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Abstract
The main focus in this paper is exact linesearch methods for minimizing a quad-
ratic function whose Hessian is positive definite. We give a class of limited-memory 
quasi-Newton Hessian approximations which generate search directions parallel 
to those of the BFGS method, or equivalently, to those of the method of precondi-
tioned conjugate gradients. In the setting of reduced Hessians, the class provides a 
dynamical framework for the construction of limited-memory quasi-Newton meth-
ods. These methods attain finite termination on quadratic optimization problems in 
exact arithmetic. We show performance of the methods within this framework in 
finite precision arithmetic by numerical simulations on sequences of related systems 
of linear equations, which originate from the CUTEst test collection. In addition, 
we give a compact representation of the Hessian approximations in the full Broyden 
class for the general unconstrained optimization problem. This representation con-
sists of explicit matrices and gradients only as vector components.

Keywords  Method of conjugate gradients · Quasi-Newton method · Unconstrained 
quadratic program · Limited-memory method · Exact linesearch method

1  Introduction

The main focus of this work is the behavior of limited-memory quasi-Newton meth-
ods on unconstrained quadratic optimization problems on the form

(QP)min
x∈ℝn
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xTHx + cTx,

 *	 Anders Forsgren 
	 andersf@kth.se

	 David Ek 
	 daviek@kth.se

1	 Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute 
of Technology, 100 44 Stockholm, Sweden

http://orcid.org/0000-0002-6252-7815
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-021-00277-4&domain=pdf


790	 D. Ek, A. Forsgren 

1 3

where H = HT and H is positive definite. We want to better understand properties of 
an exact linesearch limited-memory quasi-Newton method that behaves as a BFGS 
quasi-Newton method in exact arithmetic. In the setting considered, search direc-
tions of the BFGS method are parallel to those of the methods in the Huang class 
[17], and also to those of the method of preconditioned conjugate gradients (PCG).

The motivation for this work originates from solving nonlinear optimization 
problems. Good behavior on a quadratic problem is of utmost importance for achiev-
ing this goal, and we have therefore devoted this manuscript particularly to a quad-
ratic problem. Of particular interest is applications in which it is desired to solve 
or approximately solve a sequence of related systems of linear equations. Particu-
larly, systems where the matrix is symmetric positive definite. Such sequences occur 
when solving unconstrained nonlinear optimization problems with Newton’s method 
and in interior-point methods, which constitute some of the most widely used meth-
ods in numerical optimization.

Our interest is to find a balance in computing the search directions. We know that 
the BFGS quasi-Newton method and PCG give identical iterates in exact arithmetic. 
However, BFGS quasi-Newton is too costly and PCG is too weak numerically in 
finite precision arithmetic. We want to capture the essence of classical quasi-Newton 
methods and investigate how methods in our class perform. In particular, we con-
struct a family of quasi-Newton matrices in which the matrix is composed of one 
part which gives the correct search direction, and one part which gives nonsingular-
ity and stability. The traditional Broyden class of quasi-Newton matrices is included 
in our family.

In addition, we propose a framework for the construction of reduced-Hessian lim-
ited-memory quasi-Newton methods that use Hessian approximations in our class. 
Computational aspects are discussed with results on complexity for the methods 
within the class generated by our framework. To give an indication of the practical 
performance of the methods, we construct two examples in our class for which we 
give numerical results. The performance is investigated with a focus on sensitiv-
ity of round-off errors. We have chosen number of iterations as measure of perfor-
mance, the reason being that all methods then perform equally in exact arithmetic. 
To illustrate the findings we have chosen to use concepts of performance profiles.

We envisage the use of the limited-memory quasi-Newton methods as an acceler-
ator for a direct solver when solving a sequence of systems of linear equations. E.g., 
when the direct solver and the iterative solver can be run in parallel, and where the 
preconditioner is updated when the direct solver is faster for some system of linear 
equations in the sequence. In addition, our framework provides a foundation for the 
construction of tailored methods, where one could target parameters for the specific 
application.

Limited-memory quasi-Newton methods have previously been studied by vari-
ous authors, e.g., as memory-less quasi-Newton methods by Shanno [23], limited-
memory BFGS (L-BFGS) by Nocedal [18] and more recently as limited-memory 
reduced-Hessian methods by Gill and Leonard [13]. In contrast, we specialize to 
exact linesearch methods for problems on the form (QP). Our model method is 
BFGS quasi-Newton which, in the setting considered, generates search directions 
identical to those of PCG. We interpret PCG as a particular quasi-Newton method 
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as is done by e.g., Shanno [23] and Forsgren and Odland [11]. In particular, we 
start from a result by Forsgren and Odland [11], which provides necessary and suffi-
cient conditions on the Hessian approximation for exact linesearch methods on (QP) 
to generate search directions that are parallel to those of PCG. The focus is hence-
forth directly on Hessian approximations with this property. The approximations 
are described by a novel compact representation which contains explicit matrices 
together with gradients and search directions as vector components. The framework 
for the compact representation is first given for the full Broyden class where we con-
sider unconstrained optimization problems on the form

where the function f ∶ ℝ
n
→ ℝ is assumed to be smooth. Compact representations 

of quasi-Newton matrices have previously been used by various authors but were 
first introduced by Byrd, Nocedal and Schnabel [1]. They were thereafter extended 
to the convex Broyden class by Erway and Marcia [6, 7], and to the full Broyden 
class by DeGuchy, Erway and Marcia [3]. In contrast, we give an alternative com-
pact representation of the Hessian approximations in the full Broyden class which 
only contains explicit matrices and gradients as vector components. In addition we 
discuss how exact linesearch is reflected in this representation.

Compact representations of limited-memory Hessian approximations in the 
Broyden class are also discussed by Byrd, Nocedal and Schnabel [1] and Erway and 
Marcia [7]. In contrast, our discussion is on limited-memory representations of Hes-
sian approximations intended for exact linesearch methods for problems on the form 
(QP), and the approximations are not restricted to the Broyden class. In addition, our 
alternative representation provides a dynamical framework for the construction of 
limited-memory approximations for the mentioned purpose.

In Sect.  2 we provide a brief background to quasi-Newton methods, uncon-
strained quadratic optimization problems (QP) and to the groundwork that provides 
the basis for this study. Section  3 contains the alternative compact representation 
for the full Broyden class. In Sect.  4 we present results which include a class of 
limited-memory Hessian approximations together with a discussion of how to solve 
the systems of linear equations that arise in a reduced-Hessian framework. Section 5 
contains numerical results on randomly generated problems on the form (QP) and 
on systems of linear equations which originate from the CUTEst test collection [5]. 
Finally in Sect. 6 we give some concluding remarks.

1.1 � Notation

Throughout, R(M) and N(M) denote the range and the nullspace of a matrix M 
respectively. The notion “ ⌊⋅⌋ ” is defined as the component-wise floor function, “ ≻ 0 ” 
as positive definite and “ ⪰ 0 ” as positive semidefinite. The set of positive definite 
matrices is throughout denoted by Sn

+
 , i.e., Sn

+
= {M ∈ ℝ

n×n ∶ M = MT and M ≻ 0} . 
Moreover, ei denotes the ith unit vector of the appropriate dimension and |S| denotes 
the cardinality of a set S.

(P)min
x∈ℝn

f (x),
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2 � Background

We initially give a short introduction to quasi-Newton methods for unconstrained opti-
mization problems on the form (P). Thereafter, we give a background to unconstrained 
quadratic optimization problems (QP) and to the groundwork that provides the basis for 
this study.

2.1 � Background on quasi‑Newton methods

Quasi-Newton methods were first introduced as variable metric methods by Davidon 
[2] and later formalized by Fletcher and Powell [10]. For a thorough introduction to 
quasi-Newton methods see, e.g., [8, Chapter 3] and [19, Chapter 6]. In quasi-Newton 
methods the search direction, pk , at iteration k is generated by

where Bk is an approximation of the true Hessian ∇2f (xk) and gk is the gradient 
∇f (xk) . The symmetric two-parameter class of Huang [17] satisfies the scaled secant 
condition

where sk−1 = xk − xk−1 , yk−1 = gk − gk−1 and �k is one of the free parameters. The 
most well-known quasi-Newton class is obtained if �k = 1 in (2), namely the one-
parameter Broyden class which updates Bk−1 to

where

with �k−1 as the free parameter [9]. The Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) update scheme is obtained if �k−1 = 0 and Davidon-Fletcher-Powell (DFP) 
if �k−1 = 1 . In this work we study Hessian approximations described by compact 
representations with gradients and search directions as vector components. We will 
therefore throughout this work explicitly use the quantities g, p and the steplength � 
in all equations. In this notation, the Broyden class Hessian approximations in (3) 
may be written as

(1)Bkpk = −gk,

(2)Bksk−1 = �kyk−1,

(3)
Bk = Bk−1 −

1

sT
k−1

Bk−1sk−1
Bk−1sk−1s

T
k−1

Bk−1 +
1

yT
k−1

sk−1
yk−1y

T
k−1

+ �k−1�k−1�
T
k−1

,

�k−1 =
(
sT
k−1

Bk−1sk−1
)1∕2

(
1

yT
k−1

sk−1
yk−1 −

1

sT
k−1

Bk−1sk−1
Bk−1sk−1

)
,
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where

As shown in (4), the previous Hessian approximation is in general updated by a 
rank-two matrix with range equal to the space spanned by the current and the previ-
ous gradient. Furthermore, it is well known that under exact linesearch all Broyden 
class updates generates identical iterates, as shown by Dixon [4]. The case �k−1 = 0 
in (4), i.e., the BFGS update, will have a particular role in part of our analysis. We 
will refer to quantities Bk , pk and �k corresponding to this case as BBFGS

k
 , pBFGS

k
 and 

�BFGS
k

.

2.2 � Background on quadratic problems

Solving (QP) is equivalent to solving the system of linear equations

which has a unique solution if H ≻ 0 . The problem (QP), and hence (5), is in this 
work solved by an exact linesearch method on the following form. The steplength, 
iterate and gradient at iteration k is updated as

which together with a specific formula for pk constitute the particular exact line-
search method. The model method is summarized in the Algorithm 1 below. 

(4)

Bk = Bk−1 +
1

gT
k−1

pk−1
gk−1g

T
k−1

+
1

�k−1
(
gk − gk−1

)T
pk−1

(
gk − gk−1

)(
gk − gk−1

)T

+ �k−1�k−1�
T
k−1

,

�k−1 =
(
−gT

k−1
pk−1

)1∕2
(

1
(
gk − gk−1

)T
pk−1

(
gk − gk−1

)
−

1

gT
k−1

pk−1
gk−1

)
.

(5)Hx + c = 0,

�k = −
gT
k
pk

pT
k
Hpk

, xk+1 = xk + �kpk, gk+1 = gk + �kHpk,
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Algorithm 1 An exact linesearch method for solving (QP).
k ← 0, xk ← Initial point, gk ← Hxk + c
While ‖gk‖ �= 0 do

pk ← search direction

αk ← − gTk pk
pTk Hpk

xk+1 ← xk + αkpk
gk+1 ← gk + αkHpk
k ← k + 1

End

The search direction in Algorithm 1 may be calculated using PCG with a sym-
metric positive definite preconditioner M. The corresponding algorithm for solv-
ing (5) can be formulated using the Cholesky factor L defined by M = LLT . This is 
equivalent to application of the method of conjugate gradients (CG) to the precondi-
tioned linear system

with x̂ = LTx , see e.g., Saad [22, Chapter 9.2]. If all quantities generated by CG on 
(6) are denoted by “ ̂  ”, then these quantities will relate to those from CG on (5) as, 
ĝ = L−1g and p̂ = LTp . The iteration space when M = I or when M is an arbitrary 
symmetric positive definite matrix will thus be related through a linear transforma-
tion. In this work the following PCG update is considered,

The discussion in this work is mainly on Hessian approximations Bk that gener-
ate pk parallel to pPCG

k
 . We will therefore hereinafter only consider the precondi-

tioner M = B0 where B0 ∈ S
n
+
 . If no preconditioner is used, i.e., B0 = I , then (7) 

is the update referred to as Fletcher-Reeves, which together with the exact line-
search method of Algorithm 1 is equivalent to the method of conjugate gradients as 
proposed by Hestenes and Stiefel [16]. If the search direction (7) is used in Algo-
rithm 1, the method terminates when ‖gr‖ = 0 for some r where r ≤ n and xr solves 
(QP). The search directions generated by the method are mutually conjugate with 
respect to H and satisfy pi ∈ span({B0

−1g0,… ,B0
−1gi}) , i = 0,… , r . In addition, 

it holds that the generated gradients are mutually conjugate with respect to B0
−1 , 

i.e., giTB0
−1gj = 0 , i ≠ j . By expanding (7), the search direction of PCG may be 

expressed as

(6)L−1HL−T x̂ + L−1c = 0,

(7)pPCG
k

=

{
−M−1g0 k = 0,

−M−1gk +
gT
k
M−1gk

gT
k−1

M−1gk−1
pk−1 k ≥ 1.

(8)pPCG
k

= −gT
k
B−1
0
gk

k∑

i=0

1

gT
i
B−1
0
gi
B−1
0
gi.
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Forsgren and Odland [11] have provided necessary and sufficient conditions on Bk 
for an exact linesearch method to generate pk parallel to pPCG

k
 . This result provides 

the basis of our work and is therefore reviewed. Under exact linesearch and B0 ∈ S
n
+
 

it holds that gT
k
pPCG
k

= −gT
k
B0

−1gk . With pPCG
k−1

= pk−1∕�k−1 , �k−1 ≠ 0 , (7) can be 
written as

where

Insertion of pPCG
k

= pk∕�k = −Bk
−1gk∕�k , where �k ≠ 0 , into (9) gives

Premultiplication by C−T
k

 while noting that C−T
k
gk = gk and letting Wk = C−T

k
BkCk

−1 
yield

for Wk nonsingular. Finally, it holds that Bk ≻ 0 if and only if Wk ≻ 0 . For further 
details, see [11, Proposition 4].

With the exact linesearch method of Algorithm  1 for solving (QP), parallel 
search directions imply identical iterates, and therefore search directions parallel 
to those of PCG imply finite termination. Huang has shown that the quasi-Newton 
Huang class, the Broyden class and PCG generate parallel search directions [17].

Finally we review a result which is related to the conjugacy of the search direc-
tions. Part of the result is similar to results given by Fletcher [8]. The result will 
have a central part in the analysis to come.

Lemma 1  Consider iteration k, 1 ≤ k < r , of the exact linesearch method of Algo-
rithm 1 for solving (QP). For B0 ∈ S

n
+
 and pi = �ip

PCG
i

 , �i ≠ 0 , i = 0,… , k − 1 , then 
pk = �kp

PCG
k

 , �k ≠ 0 , if and only if

with ck = −�kg
T
k
B0

−1gk and pk ∈ span({B0
−1g0,… ,B0

−1gk}).

Proof  Note that by the assumptions, gi , i = 0,… , k , are identical to those generated 
by PCG. We first show the only-if direction. Premultiplication of pPCG

k
 in (8) by 

gT
i
 while taking into account the conjugacy of the gj ’s with respect to B0

−1 gives 
gT
i
pPCG
k

= −gT
k
B0

−1gk , so that gT
i
(�kp

PCG
k

) = ck for ck = −�kg
T
k
B0

−1gk . In addition, 
(8) shows that pk ∈ span({B0

−1g0,… ,B0
−1gk}) . To show the other direction, let

(9)pPCG
k

= −Ck
−1B0

−1gk,

(10)C−1
k

= I +
1

gT
k−1

pk−1
pk−1g

T
k
, which implies Ck = I −

1

gT
k−1

pk−1
pk−1g

T
k
.

(11)BkC
−1
k
B0

−1gk =
1

�k
gk.

(12)Bk = CT
k
WkCk, withWkB

−1
0
gk =

(
1∕�k

)
gk,

(13)gT
i
pk = ck ≠ 0, i = 0,… , k,
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Premultiplication of (14) by gT
i
 while taking into account the conjugacy of the gj ’s 

with respect to B0
−1 gives gT

i
pk = �ig

T
i
B0

−1gi, i = 0,… , k, hence if pk satisfies (13) 
with ck = −�kg

T
k
B0

−1gk , then it follows that

Insertion of (15) into (14) gives pk = �kp
PCG
k

 , with pPCG
k

 given by (8). 	�  ◻

For further details on methods of conjugate gradients and related analyses, see 
e.g., [21].

3 � A compact representation of Broyden class Hessian 
approximations

In this section we deviate from the other sections and consider unconstrained opti-
mization problems on the form (P). We give a compact representation of the Hessian 
approximations in the full Broyden class. The representation contains only explicit 
matrices and gradients as vector components. In this section, the gradient of f in (P) 
will be denoted by g, in contrast to all other sections where g refers to the gradient of 
the objective function of (QP). The reason for considering (P) in this section is that 
the results are not specialized to (QP), but hold for (P) as well. We first give the gen-
eral representation without exact linesearch and then discuss how exact linesearch is 
reflected in the representation.

Lemma 2  Consider iteration k of solving (P) by a quasi-Newton method. Let B0 
be a given nonsingular matrix. Assume that pi , i = 0,… , k − 1 , has been given by 
Bipi = −gi with Bi , i = 1,… , k − 1 , as any nonsingular matrix on the form (4). Any 
Hessian approximation in the Broyden class can then be written as

where

or equivalently

(14)pk =

k∑

j=0

�jB0
−1gj,

(15)�i = −�kg
T
k
B0

−1gk∕g
T
i
B0

−1gi, i = 0,… , k.

Bk = B0 +

k−1∑

i=0

[
1

gT
i
pi
gig

T
i
+

1

�i
(
gi+1 − gi

)T
pi

(
gi+1 − gi

)(
gi+1 − gi

)T
+ �i�i�

T
i

]

�i =
(
−gT

i
pi
)1∕2

(
1

(
gi+1 − gi

)T
pi

(
gi+1 − gi

)
−

1

gT
i
pi
gi

)
,

(16)Bk = B0 + GkTkG
T
k
,
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where Gk =
(
g0 g1 … gk−1 gk

)
∈ ℝ

n×(k+1) and Tk ∈ ℝ
(k+1)×(k+1) is a symmetric 

tridiagonal matrix on the form Tk = TC
k
+ T

�

k
 , with

Proof  The result follows directly from telescoping (4) and writing it on outer prod-
uct form. 	�  ◻

(17a)eT
1
TC
k
e1 =

1

gT
0
p0

+
1

�0
(
g1 − g0

)T
p0

,

(17b)

eT
i+1

TC
k
ei+1 =

1

gT
i
pi

+
1

�i−1
(
gi − gi−1

)T
pi−1

+
1

�i
(
gi+1 − gi

)T
pi

, i = 1,… , k − 1,

(17c)eT
i+1

TC
k
ei =e

T
i
TC
k
ei+1 = −

1

�i−1
(
gi − gi−1

)T
pi−1

, i = 1,… , k,

(17d)eT
k+1

TC
k
ek+1 =

1

�k−1
(
gk − gk−1

)T
pk−1

,

(17e)eT
1
T
�

k
e1 = − �0g

T
0
p0

(
1

(
g1 − g0

)T
p0

+
1

gT
0
p0

)2

,

(17f)

eT
i+1

T
�

k
ei+1 = − �i−1g

T
i−1

pi−1

(
1

(
gi − gi−1

)T
pi−1

)2

− �ig
T
i
pi

(
1

(
gi+1 − gi

)T
pi

+
1

gT
i
pi

)2

, i = 1,… , k − 1,

(17g)

eT
i+1

T
�

k
ei =e

T
i
T
�

k
ei+1 = �i−1

gT
i−1

pi−1
((

gi − gi−1
)T
pi−1

)2

+ �i−1
1

(
gi − gi−1

)T
pi−1

, i = 1,… , k,

(17h)eT
k+1

T
�

k
ek+1 = − �k−1g

T
k−1

pk−1

(
1

(
gk − gk−1

)T
pk−1

)2

.
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The compact representation in Lemma 2 requires storage of (k+1) gradient vec-
tors and an explicit component matrix, Tk , of size (k+1)×(k+1). In comparison to 
compact representations given in [1, 6] and [7] which require storage of 2k vec-
tor-pairs 

(
B0si yi

)
 , i = 0,… , k − 1 , and an implicit 2k × 2k component matrix. An 

expression for the inverse of the proposed representation (16) can be obtained with 
Sherman-Morrison-Woodbury formula [14].

One of the most commonly used quasi-Newton update schemes is the BFGS 
update. For �i = 0 , i = 1,… , k − 1 , it follows from Lemma 2 that

or equivalently

where Gk =
(
g0 g1 … gk−1 gk

)
∈ ℝ

n×(k+1) and TBFGS
k

∈ ℝ
(k+1)×(k+1) is a symmetric 

tridiagonal matrix with elements given in (17a)-(17d).
Under exact linesearch the step length is chosen such that gT

k
pk−1 = 0. In conse-

quence the rank-one matrix �k−1�k−1�
T
k−1

 in (4) reduces to

The choice of Broyden member is thus only reflected in the diagonal of Tk in 
Lemma 2. This can be observed directly in (17e) - (17h) by making use of the exact 
linesearch condition gT

i
pi−1 = 0 , i = 1,… , k . All non-diagonal terms of T�

k
 become 

zero and the diagonal terms may be simplified to

Any Hessian approximation in the Broyden class may in fact be written as 
Bk = BBFGS

k
−
(
�k−1∕g

T
k−1

pk−1
)
gkg

T
k
 . In consequence, Bk is independent of �i for 

i = 0,… , k − 2 and the choice of Broyden member only affects the scaling of the 
search direction. This property follows solely from exact linesearch, in comparison 
to the properties that stem from exact linesearch on quadratic optimization problems 
(QP), which are discussed in Sect. 4.

4 � Quadratic problems

We now return to quadratic problems on the form (QP) and start from the require-
ment that pk generated by the exact linesearch method of Algorithm 1 shall be par-
allel to pPCG

k
 . Motivated by the performance of the Broyden class, we start by con-

sidering Hessian approximations Bk = Bk−1 + Uk where Uk is a symmetric rank-two 

BBFGS
k

= B0 +

k−1∑

i=0

[
1

gT
i
pi
gig

T
i
+

1

�i
(
gi+1 − gi

)T
pi

(
gi+1 − gi

)(
gi+1 − gi

)T
]
,

BBFGS
k

= B0 + GkT
BFGS
k

GT
k
,

�k−1�k−1�
T
k−1

= −
�k−1

gT
k−1

pk−1
gkg

T
k
.

eT
i+1

T
�

k
ei+1 =

{
0 i = 0,

−
�i−1

gT
i−1

pi−1
i = 1,… , k.
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matrix with R(Uk) = span({gk−1, gk}) and thereafter look at generalizations. A char-
acterization of all such update matrices Uk is provided as well as a multi-parameter 
Hessian approximation that generates pk = �kp

PCG
k

 for a nonzero scalar �k . Thereaf-
ter, we consider limited-memory Hessian approximations with this property, discuss 
potential extensions and how to solve the arising systems with a reduced-Hessian 
method.

Proposition 1  Consider iteration k, 1 ≤ k < r , of the exact linesearch method 
of Algorithm  1 for solving (QP). Assume that pi = �ip

PCG
i

 with �i ≠ 0 for 
i = 0,… , k − 1 , where pPCG

i
 is the search direction of PCG with associated B0 ∈ S

n
+
 , 

as stated in (7). Let Bk−1 be a nonsingular matrix such that Bk−1pk−1 = −gk−1 and 
Bk−1B

−1
0
gk = gk . Moreover, let Uk = Bk − Bk−1 and assume that Bk and pk sat-

isfy Bkpk = −gk with Bk nonsingular. Then, for Uk symmetric, rank-two with 
R(Uk) = span({gk−1, gk}) , it holds that pk = �kp

PCG
k

, �k ≠ 0 , if and only if

where �k−1 is a free parameter.

Proof  As stated in [11, Proposition 5], the assumptions in the proposition together 
with (11) and Bk = Bk−1 + Uk give the following necessary and sufficient condition 
on Uk such that pk = �kp

PCG
k

 for a scalar �k ≠ 0,

Any symmetric rank-two matrix, Uk , with R(Uk) = span({gk−1, gk}) can be written 
as

for parameters �k−1 , �k−1 and �k . Insertion of (19) into (18), taking into account 
gT
k
B−1
0
gk−1 = 0 and gT

k
pk−1 = 0 gives

which is independent of �k−1 . Identification of coefficients for gk and gk−1 respec-
tively gives

Insertion of �k and �k−1 into (19) gives Uk as stated in the lemma, with �k−1 free. 	� ◻

Uk =
1

gT
k−1

pk−1
gk−1g

T
k−1

+ �k−1
(
gk − gk−1

)(
gk − gk−1

)T
+

(
1

�k
− 1

)

gT
k
B−1
0
gk

gkg
T
k
,

(18)Uk

(
B−1
0
gk +

gT
k
B−1
0
gk

pT
k−1

gk−1
pk−1

)
=

(
1

�k
− 1

)
gk +

gT
k
B−1
0
gk

pT
k−1

gk−1
gk−1.

(19)Uk =
(
gk−1 gk

)(�k−1 + �k−1 − �k−1
−�k−1 �k + �k−1

)(
gT
k−1

gT
k

)
,

�kg
T
k
B−1
0
gkgk + �k−1g

T
k
B−1
0
gkgk−1 =

(
1

�k
− 1

)
gk +

gT
k
B−1
0
gk

pT
k−1

gk−1
gk−1,

�k =
(
1

�k
− 1

)
1

gT
k
B−1
0
gk
, and �k−1 =

1

gT
k−1

pk−1
.
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The result in Proposition 1 provides a two-parameter update matrix, Uk . If the 
conditions of Proposition 1 apply then it follows directly from Uk that the iterates 
satisfy the scaled secant condition (2). This can be seen by considering Bk�k−1pk−1 
with Bk = Bk−1 + Uk which gives

Consequently the characterization in Proposition  1 provides a class which under 
exact linesearch is equivalent to the symmetric Huang class. The scaling in the 
secant condition does neither affect the search direction nor its scaling. Utilizing the 
secant condition sets the parameter �k−1 = −1∕

(
�k−1g

T
k−1

pk−1
)
 , that together with 

the change of variable

gives the exact linesearch form of the Broyden class matrices in (4). Hence, as 
expected, utilizing the secant condition fixates one of the parameters and gives the 
Broyden class.

The result of Proposition 1 motivates further study of the structure in the cor-
responding Hessian approximations.

Lemma 3  Consider iteration k, 1 ≤ k < r , of the exact linesearch method of Algo-
rithm  1 for solving (QP). Assume that Bipi = −gi , i = 0,… , k − 1 , where B0 ∈ S

n
+
 

and

with �i−1 and �i chosen such that Bi is nonsingular. Then Bk takes the form

Proof  With the assumptions in the proposition, the update of (21) satisfies the 
requirements of Proposition 1 and hence for each i, i = 0,… , k − 1 , it follows that 
pi = �ip

PCG
i

 where �i = 1∕
(
1 + �ig

T
i
B0

−1gi
)
 and �0 = 0 . Premultiplication of 

pi = �ip
PCG
i

 by gT
i
 gives

Inverting (23) and taking into account that gT
i
pPCG
i

= −gT
i
B−1
0
gi , i = 0,… , k − 1 , 

gives

(
Bk−1 + Uk

)
�k−1pk−1 = −�k−1�k−1gk−1

Tpk−1
(
gk − gk−1

)
.

(20)�k =

(
1

�k
− 1

)
1

gT
k
B−1
0
gk

= −
�k−1

gT
k−1

pk−1
,

(21)
Bi = Bi−1 +

1

gT
i−1

pi−1
gi−1g

T
i−1

+ �i−1
(
gi − gi−1

)(
gi − gi−1

)T
+ �igig

T
i
, i = 1,… , k,

(22)Bk = B0 +

k−1∑

i=0

(
−

1

gT
i
B0

−1gi
gig

T
i
+ �i

(
gi+1 − gi

)(
gi+1 − gi

)T
)

+ �kgkg
T
k
.

(23)gT
i
pi =

1

1 + �ig
T
i
B−1
0
gi
gT
i
pPCG
i

, i = 0,… , k − 1,
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By telescoping (21) at iteration k we obtain

Insertion of (24) into (25) gives (22). 	�  ◻

Lemma 3 and (22) show that if pk is given by (1) with Bk as in (22), then pk is 
independent of all �i , i = 0,… , k − 1 , as long as Bk is nonsingular. This result is for-
malized in the following proposition.

Proposition 2  Consider iteration k, 1 ≤ k < r , of the exact linesearch method 
of Algorithm  1 for solving (QP). Assume that pi = �ip

PCG
i

 with �i ≠ 0 for 
i = 0,… , k − 1 , where pPCG

i
 is the search directions of PCG with associated 

B0 ∈ S
n
+
 , as stated in (7). Let pk satisfy Bkpk = −gk where

with �(k)
i

 , i = 0,… , k − 1 , and �k chosen such that Bk is nonsingular. Then,

In particular, if 𝜌(k)
i

> 0 , i = 0,… , k − 1 , and 𝜑k > −1∕(gT
k
B0

−1gk) , then Bk ≻ 0.

Proof  From Proposition 1 and Lemma 3 it follows that Bk given by (22) generates 
pk = �kp

PCG
k

 where �k = 1∕
(
1 + �kg

T
k
B0

−1gk
)
 and hence satisfies

by Lemma 1. If �i , i = 0,… , k − 1 , and �k chosen such that Bk is nonsingular then 
the solution is unique and independent of �i , i = 0,… , k − 1 , and thus �i = �

(k)

i
 , 

i = 0,… , k − 1 . Moreover, if 𝜌(k)
i

> 0 , i = 0,… , k − 1 and �k = 0 then the matrix of 
(26) is positive definite by Lemma 5. It then follows from Lemma 4 that Bk ≻ 0 for 
𝜑k > −1∕(gT

k
B0

−1gk) . 	�  ◻

The result in Proposition 2 together with the exact linesearch method of Algo-
rithm 1 provide a multiple-parameter class that generates search directions parallel 
to those of PCG. In the framework of updates on the form Bk = Bk−1 + Uk this class 

(24)
1

gT
i
pi

+ �i = −
1

gi
TB0

−1gi
, i = 0,… , k − 1.

(25)
Bk = B0 +

k−1∑

i=0

[(
1

gT
i
pi

+ �i

)
gig

T
i
+ �i

(
gi+1 − gi

)(
gi+1 − gi

)T
]

+ �kgkg
T
k
.

(26)
Bk = B0 +

k−1∑

i=0

(
−1

gT
i
B0

−1gi
gig

T
i
+ �

(k)

i

(
gi+1 − gi

)(
gi+1 − gi

)T
)

+ �kgkg
T
k
,

pk =
1

1 + �kg
T
k
B0

−1gk
pPCG
k

.

(
gi+1 − gi

)T
pk = 0, i = 0,… , k − 1,
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allows update matrices with R(Uk) = span({g0,… , gk}) and reduces to the symmet-
ric Huang class if R(Uk) = span({gk−1, gk}) is required. The Hessian approximation 
in (26) of Proposition 2 can also be viewed as a matrix composed of three parts

where

and

The direction is determined solely by B0 + V
�

k
 , compare with (8). The parameter �k 

gives a scaling and the parameters �(k)
i

 , i = 0,… , k − 1 , have no effect on the direc-
tion. Certain choices of these parameters merely guarantee nonsingularity and may 
provide numerical stability.

4.1 � Limited‑memory Hessian approximations

In this section we extend the above discussion to limited-memory Hes-
sian approximations. The goal is to obtain approximations such that (1) gives 
search directions parallel to those of PCG. From (8) it follows directly that 
pPCG
k

∈ span({B−1
0
g0,… ,B−1

0
gk}) and that pPCG

k
 has a nonzero component in every 

direction B−1
0
gi , i = 0,… , k . In consequence, gradient information can not be dis-

carded if Bk is on the form of (27) where R(V
�

k
+ V

�

k
) = span({g0,… , gk}) . As long 

as Bk remains nonsingular, gradient information can be discarded from V�

k
 but not 

from the part essential for the direction, namely V�

k
 . However, parallel directions 

can be generated if a specific correction term is added to the right hand side of (1), 
as is shown in “Appendix, Theorem  2”. It can also be done as e.g., in [1], by at 
each iteration k recalculating the basis vectors from the m latest vector pairs 

(
si, yi

)
 , 

i = k − m,… , k − 1.
In light of the above, the discussion will now be extended to consider Hessian 

approximations on the form Bk = B0 + Vk + V
�

k
 where Vk is not restricted to have an 

outer-product form consisting of only gradients. Theorem 1 below provides condi-
tions on Vk and V�

k
 such that Bk is positive definite and generates directions parallel 

to those of PCG.

Theorem 1  Consider iteration k, 1 ≤ k < r , of the exact linesearch method of Algo-
rithm  1 for solving (QP). Assume that pi = �ip

PCG
i

 with �i ≠ 0 for i = 0,… , k − 1 , 
where pPCG

i
 is the search direction of PCG with associated B0 ∈ S

n
+
 , as stated in (7). 

Let pk satisfy Bkpk = −gk with Bk = B0 + Vk + V
�

k
 where V�

k
 is defined by (28) and 

Vk is symmetric such that B0 + Vk ⪰ 0 . If, in addition, �(k)
i

≥ 0 , i = 0,… , k − 1 , and 

(27)Bk = B0 + V
�

k
+ V

�

k
,

V
�

k
=

k−1∑

i=0

−1

gT
i
B0

−1gi
gig

T
i
+ �kgkg

T
k
,

(28)V
�

k
=

k−1∑

i=0

�
(k)

i
(gi+1 − gi)(gi+1 − gi)

T .
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N(B0 + Vk) ∩N(V
�

k
) = � , then Bk ≻ 0 , and, for �k ≠ 0 , it holds that pk = �kp

PCG
k

 if 
and only if

In particular, (29) with �k = 1 , B0 + Vk ⪰ 0 and N(B0 + Vk) ∩N(V
�

k
) = � are satis-

fied for

and

Proof  The parameters �(k)
i

≥ 0 , i = 0,… , k − 1 give V�

k
⪰ 0 . It then follows from 

N(B0 + Vk) ∩N(V
�

k
) = � that Bk ≻ 0 . Insertion of Bk = B0 + Vk + V

�

k
 into (11) gives 

the if and only if condition

for pk = �kp
PCG
k

 , �k ≠ 0 . Using the identity

which follows from Lemma  1, in (32) and moving terms corresponding to B0 to 
the right-hand side gives if and only if condition (29) on Vk . In particular, with 
B0 + Vk = CT

k
B0Ck , as given by (30), letting Wk = B0 in (12) gives pk = pPCG

k
 . In 

addition, since Ck is nonsingular and B0 ≻ 0 , it follows that B0 + Vk = CT
k
B0Ck ≻ 0 , 

so that B0 + Vk + V
𝜌

k
≻ 0 for �(k)

i
≥ 0 , i = 0,… , k − 1 . The null-space of B0 + Vk 

with Vk as in (31) is one-dimensional and spanned by pk−1 . Since B0 ≻ 0 , we have 
B0 + Vk ⪰ 0 . In addition, if 𝜌(k)

k−1
> 0 , then

since gT
k−1

pPCG
k−1

< 0 and pk−1 = �k−1p
PCG
k−1

 , with �k−1 ≠ 0 , by assumption. Therefore, 
B0 + Vk + V

𝜌

k
≻ 0 if 𝜌(k)

k−1
> 0 and �(k)

i
≥ 0 , i = 0,… , k − 2 . Finally, Vk of (31) satis-

fies (29) for �k = 1 since gT
k
pk−1 = 0 , as required. 	�  ◻

The result in Theorem  1 provides a class of multi-parameter limited-memory 
Hessian approximations where the memory usage can be changed between itera-
tions. The choices of Vk in (30) and (31) are merely two examples of members in the 
class. The matrix Vk of (30) is of rank-two, and if used in Bk = B0 + Vk + V

�

k
 , with 

�
(k)

i
= 0 , i = 0,… , k − 1 , then Bkpk = −gk may viewed as a symmetric PCG update, 

(29)Vk

(
B−1
0
gk +

gT
k
B−1
0
gk

pT
k−1

gk−1
pk−1

)
=

(
1

�k
− 1

)
gk −

gT
k
B−1
0
gk

pT
k−1

gk−1
B0pk−1.

(30)Vk = CT
k
B0Ck − B0, withCk defined as in (10),

(31)Vk = −
1

pT
k−1

B0pk−1
B0pk−1p

T
k−1

B0, with 𝜌
(k)

k−1
> 0.

(32)
(
B0 + Vk + V

�

k

)
(
B−1
0
gk +

gT
k
B−1
0
gk

pT
k−1

gk−1
pk−1

)
=

1

�k
gk,

V
�

k

(
B−1
0
gk +

gT
k
B−1
0
gk

pT
k−1

gk−1
pk−1

)
= 0,

V
�

k
pk−1 = �

(k)

k−1

(
gk − gk−1

)
Tpk−1

(
gk − gk−1

)
= −�

(k)

k−1
gT
k−1

pk−1
(
gk − gk−1

)
≠ 0,
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compare with (9). The matrix Vk of (31) is the matrix of least rank that satisfies 
(29) with �k = 1 . In general, there is little restriction on which iterations to include 
information from in V�

k
 . Information can thus be included from iterations that are 

believed to be of importance. All information may also be expressed in terms of 
search directions and the current gradient gk . This provides the ability to reduce the 
amount of storage when the arising systems are solved by reduced-Hessian methods, 
described in Sect. 4.2, with search directions in the basis.

4.2 � Solving the systems of linear equations

In this section we discuss solving systems of linear equations using reduced-Hessian 
methods. These methods provide an alternative procedure for solving systems aris-
ing in quasi-Newton methods. We follow Gill and Leonard [12, 13] and refer to their 
work for a thorough introduction.

Assume that a Hessian approximation of Theorem 1 is given and used together 
with the exact linesearch method of Algorithm 1 for solving (QP). The search direc-
tion at iteration k then satisfies pk = �kp

PCG
k

 for a scalar �k ≠ 0 and hence by (7) 
it holds that pk ∈ span({pk−1,B

−1
0
gk}) . Define �min

k
= span({pk−1,B

−1
0
gk}) and let 

�k be a subspace such that 𝛹min
k

⊆ 𝛹k . Furthermore, let Qk be a matrix whose col-
umns span �k and Zk be the matrix whose columns are the vectors obtained from 
the Gram-Schmidt process on the columns of Qk . The search direction can then be 
written as pk = Zkuk for some vector uk . Premultiplication of (1) by ZT

k
 together with 

pk = Zkuk gives

which has a unique solution if Bk is positive definite. Hence pk = Zkuk where uk 
satisfies (33). Note that the analogous procedure is also applicable for the result in 
“Appendix, Theorem 2” where the Hessian approximation is given by (39a) and pk 
is generated by Bkpk = −Nkgk.

The minimal space required is �k = �min
k

 but other feasible choices 
are for example �k = span({B−1

0
g0,… ,B−1

0
gk}) , as shown by (8), or 

�k = span({pt−1,B
−1
0
gt,… ,B−1

0
gk}) where 0 < t < k.

4.3 � Construction of methods and complexity

The Hessian approximations proposed in Theorem  1 combined with the reduced-
Hessian framework of Sect.  4.2 provide freedom in the construction of limited-
memory quasi-Newton methods. A summary of the quantities that can be chosen is 
shown in Table 1 below.

The complexity of the method is essentially determined by the construction and 
solution of (33). Each iteration k requires a Gram-Schmidt process as well as the 
construction and factorization of the matrix ZT

k

(
B0 + Vk + V

�

k

)
Zk . If no information 

is re-used this gives the worst case complexity

(33)ZT
k
BkZkuk = −ZT

k
gk,
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where constants have been omitted. However, the overall complexity can be reduced 
with particular choices of the quantities in Table 1. We will demonstrate this by con-
structing two relatively simple quasi-Newton methods with fixed limited-memory 
m = m̂ > 3 for which numerical results are given in Sect.  5. The methods will be 
denoted by symPCGs and Vsr1 for which Vk is given by (30) and (31) respectively. 
Both use Hessian approximations on the form Bk = B0 + Vk + V

�

k
 with V�

k
 as in (28) 

and parameters defined by

where �B
i
 , i = 0,… , k − 1 , are the quantities which correspond to the secant condi-

tion. The basis is computed from Qk =
(
p0 … pm−4 pk−2 pk−1 B−1

0
gk
)
 . Hence sys-

tems of size at most m has to be solved at every iteration with information from the 
(m–3)-first and the 3-latest iterations for k > m . In consequence part of the matrices 
Zk and V�

k
 stay constant and the reduced-Hessian may be updated instead of rec-

omputed at every iteration. The computational complexity is then dominated by 
max{n2,m3} , see “Appendix” for motivation. The choice m = n2∕3 gives complexity 
n2 which is the same as that of PCG with exact linesearch.

5 � Numerical results

In this section we first show the convergence behavior of quasi-Newton-like meth-
ods and PCG for randomly generated quadratic optimization problems. Thereafter, 
we give performance profiles [5] for methods used to solve systems of linear equa-
tions which originate from the CUTEst test collection [15]. Performance profiles are 
given for the two limited-memory methods described in Sect. 4.3. As mentioned in 
Sect. 4.3, these methods are referred to as symPCGs and Vsr1 respectively. These 
are also compared to Matlab’s pcg solver and to our own Matlab implementations 
of BFGS, with search direction given by (3) with �k−1 = 0 for all k, and L-BFGS 
with search direction as proposed by Nocedal [18]. All methods use exact linesearch, 
as defined by Algorithm 1, with their particular search direction update. We refer to 
Matlab’s pcg solver as PCG and to our implementations as BFGS and L-BFGS 

O
(
nm̂2

k
+
[(
n2m̂k + nm̂2

k

)
+ rank

(
Vk

)(
nm̂k + m̂2

k

)
+
(
nmm̂k + mm̂2

k

)]
+ m̂3

k

)
,

�
(k)

i
=

{
�B
i
i = 0,… ,m − 4, k − 3, k − 2, k − 1,

0 i = m − 3,… , k − 4,

Table 1   Variable quantities at iteration k 

Quantity Description

Vk Must satisfy the conditions of Theorem 1

�
(k)

i
 , i = 0,… , k − 1 Parameter values

mk # non-zero �(k)
i

 , i = 0,… , k − 1 , of V�

k
 in (28)

Qk Provides the space for pk , columns must span �min

k

m̂k # columns of Qk
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respectively. For solving systems of linear equations, all methods considered in 
this section generate identical iterates in exact arithmetic. Our aim is to investigate 
how this behavior changes in finite precision arithmetic. Therefore, we have chosen 
number of iterations as performance measure since it gives identical performance in 
exact arithmetic, in contrast to e.g., CPU time which does not have the desired prop-
erty. The benchmark problems were initially processed using the Julia packages 
CUTEst.jl and NLPmodels.jl by Orban and Siqueira [20].

The purpose of the first part is partly to illustrate the difference between quasi-
Newton-like methods and PCG to give an indication of the round-off error effects. 
Convergence for a member in the class of quasi-Newton Hessian approximations 
in (26) of Proposition 2, here denoted by MuP, is shown in Fig. 1. The figure also 
contains the convergence of the BFGS method and PCG in both finite and exact 
arithmetic, all with B0 = I . In this study we consider exact arithmetic PCG as our 
own Matlab implementation of PCG, with search direction given by (7), using 512 
digits precision. The parameters of (26) were chosen as follows, �k = 0 for all k and

where �(k)
i

 , i = 0,… , k − 1 , are normally distributed random variables and �B
i
 , 

i = 0,… , k − 1 , are the quantities corresponding to the secant condition. Note that 
the scaling of �(k)

i
 , i = 0,… , k − 1 , are randomly changed for every k.

If the exact linesearch method of Algorithm 1 is applied to (QP) in exact arithmetic, 
the three methods compared in Fig. 1 would be equivalent, since they generate par-
allel search directions. Our interest is the finite precision setting, where the different 

�
(k)

i
= �

(k)

i
�B
i
, i = 0,… , k − 1,

0 20 40 60 80 100 120 140 160 180

Iteration (k)

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

PCG
BFGS
MuP
PCG (Digits 512)

Fig. 1   Convergence for solving a randomly generated quadratic problem with 300 variables and condi-
tion number in the order of 104 . The convergence corresponds to representative results based on 100 
simulations with parameters �(k)

i
∈
[
10−1, 108

]
 , i = 0,… , k − 1
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behavior of the methods is illustrated in the figure. PCG suffers from round-off errors 
while BFGS behaves like the exact arithmetic PCG. The maximum error from all simu-
lations between the iterates of BFGS and exact PCG was 5.1 ⋅ 10−14 , i.e.,

Consequently, the BFGS method does not suffer from round-off errors on these ran-
domly generated quadratic problems. By the result of Proposition 2 it is not required 
to fix the parameters �(k)

i
 , i = 0,… , k − 1 , and as Fig. 1 shows there is an interval 

where this result also holds in finite arithmetic. The secant condition is expected 
to provide an appropriate scaling of the quantities since it gives the true Hessian in 
n iterations. Our results indicate that there is no particular benefit for the quadratic 
case to choose the values given by the secant condition. This freedom may be use-
ful, since values of �(k)

i
 close to zero for some i may make the Hessian approximation 

close to singular, and such values could potentially be avoided.
The purpose of the next part is to give a first indication of the performance of the 

proposed class of limited-memory quasi-Newton methods for solving a sequence of 
related systems of linear equations. The sequences of systems were generated by con-
sidering unconstrained nonlinear CUTEst problems of the order 103 . For such a prob-
lem, a sequence of matrix and right-hand side pairs ∇2f (xj) and - ∇f (xj) , j = 1,… , J , 
was accepted if an initial point x0 for which Newton’s method with unit step converged 
to a point xJ such that ‖∇f (xJ)‖ ≤ 10−6 and 𝜆min

(
∇2f (xJ)

)
> 10−6 . In addition, it was 

required for each j that ∇2f (xj)dj = −∇f (xj) , was solvable with accuracy at least 10−7 
by the built-in solver in Julia and that ∇2f (xj) was positive definite. These condi-
tions reduced the test set to 21 problems giving 21 sequences of linear equations, cor-
responding to 220 systems of linear equations in total. The performance measure in 
terms of number of iterations is defined as follows. Let Np,s be the number of iterations 
required by method s ∈ S on problem p ∈ P . If the method failed to converge within 
a maximum number of iterations this value is defined as infinity. The measure Ps(�) is 
defined as

Performance profiles are shown in Fig.  2 for SymPCGs, Vsr1, PCG, BFGS, 
and L-BFGS. All with B0 = ∇2f (xj−1) , i.e., when the Newton system at itera-
tion j is preconditioned with the previous Hessian. The figure contains results for 
m = ⌊n

1

2 , n
2

3 , n
21

30 ⌋ , and two different tolerances in the stopping criterion. The first 
corresponds to the criterion ‖gk‖∕‖g0‖ < 10−5 , namely when an approximate solu-
tion is desired. The other corresponds to when a more accurate solution is desired 
and the criterion ‖gk‖∕‖g0‖ < max{𝜖DS, 10−12} , where �DS is the attained accuracy 
of the built-in direct solver on the preconditioned Newton system with precondi-
tioner B0 . The cases corresponding to the two stopping criteria will be referred to 
as low and high accuracy respectively in Tables 2-3. For the two first m-values the 
overall computational complexity is O(n2) whereas for the third it is O(⌊n

21

10 ⌋) , i.e., 
a case allowing slightly more computational work if needed. In Table 3 we show a 

max
i

‖xBFGS
i

− xPCG
i

‖ = 5.1 ⋅ 10−14.

Ps(�) =
|{p ∈ P ∶ rp,s ≤ �}|

|P| , where rp,s =
Np,s

min{ Np,s ∶ s ∈ S}
,
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Fig. 2   Performance profiles with B0 = ∇2f (xj−1) and m = ⌊n
1

2 , n
2

3 , n
21

30 ⌋ . The left figure corresponds to 
stopping criteria ‖gk‖∕‖g0‖ < 10−5 and the right to ‖gk‖∕‖g0‖ < max{𝜖DS, 10−12}

Table 2   Average number of iterations required per system of linear equations

⌊n
1

2 , n
2

3 , n
21

30 ⌋ ⌊n
1

2 , n
2

3 , n
21

30 ⌋ ⌊n
1

2 , n
2

3 , n
21

30 ⌋
B0 Accuracy BFGS PCG L-BFGS SymPCGs Vsr1

I Low 102 222 [224, 183, 170] [264,161,157] [264,162,160]
High 292 1046 [1006,926, 865] [979,713,675] [985, 734, 700]

∇2f− Low 13 37 [29, 14, 14] [34, 13, 13] [34, 13, 13]
High 26 147 [115, 38, 32] [141, 29, 27] [150, 29, 27]

Table 3   Average size relative 
to m of the systems solved per 
iteration

SymPCGs Vsr1

B0 Accuarcy ⌊n
1

2 ⌋ ⌊n
2

3 ⌋ ⌊n
21

30 ⌋ ⌊n
1

2 ⌋ ⌊n
2

3 ⌋ ⌊n
21

30 ⌋

I Low 0.950 0.790 0.750 0.950 0.790 0.754
High 0.985 0.942 0.926 0.985 0.944 0.928

∇2f− Low 0.814 0.245 0.192 0.815 0.247 0.192
High 0.934 0.431 0.324 0.938 0.431 0.330
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measure of the mean computational work done for solving systems on the form (33) 
per iteration. The measure is in terms of the average size of the reduced-Hessian 
relative to m. Moreover, the average number of iterations are shown in Table 2. The 
maximum number of iterations was set to 5n in all simulations.

We also give performance profiles when no regard is taken to the fact that the 
systems of linear equations within a sequence are related, namely when B0 = I . The 
corresponding performance profiles and averaged quantities are shown in Fig. 3 and 
Tables 2-3 respectively.

The results in Figs. 2, 3 and Table 2 show that the BFGS method has the best overall 
performance and PCG the worst. With preconditioner SymPCGs and Vsr1 outper-
form L-BFGS for the two larger limited-memory values ⌊n

2

3 ⌋ and ⌊n
21

30 ⌋ . This difference 
is not as distinct in the non-preconditioned case, as can be seen in Fig. 3, even though 
SymPCGs and Vsr1 are able to solve more problems within the maximum number of 
iterations compared to L-BFGS. Numerical experiments have shown that, depending 
on the particular instance, small m-values can lead to loss of convergence rate close 
the solution. Tendencies to this can be seen in Figs. 2, 3 and Table 2 for the limited-
memory methods with m = ⌊n

1

2 ⌋ , which is approximately 30-40 for problems of size 
1000-2000. Further decreasing m also increases this tendency. The memory parame-
ter m might be considered to be large however, as discussed in “Appendix” in regards 
to complexity, this value does not have a significant impact on the complexity when 
m ≤ n

2

3 . As Table 3 also shows, most systems solved in the preconditioned case is of 
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Fig. 3   Performance profiles with B0 = I and m = ⌊n
1

2 , n
2

3 , n
21

30 ⌋ . The left figure corresponds to stopping 
criteria ‖gk‖∕‖g0‖ < 10−5 and the right to ‖gk‖∕‖g0‖ < max{𝜖DS, 10−12}
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size less than m. The slight difference between the low accuracy and high accuracy in 
Tables 2-3 indicates that the bulk of the work is made prior to reaching the tolerance of 
the low accuracy level. Numerical experiments has further shown that the behavior on 
a specific system of linear equations not only depends on the choices when designing 
the method, listed in Table 1, but also on the properties of the individual linear system. 
We choose to give the results for the methods denoted by SymPCGs and Vsr1 since 
we believe that these are representative for the proposed limited-memory quasi-Newton 
class, given the complexity restrictions, on the test set. However we have observed that 
the results can be improved and dis-improved for different choices of the quantities in 
Table 1. We conclude that there may be potential for accelerating the process of solving 
sequences of related systems of linear equations with iterative methods in the proposed 
framework.

6 � Conclusion

In this work we have given a class of limited-memory quasi-Newton Hessian 
approximations which on (QP) with the exact linesearch method of Algorithm  1 
generates pk parallel to pPCG

k
 . With the framework of reduced-Hessians this provides 

a dynamical setting for the construction of limited-memory quasi-Newton meth-
ods. In addition, we have characterized all symmetric rank-two update matrices, Uk 
with R(Uk) = span({gk−1, gk}) which gives pk parallel to pPCG

k
 in this setting. The 

Hessian approximations were described by a novel compact representation whose 
framework was first presented in Sect. 3 for the full Broyden class on unconstrained 
optimization problems (P). The representation of the full Broyden class consists 
only of explicit matrices and gradients as vector components.

Numerical simulations on randomly generated unconstrained quadratic optimiza-
tion problems have shown that for these problems our suggested multi-parameter 
class, with parameters within a certain range, is equivalent to the BFGS method in 
finite arithmetic. Simulations on sequences of related systems of linear equations 
which originate from the CUTEst test collection have given an indication of the 
potential of the the proposed class of limited-memory methods. The results indicate 
that there is a potential for accelerating the process of solving sequences of related 
systems of linear equations with iterative methods in the proposed framework.

The results of this work are meant to contribute to the theoretical and numerical 
understanding of limited-memory quasi-Newton methods for minimizing a quad-
ratic function. We envisage that they can lead to further research on limited-memory 
methods for unconstrained optimization problems. In particular, limited-memory 
methods for minimizing a near-quadratic function and for systems arising as inte-
rior-point methods converge.

Appendix

The following lemma relates a symmetric rank-one update in the matrix to a scaling 
of the solution when the rank-one vector is a multiple of the right-hand side.



811

1 3

Limited-memory quasi-Newton methods for a quadratic function…

Lemma 4  If Ax = b , with A nonsingular then

if 1 + �bTx ≠ 0 . If, in addition, bTx ≠ 0 , it holds that

Finally, if A = AT ≻ 0 , then bTx > 0 and A + 𝛾bbT ≻ 0 if and only if

Proof  Assume that Ax = b where A is nonsingular. Premultiplication of (
A + �bbT

)
y = b by A−1 gives

Insertion of x = A−1b into (35) and rearranging gives

Insertion of y = �x into (36) and solving for � yields

The result in (34) follows by premultiplication of y = 1

1+�bTx
x by bT and rearranging. 

For the final result, note that bTx = xTAx > 0 since A ≻ 0 and that

which is a congruent transformation and hence I + 𝛾A−1∕2bbTA−1∕2 ≻ 0 if and only 
if A + 𝛾bbT ≻ 0 . Then consider the similarity transformation

where the only eigenvalue not equal to unity is 1 + �bTx , which is positive only if 
𝛾 > −

1

bTx
 , bTx ≠ 0 . 	�  ◻

Next, we give a nonsingularity condition on a class of quasi-Newton matrices 
that we consider.

Lemma 5  Let B0 ∈ S
n
+
 and let gi , i = 0,… , k , be nonzero vectors that are conjugate 

with respect to B0
−1 . Define Bk as

(
A + �bbT

)
y = b, for y =

1

1 + �bTx
x,

(34)
1

bTy
=

1

bTx
+ � .

𝛾 > −
1

bTx
.

(35)
(
I + �A−1bbT

)
y = A−1b.

(36)y =
(
1 − �bTy

)
x.

� =
1

1 + �bTx
, 1 + �bTx ≠ 0.

(
A + �bbT

)
= A1∕2

(
I + �A−1∕2bbTA−1∕2

)
A1∕2,

A−1∕2
(
I + �A−1∕2bbTA−1∕2

)
A1∕2 = I + �xbT ,
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where �i ∈ ℝ , i = 0,… , k − 1 . Then Bk ≻ 0 if 𝜌i > 0 , i = 1,… , k − 1.

Proof  Any vector p in ℝn can be written as

Insertion of (37) into pTBkp gives

For the remainder of the proof, let 𝜌i > 0 , i = 0,… , k − 1 . Then Bk is positive sem-
idefinite with pTBkp = 0 only if 

 From the positive definiteness of B0 , (38a) gives �k = 0 , which in combination with 
(38c) gives �i = 0 , i = 0,… , k . In addition, (38b) gives u = 0 . Thus, p = 0 by (37). 
Therefore, pTBkp = 0 only if p = 0 , proving that Bk is positive definite. 	� ◻

In Theorem 1, it has been shown how search directions parallel to PCG may 
be generated in a limited-memory setting if search directions are included in the 
basis in addition to gradients. The following theorem gives a way of using gradi-
ents only by modifying the right-hand side.

Bk = B0 +

k−1∑

i=0

(
−

1

gi
TB0

−1gi
gig

T
i
+ �i

(
gi+1 − gi

)(
gi+1 − gi

)T
)
,

(37)p =

k∑

i=0

�iB0
−1gi + B0

−1u, with gT
i
B0

−1u = 0, i = 0,… , k.

pTBkp = pT

(
B0 +

k−1∑

i=0

[
−

1

gi
TB0

−1gi
gig

T
i
+ �i

(
gi+1 − gi

)
(gi+1 − gi)

T

])
p

= pTB0p −

k−1∑

i=0

(
gT
i
p
)2

gi
TB0

−1gi
+

k−1∑

i=0

�i
(
(gi+1 − gi)

Tp
)2

=

k∑

i=0

�2
i
gi

TB0
−1gi + uTB0

−1u −

k−1∑

i=0

(
�igi

TB0
−1gi

)2

gi
TB0

−1gi

+

k−1∑

i=0

�i
(
(gi+1 − gi)

Tp
)2

= �2
k
gk

TB0
−1gk + uTB0

−1u +

k−1∑

i=0

�i
(
�i+1g

T
i+1

B0
−1gi+1 − �ig

T
i
B0

−1gi
)2
.

(38a)�2
k
gk

TB0
−1gk = 0,

(38b)uTB0
−1u = 0,

(38c)�i+1g
T
i+1

B0
−1gi+1 − �ig

T
i
B0

−1gi = 0, i = 0,… , k − 1.
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Theorem 2  Consider iteration k, 1 ≤ k < r , of the exact linesearch method of Algo-
rithm 1 for solving (QP). Assume that pi = �ip

PCG
i

 with �i ≠ 0 for i = 0,… , k − 1 , 
where pPCG

i
 is the search direction of PCG with associated B0 ∈ S

n
+
 , as stated in (7). 

Let Ak = {j1,… , jmk
} ⊆ {0,… , k} with j1 < j2 < ⋯ < jmk

 such that jmk
= k and let 

Ik = {0,… k} ⧵Ak . Furthermore, let pk satisfy Bkpk = −Nkgk where

and

where �k and �(k)
ji

 , i = 1,… ,mk − 1 , are chosen such that Bk is nonsingular. Then

In particular, if 𝜌(k)
ji

> 0 , i = 1,… ,mk − 1 , and 𝛿k > 0 , then Bk ≻ 0.

Proof  We will show that pk = �kp
PCG
k

 , �k ≠ 0 satisfies Bkpk = −Nkgk . Note that by 
Lemma 1 it follows that gT

i
pPCG
k

= −gT
k
B0

−1gk , i = 0,… , k, and hence

Insertion of pPCG
k

 as in (8) with M = B0 into (40) gives

with Nk given by (39b). Thus pk = �kp
PCG
k

 , �k ≠ 0 is a solution to Bkpk = −Nkgk , 
since Bk is nonsingular this is also the unique solution. The matrix Bk is positive 
definite with �k = 1 and 𝜌(k)

ji
> 0 , i = 1,… ,mk − 1 , by Lemma 5. The steps to show 

that Bk ≻ 0 if in addition 𝛿k > 0 is analogues to the last steps of Lemma 4. 	�  ◻

If all indices are chosen to be active in the Hessian approximation of (39a) then it 
is equivalent to (26) of Proposition 2 where �k relates to �k as in (20). Conversely, if 
the indices corresponding to all previous gradients, i.e., i = 0,… , k − 1 are inactive, 
and �k = 1 then (39) with Bkpk = −Nkgk is equivalent to the PCG update (8). The 

(39a)

Bk = B0 +

mk−1∑

i=1

(
−

1

gT
ji
B0

−1gji

gjig
T
ji
+ �

(k)

ji
(gji+1 − gji)(gji+1 − gji)

T

)

+

(
1

�k
− 1

)
1

gT
k
B−1
0
gk
gkg

T
k
,

(39b)Nk = I + �k

∑

i∈Ik

(
1

gT
i
B0

−1gi

)
gig

T
k
B−1
0
,

pk = �kp
PCG
k

.

(40)�kBkp
PCG
k

= �k

(
B0p

PCG
k

+

mk−1∑

i=1

gT
k
B−1
0
gk

gT
ji
B0

−1gji

gji −

(
1

�k
− 1

)
gk

)
.

�kBkp
PCG
k

= �k

(
−

k∑

i=0

gT
k
B−1
0
gk

gT
i
B−1
0
gi
gi +

mk−1∑

i=1

gT
k
B−1
0
gk

gT
ji
B0

−1gji

gji −

(
1

�k
− 1

)
gk

)

= −�k
∑

i∈Ik

gT
k
B−1
0
gk

gT
i
B0

−1gi
gi − gk = −Nkgk,
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update scheme of Theorem 2 contains only gradients as vector components and with 
the exact linesearch method of Algorithm 1 the finite termination property is main-
tained. However, this is at the expense of adding a correction term on the right hand 
side. Moreover, the update in Theorem 2 relies heavily on the result in Lemma 1 
which is exact on quadratic problems. For non-quadratic problems other more accu-
rate approximations and modifications may be considered to improve the method.

Complexity of symPCGs and Vsr1

It is sufficient to consider the complexity for iteration k ≥ m . Note that the 
first (m − 3) columns of Zk remain constant since the first (m − 3) columns of Qk 
remain the same. The basis matrix may hence be written as Zk =

(
Z0 Z̄k

)
 where 

Z0 ∈ ℝ
n×(m−3) and Z̄k ∈ ℝ

n×3 . This reduces the complexity of the Gram-Schmidt 
process to O(mn). Moreover, for both SymPCGs and Vsr1 the matrix Bk can be 
written as

where V�

0
=
∑m−4

i=0
�B
i
(g

i+1 − g
i
)(g

i+1 − g
i
)T and Fk = Vk +

∑k−1

i=k−3
�B
i
(gi+1 − gi)(gi+1 − gi)

T . 
Note that Fk has a compact representation of rank-five in symPCGs and of rank-four 
in Vsr1. Moreover, note that the matrix multiplication M̂FN̂ where M̂ ∈ ℝ

q1×n , 
N̂ ∈ ℝ

n×q2 and F ∈ ℝ
n×n is of rank r̂ with a known compact representation, has com-

plexity O(nq1r̂ + q1q2r̂ + nq2r̂) . The reduced-Hessian can at iteration k be written as

The matrices ZT
0
(B0 + V

�

0
)Z0 ∈ ℝ

(m−3)×(m−3) and (B0 + V
�

0
)Z0 ∈ ℝ

n×(m−3) have 
been successively built for iteration k < m − 3 and can be stored. What remains to 
be computed and the corresponding complexity, taking into account that r̂ ≤ 5 , is 
shown in Table 4.

It remains to add everything together, which has complexity O(m2) , and to factor-
ize, which has complexity m3 . The overall asymptotic complexity is thus dominated 
by max{n2,m3}.

Bk = B0 + V
�

0
+ Fk,

ZT
k
BkZk =

(
ZT
0

(
B0 + V

𝜌

0

)
Z0 + ZT

0
FkZ0 ZT

0

(
B0 + V

𝜌

0

)
Z̄k + ZT

0
FkZ̄k

Z̄T
k

(
B0 + V

𝜌

0

)
Z0 + Z̄T

k
FkZ0 Z̄T

k

(
B0 + V

𝜌

0
+ Fk

)
Z̄k

)
.

Table 4   Complexity for 
computing quantities in the 
reduced-Hessian, ZT

k
B
k
Z
k

Z
T

0
F
k
Z0 Z̄

T

k
(B0 + V

𝜌

0
)Z0 Z̄

T

k
F
k
Z0 Z̄

T

k
(B0 + V

𝜌

0
+ F

k
)Z̄

k

O(m2 + nm) O(nm) O(n + m + nm) O(n + n2)
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