Skip to main content
Log in

Finding best approximation pairs for two intersections of closed convex sets

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The problem of finding a best approximation pair of two sets, which in turn generalizes the well known convex feasibility problem, has a long history that dates back to work by Cheney and Goldstein in 1959. In 2018, Aharoni, Censor, and Jiang revisited this problem and proposed an algorithm that can be used when the two sets are finite intersections of halfspaces. Motivated by their work, we present alternative algorithms that utilize projection and proximity operators. Our modeling framework is able to accommodate even convex sets. Numerical experiments indicate that these methods are competitive and sometimes superior to the one proposed by Aharoni et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aharoni, R., Censor, Y., Jiang, Z.: Finding a best approximation pair of points for two polyhedra. Comput. Optim. Appl. 71, 509–523 (2018). https://doi.org/10.1007/s10589-018-0021-3

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202, 150–159 (1996). https://doi.org/10.1006/jmaa.1996.0308

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1, 185–212 (1993). https://doi.org/10.1007/BF01027691

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79, 418–443 (1994). https://doi.org/10.1006/jath.1994.1136

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-48311-5

    Book  MATH  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127, 178–192 (2004). https://doi.org/10.1016/j.jat.2004.02.006

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Moursi, W.M.: On the behavior of the Douglas–Rachford algorithm for minimizing a convex function subject to a linear constraint. SIAM J. Optim. 30, 2559–2576 (2020). https://doi.org/10.1137/19M1281538

    Article  MathSciNet  MATH  Google Scholar 

  8. Beck, A.: First-Order Methods in Optimization. SIAM, University City (2017). https://doi.org/10.1137/1.9781611974997

    Book  MATH  Google Scholar 

  9. Beck, A., Teboulle, M.: A fast dual proximal-gradient algorithm for convex minimization and applications. Oper. Res. Lett. 42, 1–6 (2014). https://doi.org/10.1016/j.orl.2013.10.007

    Article  MathSciNet  MATH  Google Scholar 

  10. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60, 223–311 (2018). https://doi.org/10.1137/16M1080173

    Article  MathSciNet  MATH  Google Scholar 

  11. Censor, Y.: Computational acceleration of projection algorithms for the linear best approximation problem. Linear Algebra Appl. 416, 111–123 (2006). https://doi.org/10.1016/j.laa.2005.10.006

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheney, W., Goldstein, A.A.: Proximity maps for convex sets. Proc. AMS 10, 448–450 (1959). https://doi.org/10.2307/2032864

    Article  MathSciNet  MATH  Google Scholar 

  13. Combettes, P.L., Dũng, Đ, Vũ, B.C.: Dualization of signal recovery problems. Set-Valued Var. Anal. 18, 373–404 (2010). https://doi.org/10.1007/s11228-010-0147-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. AMS 82, 421–439 (1956). https://doi.org/10.1090/S0002-9947-1956-0084194-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967). https://doi.org/10.1090/S0002-9904-1967-11864-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Keys, K.L., Zhou, H., Lange, K.: Proximal distance algorithms: theory and practice. J. Mach. Learn. Res. 20, 1–38 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23(3), 462–466 (1952). https://doi.org/10.1214/aoms/1177729392

    Article  MathSciNet  MATH  Google Scholar 

  18. Lange, K.: MM Optimization Algorithms. SIAM, University City (2016). https://doi.org/10.1137/1.9781611974409

    Book  MATH  Google Scholar 

  19. Lange, K., Keys, K.L.: The proximal distance algorithm. In: Proceedings of the 2014 International Congress of Mathematicians, pp. 96–116. Seoul: Kyung Moon, 4. See also https://arxiv.org/abs/1507.07598

  20. Lions, P.-L.: Approximation de points fixes de contractions. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences Séries A (Sciences Mathématiques)) et B (Sciences Physiques) 284(21), 1357–1359 (June 6, 1977). https://gallica.bnf.fr/ark:/12148/bpt6k5731057m

  21. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979). https://doi.org/10.1137/0716071

    Article  MathSciNet  MATH  Google Scholar 

  22. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951). https://doi.org/10.1214/aoms/1177729586

    Article  MathSciNet  MATH  Google Scholar 

  23. Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58, 486–491 (1992). https://doi.org/10.1007/BF01190119

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and the reviewers for helpful suggestions and constructive feedback which helped us to improve the presentation of the results, and Patrick Combettes for pointing out the relevant reference [13]. HHB and XW are supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz H. Bauschke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauschke, H.H., Singh, S. & Wang, X. Finding best approximation pairs for two intersections of closed convex sets. Comput Optim Appl 81, 289–308 (2022). https://doi.org/10.1007/s10589-021-00324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-021-00324-0

Keywords

Mathematics Subject Classification

Navigation