to compute Euclidean projections on the positive
semidefinite matrix cone. By replacing the Euclidean projection with a generalized
Bregman projection, we take advantage of the efficiency and scalability of algorithms
for sparse Cholesky factorization and several related computations [3, 54].

We consider semidefinite programs (SDPs) in the standard form

with primal variable X ∈ �n and dual variables S ∈ �n , y ∈ �m , where �n is the set
of symmetric n × n matrices. The linear operator A ∶ �n → �m is defined as

and A∗(y) =
∑m

i=1
yiAi is its adjoint operator. The coefficients C,A1,… ,Am are sym-

metric n × n matrices. The notation �n
+
 is used for the cone of positive semidefinite

(PSD) matrices in �n.
In many large-scale applications of semidefinite programming, the coefficient matri-

ces are sparse. The sparsity pattern of a symmetric n × n matrix can be represented by
an undirected graph G = (V ,E) with vertex set V = {1, 2,… , n} and edge set E. The
set of matrices with sparsity pattern E is then defined as

In this paper, E will denote the common (or aggregate) sparsity pattern of the coef-
ficient matrices in the SDP, i.e., we assume that C,A1,… ,Am ∈ �n

E
 . Note that the

sparsity pattern E is not uniquely defined (unless it is dense, i.e., the sparsity graph
G is complete): if the coefficients are in �n

E
 then they are also in �n

E′ where E ⊂ E′ .
In particular, E can always be extended to make the graph G = (V ,E) chordal or tri-
angulated [14, 54]. Without loss of generality, we will assume that this is the case.

The primal variable X in (1) generally needs to be dense to be feasible. However,
the cost function and the linear equality constraints only depend on the diagonal entries
Xii and the off-diagonal entries Xij = Xji for {i, j} ∈ E . For the other entries the only
requirement is to make the matrix positive semidefinite. In the dual problem, S ∈ �n

E

holds at all dual feasible points. These observations imply that the SDPs (1) can be
equivalently rewritten as a pair of primal and dual conic linear programs

with sparse matrix variables X, S ∈ �n
E
 , and a vector variable y ∈ �m . The primal

cone K in this problem is the set of matrices in �n
E
 which have a positive semidefi-

nite completion, i.e., K = ΠE(�
n
+
) where ΠE stands for projection on �n

E
 . The dual

cone K∗ of K is the set of positive semidefinite matrices with sparsity pattern E, i.e.,

(1)

primal: minimize ��(CX) dual: maximize bTy

subject to A(X) = b subject to A
∗(y) + S = C

X ∈ �n
+

S ∈ �n
+
,

A(X) =
(
��(A1X), ��(A2X),… , ��(AmX)

)

�n
E
= {Y ∈ �n ∣ Yij = Yji = 0 ifi ≠ jand{i, j} ∉ E}.

(2)

primal: minimize ��(CX) dual: maximize bTy

subject to A(X) = b subject to A
∗(y) + S = C

X ∈ K S ∈ K∗,

129

1 3

Bregman primal–dual first‑order method and application to…

K∗ = �n
+
∩ �n

E
 . The formulation (2) is attractive when the aggregate sparsity pattern

E is very sparse, in which case �n
E
 is a much lower-dimensional space than �n.

The centering problem for the sparse SDP (2) is

where � is the logarithmic barrier function for the cone K, defined as

The centering parameter 𝜇 > 0 controls the duality gap at the solution. Since the
barrier function � is n-logarithmically homogeneous, the optimal solution of the
centering problem is a (�n)-suboptimal solution for the original SDP (2). The cen-
tering problem (3) is useful as an approximation to the original problem, because
it yields more easily computed suboptimal solutions, with an accuracy that can be
controlled by the choice of barrier parameter. The centering problem is also a key
component of barrier methods, in which a sequence of centering problems with
decreasing values of the barrier parameter are solved. Traditionally, the centering
problem in interior-point methods is solved by Newton’s algorithm, possibly accel-
erated via the preconditioned conjugate gradient method [10, 55], but recent work
has started to examine the use of proximal methods such as the alternating direction
method of multipliers (ADMM) or the proximal method of multipliers for this pur-
pose [37, 48].

Contributions The contribution of this paper is two-fold. First, we formulate
a non-Euclidean (Bregman) proximal method for the centering problem of the
sparse SDP. In the proposed method, the proximal operators are replaced by gen-
eralized proximal operators defined in terms of a Bregman generalized distance
or divergence. We show that if the Bregman divergence generated by the barrier
function � for the cone K is used, the generalized projections can be computed
very efficiently, with a complexity dominated by the cost of a sparse Cholesky
factorization with sparsity pattern E. This is much cheaper than the eigenvalue
decomposition needed to compute a Euclidean projection on the positive semidef-
inite cone. Hence, while the method only solves an approximation of the SDP (2),
it can handle problem sizes that are orders of magnitude larger than the problems
solved by standard interior-point and proximal first-order methods.

For the solution of the centering problem, we apply a variant of the pri-
mal–dual method proposed by Chambolle and Pock [22]. The version of the algo-
rithm described in [22] requires careful tuning of primal and dual step size param-
eters. Acceptable values of the step sizes depend on the norm of the linear operator
A and the strong convexity constants for the distance function. These parameters
are often difficult to estimate in practice. As a second contribution, we propose a
new version of the algorithm, in which the step sizes are not fixed parameters, but
are selected using an easily implemented line search procedure. We give a detailed
convergence analysis of the algorithm with line search and show an O(1/k) ergodic
convergence rate, which is consistent with previous results in [22, 39].

(3)
minimize ��(CX) + ��(X)

subject to A(X) = b,

�(X) = sup
S∈��� K∗

(− ��(XS) + log det S).

130	 X. Jiang, L. Vandenberghe

1 3

Related work Sparse structure in semidefinite programming has been extensively
studied by many authors. The scalability of interior-point methods is limited by the
need to form and solve a set of m linear equations in m variables, known as the
Schur complement system, at each iteration. This system is usually dense. Sparsity in
the coefficients Ai can be exploited to reduce the cost of assembling the Schur com-
plement equations. This process is efficient especially in extremely sparse problems,
where the coefficients Ai may also have low rank. In dual barrier methods, one can
also take advantage of sparsity of dual feasible variables S. These properties are lev-
eraged in the dual interior-point methods described in [9–13].

In another line of research, techniques based on properties and algorithms for
chordal sparsity patterns have been applied to semidefinite programming since the
late 1990s [3, 13, 18, 29, 30, 34, 35, 42, 46, 50, 51, 58]; see [54, 60] for recent sur-
veys. An important tool from this literature is the conversion or clique decomposi-
tion method proposed by Fukuda et al. [30, 42]. It is based on a fundamental result
from linear algebra, stating that for a chordal pattern E, a matrix X ∈ �n

E
 has a posi-

tive semidefinite completion if and only if X�k�k
⪰ 0 for k = 1,… , r , where �1 , ..., �r

are the maximal cliques in the graph [31]. In the conversion method, the large sparse
variable matrix X in (2) is replaced with smaller dense matrix variables Xk = X�k�k

 .
Each of these new variables is constrained to be positive semidefinite. Linear equal-
ity constraints need to be added to couple the variables Xk , as they represent over-
lapping subblocks of a single matrix X. Thus, a large sparse SDP is converted in an
equivalent problem with several smaller, dense variables Xk , and additional sparse
equality constraints. This equivalent problem may be considerably easier to solve by
interior-point methods than the original SDP (1). Recent examples where the clique
decomposition is applied to solve large sparse SDPs can be found in [27, 58].

Proximal splitting methods, such as (accelerated) proximal gradient methods [7, 8,
43], ADMM [16], and the primal–dual hybrid gradient (PDHG) or Chambolle–Pock
method [20, 28, 47], are perhaps the most popular alternatives to interior-point meth-
ods in machine learning, image processing, and other applications involving large-scale
convex programming. When applied to the SDPs (1), they require at each iteration a
Euclidean projection on the positive semidefinite cone �n

+
 , hence, a symmetric eigen-

value decomposition of order n. This contributes an order n3 term to the per-iteration
complexity. In the nonsymmetric formulation (2) of the sparse SDP, the projections
on K∗ or (equivalently) K cannot be computed directly, and must be handled by intro-
ducing splitting variables and alternating projection on �n

E
 , which is trivial, and on �n

+
 ,

which requires an eigenvalue decomposition. The clique decomposition used in the
conversion method described above, which was originally developed for interior-point
methods, lends itself naturally to splitting algorithms as well. It allows us to replace the
matrix constraint X ∈ K with several smaller dense inequalities Xk ⪰ 0 , one for each
maximal clique in the sparsity graph. In a proximal method, this means that projec-
tion on the n × n positive semidefinite cone can be replaced by less expensive projec-
tions on lower-dimensional positive semidefinite cones [38, 52, 59, 61]. This advantage
of the conversion method is tempered by the large number of consistency constraints
that must be introduced to link the splitting variables Xk . First-order methods typically
do not compute very accurate solutions and if the residual error in the consistency

131

1 3

Bregman primal–dual first‑order method and application to…

constraints is not small, it may be difficult to convert the computed solution of the
decomposed problem back to an accurate solution of the original SDP [27].

Outline The rest of the paper is organized as follows. In Sect. 2 we describe the
Bregman distance generated by the barrier function and show how generalized pro-
jections can be efficiently computed without expensive eigenvalue decomposition. The
primal–dual proximal algorithm and its convergence are discussed in Sect. 3. Section 4
contains results of numerical experiments.

2 � Barrier proximal operator for sparse PSD matrix cone

2.1 � Centering problem

We will assume that the equality constraints in (2) include an equality constraint
��(NX) = 1 , where N ∈ �n

++
∩ �n

E
 . To make this explicit we write the centering prob-

lem (2) as

For N = I , the normalized cone {X ∈ K ∣ ��(NX) = 1} is a matrix extension of the
probability simplex {x ⪰ 0 ∣ 1Tx = 1} , sometimes referred to as the spectraplex.
With minor changes, the techniques we discuss extend to a normalization in the ine-
quality form ��(NX) ≤ 1 , with N ∈ �n

++
∩ �n

E
 . However, we will discuss (4) to retain

the standard form of the centering problem.
The constraints ��(NX) = 1 and ��(NX) ≤ 1 guarantee the boundedness of the pri-

mal feasible set, a common assumption in first-order methods. The added constraint
does not diminish the generality of our approach. In many applications an equality
��(NX) = 1 is implied by the contraints A(X) = b and easily derived from the problem
data (see Sect. 4 for two typical examples). When an equality constraint of this form is
not readily available, one can add a bounding inequality ��(NX) ≤ 1 with N sufficiently
small to ensure that the optimal solution is not modified.

To apply first-order proximal methods, we view the problem (4) as a linearly con-
strained optimization problem

where f is defined as

and �H is the indicator function of the hyperplane H . The algorithm we apply to (5)
can be summarized as

(4)
minimize ��(CX) + ��(X)

subject to A(X) = b,

��(NX) = 1.

(5)
minimize f (X)

subject to A(X) = b,

(6)f (X) = ��(CX) + ��(X) + �H(X), H = {X ∈ �n
E
∣ ��(NX) = 1},

(7a)z̄k+1 =zk + 𝜃k(zk − zk−1)

132	 X. Jiang, L. Vandenberghe

1 3

 where d is the Bregman distance generated by the barrier function �:

The choices of �k , �k , and �k , together with the details and origins of the algorithm,
will be discussed in Sect. 3. In the remainder of this section we focus on the most
expensive step in the algorithm, the optimization problem in the X-update (7b).

In Sects. 2.2 and 2.3 we first review some facts from the theory of generalized
distances and the logarithmic barrier functions for the primal and dual cones K
and K∗ . Sections 2.4 and 2.5 describe the details of the barrier kernel and the associ-
ated generalized proximal operator applied in (7b).

2.2 � Bregman distance

Let h be a convex function, defined on a domain that has nonempty interior, and
suppose h is continuously differentiable on ��� (��� h) . The generalized distance
generated by h is defined as the function

with domain ��� d = ��� h × ��� (��� h) . The function h is called the kernel func-
tion that generates the generalized distance d. For h(x) = ‖x‖2

2
∕2 and the standard

inner product ⟨u, v⟩ = uTv , we obtain d(x, y) = ‖x − y‖2
2
∕2 . The best known non-

quadratic example is the relative entropy

This generalized distance is generated by the kernel h(x) =
∑

i xi log xi , if we use the
standard inner product.

Generalized distances are not necessarily symmetric ( d(x, y) ≠ d(y, x) in general)
but share some other important properties with the squared Euclidean norm. An
important example is the triangle identity [23, Lemma 3.1]

which holds for all x ∈ ��� h and y, z ∈ ��� (��� h) . This generalizes the identity

Additional conditions may have to be imposed on the kernel function h, depending
on the application and the algorithm in which the generalized distance is used [19].

(7b)Xk+1 =argmin
X

(
f (X) + z̄T

k+1
A(X) +

1

𝜏k
d(X,Xk)

)

(7c)zk+1 =zk + �k(A(Xk+1) − b)

d(X, Y) = �(X) − �(Y) − ��(∇�(Y)(X − Y)).

d(x, y) = h(x) − h(y) − ⟨∇h(y), x − y⟩,

d(x, y) =

n∑
i=1

(xi log(xi∕yi) − xi + yi), ��� d = �n
+
× �n

++
.

(8)⟨∇h(y) − ∇h(z), x − y⟩ = d(x, z) − d(x, y) − d(y, z)

(y − z)T (x − y) =
1

2

�‖x − z‖2
2
− ‖x − y‖2

2
− ‖y − z‖2

2

�
.

133

1 3

Bregman primal–dual first‑order method and application to…

For now we only assume convexity and continuous differentiability on the interior of
the domain. Other properties will be mentioned when needed.

The proximal operator of a closed convex function f is defined as

If f is closed and convex, then the minimizer in the definition exists and is unique for
all y [40]. We will use the following extension to generalized distances. Suppose f is
a convex function with the property that for every a and every y ∈ ��� (��� h) , the
optimization problem

has a unique solution x̂ in ��� (��� h) . Then we denote the minimizer x̂ by

and call the mapping proxd
f
 the generalized proximal operator of f. From the second

expression we see that x̂ = proxd
f
(y, a) satisfies

If d = ‖x − y‖2
2
∕2 , it is easily verified that proxd

f
(y, a) = proxf (y − a) , where proxf is

the standard proximal operator.
In contrast to the Euclidean case, it is difficult to give simple general conditions

that guarantee that for every a and every y ∈ ��� (��� h) the problem (9) has a
unique solution in ��� (��� h) . However, we will use the definition only for spe-
cific combinations of f and d, for which problem (9) is particularly easy to solve.
In those applications, existence and uniqueness of the solution follow directly from
the availability of a fast algorithm for computing it. A classical example is the
relative entropy distance with f given by the indicator function of the hyperplane
{x ∣ 1Tx = 1} . Problem (9) can be written as

For any a and any positive y, the solution of (9) is unique and equal to the positive
vector

Research on proximal methods for semidefinite programming has been largely
based on the standard Euclidean proximal operators and the distance defined by the

proxf (y) = argmin
x

(f (x) +
1

2
‖x − y‖2

2
).

(9)minimize f (x) + ⟨a, x⟩ + d(x, y)

(10)
proxd

f
(y, a) = argmin

x

(f (x) + ⟨a, x⟩ + d(x, y))

= argmin
x

(f (x) + ⟨a, x⟩ + h(x) − ⟨∇h(y), x⟩)

(11)∇h(y) − ∇h(x̂) − a ∈ 𝜕f (x̂).

minimize aTx +
n∑
i=1

(xi log(xi∕yi) − xi)

subject to 1
Tx = 1.

proxd
f
(y, a) =

1∑n

i=1
yie

−ai

⎡⎢⎢⎣

y1e
−a1

⋮

yne
−an

⎤⎥⎥⎦
.

134	 X. Jiang, L. Vandenberghe

1 3

matrix entropy [6]. For these distances, projections on the positive semidefinite cone
require eigenvalue decompositions, which limits the size of the variables that can
be handled and precludes applications to large sparse SDPs. In the following sec-
tions, we introduce a generalized proximal operator designed for sparse semidefi-
nite programming. The generalized proximal operator can be evaluated via a simple
iterative algorithm with a complexity dominated by the cost of a sparse Cholesky
factorization.

2.3 � Primal and dual barrier

The logarithmic barrier functions for the cones K∗ = �n
+
∩ �n

E
 and K = ΠE(�

n
+
) are

defined as

with domains ����∗ = ��� K∗ and ���� = ��� K , respectively. Note that �(X) is
the conjugate of �∗ evaluated at −X.

In [3, 54] efficient algorithms are presented for evaluating the two barrier func-
tions, their gradients, and their directional second derivatives, when the sparsity pat-
tern E is chordal. The value of the dual barrier �∗(S) = − log det S is easily com-
puted from the diagonal entries in a sparse Cholesky factor of S. The gradient and
Hessian are given by

Given a Cholesky factorization of S, these expressions can be evaluated via one
or two recursions on the elimination tree [3, 54], without explicitly computing the
entire inverse S−1 or the matrix product S−1VS−1 . The cost of these recursions is
roughly the same as the cost of a sparse Cholesky factorization with the sparsity pat-
tern E [3, 54].

The primal barrier function � and its gradient can be evaluated by solving the
optimization problem in the definition of �(X) . The optimal solution ŜX is the matrix
in �n

++
∩ �n

E
 that satisfies

Its inverse Ŝ−1
X

 is also the maximum determinant positive definite completion of X,
i.e., Z = Ŝ−1

X
 is the solution of

(where we take �n
++

 as the domain of the cost function). From ŜX , one obtains

(12)�∗(S) = − log det S, �(X) = sup
S

(
− ��(XS) − �∗(S)

)
,

(13)∇�∗(S) = −ΠE(S
−1), ∇2�∗(S)[V] =

d

dt
∇�∗(S + tV) = ΠE(S

−1VS−1).

(14)ΠE(Ŝ
−1
X
) = X.

(15)
maximize log detZ

subject to ΠE(Z) = X

(16)𝜙(X) = log det ŜX − n, ∇𝜙(X) = −ŜX , ∇2𝜙(X) = ∇2𝜙∗(ŜX)
−1.

135

1 3

Bregman primal–dual first‑order method and application to…

Comparing the expressions for the gradients of � and �∗ in (16) and (13), and
using (14), we see that ∇� and ∇�∗ are inverse mappings, up to a change in sign:

For general sparsity patterns, the determinant maximization problem (15) or the
convex optimization problem in the definition of � must be solved by an iterative
optimization algorithm. If the pattern is chordal, these optimization problems can be
solved by finite recursive algorithms, again at a cost that is comparable with the cost
of a sparse Cholesky factorization for the same pattern [3, 54].

2.4 � Barrier kernel

The primal barrier function � is convex, continuously differentiable on the interior of
the cone, and strongly convex on ��� K ∩ {X ∣ ��(NX) = 1} . It generates the Bregman
divergence

On line 2 we used the properties (16) to express �(Y) and ∇�(Y) . The generalized
proximal operator (10) for the function f defined in (6), which is the key step in the
X-update (7b) of algorithm (7), then becomes

where

To compute X̂ we therefore need to solve an optimization problem

where B ∈ �n
E
 and N ∈ �n

++
∩ �n

E
 . If we introduce a Lagrange multiplier � for the

equality constraint in (17), the optimality condition can be written as

Equivalently, since ∇�∗(S) = −(∇�)−1(−S),

∇𝜙(X) = −ŜX = −(∇𝜙∗)
−1(−X), ∇𝜙∗(S) = −(∇𝜙)−1(−S).

d(X, Y) =𝜙(X) − 𝜙(Y) − �� (∇𝜙(Y)(X − Y))

=𝜙(X) − log det ŜY + n + �� (ŜY (X − Y))

=𝜙(X) − log det ŜY + �� (ŜYX).

X̂ =proxd
f
(Y ,A)

= argmin
��(NX)=1

(��(CX) + 𝜇𝜙(X) + ��(AX) + d(X, Y))

= argmin
��(NX)=1

(
��

(
(C + A − ∇𝜙(Y))X

)
+ (𝜇 + 1)𝜙(X)

)

=argmin
��(NX)=1

(��(BX) + 𝜙(X))

B =
1

1 + 𝜇
(C + A + ŜY).

(17)
minimize ��(BX) + �(X)

subject to ��(NX) = 1,

∇�(X) + B + �N = 0, ��(NX) = 1.

136	 X. Jiang, L. Vandenberghe

1 3

Eliminating X we obtain a nonlinear equation in �:

(The projection in ��(NΠE((B + �N)−1)) can be omitted because the matrix N has
the sparsity pattern E.) The unique solution � that satisfies B + 𝜈N ≻ 0 defines the
solution X = ΠE((B + �N)−1) of (17).

The Eq. (18) is also the optimality condition for the Lagrange dual of (17), which
is a smooth unconstrained convex optimization problem in the scalar variable �:

2.5 � Newton method for barrier proximal operator

In this section we discuss in detail Newton’s method applied to the dual prob-
lem (19) and the equivalent nonlinear Eq. (18). We write the equation as �(�) = 1
where

The function � and its derivative can be expressed in terms of the generalized eigen-
values �i of (B, N) as

Figure 1 shows an example with n = 4 , N = I , and eigenvalues 10, 5, 0,−5.
We are interested in computing the solution of �(�) = 1 that satisfies B + 𝜈N ≻ 0 ,

i.e., 𝜈 > −𝜆min , where �min = mini �i is the smallest generalized eigenvalue of (B, N).
We denote this interval by J = (−�min,∞) . The equation �(�) = 1 is guaranteed to

X = −∇�∗(B + �N) = ΠE((B + �N)−1), ��(NX) = 1.

(18)��(N(B + �N)−1) = 1.

(19)maximize −�∗(B + �N) − �.

(20)�(�) = ��(N(B + �N)−1), � �(�) = − ��(N(B + �N)−1N(B + �N)−1).

(21)�(�) =

n∑
i=1

1

� + �i
, � �(�) = −

n∑
i=1

1

(� + �i)
2
.

−10 −5
−3

−2

−1

0

1

2

3

ν

ζ
(ν
)

0 5 10 4 6 8 10
−6

−5

−4

−3

−2

−1

0

1

2

ν

1/
ζ
(ν
)
−

1

Fig. 1   Left. The function � (�) =
∑

i
1∕(� + �

i
) for � = (−5, 0, 5, 10) . We are interested in the solution of

� (�) = 1 larger than −�min = 5 . Right. The function 1∕� (�) − 1

137

1 3

Bregman primal–dual first‑order method and application to…

have a unique solution in J because � is monotonic and continuous on this interval,
with

Furthermore, on the interval J, the function � and its derivative can be expressed as

Therefore �(�) and � �(�) can be evaluated by taking the inner product of N with

Since B,N ∈ �n
E
 , these quantities can be computed by the efficient algorithms for

computing the gradient and directional second derivative of �∗ described in [3, 54].
We note a few other properties of � . First, the expressions in (21) show that �

is convex, decreasing, and positive on J. Second, if � ∈ J , then 𝜈̃ ∈ J for all 𝜈̃ that
satisfy

This follows from

and is also a simple consequence of the Dikin ellipsoid theorem for self-concordant
functions [44, Theorem 2.1.1.b].

The Newton iteration for the equation �(�) − 1 = 0 is

where � is a step size. The same iteration can be interpreted as a damped Newton
method for the unconstrained problem (19). If �+ ∈ J for a unit step � = 1 , then

from strict convexity of � . Hence after one full Newton step, the Newton iteration
with unit steps approaches the solution monotonically from the left. If 𝜁(𝜈) < 1 then
in general a non-unit step size must be taken to keep the iterates in J. From the Dikin
ellipsoid inequality (22), we see that �+ ∈ J for all positive � that satisfy

lim
�→−�min

�(�) = ∞, lim
�→∞

�(�) = 0.

�(�) = − ��(N∇�∗(B + �N)), � �(�) = − ��(N(∇2�∗(B + �N)[N])).

∇�∗(B + �N) = − ΠE

(
(B + �N)−1

)

∇2�∗(B + �N)[N] = − ΠE

(
(B + �N)−1N(B + �N)−1

)
.

(22)𝜈̃ > 𝜈 −
1√�𝜁 �(𝜈)�

.

|� �(�)| =
n∑
i=1

1

(� + �i)
2
≥

1

(� + �min)
2
,

(23)�+ = � + �
1 − �(�)

� �(�)
,

𝜁(𝜈+) > 𝜁(𝜈) + 𝜁 �(𝜈)(𝜈+ − 𝜈) = 1,

𝛼 <

√�𝜁 �(𝜈)�
1 − 𝜁(𝜈)

.

138	 X. Jiang, L. Vandenberghe

1 3

The theory of self-concordant functions provides a step size rule that satisfies this
condition and guarantees convergence:

where � is a constant in (0, 1). As an alternative to this fixed step size rule, a stand-
ard backtracking line search can be used to determine a suitable step size � in (23).
Checking whether �+ ∈ J can be done by attempting a sparse Cholesky factorization
of B + �+N.

Figure 1 shows that the function � can be quite nonlinear around the solution of the
equation if the solution is near −�min . Instead of applying Newton’s method directly to
(20), it is useful to rewrite the nonlinear equation as �(�) = 0 where

The negative smallest eigenvalue −�min is a pole of �(�) , but a zero of 1∕� (�) . Also
the derivative of � changes slowly near this zero point; in Fig. 1, the function � is
almost linear in the region of interest. This implies that Newton’s method applied to
(24), i.e.,

should be extremely efficient in this case. Starting the line search at � = 1 is equiva-
lent to starting at � = �(�) in (23). This often requires fewer backtracking steps than
starting at � = 1.

Newton’s method requires a feasible initial point �0 ∈ J . Suppose we know a posi-
tive lower bound � on the smallest eigenvalue of N. Then 𝜈̂0 ∈ J where

A lower bound on �min(B) can be obtained from the Gershgorin circle theorem,
which states that the eigenvalues of B are contained in the disks

Thus, �min(B) ≥ mini (Bii −
∑

j≠i �Bij�) . Apart from the above initialization, we find
another practically useful initial point 𝜈̃0 = n − �� B∕ �� N , which is the solution for
��(N(B + �N)−1) = 1 when B happens to be a multiple of N. This choice is efficient
in many practical examples but, unfortunately, not guaranteed to be feasible. Thus,
in the implementation, we use 𝜈̃0 if it is feasible and 𝜈̂0 otherwise.

𝛼 =

√�𝜁 �(𝜈)�√�𝜁 �(𝜈)� + 1 − 𝜁(𝜈)
if

1 − 𝜁(𝜈)√�𝜁 �(𝜈)�
< 𝜂, 𝛼 = 1 otherwise ,

(24)�(�) =
1

�(�)
− 1.

�+ = � + �
�(�)

� �(�)
= � + �

�(�)(1 − �(�))

� �(�)
,

𝜈̂0 > max
{
0,

−𝜆min(B)

𝛾

}
.

{
s
||| |s − Bii| ≤

∑
j≠i

|Bij|
}
, i = 1,… , n.

139

1 3

Bregman primal–dual first‑order method and application to…

3 � Bregman primal–dual method

The proposed algorithm (7) is applicable not only to sparse SDPs, but to more
general optimization problems. To emphasize its generality and to simplify nota-
tion, we switch in this section to the vector form of the optimization problem

where f is a closed convex function. Most of the discussion in this section extends to
the more general standard form

where f and g are closed convex functions. Problem (25) is a special case with
g = �{b} , the indicator function of the singleton {b} . While the standard form (26)
offers more flexibility, it should be noted that methods for the equality constrained
problem (25) also apply to (26) if this problem is reformulated as

We also note that (25) includes conic optimization problems in standard form

if we define f (x) = cTx + �C(x) , where �C is the indicator function of the cone C.
In Sect. 3.1 we review some facts from convex duality theory. Section 3.2

describes the algorithm we propose for solving (25), and in Sect. 3.3 we analyze
its convergence.

3.1 � Duality theory

The Lagrangian for problem (25) will be denoted by

This function is convex in x and affine in z, and satisfies

where f ∗(y) = supx (y
Tx − f (x)) is the conjugate of f. The function f ∗(−ATz) is the

objective in the dual problem

(25)
minimize f (x)

subject to Ax = b

(26)minimize f (x) + g(Ax),

minimize f (x) + g(y)

subject to Ax − y = 0.

minimize cTx

subject to Ax = b

x ∈ C

(27)L(x, z) = f (x) + zT (Ax − b).

sup
z

L(x, z) = f (x) + �{b}(Ax) =

{
f (x) Ax = b

+∞ otherwise,

inf
x
L(x, z) = −f ∗(−ATz) + bTz,

140	 X. Jiang, L. Vandenberghe

1 3

A point (x⋆, z⋆) is a saddle point of the Lagrangian if

Existence of a saddle point is equivalent to the property that the primal and dual
optimal values are equal and attained. The left-hand equality in (29) holds if and
only if Ax⋆ = b . The right-hand equality holds if and only if −ATz⋆ ∈ 𝜕f (x⋆) . Hence
(x⋆, z⋆) is a saddle point if and only if it satisfies the optimality conditions

Throughout this section we assume that there exists a saddle point (x⋆, z⋆).
Some of the convergence results in Sect. 3.3 are expressed in terms of the merit

function

It is well known that for sufficiently large � , the term �‖Ax − b‖2 is an exact penalty.
Specifically, if 𝛾 > ‖z⋆‖2 , where z⋆ is a solution of the dual problem (28), then opti-
mal solutions of (30) are also optimal for (25).

3.2 � Algorithm

The algorithm for (25) presented in this section involves a generalized distance d
in the primal space, generated by a kernel function � . It will be assumed that � is
strongly convex on ��� f  . This property can be expressed as

for all x ∈ ���� ∩ ��� f and y ∈ ��� (����) ∩ ��� f  , where ‖ ⋅ ‖ is a norm,
scaled so that the strong convexity constant in (31) is one. (More generally, if � is
�-strongly convex with respect to ‖ ⋅ ‖ , then the factor 1/2 is replaced with �∕2 . By
scaling the norm, one can assume � = 1 .) We denote by ‖A‖ the matrix norm

The algorithm is summarized as follows. Select starting points z−1 = z0 and
x0 ∈ ���(����) ∩ ��� f  . For k = 0, 1,… , repeat the following steps:

(28)maximize −f ∗(−ATz) + bTz.

(29)sup
z

L(x⋆, z) = L(x⋆, z⋆) = inf
x
L(x, z⋆).

Ax⋆ = b, −ATz⋆ ∈ 𝜕f (x⋆).

(30)f (x) + �‖Ax − b‖2.

(31)d(x, y) ≥
1

2
‖x − y‖2

(32)‖A‖ = sup
x≠0

‖Ax‖2
‖x‖ = sup

z≠0, x≠0

zTAx

‖z‖2‖x‖ .

(33a)z̄k+1 =zk + 𝜃k(zk − zk−1)

(33b)xk+1 =prox
d
𝜏kf
(xk, 𝜏kA

T z̄k+1)

141

1 3

Bregman primal–dual first‑order method and application to…

 Step (33b) can be written more explicitly as

The parameters �k , �k , �k are determined by one of two methods.

–	 Constant parameters: �k = 1 , �k = � , �k = � , where

 The parameter � satisfies 0 < 𝛿 ≤ 1 . In practice, � = 1 can be used, but some
convergence results will require 𝛿 < 1 ; see Sect. 3.3.4.

–	 Varying parameters. The parameters �k , �k , �k are determined by a backtracking
search. At the start of the algorithm, we set �−1 and �−1 to some positive val-
ues. To start the search in iteration k we choose 𝜃̄k ≥ 1 . For i = 0, 1, 2,… , we set
𝜃k = 2−i𝜃̄k , �k = �k�k−1 , �k = �k�k−1 , and compute z̄k+1 , xk+1 , zk+1 using (33). If

 we accept the computed iterates z̄k+1 , xk+1 , zk+1 and step sizes �k , �k , and termi-
nate the backtracking search. If (36) does not hold, we increment i and continue
the backtracking search.

The constant parameter choice is simple, but it is often overly pessimistic. Moreover
it requires an estimate or tight upper bound for ‖A‖ , which is difficult to obtain in
large-scale problems. Using a loose bound for ‖A‖ in (35) may result in unnecessar-
ily small values of � and � , and can dramatically slow down the convergence. The
definition of ‖A‖ further depends on the strong convexity constant for the kernel � ;
see (31) and (32). This quantity is also difficult to estimate for most kernels.

The varying parameters option does not require estimates or bounds on ‖A‖ or
the strong convexity constant of the kernel. It is more expensive because in each
backtracking iteration the three updates in (33) are computed. However, the extra
cost is well justified in practice. If the line search process takes more than a few
backtracking iterations, it indicates that the inequality (36) is much weaker than the
conservative step size condition (35), and the algorithm with line search takes much
larger steps than would be used by the constant parameter algorithm. In practice, the
parameter 𝜃̄k can be set to one in most iterations. The backtracking search then first
checks whether the previous step sizes �k−1 and �k−1 are acceptable, and decreases
them only when needed to satisfy (36). The option of choosing 𝜃̄k > 1 allows one to
occasionally increase the step sizes.

Algorithm (33) is related to several existing algorithms. With constant param-
eters, it is a special case of the primal–dual algorithm in [22, Algorithm 1], which
solves the more general problem (26) and uses generalized distances for the primal
and dual variables. Here we take g(y) = �{b} and use a generalized distance only in

(33c)zk+1 =zk + �k(Axk+1 − b).

(34)xk+1 = argmin
x

(f (x) + z̄T
k+1

Ax +
1

𝜏k
d(x, xk)).

(35)
√
��‖A‖ ≤ �.

(36)(zk+1 − z̄k+1)
TA(xk+1 − xk) ≤

𝛿2

𝜏k
d(xk+1, xk) +

1

2𝜎k
‖z̄k+1 − zk+1‖22,

142	 X. Jiang, L. Vandenberghe

1 3

the primal space. The line search condition (36) for selecting step sizes does not
appear in [22].

With standard proximal operators (for squared Euclidean distances), the pri-
mal–dual algorithm of [22] is also known as the primal–dual hybrid gradient
(PDHG) algorithm, and has been extensively studied as a versatile and efficient
algorithm for large-scale convex optimization; see [20, 21, 24, 25, 28, 33, 45, 47,
49, 56, 57] for applications, analysis, and extensions. The line search technique for
the primal–dual algorithm proposed by Malitsky and Pock [39] is similar to the one
described above, but not identical, even when squared Euclidean distances are used.

The algorithm can also be interpreted as a variation on the Bregman proximal
point algorithm [19, 26, 32], applied to the optimality conditions

In each iteration of the proximal point algorithm the iterates xk+1 , zk+1 are defined by
the inclusion

where �pd(x, z) is a Bregman kernel. If we choose a kernel of the form

then (37) reduces to

In the generalized proximal operator notation defined of (10) and (11), this condition
can be expressed as two equations

These two equations are coupled and difficult to solve because xk+1 and zk+1 each
appear on the right-hand side of an equality. The updates (33b) and (33c) are almost
identical but replace zk+1 with z̄k+1 in the primal update. The iterate z̄k+1 can there-
fore be interpreted as a prediction of zk+1 . This interpretation also provides some
intuition for the step size condition (36). If z̄k+1 happens to be equal to zk+1 , then (36)
imposes no upper bound on the step sizes �k and �k . This makes sense because when
z̄k+1 = zk+1 the update is equal to the proximal point update, and the convergence
theory for the proximal point method does not impose upper bounds on the step size.

He and Yuan [33] have given an interesting interpretation of the primal–dual
algorithm of [20] as a “pre-conditioned” proximal point algorithm. For the algo-
rithm considered here, their interpretation corresponds to choosing

0 ∈

[
0 AT

−A 0

][
x

z

]
+

[
�f (x)

b

]
.

(37)
0 ∈

[
0 AT

−A 0

][
xk+1
zk+1

]
+

[
�f (xk+1)

b

]

+ ∇�pd(xk+1, zk+1) − ∇�pd(xk, zk),

�pd(x, z) =
1

�
�(x) +

1

2�
‖z‖2

2
,

0 ∈

[
0 AT

−A 0

][
xk+1
zk+1

]
+

[
�f (xk+1)

b

]
+

[
(∇�(xk+1) − ∇�(xk))∕�

(zk+1 − zk)∕�

]
.

xk+1 = proxd
�f
(xk, �A

Tzk+1), zk+1 = zk + �(Axk+1 − b).

143

1 3

Bregman primal–dual first‑order method and application to…

as the generalized distance in (37). It can be shown that under the strong convex-
ity assumptions for � mentioned at the beginning of the section, the function (38)
is convex if

√
��‖A‖ ≤ 1 . With this choice of Bregman kernel, the inclusion (37)

reduces to

which can be written as

Except for the indexing of the iterates, this is identical to (33) with constant step
sizes ( �k = 1 , �k = � , �k = �).

3.3 � Convergence analysis

In this section we analyze the convergence of the algorithm following the ideas in
[22, 39, 49]. The main result is an ergodic convergence rate, given in Eq. (49).

3.3.1 � Algorithm parameters

We first prove two facts about the step sizes in the two versions of the algorithm.
Constant parameters If �k = 1 , �k = � , �k = � , where � and � satisfy (35), then

the iterates z̄k+1 , xk+1 , zk+1 satisfy (36).

Proof  We use the definition of the matrix norm ‖A‖ , the arithmetic–geometric mean
inequality, and strong convexity of the Bregman kernel:

(38)�pd(x, z) =
1

�
�(x) +

1

2�
‖z‖2

2
+ zTAx

0 ∈

[
0 AT

−A 0

][
xk

2zk+1 − zk

]
+

[
�f (xk+1)

b

]
+

[
(∇�(xk+1) − ∇�(xk))∕�

(zk+1 − zk)∕�

]
,

zk+1 = zk + �(Axk − b), xk+1 = proxd
�f
(xk, �A

T (2zk+1 − zk)).

(zk+1 − z̄k+1)
TA(xk+1 − xk)

≤ ‖A‖‖xk+1 − xk‖‖zk+1 − z̄k+1‖2

=

√
𝜎k𝜏k‖A‖
𝛿

�
𝛿2‖xk+1 − xk‖2

𝜏k

‖zk+1 − z̄k+1‖22
𝜎k

)

�1∕2

≤

√
𝜎k𝜏k‖A‖
𝛿

�
𝛿2‖xk+1 − xk‖2

2𝜏k
+

‖zk+1 − z̄k+1‖22
2𝜎k

�

≤

√
𝜎k𝜏k‖A‖
𝛿

�
𝛿2d(xk+1, xk)

𝜏k
+

‖zk+1 − z̄k+1‖22
2𝜎k

�

≤
𝛿2d(xk+1, xk)

𝜏k
+

‖z̄k+1 − zk+1‖22
2𝜎k

.

144	 X. Jiang, L. Vandenberghe

1 3

The last inequality follows from (35). 	� ◻

The result implies that we can restrict the analysis to the algorithm with varying
parameters. The constant parameter variant is a special case with 𝜃̄k = 1 , �−1 = � , and
�−1 = �.

Varying parameters In the varying parameter variant of the algorithm the step sizes
are bounded below by

where � = �−1∕�−1.

Proof  We proved in the previous paragraph that the exit condition (36) in the back-
tracking search certainly holds if

From this observation one can use induction to prove the lower bounds (39). Sup-
pose �k−1 ≥ �min and �k−1 ≥ �min . This holds at k = 0 by definition of �min and �min .
The first value of �k tested in the search is 𝜃k = 𝜃̄k ≥ 1 . If this value is accepted, then

If 𝜃k = 𝜃̄k is rejected, one or more backtracking steps are taken. Denote by 𝜃k the last
rejected value. Then 𝜃k

√
𝜎k−1𝜏k−1‖A‖ > 𝛿 , and the accepted �k satisfies

Therefore

	� ◻

3.3.2 � Analysis of one iteration

We now analyze the progress in one iteration of the varying parameter variant of
algorithm (33).

Duality gap For i ≥ 1 , the iterates xi , zi , z̄i satisfy

(39)�k ≥ �min ≜ min {�−1,
�

2
√
�‖A‖

}, �k ≥ �min ≜ ��min,

√
�k�k‖A‖ ≤ �.

𝜏k = 𝜃̄k𝜏k−1 ≥ 𝜏k−1 ≥ 𝜏min, 𝜎k = 𝜃̄k𝜎k−1 ≥ 𝜎k−1 ≥ 𝜎min.

𝜃k =
𝜃k

2
>

𝛿

2
√
𝜎k−1𝜏k−1‖A‖

=
𝛿

2𝜏k−1
√
𝛽‖A‖

.

𝜏k = 𝜃k𝜏k−1 >
𝛿

2
√
𝛽‖A‖

≥ 𝜏min, 𝜎k = 𝛽𝜏k ≥ 𝛽𝜏min.

145

1 3

Bregman primal–dual first‑order method and application to…

for all x ∈ ��� f ∩ ���� and all z.

Proof  The second step (33b) defines xk+1 as the minimizer of

By assumption the solution is uniquely defined and in the interior of ���� . There-
fore xk+1 satisfies the optimality condition

Equivalently, the following holds for all x ∈ ���� ∩ ��� f :

(The triangle identity (8) is used on the second line.) The dual update (33c) implies
that

This equality at k = i − 1 is

The equality (42) at k = i − 2 is

(40)

L(xi, z) − L(x, z̄i)

≤
1

𝜏i−1

�
d(x, xi−1) − d(x, xi) − (1 − 𝛿2)d(xi, xi−1)

�

+
1

2𝜎i−1

�‖z − zi−1‖22 − ‖z − zi‖22 − ‖z̄i − zi−1‖22
�

f (x) + z̄T
k+1

Ax +
1

𝜏k
d(x, xk)

= f (x) + z̄T
k+1

Ax +
1

𝜏k

�
𝜙(x) − 𝜙(xk) − ⟨∇𝜙(xk), x − xk⟩

�
.

1

𝜏k
(∇𝜙(xk) − ∇𝜙(xk+1)) − ATz̄k+1 ∈ 𝜕f (xk+1).

(41)

f (x) − f (xk+1)

≥ −z̄T
k+1

A(x − xk+1) +
1

𝜏k
⟨∇𝜙(xk) − ∇𝜙(xk+1), x − xk+1⟩

= −z̄T
k+1

A(x − xk+1) −
1

𝜏k
(d(x, xk) − d(x, xk+1) − d(xk+1, xk)).

(42)(z − zk+1)
T (Axk+1 − b) =

1

�k
(z − zk+1)

T (zk+1 − zk) for all z.

(43)
(z − zi)

T (Axi − b) =
1

�i−1
(z − zi)

T (zi − zi−1)

=
1

2�i−1

�‖z − zi−1‖22 − ‖z − zi‖22 − ‖zi − zi−1‖22
�
.

146	 X. Jiang, L. Vandenberghe

1 3

We evaluate this at z = zi and add it to the equality at z = zi−2 multiplied by �i−1:

Now we combine (41) for k = i − 1 , with (43) and (44). For i ≥ 1,

The first inequality follows from (41). In the last step we substitute (43) and (44).
Next we note that the line search exit condition (36) implies that

Substituting this in (45) gives the bound (40). 	� ◻

Monotonicity properties Suppose x⋆ ∈ ���𝜙 , and x⋆ , z⋆ satisfy the saddle
point property (29). Then

(z − zi−1)
T (Axi−1 − b) =

1

𝜎i−2
(z − zi−1)

T (zi−1 − zi−2)

=
𝜃i−1

𝜎i−1
(z − zi−1)

T (zi−1 − zi−2)

=
1

𝜎i−1
(z − zi−1)

T (z̄i − zi−1).

(44)

(zi − z̄i)
T (Axi−1 − b)

=
1

𝜎i−1
(zi − z̄i)

T (z̄i − zi−1)

=
1

2𝜎i−1

�‖zi − zi−1‖22 − ‖zi − z̄i‖22 − ‖z̄i − zi−1‖22
�
.

(45)

L(xi, z) − L(x, z̄i)

= f (xi) + zT (Axi − b) − f (x) − z̄T
i
(Ax − b)

≤
1

𝜏i−1

�
d(x, xi−1) − d(x, xi) − d(xi, xi−1)

�

+ z̄T
i
A(x − xi) + zT (Axi − b) − z̄T

i
(Ax − b)

=
1

𝜏i−1

�
d(x, xi−1) − d(x, xi) − d(xi, xi−1)

�
+ (z − z̄i)

T (Axi − b)

=
1

𝜏i−1

�
d(x, xi−1) − d(x, xi) − d(xi, xi−1)

�
+ (zi − z̄i)

TA(xi − xi−1)

+ (z − zi)
T (Axi − b) + (zi − z̄i)

T (Axi−1 − b)

=
1

𝜏i−1
(d(x, xi−1) − d(x, xi) − d(xi, xi−1)) + (zi − z̄i)

TA(xi − xi−1)

+
1

2𝜎i−1
(‖z − zi−1‖22 − ‖z − zi‖22 − ‖z̄i − zi−1‖22 − ‖z̄i − zi‖22).

(zi − z̄i)
TA(xi − xi−1) ≤

𝛿2

𝜏i−1
d(xi, xi−1) +

1

2𝜎i−1
‖z̄i − zi‖22.

147

1 3

Bregman primal–dual first‑order method and application to…

where � = �−1∕�−1 . Moreover

These inequalities hold for any value � ∈ (0, 1] in the line search condition (36).
The second inequality implies that z̄i − zi−1 → 0 . If 𝛿 < 1 it also implies that
d(xi, xi−1) → 0 and, by the strong convexity assumption on � , that xi − xi−1 → 0.

Proof  We substitute x = x⋆ , z = z⋆ in (40) and note that L(xi, z⋆) − L(x⋆, z̄i) ≥ 0
(from the saddle-point property (29)):

With � = �i−1∕�i−1 = �−1∕�−1 , this gives the inequality

Since the left-hand side is nonnegative, the inequality (46) follows. Summing from
i = 1 to k gives (47). 	� ◻

3.3.3 � Ergodic convergence

We define averaged primal and dual sequences

We first show that the averaged sequences satisfy

for all x ∈ ��� f ∩ ���� and all z. This holds for every choice for � ∈ (0, 1]
in (36).

(46)d(x⋆, xi) +
1

2𝛽
‖z⋆ − zi‖22 ≤ d(x⋆, xi−1) +

1

2𝛽
‖z⋆ − zi−1‖22

(47)
k�

i=1

�
(1 − 𝛿2)d(xi, xi−1) +

1

2𝛽
‖z̄i − zi−1‖22

�
≤ d(x⋆, x0) +

1

2𝛽
‖z⋆ − z̄0‖22.

0 ≤L(xi, z
⋆) − L(x⋆, z̄i)

≤
1

𝜏i−1
(d(x⋆, xi−1) − d(x⋆, xi) − (1 − 𝛿2)d(xi, xi−1))

+
1

2𝜎i−1

�‖z⋆ − zi−1‖22 − ‖z⋆ − zi‖22 − ‖z̄i − zi−1‖22
�
.

(1 − 𝛿2)d(xi, xi−1) +
1

2𝛽
‖z̄i − zi−1‖22

≤ d(x⋆, xi−1) − d(x⋆, xi) +
1

2𝛽
(‖z⋆ − zi−1‖22 − ‖z⋆ − zi‖22).

x
avg

k
=

1∑k

i=1
𝜏i−1

k�
i=1

𝜏i−1xi, z
avg

k
=

1∑k

i=1
𝜏i−1

k�
i=1

𝜏i−1z̄i.

(48)L(x
avg

k
, z) − L(x, z

avg

k
) ≤

1∑k

i=1
�i−1

(d(x, x0) +
1

2�
‖z − z0‖22)

148	 X. Jiang, L. Vandenberghe

1 3

Proof  From (40),

Since L is convex in x and affine in z,

Dividing by
∑k

i=1
�i−1 gives (48). 	� ◻

If we substitute in (48) an optimal x = x⋆ (which satisfies Ax⋆ = b ), we obtain
that

for all z. Maximizing both sides over z subject to ‖z‖2 ≤ � shows that

The first two terms on the left-hand side form the merit function (30). For 𝛾 > ‖z⋆‖2 ,
the penalty function in the merit function is exact, so f (x) + 𝛾‖Ax − b‖2 − f (x⋆) ≥ 0
with equality only if x is optimal. (The use of an exact penalty function to express
a convergence result is inspired by [49, page 287].) Since �i ≥ �min , the inequality
shows that the merit function decreases as O(1/k).

3.3.4 � Convergence of the iterates

We now make two additional assumptions about the Bregman kernel � [19].

L(xi, z) − L(x, z̄i)

≤
1

𝜏i−1

�
d(x, xi−1) − d(x, xi) +

1

2𝛽
‖z − zi−1‖22 − 1

2𝛽
‖z − zi‖22

�
.

�
k�

i=1

𝜏i−1

�
(L(x

avg

k
, z) − L(x, z

avg

k
))

≤

k�
i=1

𝜏i−1(L(xi, z) − L(x, z̄i))

≤ d(x, x0) − d(x, xk) +
1

2𝛽
(‖z − z0‖22 − ‖z − zk‖22)

≤ d(x, x0) +
1

2𝛽
‖z − z0‖22.

f (x
avg

k
) + zT (Ax

avg

k
− b) − f (x⋆) ≤

1∑k

i=1
𝜏i−1

�
d(x⋆, x0) +

1

2𝛽
‖z − z0‖22

�

(49)

f (x
avg

k
) + 𝛾‖Axavg

k
− b‖2 − f (x⋆)

≤
1∑k

i=1
𝜏i−1

�
d(x⋆, x0) +

1

2𝛽
sup

‖z‖2≤𝛾
‖z − z0‖22

�

=
1∑k

i=1
𝜏i−1

�
d(x⋆, x0) +

1

2𝛽
(𝛾 + ‖z0‖2)2

�
.

149

1 3

Bregman primal–dual first‑order method and application to…

1.	 For fixed x, the sublevel sets {y ∣ d(x, y) ≤ �} are closed. In other words, the dis-
tance d(x, y) is a closed function of y.

2.	 If yk ∈ ��� (����) converges to x ∈ ���� , then d(x, yk) → 0.

These two assumptions are not restrictive, and in particular, they are satisfied
by the logarithmic barrier � (12). We also make the (minor) assumptions that
𝛿 < 1 in (36) and that �k is bounded above (which is easily satisfied, since the user
chooses 𝜃̄k ). With these additional assumptions it can be shown that the sequences
xk , zk converge to optimal solutions.

Proof  The inequality (46) and strong convexity of � show that the sequences xk ,
zk are bounded. Let (xki , zki) be a convergent subsequence with limit (x̂, ẑ) . With
𝛿 < 1 , (47) shows that d(xki+1, xki) converges to zero. By strong convexity of the ker-
nel, xki+1 − xki → 0 and therefore the subsequence xki+1 also converges to x̂ . Since
zki+1 − zki → 0 , the subsequence zki+1 converges to ẑ . Since �k is bounded above,
z̄ki+1 = zki + 𝜃k(zki − zki−1) also converges to ẑ.

The dual update (33c) can be written as

Since zki+1 − zki → 0 and �ki ≥ �min , the left-hand side converges to zero, so Ax̂ = b.
From (46), d(x⋆, xki) is bounded above. Since the sublevel sets {y ∣ d(x⋆, y) ≤ 𝛼}

are closed subsets of ��� (����) , the limit x̂ is in ��� (����) . The left-hand side of
the optimality condition

converges to −ATẑ , because �k ≥ �min and ∇� is continuous on ��� (����) . By
maximal monotonicity of �f  , this implies that −ATẑ ∈ 𝜕f (x̂) (see [17, page 27] [53,
lemma 3.2]). We conclude that x̂ , ẑ satisfy the optimality conditions Ax̂ = b and
−ATẑ ∈ 𝜕f (x̂).

To show that the entire sequence converges, we substitute x = x̂ , z = ẑ in (40):

The left-hand side is nonnegative by the saddle point property (29). Therefore

for all k. This shows that

(50)Axki+1 − b =
1

�ki

(zki+1 − zki).

(51)
1

𝜏ki

(∇𝜙(xki) − ∇𝜙(xki+1)) − ATz̄ki+1 ∈ 𝜕f (xki+1)

L(xk, ẑ) − L(x̂, z̄k)

≤
1

𝜏k−1
(d(x̂, xk−1) − d(x̂, xk)) +

1

2𝛽𝜏k−1
(‖ẑ − zk−1‖22 − ‖ẑ − zk‖22).

d(x̂, xk) +
1

2𝛽
‖ẑ − zk‖22 ≤ d(x̂, xk−1) +

1

2𝛽
‖ẑ − zk−1‖22

150	 X. Jiang, L. Vandenberghe

1 3

for all k ≥ ki . By the second additional kernel property mentioned above, the right-
hand side converges to zero. Therefore d(x̂, xk) → 0 and zk → ẑ . If d(x̂, xk) → 0 , then
the strong convexity property of the kernel implies that xk → x̂ . 	� ◻

4 � Numerical experiments

In this section we evaluate the performance of algorithm (7), the Bregman PDHG
algorithm (33) applied to the centering problem (5). The numerical results illustrate
that the cost for evaluating the Bregman proximal operator (17) is comparable to the
cost of a sparse Cholesky factorization with sparsity pattern E. This prox-evaluation
dominates the computational cost in each iteration of (7), since A and A∗ are usually
easy to evaluate for large-scale problems with sparse or other types of structure. In
particular, the proposed method does not need to solve linear equations involving A
or A∗ , an important advantage over ADMM and interior-point methods.

In this section we consider the centering problem for two sets of sparse SDPs,
the maximum cut problem and the graph partitioning problem. The experiments
are carried out in Python 3.6 on a laptop with an Intel Core i5 2.4GHz CPU and
8GB RAM. The Python library for chordal matrix computations CHOMPACK [4] is
used to compute chordal extensions (with the AMD reordering [1]), sparse Cholesky
factorizations, the primal barrier � , and the gradient and directional second deriva-
tive of the dual barrier �∗ . Other sparse matrix computations are implemented using
CVXOPT [2].

In the experiments, we terminate the iteration (33) when the relative primal and
dual residuals are less than 10−6 . These two stopping conditions are sufficient for our
algorithm, as suggested by the convergence proof, in particular, Eqs. (50) and (51).
The two residuals are defined as

where ‖Y‖max = maxi,j �Yij�.

4.1 � Maximum cut problem

Given an undirected graph G = (V ,E) , the maximum cut problem is to partition the
set of vertices into two sets in order to maximize the total number of edges between
the two sets. (If every edge {i, j} ∈ E is associated with a nonnegative weight wij ,
then the maximum cut problem is to maximize the total weight of the edges between

d(x̂, xk) +
1

2𝛽
‖ẑ − zk‖22 ≤ d(x̂, xki) +

1

2𝛽
‖ẑ − zki‖22

primal residual =
‖zk − zk−1‖2

�k max{1, ‖zk‖∞} ,

dual residual =
‖∇�(Xk) − ∇�(Xk−1)‖2
�k max{1, ‖Xk‖max}

,

151

1 3

Bregman primal–dual first‑order method and application to…

the two sets.) One can show that the maximum cut problem can be represented as a
binary quadratic optimization problem

where L ∈ �n is the Laplacian of an undirected graph G = (V ,E) with vertices
V = {1, 2,… , n} . The SDP relaxation of the maximum cut problem is

with variable X ∈ �n . The operator ���� ∶ �n → �n returns the diagonal elements of
the input matrix as a vector: ����(X) = (X11,X22,… ,Xnn) . If moderate accuracy is
allowed, we can solve the centering problem of the SDP relaxation

with optimization variable X ∈ �n
E� where E′ is a chordal extension of E. Note that

��(X) = n for all feasible X. The centering problem has the form of (5) with

The Lagrangian of (53) is in the form of (27) where f is defined in (6), and z is the
Lagrange multiplier associated with the equality constraint ����(X) = 1 . Thus we
have

where X⋆ and z⋆ are the primal and dual optimal solutions of the centering prob-
lem (53), and p⋆

sdp
 is the optimal value of the SDP (52).

Numerical results We first collect four MAXCUT problems of moderate size
from SDPLIB [15]. The SDP relaxation (52) is solved using MOSEK [41] and the
optimal value computed by MOSEK is denoted by p⋆

sdp
 . (Note that the source file for

the graph maxcutG55 was unfortunately incorrectly converted into SDPA sparse for-
mat. Thus the objective value for the maxG55 problem obtained from the original
data file is 1.1039 × 104 instead of 9.9992 × 103 as reported in SDPLIB.)

In (53), we set � = 0.001∕n , and report in column 4 of Table 1 the difference
between p⋆

sdp
 and the cost function (1∕4) ��(LX) at the suboptimal solution returned

by the algorithm.
The last two columns of Table 1 give the relative primal and dual residuals.

These results show that the proposed algorithm is able to solve the centering
SDP (53) with the desired accuracy. A comparison of the third and fourth col-
umns of Table 1 confirms (54), i.e., the objective value of the SDP at X is within

maximize (1∕4)xTLx

subject to x ∈ {±1}n,

(52)
maximize (1∕4) ��(LX)

subject to ����(X) = 1

X ⪰ 0,

(53)
minimize −(1∕4) ��(LX) + ��(X)

subject to ����(X) = 1

X ∈ ΠE� (�n+)

C = −
1

4
L, N =

1

n
I, A(X) = ����(X).

(54)
1

4
��(LX⋆) ≤ p⋆

sdp
≤ 1

Tz⋆, −
1

4
��(LX⋆) + 1

Tz⋆ = 𝜇n,

152	 X. Jiang, L. Vandenberghe

1 3

�n = 10−3 of the optimal value. Considering the values of p⋆
sdp

 , we see that the
computed points on the central path are close to the optimal solutions of the
SDPs.

To test the scalability of algorithm (33), we add four larger graphs from the
SuiteSparse collection [36]. In Table 2 we report the time per Cholesky factoriza-
tion, the number of Newton steps per iteration, the time per PDHG iteration, and
the number of iterations in the primal–dual (PDHG) algorithm for the eight test
problems.

As can be seen from the table, the number of Newton iterations per prox-
evaluation remains small even when the size of the problem increases. Also, we
observe that the time per PDHG iteration is roughly the cost of a sparse Cholesky
factorization times the number of Newton steps. This means that the backtracking
in Newton’s method does not cause a significant overhead. Since the evaluations
of A and A∗ in this problem are very cheap, the cost per prox-evaluation is the
dominant term in the per-iteration complexity.

Table 1   Results for four instances of the MAXCUT problem from SDPLIB [15]

Column 3 is the optimal value computed by MOSEK. Column 4 is the difference with the optimal value
of the centering problem computed by algorithm (33). The last two columns give the primal and dual
residuals in the computed solution

n p
⋆

sdp p
⋆

sdp
−

1

4
��(LX)

Primal residual Dual residual

maxG51 1000 4.0039 ×103 3.12 ×10−4 2.24 ×10−7 6.43 ×10−8

maxG32 2000 1.5676 ×103 6.95 ×10−4 6.48 ×10−7 2.23 ×10−7

maxG55 5000 1.1039 ×104 1.02 ×10−4 5.32 ×10−7 7.13 ×10−7

maxG60 7000 1.5222 ×104 9.91 ×10−5 1.21 ×10−7 2.33 ×10−7

Table 2   The four MAXCUT problems from SDPLIB plus four larger graphs from the SuiteSparse col-
lection [36]

The last column (‘PDHG iterations’) gives the number of iterations in the primal–dual algorithm. Col-
umns 3–5 describe the complexity of one iteration of the algorithm. The CPU time is measured in sec-
onds

n Time per Cholesky
factorization

Newton steps per
iteration

Time per PDHG
iteration

PDHG iteration

maxG51 1000 0.05 2.45 0.12 267
maxG32 2000 0.12 1.56 0.18 240
maxG55 5000 0.29 2.10 0.58 249
maxG60 7000 0.60 2.55 1.22 279
barth4 6019 0.42 3.57 1.55 346
tuma2 12992 0.48 4.36 1.89 375
biplane-9 21701 0.95 2.58 2.12 287
c-67 57975 0.76 3.58 3.56 378

153

1 3

Bregman primal–dual first‑order method and application to…

4.2 � Graph partitioning

The problem of partitioning the vertices of a graph G = (V ,E) in two subsets of
equal size (here we assume an even number of vertices), while minimizing the num-
ber of edges between the two subsets, can be expressed as

where L is the graph Laplacian. The ith entry of the n-vector x indicates the set that
vertex i is assigned to. To obtain an SDP relaxation we introduce a matrix variable
Y = xxT and write the problem in the equivalent form

and then relax the constraint Y = xxT as Y ⪰ 0 . This gives the SDP

The dual SDP is

with variables � ∈ � and z ∈ �n.
The aggregate sparsity pattern of the SDP (55) is completely dense, because the

equality constraint 1TY1 = 0 has a coefficient matrix of all ones. We therefore elimi-
nate the dense constraint using the technique described in [30, page 668]. Let P be
the n × (n − 1) matrix

The columns of P form a sparse basis for the orthogonal complement of the multi-
ples of the vector 1 . Suppose Y is feasible in (55) and define

minimize (1∕4)xTLx

subject to 1
Tx = 0

x ∈ {−1, 1}n,

minimize (1∕4) ��(LY)

subject to 1
TY1 = 0

����(Y) = 1

Y = xxT ,

(55)

minimize (1∕4) ��(LY)

subject to 1
TY1 = 0

����(Y) = 1

Y ⪰ 0.

maximize 1
Tz

subject to ����(z) + �11T ⪯ (1∕4)L,

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 0

−1 1 ⋯ 0 0

0 − 1 ⋯ 0 0

⋮ ⋮ ⋮ ⋮

0 0 ⋯ 1 0

0 0 ⋯ − 1 1

0 0 ⋯ 0 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

154	 X. Jiang, L. Vandenberghe

1 3

From 1TY1 = 0 , we see that

and therefore v = 0 . Since the matrix (56) is positive semidefinite, we also have
u = 0 . Hence every feasible Y can be expressed as Y = PXPT , with X ⪰ 0 . If we
make this substitution in (55) we obtain

The (n − 1) × (n − 1) matrix PTLP has elements

Thus the sparsity pattern E′ of the matrix PTLP is denser than E, i.e., E ⊆ E′ . The n
constraints ����(PXPT) = 1 reduce to

To apply algorithm (33), we first rewrite the graph partitioning problem as

where E′′ is a chordal extension of the aggregate sparsity pattern E′ . Note that
��(PTPX) = n − 1 for all feasible X. The centering problem for this sparse SDP is of
the form (5) with

Numerical results Table 3 shows the numerical results for four problems from
SDPLIB [15].

The SDP relaxation (55) is solved by MOSEK and its optimal value is denoted
by p⋆

sdp
 . In solving (57), we set � = 0.001∕n , and report in Table 3 the value

(1∕4) ��(PTLPX) , where X is the solution returned by the algorithm (33). As in
the first experiment, the numerical results show that the algorithm is able to solve
the centering SDP (57) with desired accuracy.

(56)
[
X u

uT v

]
=
[
P 1

]−1
Y
[
P 1

]−T
.

0 = 1
TY1 = 1

T
[
P 1

][X u

uT v

][
P 1

]T
1 = n2v,

minimize (1∕4) ��(PTLPX)

subject to ����(PXPT) = 1

X ⪰ 0.

(PTLP)ij =

{
Lii − 2Li,i+1 + Li+1,i+1 i = j

Lij − Li+1,j − Li,j+1 + Li+1,j+1 i ≠ j.

X11 = 1, Xi−1,i−1 + Xii − 2Xi,i−1 = 1, i = 2,… , n − 1, Xn−1,n−1 = 1.

(57)
minimize (1∕4) ��(PTLPX)

subject to ����(PXPT) = 1

X ∈ ΠE�� (�n−1+
)

C =
1

4
PTLP, A(X) = ����(PXPT),

N =
1

n − 1
PTP, A

∗(y) = PT ����(y)P.

155

1 3

Bregman primal–dual first‑order method and application to…

In addition, we test the algorithm for four additional graphs from the SuiteSparse
collection [36]. Table 4 reports the time per Cholesky factorization, the number of
Newton steps per iteration, the time per PDHG iteration, and the number of itera-
tions in the primal–dual algorithm.

The same observations as in Sect. 4.1 apply: the number of Newton steps remains
moderate as the size of the problem increases, and the cost per iteration is roughly
linear in the cost of a Cholesky factorization.

5 � Conclusions

We presented a Bregman proximal algorithm for the centering problem in sparse
semidefinite programming. The Bregman distance used in the proximal opera-
tor is generated by the logarithmic barrier function for the cone of sparse matrices
with a positive semidefinite completion. With this choice of Bregman distance, the
per-iteration complexity of the algorithm is dominated by the cost of a Cholesky

Table 3   Results for four graph partitioning problems from SDPLIB

Column 3 is the optimal value computed by MOSEK. Column 4 is the difference with the optimal value
of the centering problem computed by algorithm (33). The last two columns give the primal and dual
residuals in the computed solution

n p
⋆

sdp p
⋆

sdp
−

1

4
��(PT

LPX)
Primal residual Dual residual

gpp100 100 −44.943551 3.78 ×10−4 3.24 ×10−7 8.34 ×10−7

gpp124-1 124 −7.3430761 4.02 ×10−4 3.86 ×10−8 7.45 ×10−8

gpp250-1 250 −45.444917 8.23 ×10−4 1.28 ×10−7 8.39 ×10−7

gpp500-1 500 −25.320544 5.17 ×10−4 7.42 ×10−8 7.12 ×10−7

Table 4   The four graph partitioning problems from SDPLIB plus four larger graphs from the SuiteSparse
collection

The last column gives the number of iterations in the primal–dual algorithm. Columns 3–5 describe the
complexity of one iteration of the algorithm. The CPU time is measured in seconds

n Time per Cholesky
factorization

Newton steps
per iteration

Time per PDHG
iteration

PDHG iteration

gpp100 100 0.01 2.43 0.02 305
gpp124-1 124 0.01 2.00 0.02 392
gpp250-1 250 0.01 2.65 0.03 365
gpp500-1 500 0.02 3.01 0.07 394
delaunay_n10 1024 0.37 4.36 1.76 403
delaunay_n11 2048 0.48 4.70 2.54 420
delaunay_n12 4096 0.60 4.43 3.05 367
delaunay_n13 8192 1.02 4.42 4.98 375

156	 X. Jiang, L. Vandenberghe

1 3

factorization with the aggregate sparsity pattern of the SDP, plus the cost of evaluat-
ing the linear mapping in the constraints and its adjoint.

The proximal algorithm we used is based on the primal–dual method proposed
by Chambolle and Pock [22]. An important addition to the algorithm is a new pro-
cedure for selecting the primal and dual step sizes, without knowledge of the norm
of the linear mapping or the strong convexity of the Bregman kernel. In the current
implementation the ratio of the primal and dual step sizes is kept fixed throughout
the iteration. An interesting further improvement would be to relax this condition,
choosing � = �k∕�k adaptively [5, 39].

The standard primal–dual hybrid gradient algorithm is known to include several
important algorithms as special cases. The Bregman extension of the algorithm is
equally versatile. We mention one interesting example. Suppose the matrix A in (25)
is a product of two matrices A = CB . Then (25) is equivalent to

where g(y) = �{b}(Cy) . The standard (Euclidean) proximal operator of g is the
mapping

The PDHG algorithm applied to the reformulated problem requires in each iteration
an evaluation of the Bregman proximal operator of f, matrix–vector products with
B and BT , and the solution of the least norm problem in the definition of proxg . For
C = A , B = I , this can be interpreted as a Bregman extension of the Douglas–Rach-
ford algorithm, or of Spingarn’s method for convex optimization with equality
constraints.

Acknowledgements  We thank Martin S. Andersen for suggestions that greatly improved the implementa-
tion used in Sect. 4. We also thank the editor and the reviewers for their insightful feedback and valuable
suggestions.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Amestoy, P., Davis, T., Duff, I.: An approximate minimum degree ordering. SIAM J. Matrix Anal.
Appl. 17(4), 886–905 (1996)

	 2.	 Andersen, M., Dahl, J., Vandenberghe, L.: CVXOPT: A Python Package for Convex Optimization,
Version 1.2.4. www.cvxopt.org (2020)

(58)
minimize f (x) + g(y)

subject to Bx = y

(59)proxg(u) = argmin
Cy=b

‖y − u‖2
2
.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

157

1 3

Bregman primal–dual first‑order method and application to…

	 3.	 Andersen, M.S., Dahl, J., Vandenberghe, L.: Logarithmic barriers for sparse matrix cones. Optim.
Methods Softw. 28(3), 396–423 (2013). https://​doi.​org/​10.​1080/​10556​788.​2012.​684353

	 4.	 Andersen, M.S., Vandenberghe, L.: CHOMPACK: A Python Package for Chordal Matrix Computa-
tions, Version 2.2.1 (2015). cvxopt.github.io/chompack

	 5.	 Applegate, D., Dóaz, M., Hinder, O., Lu, H., Lubin, M., O’Donoghue, B., Schudy, W.: Practical
large-scale linear programming using primal-dual hybrid gradient. arXiv (2021)

	 6.	 Auslender, A., Teboulle, M.: Interior gradient and proximal methods for convex and conic optimiza-
tion. SIAM J. Optim. 16(3), 697–725 (2006)

	 7.	 Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

	 8.	 Beck, A., Teboulle, M.: Gradient-based algorithms with applications to signal recovery. In: Y. Eldar,
D. Palomar (eds.) Convex Optimization in Signal Processing and Communications. Cambridge Univer-
sity Press (2009)

	 9.	 Bellavia, S., Gondzio, J., Morini, B.: A matrix-free preconditioner for sparse symmetric positive definite
systems and least-squares problems. SIAM J. Sci. Comput. 35(1), A192–A211 (2013)

	10.	 Bellavia, S., Gondzio, J., Porcelli, M.: An inexact dual logarithmic barrier method for solving sparse
semidefinite programs. Math. Program. 178(1–2), 109–143 (2019)

	11.	 Bellavia, S., Gondzio, J., Porcelli, M.: A relaxed interior point method for low-rank semidefinite pro-
gramming problems with applications to matrix completion. arXiv (2019)

	12.	 Benson, S.J., Ye, Y.: Algorithm 875: DSDP5-software for semidefinite programming. ACM Trans.
Math. Softw. (TOMS) 34(3), 16 (2008)

	13.	 Benson, S.J., Ye, Y., Zhang, X.: Solving large-scale sparse semidefinite programs for combinatorial
optimization. SIAM J. Optim. 10, 443–461 (2000)

	14.	 Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: A. George, J.R. Gilbert,
J.W.H. Liu (eds.) Graph Theory and Sparse Matrix Computation. Springer-Verlag (1993)

	15.	 Borchers, B.: SDPLIB 1.2, a library of semidefinite programming test problems. Optim. Methods
Softw. 11(1-4), 683–690 (1999)

	16.	 Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

	17.	 Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hil-
bert. North-Holland Mathematical Studies, Vol. 5. North-Holland (1973)

	18.	 Burer, S.: Semidefinite programming in the space of partial positive semidefinite matrices. SIAM J.
Optim. 14(1), 139–172 (2003)

	19.	 Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications. Numerical
Mathematics and Scientific Computation. Oxford University Press, New York (1997)

	20.	 Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

	21.	 Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numerica pp.
161–319 (2016)

	22.	 Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. Math.
Prog. Ser. A 159, 253–287 (2016)

	23.	 Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Breg-
man functions. SIAM J. Optim. 3, 538–543 (1993)

	24.	 Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable
and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

	25.	 Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications (2015). arxiv.​
org/​abs/​1504.​01032

	26.	 Eckstein, J.: Nonlinear proximal point algorithms using Bregman functions, with applications to convex
programming. Math. Oper. Res. 18(1), 202–226 (1993)

	27.	 Eltved, A., Dahl, J., Andersen, M.S.: On the robustness and scalability of semidefinite relaxation for
optimal power flow problems. Optimization and Engineering pp. 1–18 (2020)

	28.	 Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-dual algorithms for
convex optimization in imaging science. SIAM J. Imag. Sci. 3(4), 1015–1046 (2010)

	29.	 Fujisawa, K., Kojima, M., Nakata, K.: Exploiting sparsity in primal-dual interior-point methods for
semidefinite programming. Math. Program. 79(1–3), 235–253 (1997)

	30.	 Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting sparsity in semidefinite programming via
matrix completion I: general framework. SIAM J. Optim. 11, 647–674 (2000)

https://doi.org/10.1080/10556788.2012.684353
http://arxiv.org/abs/org/abs/1504.01032
http://arxiv.org/abs/org/abs/1504.01032

158	 X. Jiang, L. Vandenberghe

1 3

	31.	 Grone, R., Johnson, C.R., Sá, E.M., Wolkowicz, H.: Positive definite completions of partial Hermitian
matrices. Linear Algebra Appl. 58, 109–124 (1984)

	32.	 Güler, O.: Ergodic convergence in proximal point algorithms with Bregman functions. In: D.Z. Du,
J. Sun (eds.) Advances in Optimization and Approximation, pp. 155–165. Springer (1994)

	33.	 He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from
contraction perspective. SIAM J. Imag. Sci. 5(1), 119–149 (2012)

	34.	 Kim, S., Kojima, M., Mevissen, M., Yamashita, M.: Exploiting sparsity in linear and nonlinear matrix
inequalities via positive semidefinite matrix completion. Math. Program. 129, 33–68 (2011)

	35.	 Kobayashi, K., Kim, S., Kojima, M.: Correlative sparsity in primal-dual interior-point methods for LP,
SDP, and SOCP. Appl. Math. Optim. 58(1), 69–88 (2008)

	36.	 Kolodziej, S., Aznaveh, M., Bullock, M., David, J., Davis, T., Henderson, M., Hu, Y., Sandstrom, R.:
The suitesparse matrix collection website interface. J. Open Source Softw. 4(35), 1244 (2019)

	37.	 Lin, T., Ma, S., Ye, Y., Zhang, S.: An ADMM-based interior-point method for large-scale linear pro-
gramming. Optim. Methods Softw. 36(2–3), 389–424 (2021)

	38.	 Madani, R., Kalbat, A., Lavaei, J.: ADMM for sparse semidefinite programming with applications to
optimal power flow problem. In: Proceedings of the 54th IEEE Converence on Decision and Control,
pp. 5932–5939 (2015)

	39.	 Malitsky, Y., Pock, T.: A first-order primal-dual algorithm with linesearch. SIAM J. Optim. 28(1), 411–
432 (2018)

	40.	 Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Math. Soc. France 93, 273–299
(1965)

	41.	 MOSEK ApS: The MOSEK Optimization Tools Manual. Version 8.1. (2019). Available from www.
mosek.com

	42.	 Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity in semidefinite pro-
gramming via matrix completion II: implementation and numerical details. Math. Program. Ser. B 95,
303–327 (2003)

	43.	 Nesterov, Y.: Lectures on Convex Optimization. Springer Publishing Company, Incorporated (2018)
	44.	 Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Methods in Convex Programming, Studies in

Applied Mathematics, Vol. 13. SIAM, Philadelphia, PA (1994)
	45.	 O’Connor, D., Vandenberghe, L.: On the equivalence of the primal-dual hybrid gradient method and

Douglas-Rachford splitting. Math. Program. 179(1–2), 85–108 (2020)
	46.	 Pakazad, S.K., Hansson, A., Andersen, M.S., Rantzer, A.: Distributed semidefinite programming with

application to large-scale system analysis. IEEE Trans. Autom. Control 63(4), 1045–1058 (2018)
	47.	 Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah

functional. In: Proceedings of the IEEE 12th International Conference on Computer Vision (ICCV), pp.
1133–1140 (2009)

	48.	 Pougkakiotis, S., Gondzio, J.: An interior point-proximal method of multipliers for convex quadratic
programming. Comput. Optim. Appl. 78 (2021)

	49.	 Shefi, R., Teboulle, M.: Rate of convergence analysis of decomposition methods based on the proximal
method of multipliers for convex minimization. SIAM J. Optim. 24(1), 269–297 (2014)

	50.	 Srijuntongsiri, G., Vavasis, S.: A fully sparse implementation of a primal-dual interior-point potential
reduction method for semidefinite programming (2004). arXiv:​cs/​04120​09

	51.	 Sun, Y., Andersen, M.S., Vandenberghe, L.: Decomposition in conic optimization with partially separa-
ble structure. SIAM J. Optim. 24, 873–897 (2014)

	52.	 Sun, Y., Vandenberghe, L.: Decomposition methods for sparse matrix nearness problems. SIAM J.
Matrix Anal. Appl. 36(4), 1691–1717 (2015)

	53.	 Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J.
Control. Optim. 38(2), 431–446 (2000)

	54.	 Vandenberghe, L., Andersen, M.S.: Chordal graphs and semidefinite optimization. Found. Trends
Optim. 1(4), 241–433 (2014)

	55.	 Vandenberghe, L., Boyd, S.: A primal-dual potential reduction method for problems involving matrix
inequalities. Math. Program. 69(1), 205–236 (1995)

	56.	 Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv.
Comput. Math. 38, 667–681 (2013)

	57.	 Yan, M.: A new primal-dual algorithm for minimizing the sum of three functions with a linear operator.
J. Sci. Comput. 76(3), 1698–1717 (2018)

	58.	 Zhang, R.Y., Lavaei, J.: Sparse semidefinite programs with guaranteed near-linear time complexity via
dualized clique tree conversion. Math. Program. 188(1), 351–393 (2021)

http://arxiv.org/abs/cs/0412009

159

1 3

Bregman primal–dual first‑order method and application to…

	59.	 Zheng, Y., Fantuzzi, G., Papachristodolou, A., Goulart, P., Wynn, A.: Fast ADMM for semidefinite
programs with chordal sparsity. In: 2017 American Control Conference (ACC), pp. 3335–3340 (2017)

	60.	 Zheng, Y., Fantuzzi, G., Papachristodoulou, A.: Chordal and factor-width decompositions for scalable
semidefinite and polynomial optimization. Annu. Rev. Control (2021). https://​doi.​org/​10.​1016/j.​arcon​
trol.​2021.​09.​001

	61.	 Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., Wynn, A.: Chordal decomposition in oper-
ator-splitting methods for sparse semidefinite programs. Math. Program. 180, 489–532 (2020)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1016/j.arcontrol.2021.09.001
https://doi.org/10.1016/j.arcontrol.2021.09.001

	Bregman primal–dual first-order method and application to sparse semidefinite programming
	Abstract
	1 Introduction
	2 Barrier proximal operator for sparse PSD matrix cone
	2.1 Centering problem
	2.2 Bregman distance
	2.3 Primal and dual barrier
	2.4 Barrier kernel
	2.5 Newton method for barrier proximal operator

	3 Bregman primal–dual method
	3.1 Duality theory
	3.2 Algorithm
	3.3 Convergence analysis
	3.3.1 Algorithm parameters
	3.3.2 Analysis of one iteration
	3.3.3 Ergodic convergence
	3.3.4 Convergence of the iterates

	4 Numerical experiments
	4.1 Maximum cut problem
	4.2 Graph partitioning

	5 Conclusions
	Acknowledgements
	References

