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Abstract
In this paper we address game theory problems arising in the context of network 
security. In traditional game theory problems, given a defender and an attacker, one 
searches for mixed strategies which minimize a linear payoff functional. In the prob-
lems addressed in this paper an additional quadratic term is added to the minimiza-
tion problem. Such term represents switching costs, i.e., the costs for the defender 
of switching from a given strategy to another one at successive rounds of a Nash 
game. The resulting problems are nonconvex QP ones with linear constraints and 
turn out to be very challenging. We will show that the most recent approaches for 
the minimization of nonconvex QP functions over polytopes, including commercial 
solvers such as CPLEX and GUROBI, are unable to solve to optimality even test 
instances with n = 50 variables. For this reason, we propose to extend with them the 
current benchmark set of test instances for QP problems. We also present a spatial 
branch-and-bound approach for the solution of these problems, where a predominant 
role is played by an optimality-based domain reduction, with multiple solutions of 
LP problems at each node of the branch-and-bound tree. Of course, domain reduc-
tions are standard tools in spatial branch-and-bound approaches. However, our con-
tribution lies in the observation that, from the computational point of view, a rather 
aggressive application of these tools appears to be the best way to tackle the pro-
posed instances. Indeed, according to our experiments, while they make the com-
putational cost per node high, this is largely compensated by the rather slow growth 
of the number of nodes in the branch-and-bound tree, so that the proposed approach 
strongly outperforms the existing solvers for QP problems.
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1 Introduction

Consider a finite two-person zero-sum game �  , composed from a player set 
N = {1, 2} , each member thereof having a finite strategy space S1, S2 associated 
with it, and a utility function ui ∶ S1 × S2 → ℝ for all i ∈ N . We assume a zero-
sum Nash game, making u2 ∶= −u1 hereafter, and letting the players choose their 
actions simultaneously and stochastically independent of one another (contrary 
to a Stackelberg game, where one player would follow the other, which we do not 
consider here). The game is then the triple � = (N,S = {S1, S2},H = {u1,−u1}) , 
and is most compactly represented by giving only the payoff function u1 in matrix 
form (since the strategy spaces are finite) as

An equilibrium in �  is a simultaneous optimum for both players w.r.t. u1 . Assuming 
a maximizing first player, an equilibrium is a pair (x∗, z∗) satisfying the saddle-point 
condition

It is well known that many practical games do not have such an equilibrium point; as 
one of the simplest instances, consider the classical rock-scissors-paper game, repre-
sented by the payoff matrix

This game has no equilibria in pure strategies: any fixed choice of rock, scissors 
or paper would imply a constant loss for the first player (and likewise for the sec-
ond player). This means that player 1 is forced to randomize its actions in every 
round of the game, and this concept leads to the idea of mixed extensions of a game, 
which basically changes the above optimization problem into one over the convex 
hulls �(S1),�(S2) of the action spaces, rather than the finite sets S1, S2 . An element 
of �(Si) is then a probability distribution over the elements of the support Si , and 
prescribes to pick a move at random whenever the game is played.

The game rewards its players after each round, and upon every new round, both 
players are free to choose another element from their action space at random. Implic-
itly, this choice is without costs, but what if not? Many real life instances of games 
do incur a cost for changing one’s action from a1 ∈ S1 in the first to some distinct 
a2 ∈ S1 in the next round. Matrix games cannot express such costs in their payoff 
functions, and more complex game models such as sequential or stochastic games 
come with much more complicated models and equilibrium concepts. The goal of 
this work is to retain the simplicity of matrix games but endow them with the ability 
to include switching costs with the minimal natural (modeling) effort.

� ∈ ℝ
|S1|×|S2| =

(
u1(x, z)

)
(x,z)∈S1×S2

.

u1(x, z
∗) ≤ u1(x

∗, z∗) ≤ u1(x
∗, z) ∀(x, z) ∈ S1 × S2.

rock scissors paper
(rock 0 1 −1

scissors −1 0 1
paper 1 −1 0

.
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The area of system security [2, 30] offers rich examples of such instances, such as 
(among many):

– Changing passwords [25]: if the currently chosen password is p1 and we are 
obliged to pick a fresh password (say, different from the last couple of passwords 
that we had in the past), the use of the new password p2 ≠ p1 induces quite some 
efforts, as we have to memorize the password, while choosing it as hard as pos-
sible to guess. The “cost” tied to the change is thus not monetary, but the cogni-
tive efforts to create and memorize a new password. This effort can make people 
reluctant to change their passwords (or write them down, or use a very similar 
password for the new one).

– Changing computer/server configurations: this usually means taking a computer 
(e.g., a server) offline for a limited time, thus cutting down productivity perhaps, 
and hence causing costs. If security is drawn from randomly changing configura-
tions (and passwords, resp. password changing rules are only one special case 
here), then this change incurs costs by temporal outages of IT infrastructure for 
the duration of the configuration change, and the efforts (person-hours) spent on 
applying this change. This is why server updates or patches are usually done over 
nights or weekends, when the loads are naturally low. If the optimization would, 
however, prescribe a rather frequent change of configurations at random inter-
vals, this can quickly become a practical inhibitor, unless the switching costs are 
accounted for by optimization.

– Patrolling and surveillance [4, 24]: consider a security guard on duty to repeat-
edly check a few locations, say A, B, ..., E, which are connected at distances 
as depicted in Fig. 1. This is a chasing-evading game with the guard acting as 
player 1 against an intruder being player 2, and with the payoff function u being 
an indicator of whether the guard caught the intruder at location i ∈ {A,...,E} , or 
whether the two missed each other. This is yet another instance of a game with 
all equilibria in mixed strategies, but with the unpleasant side-effect for the guard 
that gets the prescription to randomly spot check distant locations to “play” the 
equilibrium �∗ , the guard would have to move perhaps long distances between 
the locations. For example, if it is at A in round 1 and the next sample from the 
random distribution �∗ ∈ �({A,...,E}) tells to check point E next, the shortest path 
would be of length 1 + 3 + 2 = 6 over C. Starting from A, however, it would be 

Fig. 1  Example of spot checking 
game on a graph
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shorter and hence more convenient for the guard to check location B first along 
the way, but this would mean deviating from the equilibrium! A normal game 
theoretic equilibrium calculation does not consider this kind of investment to 
change the current strategy. This may not even count as bounded rationality, but 
simply as acting “economic” from the guard’s perspective. But acting economi-
cally here is then not governed by a utility maximizing principle, but rather by a 
cost minimization effort.

  Generalizing the patrolling game example, the issue applies to all sorts of 
moving target defense: for example, changing the configuration of a computer 
system so as to make it difficult for an attacker to break in, often comes with 
high efforts and even risks for the defending player 1 (the system administra-
tor), since it typically means taking off machines from the network, reconfiguring 
them to close certain vulnerabilities, and then putting them back to work hoping 
that everything restarts and runs smoothly again. A normal game theoretic model 
accounts only for the benefits of that action, but not for the cost of taking the 
action.

Including the cost to switch from one action to the next is more complicated 
than just assigning a cost function c ∶ S1 → ℝ and subtracting this from the utilities 
to redefine them as u�

1
(i, j) = u1(i, j) − c(i) , since the cost to play ai will generally 

depend on the previous action aj played in the previous round.
We can model this sort of payoff by another function s ∶ S1 × S1 → ℝ that we call 

the switching cost. The value of s(i, j) is then precisely the cost incurred to change 
the current action i ∈ S1 into the action j ∈ S1 in the next round of the game. Intui-
tively, this adds another payoff dimension to the game, where a player, w.l.o.g. being 
player 1 in the following, plays “against itself”, since the losses are implied by its 
own behavior. While the expected payoffs in a matrix game � under mixed strate-
gies � ∈ �(S1), � ∈ �(S2) are expressible by the bilinear functional �T�� , the same 
logic leads to the hypothesis that the switching cost should on average be given by 
the quadratic functional �T�� , where the switching cost matrix is given, like the 
payoff matrix above, as

This intuition is indeed right [26], but for a rigorous problem statement, we will 
briefly recap the derivation given independently later by [32] to formally state the 
problem.

1.1  Paper Outline

The paper is structured as follows. In Sect. 2 we give a formal description of the 
problem as a nonconvex QP one with linear constraints, and we report a complex-
ity result, proved in Appendix 1 In Sect.  3 we present a (spatial) branch-and-
bound approach for the problem, putting a particular emphasis on the bound-
tightening procedure, which turns out to be the most effective tool to attack it. In 
Sect. 4 we present a real-life instance. In Sect. 5 we present some computational 

� ∈ ℝ
|S1|×|S1| = (s(x,w))(x,w)∈S1×S1 .
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experiments. We first describe the set of test instances. Next, we discuss the per-
formance of existing solvers over these instances. Finally, we present and com-
ment the computational results attained by the proposed approach. In Sect. 6 we 
draw some conclusions and discuss possible future developments.

1.2  Statement of contribution

The main contributions of this work are:

– addressing an application of game theory arising in the context of network 
security, where switching costs come into play, and showing that the resulting 
problem can be reformulated as a challenging nonconvex QP problem with 
linear constraints;

– introducing a large set of test instances, which turn out to be very challenging 
for existing QP solvers and, for this reason, could be employed to extend the 
current benchmark set of QP problems (see [11]);

– proposing a branch-and-bound approach for the solution of the addressed QP 
problems, based on standard tools, but with the empirical observation that a 
very aggressive use of bound-tightening techniques, with a high computa-
tional cost per node of the branch-and-bound tree, is the key for an efficient 
solution of these problems.

2  Formal description of the problem

Let the game come as a matrix � ∈ ℝ
n×m , where n and m are the number of 

strategies for player 1 and 2, respectively, with equilibrium (�∗, �∗) , and let it be 
repeated over the time t ∈ ℕ . At each time t, let Xt ∼ �∗ be the random action 
sampled from the equilibrium distribution over the action space (with �∗ being 
the optimal distribution). In a security setting and zero-sum game, neither player 
has an interest of being predictable by its opponent, so we assume stochastic 
independence of the action choices by both players between any two repetitions 
of the game. Then, we have Pr(Xt−1 = i,Xt = j) = Pr(Xt−1 = i) ⋅ Pr(Xt = j) , so that 
any future system state remains equally predictable whether or not the current 
state of the system is known. Hence, the switching cost can be written as

With this, player 1’s payoff functional becomes vector-valued now as

s(Xt−1,Xt) =

n∑

i=1

n∑

j=1

sij ⋅ Pr(Xt−1 = i,Xt = j)

=

n∑

i=1

n∑

j=1

sij ⋅ Pr(Xt−1 = i) ⋅ Pr(Xt = j) = �T��.
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and the game is multi-objective for the first player. As we are interested mostly in 
the best behavior for player 1 and the analysis would be symmetric from player 2’s 
perspective, we shall not explore the view of the second player hereafter.

Remark 1 The game could be equally well multi-objective for the second player 
too, and in fact a practical instance of such a situation may also come from secu-
rity: it could be in an adversary’s interest to “keep the defender busy”, thus causing 
much friction by making the defender move fast from one place to the other. This is 
yet just another instance of a denial-of-service attack, to which such a game model 
would apply.

For the sake of computing a multi-objective equilibrium, more precisely a 
Pareto-Nash equilibrium, the algorithm in [27] based on the method laid out in 
[16] proceeds by scalarizing (1) by choice of some � ∈ (0, 1) , to arrive at the real-
valued goal function

for the first player to optimize. Now, the usual way from here to an optimization prob-
lem for player 1 involving a rational opponent applies as for standard matrix games 
[26]: let �i ∈ ℝ

m be i-th unit vector, then argmax�∈�(S2)(�
T��) = argmaxi(�

T��i) . 
After introducing the additional variable v, the resulting problem becomes

which is almost the familiar optimization problem to be solved for a Nash equilib-
rium in a finite matrix game. It differs from the well known linear program only in 
the quadratic term, and, in fact, the equilibrium problem for matrix games is recov-
ered by substituting � = 1 in (2). Note that the matrix � in the quadratic term will (in 
most cases) have a zero diagonal, nonnegative off-diagonal entries, be indefinite and 
not symmetric in general (patrolling game example given above already exhibits a 
variety of counterexamples leading to nonsymmetric distance matrices � if the graph 
is directed). Of course, symmetry of � can be easily recovered, so in what follows 
we will assume that � is symmetric. The two extreme values � = 0 and � = 1 give 
rise to simple problems. Indeed, as already commented, for � = 1 the problem is 
an LP one, while for � = 0 is a Standard QP (StQP) problem, which is in general 
NP-hard (e.g., in view of the reformulation of the max clique problem as an StQP 
problem, see [18]), but is trivial in the case of zero diagonal and nonnegative off-
diagonal entries (each vertex of the unit simplex is a globally optimal solution). For 

(1)�1 ∶ �(S1) × �(S2) → ℝ
2, (�, �) ↦

(
u1(�, �) = �T��

s(�, �) = �T��

)
,

� ⋅ �T�� + (1 − �) ⋅ �T��,

(2)

min (1 − �) ⋅ �T�� + �v

s.t. v ≥ �T��i i = 1,… ,m∑n

j=1
xj = 1

xj ≥ 0 j = 1,… , n,
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what concerns the intermediate values � ∈ (0, 1) we can prove the following result, 
stating the complexity of problem (2) .

Theorem 1 Problem (2)is NP-hard.

Proof See Appendix 1.   ◻

Remark 2 The dependence of next actions on past ones extends to other scenarios 
too: for example, if the game is about coordination in wireless settings (e.g., collabo-
rative drones), the players, e.g., drones, share a common communication channel. 
Every exchange of information occupies that channel for a limited period of time, 
thus constraining what the other players can do at the moment. Such effects can be 
described by stochastic games, but depending on how far the effect reaches in the 
future, backward inductive solution methods may become computationally infeasi-
ble [14]; likewise, extending the strategy space to plan ahead a fixed number of k 
steps (to account for one strategy determining the next k repetitions of the game) 
may exponentially enlarge the strategy space (by a factor of 2O(k) , making the game 
infeasible to analyze if k is large). Games with switching cost offer a neat bypass 
to that trouble: if an action is such that it occupies lots of resources for a player, 
thus preventing it from taking further moves in the next round of the game, we can 
express this as a switching cost. Assume, for instance, that an action in a game �  
is such that the player is blocked for the next k rounds, then the switching cost is 
k-times the expected utility u (with the expectation taken over the equilibrium dis-
tribution played by the participants) that these next k rounds would give. Virtually, 
the situation is thus like if the player would have paid the total average gain over the 
next rounds where it is forced to remain idle (thus gaining nothing):

Expression (3) will in practice be only an approximate identity, since we assumed 
that the game, viewed as a stochastic process, has already converged to stationarity 
(so that the equilibrium outcome u is actually rewarded). The speed of convergence, 
indeed, can itself be of interest to be controlled in security applications using mov-
ing target defenses [32]. The crucial point of modeling a longer lasting effect of the 
current action like described above, however, lies in the avoidance of complexity: 
expression (3) has no issues with large k, while more direct methods of modeling 
a game over k rounds, or including a dependency on the last k moves, is relatively 
more involved (indeed, normal stochastic games consider a first-order Markov chain, 
where the next state of the game depends on the last state; the setting just described 
would correspond to an order k chain, whose conversion into a first order chain is 
also possible, but complicates matters significantly).

(3)

u −k ⋅ u
⏟⏟⏟

switching cost

+ u +⋯ + u
⏟⏞⏞⏟⏞⏞⏟

virtual payoffs

over k rounds

= u + 0 + 0 +…+ 0
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

practical payoffs

by being idle

for krounds
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3  A branch and bound approach

After incorporating parameter � into the definitions of matrix � and vectors �j , 
j = 1,… ,m , and after introducing the vector of variables � , problem (2) can be 
rewritten as the following problem with bilinear objective function and linear 
constraints:

where �i denotes the i-th row of matrix � and �n denotes the n-dimensional unit sim-
plex. In what follows we will denote by P the feasible region of this problem, and by 
P�,� its projection over the space of � and � variables.

Each node of the branch-and-bound tree is associated to a box 
B = [��, ��] × [��, ��] , where ��, �� and ��, �� denote lower and upper bound 
vectors for variables � and � , respectively. An initial box B0 , containing P�,� is 
easily computed. It is enough to set �� = � , �� = � (the vector whose entries are 
all equal to one), and

Note that, although not strictly necessary, we can also bound variable v to belong to 
an interval. Indeed, we can impose v ≥ 0 (due to nonnegativity of the entries of vec-
tors �j , j = 1,… ,m ), and

which certainly holds at optimal solutions of problem (4). In what follows we 
describe in detail each component of the branch-and-bound approach, whose 
pseudo-code is then sketched in Algorithm 1.

3.1  Lower bounds

Given box B = [��, ��] × [��, ��] , then the well known McCormick underestimat-
ing function (see [17])

can be employed to limit from below the bilinear term xiyi over the rectangle 
[�xi

, uxi] × [�yi
, uyi] . In fact, it turns out that the McCormick underestimating func-

tion is the convex envelope of the bilinear term over the given rectangle. Then, after 
introducing the additional variables fi , we have that the optimal value of the follow-
ing LP problem is a lower bound for problem (4) over the box B: 

(4)

min F(�, �, v) ∶=
1

2

∑n

i=1
xiyi + v

v ≥ �T
j
� j = 1,… ,m

yi = �i� i = 1,… , n

� ∈ �n,

�yi
= min

k=1,…,n
Sik, �ui

= max
k=1,…,n

Sik.

v ≤ max
j=1,…,m, k=1,…,n

Ajk,

max
{
�xi

yi + �yi
xi − �xi

�yi
, uxiyi + uyixi − uxiuyi

}
,
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 The optimal solution of the LP problem will be denoted by 
(�⋆(B), �⋆(B), �⋆(B), v⋆(B)).

3.2  Upper bound

The global upper bound (GUB in what follows) can be initialized with +∞ or, alter-
natively, if a local search procedure is available, one may run a few local searches 
from randomly generated starting points, and take the lowest local minimum value 
as initial GUB value, although, according to our experiments, there is not a signifi-
cant variation in the computing times if such local searches are performed. During 
the execution of the branch-and-bound algorithm, each time we compute the lower 
bound (5) over a box B, its optimal solution is a feasible solution for problem (4) 
and, thus, we might update the upper bound as follows:

3.3  Branching

The branching strategy we employed is a rather standard one. Given node B, we first 
compute the quantities:

measuring the error of McCormick underestimator for each bilinear term xiyi at the 
optimal solution of the relaxed problem (5). Then, we select r ∈ argmaxi=1,…,n gi , 
i.e., the index corresponding to the bilinear term where we have the largest error at 
the optimal solution of the relaxation. Next, we might define the following branch-
ing operations for box B: 

(5a)L(B) = min
1

2

n∑

i=1

fi + v

(5b)� ∈ �n

(5c)v ≥ �T
j
� j = 1,… ,m

(5d)yi = �i� i = 1,… , n

(5e)(�, �) ∈ B

(5f)fi ≥ �yi
xi + �xi

yi − �xi
�yi

i = 1,… , n

(5g)fi ≥ uxiyi + uyixi − uyiuxi i = 1,… , n.

GUB = min{GUB,F(�⋆(B), �⋆(B), v⋆(B))}.

(6)gi = x⋆
i
(B)y⋆

i
(B) − f⋆

i
(B),
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Branching on x and y:  Define four children nodes by adding constraints 
{xr ≤ x⋆

r
(B), yr ≤ y⋆

r
(B)} , {xr ≤ x⋆

r
(B), yr ≥ y⋆

r
(B)} , 

{xr ≥ x⋆
r
(B), yr ≤ y⋆

r
(B)} , {xr ≥ x⋆

r
(B), yr ≥ y⋆

r
(B)} , 

respectively (quaternary branching);
Branching on x:  Define two children nodes by adding constraints 

xr ≤ x⋆
r
(B) and xr ≥ x⋆

r
(B) , respectively (binary 

branching);
Branching on y:  Define two children nodes by adding constraints 

yr ≤ y⋆
r
(B) and yr ≥ y⋆

r
(B) , respectively (binary 

branching).

 Note that all choices above, with the new McCormick relaxation given by the new 
limits on the variables, reduce to zero the error for bilinear term xryr at the opti-
mal solution of problem (5). It is worthwhile to remark that the computed lower 
bound tends to become exact even when branching is always performed with respect 
to variables of the same type (say, always variables xi , i = 1,… , n ). Indeed, it is 
enough to have that ‖�� − ��‖ → 0 or, alternatively, that ‖�� − ��‖ → 0 in order to 
let the underestimating function values converge to the original objective function 
values. This is a consequence of the fact that the McCormick underestimation func-
tion tends to the value of the corresponding bilinear term even when only one of the 
two intervals on which it is defined shrinks to a single point. In the computational 
experiments we tried all three possibilities discussed above and it turns out that the 
best choice is the binary branching obtained by always branching on y variables.

3.4  Bound‑tightening technique

A reduction of the boxes merely based on the above branching strategy would lead to 
a quite inefficient algorithm. It turns out that performance can be strongly enhanced 
by an Optimality-Based Bound-Tightening (OBBT in what follows) procedure (see, 
e.g., [8, 31]). An OBBT procedure receives in input a box B and returns a tightened 
box in output, removing feasible points which do not allow to improve the current 
best feasible solution. More formally, let B be the set of n-dimensional boxes. Then:

In our approach, we propose to employ an OBBT procedure, which is expensive but, 
as we will see, also able to considerably reduce the number of branch-and-bound 
nodes. The lower and upper limits �xi

,�yi
, uyi , uxi , i = 1,… , n are refined through the 

solution of LP problems having the feasible set defined by constraints (5b)-(5g) and 
the additional constraint

OBBT ∶ B → B ∶ OBBT(B) ⊆ B and F(�, �, v)

≥ GUB ∀ (�, �) ∈ [B ∩ P�,�] ⧵ OBBT(B).

(7)
1

2

n∑

i=1

fi + v ≤ GUB,
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stating that we are only interested at feasible solutions where the underestimating 
function, i.e., the left-hand side of the constraint, corresponding to the objective 
function (5a), is not larger than the current upper bound GUB. Thus, each call of this 
OBBT procedure requires the solution of 4n LP problems with the following objec-
tive functions:

Note that all these problems are bounded in view of the fact that � is constrained 
to belong to the unit simplex. In fact, what we observed through our computational 
experiments is that it is not necessary to solve all 4n LPs but it is enough to concen-
trate the effort on the most ’critical’ variables. More precisely, in order to reduce the 
number of LPs without compromising the performance, we employed the following 
strategies (see also [12] for strategies to reduce the effort). Taking into account the 
quantities gi computed in (6), we notice that the larger the gi value, the higher is the 
need for a more accurate underestimation of the corresponding bilinear term. Then, 
we solved the following LP problems.

– ⌈0.2n⌉ LP problems with objective function min yi , for all i corresponding to the 
⌈0.2n⌉ largest gi values;

– a fixed number ⌈0.1n⌉ of LP problems with objective function max yi , for all i 
corresponding to the ⌈0.1n⌉ largest gi values;

– again ⌈0.1n⌉ LP problems with objective function max xi , for all i corresponding 
to the ⌈0.1n⌉ largest gi values;

– no LP problem with objective function min xi.

These choices have been driven by some experimental observations. In particular, 
we noticed that the lower limit for yi is the most critical for the bound computation 
or, stated in another way, constraint

is often the active one. For this reason a larger budget of LP problems is allowed 
to improve this lower limit with respect to the upper limits. Instead, we never try to 
improve the lower limit �xi

 because it is experimentally observed that this limit can 
seldom be improved.

This way, the overall number of LPs to be solved at each call of the OBBT proce-
dure is reduced to approximately 0.4n. Note that rather than solving all LP problems 
with the same feasible set, we could solve each of them with a different feasible 
region by incorporating all previously computed new limits in the definition of the 
feasible region for the next limit to be computed. That leads to sharper bounds, how-
ever we excluded this opportunity since we observed that LP solvers strongly benefit 
from the opportunity of solving problems over the same feasible region.

The underestimating function depends on the lower and upper limits 
�xi

,�yi
, uyi , uxi . Thus, once we have updated all such limits, we can call procedure 

OBBT again in order to further reduce the limits. These can be iteratively reduced 
until some stopping condition is fulfilled. Such iterative procedure has been 

�xi
∕uxi = min ∕max xi, �yi

∕uyi = min ∕max yi, i = 1,… , n.

fi ≥ �yi
xi + �xi

yi − �xi
�yi

,
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proposed and theoretically investigated, e.g., in [8]. That obviously increases the 
computational cost per node, since the overall number of LPs to be solved at each 
node is now approximately 0.4n times the number of calls to the procedure OBBT, 
which depends on the stopping condition. But, again, we observed that the addi-
tional computational cost is compensated by a further reduction of the overall num-
ber of nodes in the branch-and-bound tree.

It is important to stress at this point that OBBT procedures in general and the one 
proposed here in particular, are not new in the literature. The main contribution of 
this work lies in the observation that a very aggressive application of the proposed 
OBBT, while increasing considerably the computational cost per node, is the real 
key for an efficient solution of the addressed problem. Indeed, we will see through 
the experiments, that our approach is able to significantly outperform commercial 
QP solvers like CPLEX and GUROBI, and a solver like BARON, which is strongly 
based on tightening techniques.

3.5  Pseudo‑code of the branch‑and‑bound approach

In this section we collect all the previously described tools and present the pseudo-
code of the proposed branch-and-bound approach. In Line 1 an initial box B0 is 
introduced and the collection of branch-and-bound nodes C still to be explored is 
initialized with it. In Line 2 a lower bound over B0 is computed, while in Line 3 the 
current best observed feasible point �⋆ and the current GUB value are initialized. 
Take into account that such values can also be initialized after running a few local 
searches from randomly generated starting points. Lines 4–21 contain the main loop 
of the algorithm. Until the set of nodes still to be explored is not empty, the follow-
ing operations are performed. In Line 5 one node in C with the lowest lower bound 
is selected. In Line 6 the index k of the branching variable is selected as the one with 
the largest gap gi as defined in (6). In Line 7 the branching operation is performed. 
In Line 8 the selected node B̄ is removed from C , while in Lines 9–19 the following 
operations are performed for each of its child nodes. In the loop at Lines 10–17, first 
procedure OBBT is applied and then the lower bound over the tightened region is 
computed, until a stopping condition is satisfied. In particular, in our experiments 
we iterate until the difference between the (non-decreasing) lower bounds at two 
consecutive iterations fall below a given threshold � ( � = 10−3 in our experiments). 
In Lines 13–16 both �⋆ and GUB are possibly updated through the optimal solution 
of the relaxed problem. In Line 18 we add the child node to C . Finally, in Line 20 
we remove from C all nodes with a lower bound not lower than (1 − �)GUB , where 
� is a given tolerance value. In all the experiments, we fixed a relative tolerance 
� = 10−3 , which is considered adequate for practical applications.

Note that we do not discuss convergence of the proposed branch-and-bound 
approach, since it easily follows by rather standard and general arguments which can 
be found in [15].

In Algorithm 1 we highlighted with a frame box, both the stopping condition in 
Line 10 and the call to the OBBT procedure at Line 11, since the performance of the 
proposed algorithm mainly depends on how these two lines are implemented.
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In what follows, in order to stress the importance of bound-tightening, we will 
refer to the proposed approach as Branch-and-Tight (B&T), which belongs to the 
class of Branch-and-Cut approaches, since tightening the bound of a variable is a 
special case of cutting plane.

4  Example: Crime prevention by patrolling (of the Police)

In this section we present an example of real-life instance where player 1 is the 
police, patrolling around in a certain geographic area. In this area, we consider the 
roads as defining a directed graph that the police traverses seeking to prevent crimes. 
They do so by randomly checking locations in the area, reachable over the roads, 
and traveling from one location to the other induces a certain travel time. For the 
crime distribution, we assume that “more public space means more witnesses, so 
less likelihood of a crime committed”. Applying this intuition to a roadmap, we take 
the probability of crimes to occur at a location as inverse proportional to the num-
ber of ways leading to this point. That is, the “more remote” a place is, the more 
likely is a crime to happen there, and places that are reachable over many ways are 
more likely to be crowded, so crimes are less likely there (of course, not all sorts of 
crimes, such as pickpockets would certainly prefer crowded places, but mugging is 
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preferably done where a victim cannot easily escape). Note, however, the probability 
can also be defined in different ways, e.g., by taking into account police records. 
Our showcase region is the Hampi village in India, shown as a screenshot map in 
Figure ??. The respective geographic information ships with the package dodgr 
(distances on directed graphs) [19] for the R environment, so that we can conveni-
ently use geographic information and digitalized roadmaps to define the playground 
for the game model (see [20] for how this is done step-by-step). In our case, the 
dodgr package directly lets us compute travel times or distances, representing the 
costs incurred to realize a random spot checking, which is precisely the matrix � 
above. The actual payoff structure in the game depends on the locations and their 
likelihoods to become crime scenes. The road network for the Hampi village, has 
1901 vertices and 3891 edges. At this point a subset of vertices of the road network 
is selected. The resulting vertices in the graph are then defined as pure strategies 
in the game, i.e., places for the police to be checked, with inter-vertex travel times 
taken as the switching cost in the matrix � . For practical purposes, it is reasonable 
to take a subset with cardinality between 50 and 100. Indeed, this size also appears 
reasonable in light of the fact that police patrols can certainly not check arbitrarily 
many places in reasonable time and efficiency, thus problem instances between 50 
and 100 places appear as the most that is physically feasible.

Note that games of a shape like that of our police patrolling example exist in 
manifold versions in the literature, such as regarding the patrolling of coast guards 
[10], border patrol [21], pipeline protection [3], airport surveillance [22], and game 
theoretic models against environmental crime (so-called green security games) [5]; 
see [28] for a more extensive overview of related game models. Common to all these 
is their goal of optimizing patrolling (and to an extent also surveillance), but none of 
this past work accounts for the efforts of realizing the patrolling in practice, in light 
of the efforts practically invested (for the moving), but not theoretically counted in 
the optimization model.

5  Numerical results

In this section we will first describe the test instance generator and, then, we will 
present and discuss the results of extensive computational experiments with such 
instances.

5.1  Test instances description

The game is about spot checking a set of n places to guard them against an adver-
sary. The places are spatially scattered, with a directed weighted graph describing 
the connections (direct reachability) of place v from place u by an edge v → u 
with a random length.
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[Hampi village, taken from OpenWorldMap [1]]

[Road graph as extracted from the geographic data provided by [19]]

The payoffs in the game are given by an n × n matrix � (so m = n in the above 
description), and are interpreted as the loss that the defending player 1 suffers 
when checking place i while the attacker is at place j. Thus, the defender can:

– either miss the attacker ( i ≠ j ) in which case there will be a Weibull-distrib-
uted random loss with shape parameter 5 and scale parameter 10.63 (so that 
the variance is 5); (this distribution is a common choice to describe economic 
losses, among other extreme value distributions);

– or hit the attacker at i = j , in which case there is zero loss.

The defender is thus minimizing, and the attacker is maximizing. The problem 
above is that of the defender. The Nash equilibrium then gives the optimal ran-
dom choice of spot checks to minimize the average loss. To avoid trivialities, the 
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payoff matrices are constructed not to admit pure strategy equilibria, so that the 
optimum (without switching cost) is necessarily a mixed strategy.

As for the switching cost, if the defender is currently at position i and next 
– according to the optimal random choice – needs to check the (non-adjacent) 
place j, then the cost for the switch from i to j is the shortest path in the afore-
mentioned graph (note that, since the graph is directed, the matrix � is generally 
nonsymmetric).

For the random instances, the matrix � is thus obtained from a (conventional) 
all-shortest path algorithm applied to the graph. Note that the graph is an Erdös-
Renyi type graph with n nodes and p = 0.3 chance of any two nodes having a con-
nection. We also made tests with sparser ( p = 0.2 ) and denser ( p = 0.4 ) graphs, 
which result in � matrices with larger entries in the former case and smaller in 
the latter case (the entries are given by shortest paths which tend to be smaller 
in denser graphs). The computational results with these different p values (not 
reported here) show that the instances with p = 0.2 are slightly more challenging 
than those with p = 0.3 , while those with p = 0.4 are slightly simpler. However, 
the differences are not very significant. Also note that all entries of matrix � are 
positive except for the diagonal ones, so that the matrix is dense. We underline 
this fact since, according to the experimental results reported, e.g., in [7, 33], the 
density of the Hessian matrix is a relevant factor to assess the difficulty of non-
convex QP problems.

Remark 3 The Erdös-Renyi model is here a suitable description of patrolling situ-
ations in areas where moving from any point to any other point is possible without 
significant physical obstacles in between. Examples are water areas (e.g., coasts) or 
natural habitats (woods, ...), in which guards are patrolling. It goes without saying 
that implementing the physical circumstances into the patrolling problem amounts 
to either a particular fixed graph topology or class of graphs (e.g., trees as mod-
els for harbor areas, or general scale-free networks describing communication rela-
tions). Such constrained topologies, will generally induce likewise constrained and 
hence different (smaller) strategy spaces, but leave the problem structure as such 
unchanged, except for the values involved.

The weights in the graph were chosen exponentially distributed with rate param-
eter � = 0.2 , and the Weibull distribution for the losses has a shape parameter 5 and 
scale parameter ∼ 10.63 , so that both distributions have the same variance of 5.

Remark 4 The choice of the Weibull distribution is because of its heavy tails, useful 
to model extreme events (in actuarial science, where it appears as a special case of 
the generalized extreme value distribution). If the graph is an attack graph, we can 
think of possibly large losses that accumulate as the adversary traverses an attack 
path therein (but not necessarily stochastically independent, which the Weibull-dis-
tribution sort of captures due to its memory property). Besides, both the exponential 
and the Weibull distribution only take non-negative values, and thus lend themselves 
to a meaningful assignment of weights as “distances” in a graph.
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The graph sizes considered are n = 50, 75, 100 and for each graph size 
we consider ten random instances. We restricted the attention to � values in 
{0.3, 0.4,… , 0.9} since problems with � values smaller than 0.3 and larger than 0.9 
turned out to be simple ones. The overall number of instances is, thus, 210 (70 for 
each size n = 50, 75, 100).

Note that all the data of the test instances are available at the web site http:// www. 
iasi. cnr. it/ ~liuzzi/ StQP.

5.2  Description of the experiments

The problem discussed in this paper belongs to the class of nonconvex QP prob-
lems with linear constraints, which is a quite active research area. Even well-known 
commercial solvers, like CPLEX and GUROBI, have recently included the oppor-
tunity of solving these problems. In [33] different solution approaches have been 
compared over different nonconvex QP problems, namely: Standard Quadratic Pro-
gramming problems (StQP), where the feasible region is the unit simplex; BoxQP, 
where the feasible region is a box; and general QPs, where the feasible region is 
a general polytope (in [7] an extensive comparison has also been performed more 
focused on BoxQPs). The approaches tested in [33] have been the nonconvex QP 
solver of CPLEX, quadprogBB (see [9]), BARON (see [29]), and quadprogIP, 
introduced in [33]. According to the computational results reported in that work, 
solvers quadprogIP and quadprogBB have quite good performance on some 
subclasses. More precisely, quadprogIP works well on the StQP problem (see 
also [13] for another approach working well on this subclass), while quadprogBB 
performs quite well on BoxQPs, especially when the Hessian matrix of the objective 
function is dense. However, they do not perform very well on QP problems with 
general linear constraints. Some experiments we performed show that their perfor-
mance is not good also on the QP subclass discussed in this paper. For this rea-
son we do not include their results in our comparison. Thus, in the comparison we 
included: the nonconvex QP solver of CPLEX (v. 12.10), the best performing over 
QPs with general linear constraints according to what is reported in [33]; the non-
convex QP solver of GUROBI (v. 9.0.0), which has been recently introduced and is 
not tested in that paper; BARON (v. 2019.12.7), since bound-tightening, which, as we 
will see, is the most relevant operation in the proposed approach, also plays a central 
role in that solver.

We performed four different sets of experiments:

– Experiments to compare our approach B&T with the above mentioned existing 
solvers over the subclass of QP problems discussed in this paper (only at dimen-
sion n = 50 , which, as we will see, is already challenging for all the competi-
tors);

– Experiments with B&T by varying the intensity of bound-tightening (no bound-
tightening, light bound-tightening, strong bound-tightening), in order to put in 
evidence that (strong) bound-tightening is the key operation in our approach;

http://www.iasi.cnr.it/%7eliuzzi/StQP
http://www.iasi.cnr.it/%7eliuzzi/StQP
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– Experiments with B&T at dimensions n = 50, 75, 100 , in order to see how it 
scales as the dimension increases;

– Experiments with the Crime Prevention instance described in Sect. 4.

All the experiments have been carried out on an  Intel®  Xeon® gold 6136 CPU at 
3GHz with 48 cores and 256GB main memory. The algorithm has been coded using 
the Julia [6] language (version 1.3.1). Doing the implementation we parallelized 
as much as possible the bound-tightening procedure discussed in Sect. 3.4, where 
many LPs with the same feasible region need to be solved. The code is available for 
download at the URL http:// www. iasi. cnr. it/ ~liuzzi/ StQP.

5.2.1  Comparison with the existing literature

As a first experiment, we compare our method with the commercial solvers BARON, 
CPLEX and Gurobi. We run all these methods over ten instances at dimension 
n = 50 with � ∈ {0.3, 0.4,… , 0.9} (thus, overall, 70 instances). We set a time limit 
of 600 seconds. A relative tolerance � = 10−3 is required for all solvers since, as 
already previously commented, it is considered adequate for this application. In 
Table 1, we report the average performance. For each method we report the number 
of nodes (column nn), the percentage gap after the time limit and in brackets the 
computational time needed to reach it (column GAP % (s)), and finally the per-
centage of success, i.e. the percentage of instances solved to optimality within the 
time limit (column Succ %). In our opinion, this table reports the most important 
finding of this paper. It can be seen that all the commercial solvers fail on most of 
the instances (apart from 7 out of 10 instances with � = 0.9 and, for what concerns 
CPLEX, an instance with � = 0.8 ), whereas B&T solves all the instances with an 
average time of less than 30 seconds (the complete results are reported in Appendix 
1). These results show that, although commercial solvers are fully developed, there 
is still room for improvements. In particular, it seems that performing bound-tight-
ening in a very intensive way can strongly enhance the performance of a solution 
approach. In fact, as previously recalled, BARON already incorporates bound-tight-
ening techniques but, as we will see in the following set of experiments, the inten-
sity with which bound-tightening is applied also makes a considerable difference. 
Before that, however, for the sake of completeness, we report in Table 2, the results 
of B&T over the n = 50 test instances when a lower tolerance value is employed, 
namely � = 10−5 , in order to evaluate the impact of this parameter on the perfor-
mance of B&T. It is interesting to notice that the lower value has a clear impact on 
the instances with small � value (say � ≤ 0.5 ), even causing a failure with � = 0.4 , 
while the impact is much milder for larger � values. In this table we also include col-
umn time/LP, where we report the average time for the solution of each LP. Such 
value is almost equal to the overall CPU time divided by the number of LPs solved. 
This is due to the fact that the computing times of B&T are almost entirely due to 
the OBBT procedure and, in particular, to the LPs needed to apply it. An analogous 
consideration applies to all the experiments we reported in this paper.

http://www.iasi.cnr.it/%7eliuzzi/StQP
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5.2.2  Importance of bound‑tightening

As already stressed many times, the quite good performance of B&T is due to the 
bound-tightening procedure. It is now time to show it with numbers. To this end, 
besides the already proposed setting for our approach, we ran it under two different 
settings:

No bound-tightening at each node we do not apply the procedure OBBT, but we 
simply compute the lower bound by solving problem (5);
Light Bound-Tightening] at each node we only solve the following LPs once 
(and, consequently, we compute the solution of problem (5) only once)

– ⌈0.1n⌉ LP problems with objective function min yi , for all i corresponding to 
the ⌈0.1n⌉ largest gi values;

– a fixed number ⌈0.05n⌉ of LP problems with objective function max yi , for all 
i corresponding to the ⌈0.05n⌉ largest gi values;

– again ⌈0.05n⌉ LP problems with objective function max xi , for all i corre-
sponding to the ⌈0.05n⌉ largest gi values;

– no LP problem with objective function min xi.

Of course, this strongly reduces the effort per node. With no bound-tightening 
a single LP is solved per node, while with light bound-tightening ⌈0.2n⌉ + 1 LPs 
are solved at each node. In fact, light bound-tightening already requires a con-
siderable computational effort per node (and, as we will see, it is already enough 
to perform better than existing solvers). However, the originally proposed strong 
bound-tightening procedure, where the OBBT procedure is iteratively applied 
and at each iteration ⌈0.4n⌉ LPs are solved, delivers better results. In Table  3, 
we report the average performance on the instances with n = 50 in terms of 
number of nodes, number of LPs solved, CPU time in seconds and percentage 
gap of the three levels of bound-tightening. It is evident from the table that the 
OBBT procedure is what really makes the difference: most of the instances are 
not solved without bound-tightening, whereas the number of nodes and the CPU 
time needed to solve the instances decrease as we increase the level of bound-
tightening. In Appendix 1 we also report the full table with all the results.

Table 2  Average performance 
of B&T on all the 10 instances 
for each value of � when n = 50 
with tolerance equal to 10−5 with 
strong bound tightening

� nn #LPs time time/LP GAP% Succ %

0.3 91.2 57095 66.73 1.16e−3 0.00 100
0.4 391.8 205684.1 231.21 1.11e−3 2.2e−4 90
0.5 230.2 95043.3 103.19 1.08e−3 0.00 100
0.6 70.4 26367.3 28.81 1.09e−3 0.00 100
0.7 90.2 22009.1 23.35 1.04e−3 0.00 100
0.8 59 10500.8 10.61 1.00e−3 0.00 100
0.9 58.8 6260.3 5.95 9.41e−4 0.00 100
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5.2.3  Computational results over the proposed test instances as n increases

In this subsection we show the behavior of B&T as the dimension n increases. 
We have solved ten instances for three different sizes n = 50, 75, 100 and the 
usual values of � = {0.3, 0.4,… , 0.9} (thus, overall 210 instances). Note that, for 
all the different values of n, lower and larger values of � with respect to those 
we tested give rise to much simpler instances (recall that the problem becomes 
polynomially solvable for the extreme values � = 0 and � = 1 ). We set a time 
limit of 10800s for all instances. For n = 50 and n = 75 we solve all the instances 
to optimality (in fact, the largest time to solve an instance with n = 50 is about 
2 minutes, whereas for n = 75 the largest time is below 1 hour, but most of the 
problems are solved within 10 minutes). In Figures 2a–c we report the box plot 
of number of nodes, number of LPs and CPU time needed for the different val-
ues of � when n = 50 . The figure shows that the hardest instances are the ones 
corresponding to the central values of � and this will turn out to hold true also at 
larger dimensions. We also observe that the overall number of nodes is extremely 
limited, thus confirming that, while computationally expensive, the bound-tight-
ening procedure allows to considerably reduce the size of the branch-and-bound 
tree (again, this fact is observed also at larger dimensions).

In Fig. 3, we report the different box plots for all the instances at n = 75 . It is 
worthwhile to remark that we solve most of them within ten minutes and explor-
ing less than 300 nodes.

Finally, in Fig. 4 we report the performance of B&T on problems of dimen-
sion n = 100 . In this case there are seven instances we are not able to solve 
within the time limit. These occur for values � ∈ {0.6, 0.7, 0.8} , thus confirm-
ing that the central values of this parameter give rise to the most challenging 
instances. With respect to n = 50 and n = 75 , we have the additional box plot 
displayed in Fig.  4d reporting the final percentage gap when the time limit is 
reached. Note that it is never larger than 1.2% and most of the times it is lower 
than 0.5%, thus showing that, even when the algorithm does not terminate, the 
quality of the returned solution is guaranteed to be high.

5.2.4  Numerical results for the Crime Prevention application

In this subsection we solve an instance of the Crime Prevention application, 
described in Sect.  4, where 50 check spots have been identified (i.e., n = 50 
according to our notation). In Table 4, we report the results for different values of 
� obtained by B&T and by the commercial solvers CPLEX, Gurobi and BARON. 
We report for each method the CPU time (we set a time limit of 600 seconds) 
followed in brackets by the gap at the end of the time, the number of nodes, and 
for our method also the number of LPs solved, since it is our major computa-
tional burden. Although this instance turns out to be less challenging than the 
random ones previously considered, and also the other solvers are able to return 
the solution within the time limit for most (but not all) � values, B&T is the only 
method able to solve the instance for all the values of � and in all cases within 3 
seconds. Therefore, also for this real world application, our method outperforms 
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the commercial solvers, confirming the effectiveness of the approach. We also run 
B&T with a larger number of check spots (namely, 75 e 100) and the usual dif-
ferent � values. The method is able to solve them all within 11 s, thus confirming 
once again the efficiency of B&T.

6  Conclusions and future work

In this paper we addressed some game theory problems arising in the context of net-
work security. In these problems there is an additional quadratic term, representing 
switching costs, i.e.. the costs for the defender of switching from a given strategy to 
another one at successive rounds of the game. The resulting problems can be reformu-
lated as nonconvex QP with linear constraints. Test instances of these problems turned 
out to be very challenging for existing solvers, and we propose to extend with them 
the current benchmark set of test instances for QP problems. We presented a spatial 
branch-and-bound approach to tackle these problems and we have shown that a rather 

Fig. 2  Box plots for different performance measures for n = 50



584 G. Liuzzi et al.

1 3

aggressive application of an OBBT procedure is the key for their efficient solution. The 
procedure is expensive, since it requires multiple solutions of LP problems at each node 
of the branch-and-bound tree. But we empirically observed that the high computational 
costs per node of the branch-and-bound tree are largely compensated by the low num-
ber of nodes to be explored. We recall that the code of B&T and all the data of the test 
instances are available at the web site http:// www. iasi. cnr. it/ ~liuzzi/ StQP. As a topic for 
future research, we would like to further investigate the use of OBBT procedures in 
the solution of QP problems, and we would like to identify other cases, besides those 
addressed in this paper, where their intensive application may considerably enhance 
the performance of branch-and-bound approaches. We have actually already performed 
some experiments and obtained promising results over test instances of nonconvex QPs 
with general linear constraints. We plan to present the results in a future work. Moreo-
ver, it would be interesting to evaluate whether the intensive application of OBBT pro-
cedures is also able to enhance the performance of commercial nonconvex QP solvers.

Fig. 3  Box plots for different performance measures for n = 75

http://www.iasi.cnr.it/%7eliuzzi/StQP
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Fig. 4  Box plots for different performance measures for n = 100

Table 4  Results on the instance of the Crime Prevention application with 50 check spots

� GUROBI CPLEX BARON B&T

� CPU time #nodes CPU time #nodes CPU time #nodes CPU time #nodes #LPs

0.3 600.00(17.05) 3604392 600.00(30.28) 373403 600.00(2.37) 117 2.48(0) 19 2485
0.4 175.26(0) 1186711 600.00(26.41) 415455 600.00(1.88) 78 2.30(0) 19 2141
0.5 31.39(0) 201557 222.83(0) 244784 600.00(1.42) 85 2.21(0) 21 2053
0.6 6.22(0) 26632 32.84(0) 34536 207.26(0) 43 2.27(0) 23 2239
0.7 2.28(0) 5711 16.38(0) 20414 66.74(0) 31 1.93(0) 23 1705
0.8 1.39(0) 2812 5.1(0) 3247 15.05(0) 6 1.22(0) 3 631
0.9 1.17(0) 746 2.82(0) 701 3.87(0) 3 1.05(0) 1 362
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A Proof of Theorem 1

In this section we consider the complexity of problem (2). Such problem is a noncon-
vex QP with linear constraints. NP-hardness of QP problems has been established for 
different special cases like, e.g., the already mentioned StQP problems (see [18]) and 
the Box QP problems (see, e.g., [23]). However, due to its special structure, none of the 
known complexity results can be applied to establish the NP-hardness of problem (2). 
Thus, in what follows we formally prove that its corresponding decision problem is NP-
complete. Let

where Sii = 0 for each i = 1,… , n and Sij ≥ 0 for each i ≠ j , while �k ≥ � , 
k = 1,… ,m . Moreover, let

be the n-dimensional unit simplex. After incorporating � and (1 − �) respectively 
into � and �k , k = 1,… ,m , problem (2) is equivalent to min�∈�n

f (�) . Then, we 
would like to establish the complexity of the following decision problem:

We prove the result by providing a polynomial transformation of the max clique 
decision problem: Given a graph G = (V ,E) and a positive integer k ≤ |V| , does 
there exist a clique C in G with cardinality at least k? We define the following 
instance of the decision problem (9). Let

Moreover, let m = n and for each k = 1,… , n let �k = �k , where �k is the vector with 
all components equal to 0, except the k-th one, which is equal to 1. Stated in another 
way, the piece-wise linear part is maxk=1,…,n xk . Finally, let � =

1

k
 . We claim that the 

minimum value of f over �n is not larger than � =
1

k
 if and only if G contains a clique 

with cardinality k. The if part is very simple. Indeed, let us consider the feasible 
solution xi =

1

k
 if i ∈ C , where C is a clique of cardinality k, and let xi = 0 other-

wise. Then, the value of f at this point is equal to 1
k
 . Indeed , the value of the quad-

ratic part is 0, while the value of the piece-wise linear part is 1
k
 . The proof of the only 

if part is a bit more complicated. We would like to prove that, in case no clique with 

(8)f (�) =
1

2
�T�� + max

k=1,…,m
�T

k
�,

�n = {� ∈ ℝ
n
+

∶ �T� = 1},

(9)Given a constant � ≥ 0 ∃ � ∈ �n ∶ f (�) ≤ �?

Sij =

{
0 if i = j or (i, j) ∈ E

n4 otherwise.
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cardinality at least k exists, then the minimum value of f over the unit simplex is 
larger than 1

k
 . Let us denote by �∗ the minimum of f over the unit simplex. Let

and let C be the maximum clique over the sub-graph induced by K, whose cardinal-
ity is at most k − 1 . We first remark that if, for some i ∈ K ⧵ C , it holds that

then the quadratic part contains the term

which concludes the proof. Therefore, for i ∈ K ⧵ C we assume that either x∗
i
<

1

n2
 or

Now, let

If ∃ k1, k2 ∈ K1 and (k1, k2) ∉ E , then n4x∗
k1
x∗
k2
≥ 1 , which concludes the proof. Then, 

we assume that for each k1, k2 ∈ K1 , (k1, k2) ∈ E , i.e., K1 itself is a clique. Now let us 
consider the following subset of C

It must hold that |C1| ≥ |K1| . Indeed, if |C1| < |K1| , then (C ⧵ C1) ∪ K1 is also a 
clique with cardinality larger than C, which is not possible in view of the fact that C 
has maximum cardinality. Then, in view of (10) we have that

and, moreover, by definition of K1 , we also have

Since |C1| ≥ |K1| , we have that

K = supp(�∗) = {i ∶ x∗
i
> 0},

x∗
i
≥

1

n2
and

∑

j∈C ∶ (i,j)∉E

x∗
j
≥

1

n2
,

n4x∗
i

(
∑

j∈C ∶ (i,j)∉E

x∗
j

)
≥ 1,

(10)
∑

j∈C ∶ (i,j)∉E

x∗
j
<

1

n2
.

K1 =
{
i ∶ i ∈ K ⧵ C and x∗

i
≥

1

n2

}
.

C1 =
{
i ∈ C ∶ (i, k) ∉ E for at least one k ∈ K1

}
.

x∗
i
<

1

n2
∀ i ∈ C1,

x∗
i
<

1

n2
∀ i ∈ K ⧵ (K1 ∪ C).

T =
{
i ∈ K ∶ x∗

i
≥

1

n2

}
,
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is such that |T| ≤ |K1| + |C ⧵ C1| ≤ |C1| + |C ⧵ C1| = |C| ≤ k − 1 . Thus, taking 
into account that

we must have that

and, consequently, taking into account that |T| ≤ k − 1 , for at least one index j ∈ T  
it must hold that

so that the piece-wise linear part of f is larger than 1
k
 , which concludes the proof.

B Detailed numerical results

See Tables 5, 6,   and 7

∑

i∈K⧵T

x∗
i
<

1

n
,

∑

i∈T

x∗
i
> 1 −

1

n
,

x∗
j
>

1 −
1

n

k − 1
≥

1

k
,
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Table 6  Complete results for 
B&T over random instances 
of problems with dimension 
n = 50 , � ranging between 0.3 
and 0.9, and tolerance 10−5

� nn #LPs Time GAP%

0.3 11 5283 11.14 0.00
0.3 29 17606 20.63 0.00
0.3 11 5754 7.05 0.00
0.3 277 195089 234.67 0.00
0.3 205 101779 112.15 0.00
0.3 65 25861 27.90 0.00
0.3 87 62146 72.52 0.00
0.3 73 55425 64.15 0.00
0.3 139 92675 106.65 0.00
0.3 15 9332 10.39 0.00
0.4 11 6040 7.36 0.00
0.4 119 56925 63.32 0.00
0.4 105 53535 58.64 0.00
0.4 887 515650 595.72 0.00
0.4 1099 538834 600.37 0.22
0.4 13 6142 7.19 0.00
0.4 507 230814 253.32 0.00
0.4 545 289835 326.33 0.00
0.4 621 353526 393.11 0.00
0.4 11 5540 6.73 0.00
0.5 41 24084 27.46 0.00
0.5 21 10952 12.89 0.00
0.5 113 51903 57.15 0.00
0.5 299 119675 130.64 0.00
0.5 167 76745 83.22 0.00
0.5 5 3415 4.62 0.00
0.5 707 281019 300.12 0.00
0.5 327 123507 133.36 0.00
0.5 581 234135 255.79 0.00
0.5 41 24998 26.62 0.00
0.6 51 22901 24.94 0.00
0.6 11 4304 6.19 0.00
0.6 53 21124 23.88 0.00
0.6 189 78217 82.27 0.00
0.6 99 31888 33.13 0.00
0.6 33 13745 16.54 0.00
0.6 51 20718 23.38 0.00
0.6 39 9034 9.63 0.00
0.6 127 45572 49.18 0.00
0.6 51 16170 18.91 0.00
0.7 35 8701 10.04 0.00
0.7 9 3406 4.98 0.00
0.7 41 10444 11.07 0.00
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Table 6  (continued)
� nn #LPs Time GAP%

0.7 487 115543 118.45 0.00
0.7 71 16075 15.33 0.00
0.7 31 6536 7.17 0.00
0.7 95 25500 28.54 0.00
0.7 23 3829 4.29 0.00
0.7 43 11448 12.20 0.00
0.7 67 18609 21.39 0.00
0.8 15 3754 4.23 0.00
0.8 19 3547 3.83 0.00
0.8 43 7331 7.22 0.00
0.8 29 7413 8.12 0.00
0.8 99 14061 12.50 0.00
0.8 21 4294 4.55 0.00
0.8 179 33030 34.59 0.00
0.8 39 6700 6.58 0.00
0.8 51 9861 9.96 0.00
0.8 95 15017 14.47 0.00
0.9 25 4767 5.08 0.00
0.9 47 5387 5.14 0.00
0.9 55 6550 6.15 0.00
0.9 5 1852 2.44 0.00
0.9 101 7792 6.83 0.00
0.9 49 5847 5.78 0.00
0.9 63 6949 6.74 0.00
0.9 63 5687 5.03 0.00
0.9 89 9347 8.75 0.00
0.9 91 8425 7.56 0.00
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