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Abstract
The focus in this paper is interior-point methods for bound-constrained nonlinear 
optimization, where the system of nonlinear equations that arise are solved with 
Newton’s method. There is a trade-off between solving Newton systems directly, 
which give high quality solutions, and solving many approximate Newton systems 
which are computationally less expensive but give lower quality solutions. We pro-
pose partial and full approximate solutions to the Newton systems. The specific 
approximate solution depends on estimates of the active and inactive constraints 
at the solution. These sets are at each iteration estimated by basic heuristics. The 
partial approximate solutions are computationally inexpensive, whereas a system 
of linear equations needs to be solved for the full approximate solution. The size 
of the system is determined by the estimate of the inactive constraints at the solu-
tion. In addition, we motivate and suggest two Newton-like approaches which are 
based on an intermediate step that consists of the partial approximate solutions. The 
theoretical setting is introduced and asymptotic error bounds are given. We also give 
numerical results to investigate the performance of the approximate solutions within 
and beyond the theoretical framework.

Keywords Interior-point methods · Bound-constrained optimization · Approximate 
solution of system of linear equations · Newton-like approaches

 * David Ek 
 daviek@kth.se

 Anders Forsgren 
 andersf@kth.se

1 Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute 
of Technology, 100 44 Stockholm, Sweden

http://orcid.org/0000-0003-1764-5449
http://orcid.org/0000-0002-6252-7815
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-021-00265-8&domain=pdf


156 D. Ek, A. Forsgren 

1 3

1 Introduction

This work is intended for bound-constrained nonlinear optimization problems on the 
form

where f ∶ ℝ
n
→ ℝ is twice continuously differentiable, ∇2f (x) is locally Lipschitz 

continuous and l, u ∈ {ℝ ∪ {−∞,∞}}n are such that l < u . However, to make the 
work and its ideas more comprehensible, we initially describe the theoretical frame-
work and the corresponding results for problems on the form

For completeness, analogous results for problems on the form of (NLP) together 
with complementary remarks are given in “Appendix A”.

Bound-constrained optimization problems appear in many different applications 
and are frequently subproblems in augmented Lagrangian methods. For a general 
overview of solution methods, see [15] and e.g., the introduction in [18] for a thor-
ough review of previous work. Common solution techniques are: active-set methods, 
which aim to determine the active constraints and solve a reduced problem with the 
inactive variables, e.g., [8, 18]; methods involving projections onto the feasible set 
such as projected-gradient methods, e.g., [1, 27], projected-Newton or trust-region 
methods, e.g., [2, 6, 7, 22] and projected quasi-Newton methods, e.g., [4, 21, 34]. 
We are not aware of any primal-dual interior-point methods specialized for bound-
constrained optimization except for more general methods, e.g., [9, 12, 28–30]. 
Other techniques that are related to trust-region and interior methods are affine-scal-
ing interior-point methods, which are based upon a reformulation of the first-order 
necessary optimality conditions combined with a Newton-like method, e.g., [5, 19, 
20].

In contrast, we consider the classical primal-dual interior-point framework. This 
means solving or approximately solving a sequence of systems of nonlinear equations 
for which we consider Newton’s method as the model method. As interior methods 
converge, the Newton systems typically become increasingly ill-conditioned due to 
large diagonal elements in the Schur complement. This is not harmful for direct solvers 
but it may deteriorate the performance of iterative solvers. We propose a strategy for 
generating approximate solutions to Newton systems, which in general involves solv-
ing smaller systems of linear equations. In the ideal case, these systems do not become 
increasingly ill-conditioned due to the barrier parameter approaching zero. The specific 
approximate solutions, and the size of the system that needs to be solved at each itera-
tion, are determined by estimates of the active and inactive constraints at the solution. 
However, in general these sets are unknown and have to be estimated as the iterations 
proceed. In this work we use basic heuristics to determine the considered sets but other 
approaches may also be used, e.g., approaches similar to those in [8, 18]. In addition, 
we motivate and suggest two Newton-like approaches which utilize an intermediate 

(NLP)
minimize f (x)

subject to l ≤ x ≤ u,

(P)
minimize f (x)

subject to x ≥ 0.
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step in combination with the solution of a Newton-like system. The intermediate step 
partially consists of the proposed partial approximate solutions.

The work is meant to contribute to the theoretical and numerical understand-
ing of approximate solutions to systems of linear equations arising in interior-point 
methods. The approach is mainly intended for, but not limited to, bound-constrained 
problems, e.g., the work may also be interpreted in the framework of linear com-
plementarity problems, see e.g., [32]. We envisage the use of the approximate solu-
tion procedure as an accelerator for a direct solver. In particular, when solving a 
sequence of Newton systems for a given value of the barrier parameter � . E.g., when 
the direct solver and the approximate solution procedure can be run in parallel. To 
give an indication of the potential of the approximate solutions, we show numerical 
simulations on randomly generated problems as well as problems from the CUTEst 
test collection [16].

The manuscript is organized as follows; Sect. 2 contains a brief background to 
primal-dual interior-point methods and an introduction to the theoretical framework; 
in Sect.  3 we propose partial and full approximate solutions to Newton systems 
arising in interior-point methods, as well as motivate two Newton-like approaches; 
Sect. 4 contains numerical results on convex bound-constrained quadratic optimiza-
tion problems, both randomly generated and problems from the CUTEst test collec-
tion; finally in Sect. 5 we give some concluding remarks.

2  Background

We are interested in the asymptotic behavior of primal-dual interior-point meth-
ods in the vicinity of a local minimizer x∗ and its corresponding multipliers �∗ . 
In particular, we assume that the iterates of the method converge to a vector (
x∗T , �∗T

)T
≜ (x∗, �∗) that satisfies 

where “ ⋅ ” is defined as the component-wise operator and Z(x∗) is a matrix whose 
columns span the nullspace of the Jacobian corresponding to the constraints with a 
strictly positive multiplier, �∗ . Equations (1a)–(1d) constitute first-order necessary 
optimality conditions for a local minimizer of (P). These conditions together with 

(1a)∇f (x∗) − �∗ = 0, (stationarity)

(1b)x∗ ≥ 0, (feasibility)

(1c)�∗ ≥ 0, (non-negativity of multipliers)

(1d)x∗ ⋅ �∗ = 0, (complementarity)

(1e)Z(x∗)T∇2f (x∗)Z(x∗) ≻ 0,

(1f)x∗ + 𝜆∗ > 0, (strict complementarity)
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(1e) form second-order sufficient conditions [17]. For the theoretical framework we 
also assume that (x∗, �∗) satisfies (1f). We are particularly interested in the function 
F� ∶ ℝ

2n
→ ℝ

2n defined by

where � ∈ ℝ is the barrier parameter, X ∈ ℝ
n×n,� ∈ ℝ

n×n , X = diag(x) , � = diag(�) 
and e is a vector of ones of appropriate size. A vector (x, �) with x ≥ 0 , � ≥ 0 and 
F�(x, �) = 0 for � = 0 satisfies the first-order optimality conditions (1a)–(1d). Pri-
mal-dual interior-point methods aim to solve or approximately solve F�(x, �) = 0 for 
a decreasing sequence of 𝜇 > 0 , while maintaining x > 0 and 𝜆 > 0 . This is typically 
done with Newton-like methods which means solving a sequence of systems of lin-
ear equations on the form

where F� ∶ ℝ
2n

→ ℝ
2n is the Jacobian of F� . The Jacobian is given by

where H = ∇2f (x) and the subscript � is omitted since F′ is independent of the bar-
rier parameter. For each � , iterations are performed until a specified measure of 
improvement is achieved, thereupon � is decreased and the process is repeated. A 
natural measure in our setting is ‖F�(x, �)‖2 where ‖F�(x, �)‖2 = 0 gives the exact 
solution. To improve efficiency many algorithms seek approximate solutions, a basic 
condition for the reduction of � is ‖F𝜇(x, 𝜆)‖2 < 𝜇 [24, Ch. 17, p. 572]. Herein, we 
consider a possibly weaker version, namely ‖F𝜇(x, 𝜆)‖2 < C1𝜇 for some constant 
C1 > 0 . Moreover, it will throughout be assumed that all considered vectors (x, �) 
satisfy x > 0 and 𝜆 > 0 . The subscript in the norms will hereafter be omitted since 
all considered norms in this work are of type 2-norm.

Definition 1 (Order-notation) Let � , � ∈ ℝ be two positive related quantities. If there 
exists a constant C2 > 0 such that � ≥ C2� for sufficiently small � , then � = �(�) . 
Similarly, if there exists a constant C3 > 0 such that � ≤ C3� for sufficiently small � , 
then � = O(�) . If there exist constants C2,C3 > 0 such that C2� ≤ � ≤ C3� for suf-
ficiently small � then, � = �(�).

Definition 2 (Neighborhood) For a given 𝛿 > 0 , let the neighborhood around (x∗, �∗) 
be defined by B((x∗, �∗), �) = {(x, �) ∶ ‖(x, �) − (x∗, �∗)‖ ≤ �}.

Assumption 1 (Strict local minimizer) The vector (x∗, �∗) satisfies (1), i.e., second-
order sufficient optimality conditions and strict complementarity.

F�(x, �) =

[
∇f (x) − �

�Xe − �e

]
,

(2)F�(x, �)

[
�xN

��N

]
= −F�(x, �),

(3)F�(x, �) =

[
H − I

� X

]
,
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The following two results provide the theoretical framework and additional defi-
nitions of various quantities. In particular, the existence of a neighborhood where 
the Jacobian is nonsingular and there exists a Lipschitz continuous barrier trajec-
tory which is parameterized by the barrier parameter � . The results are well known 
and can be found in e.g., the work of Ortega and Rheinboldt [26] and Byrd et al. [3] 
whose setting is similar to the one in this work.

Lemma 1 Under Assumption  1 there exists 𝛿 > 0 such that F�(x, �) is continuous 
and nonsingular for (x, �) ∈ B((x∗, �∗), �) and

for some constant M > 0.

Proof See [26, p. 46].   ◻

Lemma 2 Let Assumption 1 hold and let B((x∗, �∗), �) be defined by Lemma 1. Then 
there exists �̂� > 0 such that for each 0 < 𝜇 ≤ �̂� there is a Lipschitz continuous func-
tion (x�, ��) ∈ B((x∗, �∗), �) that satisfies F�(x

�, ��) = 0 and

where C4 = inf(x,�)∈B((x∗,�∗),�) ‖F�(x, �)−1
�F�(x,�)

��
‖.

Proof The result follows from the implicit function theorem, see e.g., [26, p. 128]. 
 ◻

The next lemma relates the measure ‖F�(x, �)‖ to the distance between the barrier 
trajectory and vectors (x, �) that are sufficiently close. An analogous result is given 
by Byrd et al. [3].

Lemma 3 Under Assumption  1, let B((x∗, �∗), �) and �̂� be defined by Lemma  1 
and Lemma  2 respectively. For 0 < 𝜇 ≤ �̂� and (x, �) sufficiently close to 
(x�, ��) ∈ B((x∗, �∗), �) there exist constants C5,C6 > 0 such that

Proof See [3, p. 43].   ◻

Recall that the reduction of � can be determined with the condition 
‖F𝜇(x, 𝜆)‖ < C1𝜇 , for some constant C1 > 0 . It can be shown that vectors (x, �) , 
which satisfy this condition and are sufficiently close to the barrier trajectory, have 
their individual components bounded within certain intervals at sufficiently small � . 
The individual components can be partitioned into two sets of indices which depend 
on how close the iterate is to its feasibility bound, see Definition 3. The order of 
magnitude of the individual components, which are given in Lemma 4 below, will 
be of importance in the derivation of various approximate solutions to (2).

‖F�(x, �)−1‖ ≤ M,

‖(x�, ��) − (x∗, �∗)‖ ≤ C4�,

C5‖(x, �) − (x�, ��)‖ ≤ ‖F�(x, �)‖ ≤ C6‖(x, �) − (x�, ��)‖.
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Definition 3 (Active/inactive constraint) For a given x∗ ≥ 0 constraint 
i ∈ {1,… , n} is defined as active if x∗

i
= 0 and inactive if x∗

i
> 0 . The corre-

sponding active and inactive set are defined as A = {i ∈ {1,… , n} ∶ x∗
i
= 0} , and 

I = {i ∈ {1,… , n} ∶ x∗
i
> 0} respectively.

Lemma 4 Under Assumption 1, let B((x∗, �∗), �) and �̂� be defined by Lemma 1 and 
Lemma 2 respectively. Then there exists �̄�, with 0 < �̄� ≤ �̂�, such that for 0 < 𝜇 ≤ �̄� 
and (x, �) sufficiently close to (x�, ��) ∈ B((x∗, �∗), �) so that ‖F�(x, �)‖ = O(�) it 
holds that

Proof Under Assumption 1 it holds that

where ci = �(1) , i = 1,… , n . The function (x�, ��) is Lipschitz continuous and 
hence for each 𝜇 ≤ �̂� it holds that (x�, ��) ∈ B

(
(x∗, �∗), LF��

)
 , where LF′ is the Lip-

schitz constant of F′ on B((x∗, �∗), �) . There exist �̄�1 , with 0 < �̄�1 ≤ �̂� , such that for 
0 < 𝜇 ≤ �̄�1 it holds that

The condition ‖F�(x, �)‖ = O(�) implies that there exists a constant C1 > 0 such 
that ‖F�(x, �)‖ ≤ C1� . Lemma 3 and ‖F�(x, �)‖ ≤ C1� give

which implies that (x, �) ∈ B

(
(x�, ��),

C1

C5

�

)
 . Similarly here, there exists �̄�2 , with 

0 < �̄�2 ≤ �̂� , such that the result follows for 0 < 𝜇 ≤ �̄� with �̄� = min{�̄�1, �̄�2} .   ◻

The result of Lemma 4 shows two regions which depend on � . The first region, 
0 < 𝜇 ≤ �̂� , defines where the barrier trajectory (x�, ��) exists and the second region, 
0 < 𝜇 ≤ �̄� ≤ �̂� , defines where asymptotic behavior occurs.

3  Approximate solutions

This section initially contains an introduction to the groundwork of the ideas which 
precede the results. It is followed by a subsection that contains approximate solu-
tions for specific components of the solution of (2) together with related results. The 
last subsection contains procedures for approximating the full solution of (2), as 
well as related results. Under Assumption 1 it holds that

(4)xi =

{
O(�) i ∈ A,

�(1) i ∈ I,
�i =

{
�(1) i ∈ A,

O(�) i ∈ I.

x∗
i
=

{
0 i ∈ A,

ci i ∈ I,
�∗
i
=

{
ci i ∈ A,

0 i ∈ I,

x
�

i
=

{
O(�) i ∈ A,

�(1) i ∈ I,
�
�

i
=

{
�(1) i ∈ A,

O(�) i ∈ I.

‖(x, �) − (x�, ��)‖ ≤
1

C5

‖F�(x, �)‖ ≤
C1

C5

�,



161

1 3

Approximate solution of system of linear equations

in consequence, the Schur complement of X in (2) becomes increasingly ill-condi-
tioned as � → 0 . These properties have been utilized by several authors before, e.g., 
in the development of preconditioners [10, 13]. The idea in this work is to exploit 
them and the additional property that (P) only has bound constraints to obtain partial 
or full approximate solutions of (2). In particular, by utilization of structure and the 
asymptotic behavior of coefficients in the arising systems of linear equations. With 
the partition (�xN ,��N) = (�xN

A
,�xN

I
,��N

A
,��N

I
) , (2) can be written as

where the first and second set in the matrix subscripts give the indices of rows and 
columns respectively. The Schur complement of XAA and XII in (5) is

By continuity of (x�, ��) it follows that xi → 0 , i ∈ A , and �i → 0 , i ∈ I  , as � → 0 . 
In consequence, XII and �AA dominate the coefficients of the third and fourth block 
of (5) for sufficiently small � under strict complementarity. Similarly X−1

AA
�AA dom-

inates the coefficients of the first block of (6). Consequently, approximate solutions 
of �xN

A
 and ��N

I
 can be obtained from the third and fourth block of (5), and of �xN

A
 

from the first block of (6). These approximates can then be inserted into (5), or (6), 
to obtain a reduced system of size |I| × |I| that involves HII . The solution of this 
system gives an approximation of �xN

I
 . These observations together with Lemma 4 

and Lemma 5 below provide the foundation for the results. The essence of Lemma 5 
is that the norm of the solution of (2) is bounded by a constant times �.

Lemma 5 Under Assumption 1, let B((x∗, �∗), �) and �̂� be defined by Lemma 1 and 
Lemma  2 respectively. For 0 < 𝜇 ≤ �̂� and (x, �) ∈ B((x∗, �∗), �), let (�xN ,��N) be 
the solution of (2) with �+ = ��, where 0 < 𝜎 < 1. If (x, �) is sufficiently close to 
(x�, ��) ∈ B((x∗, �∗), �) such that ‖F�(x, �)‖ = O(�) then

Proof By (2) it holds that

lim
�→0

x
�

i
= 0, i ∈ A, and lim

�→0
�
�

i
= 0, i ∈ I,

(5)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

HAA HAI −IAA

HIA HII − III

�AA XAA

�II XII

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�xN
A

�xN
I

��N
A

��N
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∇f (x)A − �A

∇f (x)I − �I

�AAXAAe − �e

�IIXIIe − �e

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(6)
⎡⎢⎢⎣

HAA + X−1
AA

�AA HAI

HIA HII + X−1
II
�II

⎤
⎥⎥⎦

⎡⎢⎢⎣

�xN
A

�xN
I

⎤
⎥⎥⎦
= −

⎡
⎢⎢⎣

∇f (x)A − �X−1
AA

e

∇f (x)I − �X−1
II
e

⎤
⎥⎥⎦
.

‖‖‖
(
�xN ,��N

)‖‖‖ = O(�).
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Continuity of F′ on B((x∗, �∗), �) implies that F�+ is Lipschitz continuous. Moreo-
ver, both (x, �) and (x�+

, ��
+

) belong to B((x∗, �∗), �) . Lipschitz continuity of F�+ and 
Lemma 1 yield

Addition and subtraction of (x�, ��) in the norm of the right-hand side give

where the second last inequality follows from Lemma 3 and Lipschitz continuity of 
(x�, ��) . The last inequality follows from ‖F�(x, �)‖ = O(�) , i.e., there exists a con-
stant C1 > 0 such that ‖F�(x, �)‖ ≤ C1� .   ◻

3.1  Partial approximate solutions

In this section we initially propose an approximate solution of �xN
A

 which origi-
nates from the Schur complement form (6). This approximate solution will be 
labeled with superscript “S” due to its origin. As � → 0 , the diagonal elements 
of the (1,1)-block become large and dominate the coefficients of the matrix under 
strict complementarity. In Proposition  1 we show that an approximate solution 
of �xN

A
 can be obtained by neglecting all off-diagonal coefficients in the the first 

block of (6). Thereafter, we propose another approximate solution of �xN
A

 , as well 
as one of ��N

I
 , which originate from the complementarity blocks of (5). These 

approximate solutions will be labeled with superscript “C” due to their origin. 
The solutions are obtained by neglecting the coefficients in the complementarity 
blocks which approach zero as � → 0 , i.e., those in XAA and �II  . The result-
ing partial approximate solutions are given below in Proposition 2. The essence 
of both results is that, under certain conditions, the asymptotic component error 
bounds are in the order of �2 . Finally we motive and propose two Newton-like 
approaches which we later on investigate numerically.

‖‖‖
(
�xN ,��N

)‖‖‖ =
‖‖‖F

�(x, �)−1F�+(x, �)
‖‖‖

= ‖‖F�(x, �)−1
[
F�+(x, �) − F�+(x�

+

, ��
+

)
]‖‖.

‖‖‖
(
�xN ,��N

)‖‖‖ ≤ MLF�+
‖‖(x, �) − (x�

+

, ��
+

)‖‖.

‖‖‖
(
�xN ,��N

)‖‖‖ ≤ MLF�+
‖‖(x, �) − (x�, ��) + (x�, ��) − (x�

+

, ��
+

)‖‖
≤ MLF�+

(‖‖(x, �) − (x�, ��)‖‖ + ‖‖(x�, ��) − (x�
+

, ��
+

)‖‖
)

≤ MLF�+

(
1

C5

‖‖F�(x, �)
‖‖ + C4(1 − �)�

)

≤ MLF�+

(
C1

C5

+ C4(1 − �)

)
�,
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Proposition 1 Under Assumption 1, let B((x∗, �∗), �) and �̂� be defined by Lemma 1 
and Lemma  2 respectively. For (x, �) ∈ B((x∗, �∗), �) , let (�xN ,��N) be the solu-
tion of (2) with �+ = �� , where 0 < 𝜎 < 1 . If the search direction components are 
defined as

then

Assume in addition that 0 < 𝜇 ≤ �̂� and (x, �) is sufficiently close to 
(x�, ��) ∈ B((x∗, �∗), �) such that ‖F�(x, �)‖ = O(�). Then there exists �̄� , with 
0 < �̄� ≤ �̂�, such that for 0 < 𝜇 ≤ �̄� it holds that

and

Proof The solution of (2) for �xN is equivalent to the solution of (6) where the i’th, 
i = 1,… , n , row is

If xi
[
∇2f (x)

]
ii
+ �i ≠ 0 then (11) can be written as

Subtraction of (12) from (7) gives (8). By Lemma 4 there exists �̄�3 , with 0 < �̄�3 ≤ �̂� 
such that the components of (x, �) satisfy (4). Due to the boundedness of f on 
B((x∗, �∗), �) there exists �̄�4 , with 0 < �̄�4 ≤ �̂� , such that (9) holds for 0 < 𝜇 ≤ �̄� 
with �̄� = min{�̄�3, �̄�4} . The result of (10) follows from application of Lemma 4 and 
Lemma 5 to (8) while taking (9) into account.  ◻

The approximate solution �xS in (7) of Proposition  1 and its corresponding 
component error (8) may be undefined for certain components. However, the 
essence is that the expressions are well-defined sufficiently close to the barrier 

(7)�xS
i
= −

xi[∇f (x)]i − �+

xi
[
∇2f (x)

]
ii
+ �i

, i = 1,… , n,

(8)�xS
i
− �xN

i
=

xi

xi
[
∇2f (x)

]
ii
+ �i

∑
i≠j

[
∇2f (x)

]
ij
�xN

j
, i = 1,… , n.

(9)
1

xi
[
∇2f (x)

]
ii
+ �i

= �(1), i = 1,… , n,

(10)|�xS
i
− �xN

i
| = O(�2), i ∈ A.

(11)
n∑
j≠i

[
∇2f (x)

]
ij
�xN

j
+

([
∇2f (x)

]
ii
+

�i

xi

)
�xN

i
= −

([
∇f (x)

]
i
−

�+

xi

)
.

(12)

�xN
i
=

xi

xi
[
∇2f (x)

]
ii
+ �i

(
−

([
∇f (x)

]
i
−

�+

xi

)
−

n∑
j≠i

[
∇2f (x)

]
ij
�xN

j

)

= −
xi[∇f (x)]i − �+

xi
[
∇2f (x)

]
ii
+ �i

−
xi

xi
[
∇2f (x)

]
ii
+ �i

n∑
j≠i

[
∇2f (x)

]
ij
�xN

j
.
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trajectory for sufficiently small � , as shown by (9). In particular the component 
errors of (10) are bounded by a constant times �2 only for components i ∈ A , 
although the expressions (7) and associated errors (8) hold for all components 
i = 1,… , n . An approximate solution that is guaranteed to have all its compo-
nents well-defined can be obtained from the complementarity blocks of (5). This 
approximate solution, and in addition an approximate solution of ��N

I
 , are given 

in the proposition below.

Proposition 2 Under Assumption 1, let B((x∗, �∗), �) and �̂� be defined by Lemma 1 
and Lemma  2 respectively. For (x, �) ∈ B((x∗, �∗), �) , let (�xN ,��N) be the solu-
tion of (2) with �+ = �� , where 0 < 𝜎 < 1 . If the search direction components are 
defined as 

 then 

Assume in addition that 0 < 𝜇 ≤ �̂� and (x, �) is sufficiently close to 
(x�, ��) ∈ B((x∗, �∗), �) such that ‖F�(x, �)‖ = O(�) . Then there exists �̄� , with 
0 < �̄� ≤ �̂� , such that for 0 < 𝜇 ≤ �̄� it holds that 

Proof The i’th, i = 1,… , n , row in the second block of (2) is

For xi > 0 , 𝜆i > 0 , i,… , n , it holds that 

(13a)�xC
i
= −xi +

�+

�i
, i = 1,… , n,

(13b)��C
i
= −�i +

�+

xi
, i = 1,… , n,

(14a)�xC
i
− �xN

i
=

xi

�i
��N

i
, i = 1,… , n,

(14b)��C
i
− ��N

i
=

�i

xi
�xN

i
, i = 1,… , n.

(15a)|�xC
i
− �xN

i
| = O(�2), i ∈ A,

(15b)|��C
i
− ��N

i
| = O(�2), i ∈ I.

�i�x
N
i
+ xi��

N
i
= −�ixi + �+,

(16a)�xN
i
= −xi +

�+

�i
−

xi

�i
��N

i
,
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 Subtraction of (16a) from (13a) and subtraction of (16b) from (13b) gives (14a) and 
(14b) respectively. By Lemma 4 there exists �̄� , with 0 < �̄� ≤ �̂� such that the compo-
nents of (x, �) satisfy (4) for 0 < 𝜇 ≤ �̄� . The result of (15) then follows from applica-
tion of Lemma 5 to (16) while taking (4) into account.  ◻

The expressions for �xC
i
 and ��C

i
 , (13a) and (13b) respectively, and their 

associated component errors (14a) and (14b) respectively, hold for all compo-
nents. The essence of the results in Proposition  2 is that the component errors 
are bounded by a constant times �2 only for certain components. Specifically, for 
�xC

i
 , i ∈ A , and ��C

i
 , i ∈ I  . Both �xS

i
 given by (7) and �xC

i
 given by (13a) pro-

vide approximate solutions of �xN
i

 , i ∈ A , with similar asymptotic error bounds. 
Note that the order of the approximation error, ‖�xA − �xN

A
‖ , is maintained even 

if some components i ∈ A are updated with (7) and others with (13a). Which 
expression to use can hence be chosen individually for each index i ∈ A . The fac-
tors in front of �xN

i
 and ��N

i
 , i = 1,… , n , in the component errors of (8) and (14) 

respectively may be used as an indicator for which of the approximations to use, 
and also whether either expression is likely to provide an accurate approximation. 
Note also that the approximate solution �xC given by (13a) does not take into 
account any information from the first block equation of (2), whereas �xS given 
by (7) includes information from both blocks.

Provided that the norm of the combined steps �xN
A

 and ��N
I

 is not smaller than 
the approximation error, then stepping in these components with (7) or (13) give 
a vector which is not further from the Newton iterate. This is formalized in Prop-
osition 3 below.

Proposition 3 Under Assumption  1, let B((x∗, �∗), �) and �̂� be defined by 
Lemma  1 and Lemma  2 respectively. For (x, �) ∈ B((x∗, �∗), �) , define 
(xN

+
, �N

+
) = (x, �) + (�xN ,��N) where (�xN ,��N) is the solution of (2) with �+ = �� , 

where 0 < 𝜎 < 1. Moreover, let (x+, �+) = (x, �) + (�x,��) where

with �xC
i
 , ��C

i
 and �xS

i
 given by (13) and (7) respectively. Assume that 

0 < 𝜇 ≤ �̂� , ‖(�xN
A
,��N

I
)‖ = �(�� ) for 0 ≤ 𝛾 < 2 , and (x, �) is sufficiently close 

to (x�, ��) ∈ B((x∗, �∗), �) such that ‖F�(x, �)‖ = O(�). Then there exists �̄�, with 
0 < �̄� ≤ �̂�, such that for 0 < 𝜇 ≤ �̄� it holds that

Proof With (�x,��) defined as in (17) of the proposition it holds that

(16b)��N
i
= −�i +

�+

xi
−

�i

xi
�xN

i
.

(17)�xi =

{
�xS

i
or �xC

i
i ∈ A,

0 i ∈ I,
��i =

{
0 i ∈ A,

��C
i
i ∈ I,

(18)‖(xN
+
, �N

+
) − (x+, �+)‖ ≤ ‖(xN

+
, �N

+
) − (x, �)‖.
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By Proposition  1 and Proposition  2 there exists �̄�5 and �̄�6 respectively, 
with 0 < �̄�i ≤ �̂� , i = 5, 6, such that for �xi equal to �xS

i
or �xC

i
 it holds that 

|�xi − �xN
i
| = O(�2) , i ∈ A , for 0 < 𝜇 ≤ min{�̄�5, �̄�6} . By Proposition 2 it also holds 

that |��C
i
− ��N

i
| = O(�2) , i ∈ I  , for 0 < 𝜇 ≤ �̄�6 . Hence, for 0 < 𝜇 ≤ min{�̄�5, �̄�6} , 

there exist constants C7 > 0 and C8 > 0 , where C8 comes from the condition 
‖(�xN

A
,��N

I
)‖ = �(�� ) , 0 ≤ 𝛾 < 2 , such that

The right-hand side of (20) is non-positive for 0 < 𝜇 ≤ (C8∕C7)
1

2−𝛾 , 0 ≤ 𝛾 < 2 . Com-
bining (19)–(20) with �̄� = min{�̄�5, �̄�6, (C8∕C7)

1

2−𝛾 } gives the result.   ◻

The partial approximate solution (17) of Proposition 3 is computationally inex-
pensive compared to solving (2). In consequence, (18) motivates the study of New-
ton-like approaches which make use of (17). We will construct two such approaches 
where the idea is to utilize the intermediate iterate

with (�xE,��E) as in (17). It is thus only the active components of x and inactive 
components of � that is updated in the step to (xE, �E) . For simplicity we describe 
the ideas for unit step length, in practice the iterates would be required to be strictly 
feasible.

The first approach is based on the fact that solving a Newton system from the iter-
ate (xE, �E) provides potential improvement, provided that (xE, �E) is strictly feasible 
and lies in B((x∗, �∗), �) . A full iteration in the approach consists of the approximate 
intermediate step (21) together with the solution of

and the step (xE + �x, �E + ��).
The idea of the second approach is to update the coefficients in the complementa-

rity blocks of the matrix in (2). The approach may hence under strict complementa-
rity be interpreted as an approximate higher-order method. A full iteration consists 
of the step (21), the solution of

where �E = diag (�E) and XE = diag (xE) , together with the step (x + �x, � + ��) . 
The approach may hence also be interpreted as a modified Newton method where 
the Jacobian of each Newton system is altered.

(19)

‖(xN
+
, �N

+
) − (x+, �+)‖2 − ‖(xN

+
, �N

+
) − (x, �)‖2

= ‖(�xN − �x,��N − ��)‖2 − ‖(�xN ,��N)‖2
= ‖(�xN

A
− �xA,��

N
I
− ��I)‖2 − ‖(�xN

A
,��N

I
)‖2.

(20)‖(�xN
A
− �xA,��

N
I
− ��I)‖2 − ‖(�xN

A
,��N

I
)‖2 ≤ C2

7
�4 − C2

8
�2� .

(21)(xE, �E) = (x + �xE, � + ��E),

(22)F�(xE, �E)

[
�x

��

]
= −F�(x

E, �E),

(23)
[
H − I

�E XE

] [
�x

��

]
= −F�(x, �),
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Numerical results for the approximate intermediate step and the approximate 
higher-order approach are shown in Sect. 4. The results are for bound-constrained 
quadratic optimization problems where strict complementarity typically does 
not hold. The complexity of each iteration in both approaches is the same as with 
Newton’s method. The hope is thus to reduce the total number of iteration neces-
sary for convergence. See the work by Gondzio and Sobral [14] for quasi-Newton 
approaches for quadratic problems where each iteration is inexpensive in compari-
son to the approaches above.

3.2  Full approximate solution

In this section we propose approximate solutions of (2) that, in the considered frame-
work, have an asymptotic error bound in the order of �2 . The full approximate solutions 
are obtained by utilizing either of the partial approximate solutions of �xN

A
 in Proposi-

tion 1 or Proposition 2 while exploiting structure in the systems that arise. Specifically, 
suppose that an approximate �xA is given, e.g., �xS

A
 given by (7) or �xC

A
 given by (13a). 

Insertion of the approximate �xA into (5) yields

where the solution is given the superscript “ls” since it will lead to a least squares 
system. The second and fourth block of (24) provide unique solutions of �xls

I
 and 

��ls
I
 which satisfy

The solution of (25) can be obtained by first solving with the Schur complement of 
XII

and then

Note that (26) can also be obtained by insertion of the given �xA into the second 
block of (6). The matrix of (26) is by Assumption 1 a symmetric positive definite 
(|I| × |I|)-matrix. Moreover, the matrix does not become increasingly ill-condi-
tioned due to large elements in X−1� , under strict complementarity as � → 0 , in 

(24)

⎡⎢⎢⎢⎢⎣

HAI − IAA

HII − III

XAA

�II XII

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

�xls
I

��ls
A

��ls
I

⎤⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∇f (x)A − �A + HAA�xA

∇f (x)I − �I + HIA�xA

�AAXAAe − �e + �AA�xA

�IIXIIe − �e

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)
⎡⎢⎢⎣

HII − III

�II XII

⎤
⎥⎥⎦

⎡⎢⎢⎣

�xls
I

��ls
I

⎤
⎥⎥⎦
= −

⎡
⎢⎢⎣

∇f (x)I − �I + HIA�xA

�IIXIIe − �e

⎤
⎥⎥⎦
.

(26)
(
HII + X−1

II
�II

)
�xls

I
= −

(
∇f (x)I + HIA�xA

)
+ �X−1

II
e,

(27)��ls
I
= −X−1

II

(
�IIXIIe − �e

)
− X−1

II
�II�x

ls
I
.
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contrast to the matrix of (6). The remanding part of the solution of (24), that is ��ls
A

 , 
is then given by

If the approximate �xA is exact, i.e., if �xA = �xN
A

 , then �xls
I
= �xN

I
 by (26). In con-

sequence, the over-determined system (28) has a unique solution that satisfies all 
equations, i.e., ��ls

A
 is the corresponding part of the solution to (2). The solutions 

corresponding to the first and second block equation of (28) will be assigned super-
scripts “b” and “−” respectively. These are given by 

and

 Alternatively, ��ls
A
 can be obtained as the least squares solution of (28) that is

In Theorem 1 it is shown that, under certain conditions, both ��b
A

 given by (29a) and 
��ls

A
 given by (30) can be used to approximate ��N

A
 without affecting the order of the 

asymptotic error. Note however that this is not true for ��−
A

 given by (29b) due to the 
last term that contains X−1

AA
 in combination with approximation error.

Theorem 1 Under Assumption 1, let B((x∗, �∗), �) and �̂� be defined by Lemma 1 and 
Lemma  2 respectively. For 0 < 𝜇 ≤ �̂� and (x, �) ∈ B((x∗, �∗), �), let (�xN ,��N) be 
the solution of (2) with �+ = ��, where 0 < 𝜎 < 1 . Moreover, let the search direc-
tion components be defined as

where �xS
i
 is given by (7), �xC

i
 by (13a), �xls

i
 by (26), ��ls

i
 by (30), ��b

i
 by (29a), 

��ls
i
 by (27) and ��C

i
 by (13b). Assume that 0 < 𝜇 ≤ �̂� and (x, �) is sufficiently close 

to (x�, ��) ∈ B((x∗, �∗), �) such that ‖F�(x, �)‖ = O(�) . Then there exists �̄�, with 
0 < �̄� ≤ �̂� , such that for 0 < 𝜇 ≤ �̄� it holds that

Proof Similarly as in the proof of Proposition 3. By Proposition 1 and Proposition 2 
there exists �̄�5 and �̄�6 respectively, with 0 < �̄�i ≤ �̂� , i = 5, 6, such that for �xi equal 
to �xS

i
or �xC

i
 it holds that |�xi − �xN

i
| = O(�2) , i ∈ A , for 0 < 𝜇 ≤ min{�̄�5, �̄�6} . In 

(28)
[
−IAA

XAA

]
��ls

A
= −

[
∇f (x)A + �A + HAA�xA + HAI�x

ls
I

�AAXAAe − �e + �AA�xA

]
.

(29a)��b
A
= ∇f (x)A + �A + HAA�xA + HAI�x

ls
I
,

(29b)��−
A
= −�A + �X−1

AA
e − X−1

AA
�AA�xA.

(30)
��ls

A
=
(
IAA + X2

AA

)−1[
∇f (x)A + �A + HAA�xA + HAI�x

ls
I

− XAA

(
�AAXAAe − �e + �AA�xA

)]
.

�xi =

{
�xS

i
or �xC

i
i ∈ A,

�xls
i

i ∈ I,
��i =

{
��ls

i
or ��b

i
i ∈ A,

��ls
i
or ��C

i
i ∈ I,

‖‖‖(�x,��) − (�xN ,��N)
‖‖‖ = O(�2).
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consequence it follows that ‖�xA − �xN
A
‖ = O(�2) , 0 < 𝜇 ≤ min{�̄�5, �̄�6} . By Propo-

sition 2 it also holds that |��C
i
− ��N

i
| = O(�2) , i ∈ I  , 0 < 𝜇 ≤ �̄�6 . The backward 

error with �xls
I
 as given in (26) is

which gives

Due to the assumption on f the elements of HIA are bounded. Moreover, the small-
est singular value of HII + X−1

II
�II is bounded away from zero since the matrix 

is positive definite by Assumption 1. Hence it follows that ‖�xls
I
− �xN

I
‖ = O(�2) , 

0 < 𝜇 ≤ min{�̄�5, �̄�6} . Note that ��N
I

 is the solution of (27) with �xN
I

 . Subtrac-
tion of (27), with �xN

I
 , from (27) with the approximated solution �xls

I
 gives 

��ls
I
− ��N

I
= −X−1

II
�II

(
�xls

I
− �xN

I

)
 , and hence

By Lemma  4 it holds that ‖X−1
II
�II‖ = O(�) , 0 < 𝜇 ≤ max{�̄�5, �̄�6} . 

With ‖�xls
I
− �xN

I
‖ = O(�2) , 0 < 𝜇 ≤ min{�̄�5, �̄�6} it then follows that 

‖��ls
I
− ��N

I
‖ = O(�3) , and also |��ls

i
− ��N

i
| = O(�3) , i ∈ I  , 0 < 𝜇 ≤ min{�̄�5, �̄�6} . 

Similarly, ��N
A

 is the solution to (30) with �xN
A

 and �xN
I

 . Subtraction of (30), with 
�xN

A
 and �xN

I
 , from (30) with the approximated solutions gives

The the largest singular value of 
(
IAA + X2

AA

)−1 is bounded by 1 and hence

The elements of HAA and HAI are bounded and by Lemma  4 it holds 
that ‖XAA�AA‖ = O(�) , 0 < 𝜇 ≤ max{�̄�5, �̄�6} . Thus it follows that 
‖��ls

A
− ��N

A
‖ = O(�2) , and also |��ls

i
− ��N

i
| = O(�2) , i ∈ A , 0 < 𝜇 ≤ min{�̄�5, �̄�6} . 

Similarly, (29a) gives the backward error

Hence

from which it follows that ‖��b
A
− ��N

A
‖ = O(�2) , and also |��b

i
− ��N

i
| = O(�2) , 

i ∈ A , 0 < 𝜇 ≤ min{�̄�5, �̄�6} . Thus the result holds for �̄� = min{�̄�5, �̄�6} .   ◻

�xls
I
− �xN

I
= −

(
HII + X−1

II
�II

)−1
HIA

(
�xA − �xN

A

)
,

����x
ls
I
− �xN

I

��� ≤ ‖�HII + X−1
II
�II

�−1‖‖HIA‖‖�xA − �xN
A
‖

≤
1

�min
�
HII + X−1

II
�II

�‖HIA‖‖�xA − �xN
A
‖.

‖��ls
I
− ��N

I
‖ ≤ ‖X−1

II
�II‖‖�xlsI − �xN

I
‖.

(
IAA + X2

AA

)(
��ls

A
− ��N

A

)
=
(
HAA − XAA�AA

)(
�xA − �xN

A

)

+ HAI

(
�xls

I
− �xN

I

)
.

‖��ls
A
− ��N

A
‖ ≤

�‖HAA‖ + ‖XAA�AA‖
�‖�xA − �xN

A
‖ + ‖HAI‖‖�xlsI − �xN

I
‖.

��b
A
− ��N

A
= HAA

(
�xA − �xN

A

)
+ HAI

(
�xls

I
− �xN

I

)
.

‖��b
A
− ��N

A
‖ ≤ ‖HAA‖‖�xA − �xN

A
‖ + ‖HAI‖‖�xlsI − �xN

I
‖,
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Information is discarded in the calculation of the components �xS
i
 , �xC

i
 , i ∈ A , 

and ��C
i
 , i ∈ I  , with (7) and (13) respectively. The equations for the approximate 

solution in Theorem 1 show that it is essential to obtain a good approximate solution 
of �xN

A
 . It is the error in the approximate solution of �xN

A
 that propagates through the 

suggested solutions labeled with ls and b. In contrast to all other components of the 
proposed full approximate solution, ��ls

i
 , i ∈ I  , actually have asymptotic component 

error bounds in the order of magnitude �3 , as can be seen in the proof of Theorem 1.
In general the active and inactive sets at the optimal solution are unknown and 

have to be estimated as the iterations proceed. The quality of the approximate solu-
tion of �xN

A
 will hence also depend on these estimates. There is a trade-off when 

estimating the set of active constraints. A restrictive strategy may lead to a more 
accurate approximate �xA . However, it increases the cardinality of the inactive set 
and in consequence the size of the system (26) that needs to be solved at each itera-
tion. In theory, the cardinality of the inactive set is determined by the number of 
inactive constraints at the solution of the specific problem, whereas in practice it is 
determined by the estimate. The size of the system that needs to be solved at each 
iteration may thus range from 0 to n. A restrictive strategy may also increase the 
size of some coefficients in the diagonal of the matrix of (26), or (43) in the general 
case, which may increase the condition number. A generous strategy on the other 
hand, decreases the size of the system that has to be solved but may increase the 
error in the approximate �xA , which then propagates to other components of the 
approximate solution. In the ideal case with the true inactive set, then (25) and (26) 
are composed by the inactive parts of (2), or equivalently (5), and (6) respectively. 
Consequently, the inactive part of the Schur complement in (26) does not become 
increasingly ill-conditioned due to � approaching zero, in contrast to the complete 
Schur complement in (6). However, in practice the behavior will be dependent on an 
estimate of the inactive set.

Note also that the system that needs to be solved for the full approximate solu-
tion has the same structure as the original one. In consequence, our analysis may be 
interpreted in the framework of previous work on stability and effects of finite-preci-
sion arithmetic for interior-point methods, e.g., [11, 31–33]. In the case of quadratic 
problems, see also [23].

To increase the comprehensibility of the work we have described the theoreti-
cal foundation for problems on the form (P). Analogous results for problems on 
the more general form (NLP) together with complementary remarks are given in 
“Appendix A”.

4  Numerical results

As an initial numerical study we consider convex quadratic optimization problems 
with lower and upper bounds. In particular, randomly generated problems and a 
selection from the corresponding class in the CUTEst test collection [16]. The mini-
mizers of the randomly generated problems satisfy strict complementarity, whereas 
the minimizers of the CUTEst problems typically do not. The simulations were 
done in Julia and all systems of linear equations were solved by its built-in solver. 
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Moreover, the benchmark problems were initially processed using the packages 
CUTEst.jl and NLPmodels.jl by Orban and Siqueira [25].

The purpose of the first part of this section is to compare the proposed approximate 
solutions in Theorem 2. The intent is also to give a rough indication of how the approx-
imation errors develop for practical values of � . A setting is considered where the vec-
tor (x, �) , that satisfies ‖F𝜇(x, 𝜆)‖ < 𝜇 , is found by an interior-point method. Thereafter, 
� is decreased by a factor � = 0.1 to �+ = �� and the approximate solution of (2) is 
calculated. This procedure was then repeated for different values of � . Mean errors with 
one standard deviation error bars for the proposed approximate solutions are shown 
in Fig. 1. As mentioned, the results are for the approximate solutions given in Theo-
rem 2 of “Appendix A” since the problems in general include lower and upper bounds. 
In order to avoid double subscripts in the approximates, we have throughout this sec-
tion omitted the second subscript. Furthermore, �xS

A
 was used in the equations which 

require an initial approximation of �xN
A

 . Figure 1 also shows the mean improvement in 
terms of the measure ‖F�+‖ for two new iterates (xS

+
, �S

+
) and (xC

+
, �C

+
) defined by
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Fig. 1  Mean approximation error and mean progress with measure ‖F�+‖ with one standard deviation 
error bars for randomly generated quadratic problems. The top and the bottom correspond to problems 
where approximately 3/4 and 1/4 of the variables respectively are inactive at the solution
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with step lengths �P and �D as in Algorithm 1. Specifically, the search direction is 
composed by (35) or (36) combined with (43), (47) and (44). The figure also con-
tains the mean improvement of the Newton iterate (xN

+
, �N

+
) , which is defined anal-

ogously. The results are for 102 randomly generated problems, with 103 variables, 
whose minimizers satisfy (31). For each problem, both the specific bounds as well 
as the specific active and inactive constraints were chosen by random. Moreover, 
the elements of the Hessian were uniformly distributed around zero with a sparsity 
level corresponding to approximately 40% non-zero elements. The condition num-
bers were in the order of magnitude 107–1010 and the largest singular values in the 
order of magnitude of 103.

The least accurate approximate solutions in Fig.  1 are those corresponding to 
active � and inactive x. This is anticipated as their error bounds rely more heavily 
on the size of the elements of H. Moreover, it can be seen that ��ls

I
 is favorable over 

��C
I
 for the problems considered. This is anticipated as ��ls

I
 has asymptotic error 

bounds in the order of magnitude �3 , in contrast to the bounds corresponding to 
��C

I
 which is in the order of magnitude �2 , as mentioned in Sect. 3.2. In general, 

Fig. 1 gives an indication of what equation that is favorable for each partial approxi-
mate solution if one is to be chosen. However, as mentioned, more sophisticated 
choices can be made by carefully considering the known quantities in the individual 
error terms for specific components. The right side of Fig. 1 shows that the iterates 
(xS

+
, �S

+
) and (xC

+
, �C

+
) perform similar to (xN

+
, �N

+
) in terms of the measure ‖F�+‖ for a 

wide range of � . The error bars show that the results are not sensitive to changes in 
specific bounds, which of the constraints are active/inactive or different initial solu-
tions. Numerical simulations have shown, as the theory also predicts, that the results 
can be improved (or dis-improved) by increasing (or decreasing) the size of the coef-
ficients of the matrix H as well as its sparsity level.

Next we show results for a selection of problems in the CUTEst test collection in 
the analogous setting. In the problems with variable options, the number of primal 
variables, nx , was typically chosen to approximately 5000, resulting in a total num-
ber of primal-dual variables in the order of 104 . The number of primal variables of 
each specific problem is shown in Table 1. Each problem was initially solved by an 
interior-point method with stopping criterion ‖F0(x, 𝜆)‖ < 10−14 , i.e., the first-order 
optimality conditions given by (32) for � = 0 . This was to determine the selection 
of problems as well as estimates of the active and inactive sets. Problems with an 
unconstrained optimal solution or an optimal solution with only degenerate active 
constraints were not considered. In the first case the proposed approximate solu-
tions are equivalent to the true solution. In the second case it is not clear how to 
deduce active/inactive sets. A constraint was considered as active if the correspond-
ing variable was closer than 10−10 to its bound. An active constraint was deemed 
degenerate if the corresponding multiplier value was below 10−6 . An exception 
was made for problem ODNAMUR, due to its larger size, for which the tolerances 
above were increased by a factor of 101 and 102 . Figure 2 shows mean errors with the 

(xS,C
+

, �S,C
+

) = (x + �P�x, � + �D��), (�x,��) =

((
�x

S,C

A

�xls
I

)
,

(
��ls

A

��ls
I

))
,
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approximate solutions of Theorem 2 on each CUTEst problem. The results are for 
three different values of � with 10 different random initial solutions. The figure also 
shows the measure ‖F�+‖ for (x, �) , (xS

+
, �S

+
) , (xC

+
, �C

+
) and (xN

+
, �N

+
) . Simulations with 

the set estimation heuristic above have shown that the behavior of the approximate 
solution varies in three different regions depending on � . These regions are approxi-
mately, [102, 10−2) , [10−2, 10−6] and (10−6, 0) . The �-values in Fig. 2 correspond to 
representative behavior in their respective region. The problems are ordered such 
that the fraction of estimated active constraints at the solution decreases from left to 
right.

The partial approximate solution errors in Fig.  2 are significantly larger com-
pared to those of Fig. 1. This is expected since the optimal solutions of the CUT-
Est test problems typically do not satisfy strict complementarity. Moreover, with 
the above strategy for determining the active and inactive sets, the smallest active 
multipliers may be in the order of 10−5 . Small active multipliers may cause inac-
curate components in the approximate solution of �xN

A
 . Nevertheless, the approxi-

mate solutions perform asymptotically similar to the Newton solution in terms of 
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Fig. 2  Mean approximation error and mean progress with measure ‖F�+‖ with one standard deviation 
error bars for a collection of CUTEst test problems
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Table 1  Comparison of Algorithm 1, ( � ), and two versions of Algorithm 2 ( ��� and ��� ) on a selection 
of CUTEst test problems

� 10

1

10

0

10

−2
10

−3
10

−5
10

−6
10

−8
10

−9
10

−10

CVXBQP1
nx = 10000

� 3 3 2 1 1 1 1 1 1
��

� 3 2 2 1 1 1 1 1 1

��
� 4 2 1 1 1 1 1 1 1

|ĪS
x
| 0 0 0 0 0 0 0 0 0

|ĪC
x
| 0 0 0 0 0 0 0 0 0

DEGDIAG
nx = 10001

� 4 4 3 3 3 3 2 2 2
��

� 4 4 3 3 3 3 2 2 2

��
� 12 7 42 5 3 3 2 2 2

|ĪS
x
| 1 1 830 635 195 93 28 13 6

|ĪC
x
| 1 142 93 709 428 237 100 56 32

HARKERP2
nx = 1000

� 3 3 4 3 3 3 2 2 1
��

� – – – – 15 6 2 1 1

��
� – – – 2 15 6 2 1 1

|ĪS
x
| – – – – 1 1 1 1 1

|ĪC
x
| – – – 1 1 1 1 1 1

TORSION5a

nx = 5184
� 1 1 2 3 3 3 3 2 2
��

� 1 1 2 3 3 4 3 2 2

��
� 29 – – – 3 3 3 2 2

|ĪS
x
| 0 0 2564 4535 5083 2802 2277 968 960

|ĪC
x
| 0 – – – 5101 5064 2376 2944 2936

TORSIONEa

nx = 5184
� 1 1 2 3 3 3 3 2 2
��

� 1 1 2 3 3 4 3 2 2

��
� 29 – – – 3 3 3 2 2

|ĪS
x
| 0 0 2564 4535 5171 2872 2379 984 976

|ĪC
x
| 0 – – – 5184 5171 2387 3080 3080

TORSION3a

nx = 5184
� 1 1 2 2 4 3 3 3 3
��

� 1 1 2 3 4 3 3 3 3

��
� 29 – – – 4 3 3 3 3

|ĪS
x
| 0 0 2564 4535 5062 4933 2931 2867 1872

|ĪC
x
| 0 – – – 5184 5069 4008 3035 2931

TORSIONCa

nx = 5184
� 1 1 2 2 3 3 3 3 3
��

� 1 1 2 3 3 3 3 3 3

��
� 29 – – – 3 3 3 3 3

|ĪS
x
| 0 0 2564 4535 5184 5104 3043 2976 1907

|ĪC
x
| 0 – – – 5184 5179 4109 3059 3040
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Table 1  (continued)

� 10

1

10

0

10

−2
10

−3
10

−5
10

−6
10

−8
10

−9
10

−10

PENTDI
nx = 5000

� 4 4 4 4 4 4 4 4 4

��
� 6 7 7 7 5 4 4 4 4

��
� – – – – 4 4 4 4 4

|ĪS
x
| 0 0 2 2 1000 1873 2498 2498 2498

|ĪC
x
| – – – – 2498 2498 2498 2498 2498

CHENHARK
nx = 5000

� 4 4 4 4 4 4 4 3 3
��

� 4 4 4 4 4 4 4 3 3

��
� 4 – 4 4 4 4 4 3 3

|ĪS
x
| 4999 4567 2502 2502 2502 2502 2502 2502 2502

|ĪC
x
| 4999 – 2502 2502 2502 2502 2502 2502 2502

JNLBRNGB
nx = 5329

� 4 4 4 3 3 3 3 2 2
��

� 6 15 16 19 20 9 3 2 2

��
� – – – – 3 3 3 2 2

|ĪS
x
| 5196 5171 5157 5190 3220 3291 3111 3063 3026

|ĪC
x
| – – – – 4899 4182 3843 3758 3283

OBSTCLAEa

nx = 5329
� 4 4 4 4 3 3 3 3 2
��

� 4 4 4 4 5 4 3 3 2

��
� 4 4 4 4 3 3 3 3 2

|ĪS
x
| 5329 5329 5329 5329 5063 4153 3766 3268 2978

|ĪC
x
| 5329 5329 5329 5329 5290 5313 4539 3786 4158

JNLBRNG2
nx = 5329

� 4 4 4 3 3 3 3 2 2
��

� 5 9 11 9 11 6 3 2 2

��
� – – – – 3 3 3 2 2

|ĪS
x
| 5206 5177 5187 5217 3561 3622 3315 3270 3232

|ĪC
x
| – – – – 4736 4297 3981 3861 3450

OBSTCLBLa

nx = 5329
� 1 1 2 3 3 3 3 3 2
��

� 1 1 3 6 4 3 3 3 2

��
� 24 – – – 3 3 3 3 2

|ĪS
x
| 0 0 1121 3190 4469 4318 3950 3903 3880

|ĪC
x
| 0 – – – 4862 4515 4212 4077 4002

JNLBRNGA
nx = 5329

� 4 4 4 4 3 3 3 3 2
��

� 4 4 4 4 3 3 3 3 2

��
� 4 4 4 4 3 3 3 3 2

|ĪS
x
| 5329 5329 5329 5329 5329 4991 4257 3985 3718

|ĪC
x
| 5329 5329 5329 5329 5329 5279 4728 4381 4506
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Table 1  (continued)

� 10

1

10

0

10

−2
10

−3
10

−5
10

−6
10

−8
10

−9
10

−10

TORSION1a

nx = 5184
� 1 1 1 2 4 3 3 3 3

��
� 1 1 1 2 4 3 3 3 3

��
� 29 – – – 4 3 3 3 3

|ĪS
x
| 0 0 1764 4490 5098 5032 4133 4040 4024

|ĪC
x
| 0 – – – 5184 5061 5011 4968 4080

JNLBRNG1
nx = 5329

� 4 4 4 4 3 3 3 3 2
��

� 4 5 6 5 3 4 3 3 2

��
� 10 – 39 – 3 3 3 3 2

|ĪS
x
| 5322 5319 5319 5320 5329 4972 4331 4028 3800

|ĪC
x
| 5312 – 5319 – 5329 5283 4993 4446 4536

TORSIONAa

nx = 5184
� 1 1 1 2 4 3 3 3 2
��

� 1 1 1 2 4 3 3 3 2

��
� 29 – – – 4 3 3 3 2

|ĪS
x
| 0 0 1764 4490 5184 5184 4261 4173 4416

|ĪC
x
| 0 – – – 5184 5184 5168 5125 4444

OSLBQP
nx = 8

� 2 3 3 2 2 3 3 2 3
��

� 2 3 3 2 2 3 3 2 3

��
� 4 5 2 3 3 2 2 3 2

|ĪS
x
| 4 2 4 6 6 6 6 6 6

|ĪC
x
| 1 2 6 6 6 6 6 6 6

BQPGABIM
nx = 46

� 1 2 3 3 3 3 2 2 1
��

� 1 3 9 7 3 3 2 2 1

��
� – – – – – – 2 2 1

|ĪS
x
| 0 0 4 24 29 31 37 36 36

|ĪC
x
| – – – – – – 39 38 38

BQPGASIM
nx = 50

� 1 2 3 3 3 3 2 2 2
��

� 1 3 10 7 3 3 2 2 2

��
� – – – – – – 2 2 2

|ĪS
x
| 0 0 4 27 32 34 41 42 42

|ĪC
x
| – – – – – – 43 42 42

NOBNDTOR
nx = 5184

� 1 1 2 2 4 4 3 3 2
��

� 1 1 2 2 4 4 3 3 2

��
� 21 – – – 4 4 3 3 2

|ĪS
x
| 2592 2592 3874 4837 5132 5107 4621 4570 4681

|ĪC
x
| 2592 – – – 5183 5148 5077 5050 4704
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the measure ‖F�+‖ , as shown in Fig. 2. The figure also shows that the approxima-
tion error and the progress measure are not particularly sensitive to different initial 
solutions for smaller � , whereas some effects can be seen for larger � . The results 
may be improved and dis-improved depending on how the estimation of the active 
constraints at the solution is made. We chose to give the results for the strategy 
described above which gives a potentially significant reduction in the computational 
iteration cost.

In practice the active constraints at the optimal solution are unknown and have 
to be estimated as the iterations proceed. The purpose of the following simula-
tions is to give an initial indication of the performance of the proposed approxi-
mate solutions within a primal-dual interior-point framework. In particular, we 
focus on the behavior on problems that do not satisfy the assumptions for which 
the theoretical results are valid, but also on the robustness in regards to how the 
set of active constraints is estimated. Algorithm 1 and 2 were considered with the 
aim of not drowning, or combining, approximation effects with other effects from 
more advanced features in more sophisticated methods. Algorithm 1 should here 
be seen as the reference method as it only contains Newton steps. 

Table 1  (continued)

� 10

1

10

0

10

−2
10

−3
10

−5
10

−6
10

−8
10

−9
10

−10

BIGGSB
nx = 5000

� 1 1 2 3 3 3 4 4 4

��
� 1 1 4 3 3 3 4 4 4

��
� 11 13 2 3 3 3 4 4 4

|ĪS
x
| 1 1 4999 4999 4998 4998 4998 4998 4998

|ĪC
x
| 1 1 5000 4999 4998 4998 4998 4998 4998

a The tables would be identical for other versions of the same problem and are therefore omitted
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At iteration k of Algorithm 1 and Algorithm 2, �P
max,k

 and �D
max,k

 are the maxi-
mum feasible step lengths for xk along �xk and �k along ��k respectively. Table 1 
contains a comparison of Algorithm  1 and two versions of Algorithm  2 which 
differ in how �xA is computed. The versions are denoted by ��� and ��� as they 
use the approximates �xS

A
 and �xC

A
 respectively. In Algorithm 2, a constraint was 

considered active if the distance to its bound was smaller than the value of its 
multiplier and a threshold �A . The procedure is thus a basic heuristic aimed at 
determining the non-degenerate active constraints. In essence, the heuristic gives 
an estimate of set Ax , compare to Definition  4 in the theoretical setting. The 
thresholds of the two versions ��� and ��� were chosen to �A = �2∕3 and the more 
restrictive �A = �3∕4 respectively. This was done to show the effects of two differ-
ent thresholds �A , but also because numerical experiments have shown that steps 
with Schur-based approximation are more robust at larger � , see Fig. 2. Table 1 
gives a comparison of the number of iterations for different values of � as well 
as the average cardinality of Ix , the set of indices corresponding to the estimated 
inactive components of x, i.e., the size of the systems that has to be solved in 
every iteration. The symbol “–” denotes the situation when the method failed to 
converge within 50 iterations for the corresponding � . If the method failed at a 
specific � then Newton steps were performed instead until ‖F𝜇(x, 𝜆)‖ < 𝜇 . The 
order of the problems is the same as in Fig. 2.

The results in Table 1 display similar characteristics as the results in Fig.  2. 
The version associated with the Schur-based approximate solution, ��� of Algo-
rithm  2, makes sufficient progress at � ∈ [102, 10−2) , often at a relatively low 
computational cost. Version ��� converges at � ∈ [10−2, 10−6] , however, often 
while solving relatively large systems due to the difficulty of estimating Ax . At 
� ∈ (10−6, 0) the asymptotic behavior becomes more pronounced. Consequently, 
��

� does similar in terms of iteration count to Algorithm  1 while solving sys-
tems of reduced size. Version ��� converges at all considered � in all problems 
of Table 1, except on HARKERP2 for larger � . The version associated with the 
complementarity-based approximate solution, ��� of Algorithm  2, tend to per-
form poorly overall for � ∈ [102, 10−2) and parts of [10−2, 10−6] . Although ��� 
converges for large � , this is often at the expense of either solving relatively large 
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systems or performing many iterations. In general, ��� performs similar to Algo-
rithm 1 for � in the approximate region [10−5, 0) while solving systems of reduced 
size. The versions ��� and ��� have similar asymptotic performance, however in 
general, ��� performs better for larger values of � , as also indicated by previous 
results in Fig. 2.

Finally we show results for the two Newton-like approaches, mentioned in 
Sect. 3.1, in a simple primal-dual interior-point setting. The approximate intermedi-
ate step method and the approximate higher-order method are described in Algo-
rithm 3 and Algorithm 4 respectively. In contrast to Sect. 3.1, here the intermediate 
iterate is required to be strictly feasible. The total number of iterations required at 

Table 2  Thresholds and nonzero 
components of the steps to 
(xE , �E) for the three versions 
compared in Fig. 3

Nonzero components in (�xE ,��E) �A �I

�xS
A

�1∕2

�xS
A

 , ��C
I

�1∕2 �3∕4

�xC
A

 , ��C
I

�3∕4 �3∕4
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Fig. 3  Number of iterations required at different intervals of � for three versions of the Newton-like 
approaches and Algorithm 1, (Newton)
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different intervals of � with the two Newton-like approaches is shown in Fig. 3. The 
figure shows results for three different choices of (�xE,��E) . Moreover, the selection 
of which components to update was done as the iterations proceeded similarly as 
above. Note however that it is not necessary to label each constraint and each com-
ponent of � as active or inactive in this case, some may be defined as neither. The 
set of indices corresponding to active constraints, Ax , was estimated as above and 
the sets of indices corresponding to inactive � , Il and Iu , see Definition 4, were esti-
mated analogously. I.e., a multiplier was considered inactive if its value was smaller 
than the distance of the corresponding x to its feasibility bound and a threshold �I . 
Table 2 shows how the nonzero components of (�xE,��E) were chosen in the differ-
ent versions of the approaches as well as the different thresholds �A and �I . 
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In Algorithm 3 and Algorithm 4 at iteration k, �P
max,k

 , �D
max,k

 , �E,P

max,k
 and �E,D

max,k
 are 

for the prescribed steps defined analogously as in Algorithm 1.
The total iteration count for � ∈ [101, 10−10] in Fig. 3 shows that the approxi-

mate higher-order approach requires the same, or fewer iterations, compared to 
the approach with the approximate intermediate step. The iteration count for the 
approaches with the Schur-based approximate is similar to that of Algorithm  1 
for this range of � . Also here, numerical experiments show indications of three 
regions. For � in the approximate region [101, 10−2) , the versions with the Schur-
based approximate yield a potentially reduced number of iterations. Their per-
formance varies in the region of intermediate sized � . However, it can not be 
discarded that this is an effect of the relatively simple set estimation heuristics. 
On all problems, with the exception of ODNAMUR, in Fig. 3 for � ∈ [10−5, 10−10] 
all versions of both approaches give an iteration count less or equal to Algo-
rithm 1, hence providing potential savings in computation cost. The results may 
be improved with a flexible set estimation heuristics, e.g., more restrictive thresh-
olds for intermediate sized � . However, we chose not to include another layer of 
detail and instead give the results for a relatively simple setting to obtain an ini-
tial evaluation of the potential performance.

5  Conclusions

In this work we have given approximate solutions to systems of linear equations 
that arise in interior point methods for bound-constrained optimization; in par-
ticular, partial approximate solutions, where the asymptotic component error 
bounds are in the order of �2 , and full approximate solutions with asymptotic 
error bounds in the order of �2 . Numerical simulations on randomly generated 
bound-constrained convex quadratic optimization problems, whose minimiz-
ers satisfy strict complementarity, have shown that the approximate solutions 
perform similarly to Newton solutions for sufficiently small � . Simulations on 
convex bound-constrained quadratic problems from the CUTEst test collection, 
whose minimizers typically do not satisfy strict complementarity, has shown that 
the predicted asymptotic behavior still occurs, however at significantly smaller 
values of �.

We have performed numerical simulations in a simple yet more realistic set-
ting. Specifically, in a primal-dual interior-point framework where the active and 
inactive sets were estimated with basic heuristics as the iterations proceeded. 
These simulations were done on a selection of CUTEst benchmark problems. The 
results showed that the behavior roughly varied with three regions determined 
by the size of � . The Schur-based approximate solutions showed potential in the 
region for larger � , in the region of intermediate sized � the performance varied, 
partly due to difficulties in determining the active and inactive sets. For suffi-
ciently small � the approximate solutions showed performance similar to our ref-
erence method while solving systems of reduced size.



182 D. Ek, A. Forsgren 

1 3

Finally we showed numerical results for two Newton-like approaches, which 
include an approximate intermediate step consisting of partial approximate solu-
tions, on the considered CUTEst benchmark problems. The simulations showed 
similar characteristics as the previous results and also a potential for reducing the 
overall iteration count of interior-point methods.

The results of this work are meant to contribute to the theoretical and numeri-
cal understanding for approximate solutions to systems of linear equations that 
arise in interior-point methods. We hope that the work can lead to further research 
on approximate solutions and approximate higher-order methods for optimization 
problems with linear inequality constraints.

Appendix A: The general case

Consider problems on the form of (NLP). In this situation the Lagrange multiplier 

vector at a local minimizer x∗ takes the form �∗ =
(
�l∗

�u∗

)
 , where �l∗ and �u∗ are the 

multiplier vectors corresponding to lower and upper bounds respectively. The sec-
ond-order conditions sufficient optimality conditions together with strict comple-
mentarity take the form 

 Similarly as in Sect. 2, define the function F� ∶ ℝ
3n

→ ℝ
3n by

where L = diag(l) , U = diag(u) , �l = diag(�l) and �u = diag(�u) . The correspond-
ing Jacobian F� ∶ ℝ

3n
→ ℝ

3n is

(31a)∇f (x∗) − �l∗ + �u∗ = 0,

(31b)x∗ − l ≥ 0, u − x∗ ≥ 0,

(31c)�l∗ ≥ 0, �u∗ ≥ 0,

(31d)(x∗ − l) ⋅ �l∗ = 0, (u − x∗) ⋅ �u∗ = 0,

(31e)Z(x∗)T∇2f (x∗)Z(x∗) ≻ 0.

(31f)x + 𝜆l∗ > 0, x + 𝜆u∗ > 0.

(32)F�(x, �) =

⎡⎢⎢⎣

∇f (x) − �l + �u

�l(X − L)e − �e

�u(U − X)e − �e

⎤⎥⎥⎦
,
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For the case with upper and lower bounds it is useful to distinguish whether a spe-
cific component of x∗ is active with respect to an upper or a lower bound.

Definition 4 (Active/inactive sets) For a given x∗ such that l ≤ x∗ ≤ u , define the sets

Throughout the remaining part of the manuscript, Assumption 1 means that the 
vector (x∗, �∗) satisfies (31), i.e., second-order sufficient optimality conditions and 
strict complementarity. Bounds on individual components of the solution (x, �) in 
the region of asymptotic behavior is given the lemma below.

Lemma 6 Under Assumption 1, let B((x∗, �∗), �) and �̂� be defined by Lemma 1 and 
Lemma 2 respectively. Then there exists �̄�, with 0 < �̄� ≤ �̂�, such that for 0 < 𝜇 ≤ �̄� 
and (x, �) sufficiently close to (x�, ��) ∈ B((x∗, �∗), �) so that ‖F�(x, �)‖ = O(�) it 
holds that

Partial approximate solutions

In this section we give results analogous to those given in Sect. 3.1 together with 
some complementary remarks. With F�(x, �) and F�(x, �) defined as in (33) and (32) 
respectively the Schur complement of (X − L) and (U − X) in (2) is

For i ∈ Ax either (ui − xi) → 0 or (li − xi) → 0 as � → 0 . In consequence, approxi-
mates of �xN

i
 , i ∈ Ax , can be obtained from the Schur complement (34). These 

approximate solutions are given below in Proposition 4 which is the result analo-
gous to Proposition 1.

(33)F�(x, �) =

⎡
⎢⎢⎣

H − I I

�l (X − L)

−�u (U − X)

⎤
⎥⎥⎦
.

Al = {i ∈ {1,… , n} ∶ x∗
i
− li = 0}, Il = {1,… , n} ⧵Al,

Au = {i ∈ {1,… , n} ∶ ui − x∗
i
= 0}, Iu = {1,… , n} ⧵Au,

Ax = Al ∪Au, Ix = {1,… , n} ⧵Ax.

xi − li =

{
O(�) i ∈ Al,

�(1) i ∈ Il,
�l
i
=

{
�(1) i ∈ Al,

O(�) i ∈ Il,

ui − xi =

{
O(�) i ∈ Au,

�(1) i ∈ Iu,
�u
i
=

{
�(1) i ∈ Au,

O(�) i ∈ Iu.

(34)

(
H + (X − L)−1�l + (U − X)−1�u

)
�xN = −∇f (x)

+ �
[
(X − L)−1 − (U − X)−1

]
e.
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Proposition 4 Under Assumption 1, let B((x∗, �∗), �) and �̂� be defined by Lemma 1 
and Lemma  2 respectively. For (x, �) ∈ B((x∗, �∗), �), let (�xN ,��N) be the solu-
tion of (2) with �+ = ��, where 0 < 𝜎 < 1. If the search direction components are 
defined as

for i = 1,… , n, then

Assume in addition that 0 < 𝜇 ≤ �̂� and (x, �) is sufficiently close to 
(x�, ��) ∈ B((x∗, �∗), �) such that ‖F�(x, �)‖ = O(�). Then there exists �̄�, with 
0 < �̄� ≤ �̂�, such that for 0 < 𝜇 ≤ �̄� it holds that

and

Next we give results corresponding to those in Proposition  2. As � → 0 then 
�l
i
→ 0 for i ∈ Il and �u

i
→ 0 for i ∈ Iu . Consequently, approximations based on 

the complementarity blocks of F�(x, �)(�xN ,��N) = −F�(x, �) can be formed for 
�xN

i
, i ∈ Ax , ��

l,N

i
, i ∈ Il and ��u,N

i
, i ∈ Iu.

Proposition 5 Under Assumption 1, let B((x∗, �∗), �) and �̂� be defined by Lemma 1 
and Lemma  2 respectively. For (x, �) ∈ B((x∗, �∗), �), let (�xN ,��N) be the solu-
tion of (2) with �+ = ��, where 0 < 𝜎 < 1. If the search direction components are 
defined as 

(35)�xS
i
=

−1
[
∇2f (x)

]
ii
+

�l
i

xi−li
+

�u
i

ui−xi

([
∇f (x)

]
i
− �+

[
1

xi − li
−

1

ui − xi

])
,

�xS
i
− �xN

i
=

1
[
∇2f (x)

]
ii
+

�l
i

xi−li
+

�u
i

ui−xi

∑
i≠j

[
∇2f (x)

]
ij
�xN

j
, i = 1,… , n.

1
[
∇2f (x)

]
ii
+

�l
i

xi−li
+

�u
i

ui−xi

=

{
O(�) i ∈ Ax,

�(1) i ∈ Ix,

|�xS
i
− �xN

i
| = O(�2), i ∈ Ax.

(36a)�xC
i
= −(xi − li) +

�+

�l
i

, i ∈ Al,

(36b)�xC
i
= (ui − xi) −

�+

�u
i

, i ∈ Au,

(37a)��
l,C

i
= −�l

i
+

�+

xi − li
, i ∈ Il,
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 then

Assume in addition that 0 < 𝜇 ≤ �̂� and (x, �) is sufficiently close to 
(x�, ��) ∈ B((x∗, �∗), �) such that ‖F�(x, �)‖ = O(�). Then there exists �̄�, with 
0 < �̄� ≤ �̂�, such that for 0 < 𝜇 ≤ �̄� it holds that 

Finally we give the general result for the approximate intermediate step, i.e., for the 
case with lower and upper bounds.

Proposition 6 Under Assumption  1, let B((x∗, �∗), �) and �̂� be defined by 
Lemma  1 and Lemma  2 respectively. For (x, �) ∈ B((x∗, �∗), �), define 
(xN

+
, �N

+
) = (x, �) + (�xN ,��N) where (�xN ,��N) is the solution of (2) with �+ = ��, 

where 0 < 𝜎 < 1 . Moreover, let (x+, �+) = (x, �) + (�x,��) where

Assume that 0 < 𝜇 ≤ �̂� and (x, �) is sufficiently close to (x�, ��) ∈ B((x∗, �∗), �) such 
that ‖F�(x, �)‖ = O(�) and ‖(�xN

A
,��N

I
)‖ = �(�� ) for 𝛾 < 2. Then there exists �̄�, 

with 0 < �̄� ≤ �̂�, such that for 0 < 𝜇 ≤ �̄� it holds that

(37b)��
u,C

i
= −�u

i
+

�+

ui − xi
, i ∈ Iu,

�xC
i
− �xN

i
=

xi − li

�l
i

��
l,N

i
, i ∈ Al,

�xC
i
− �xN

i
=

ui − xi

�u
i

��
u,N

i
, i ∈ Au,

��
l,C

i
− ��

l,N

i
=

�l
i

xi − li
�xN

i
, i ∈ Il,

��
u,C

i
− ��

u,N

i
= −

�u
i

ui − xi
�xN

i
, i ∈ Iu.

|�xC
i
− �xN

i
| = O(�2), i ∈ Ax,

|��l,C
i

− ��
l,N

i
| = O(�2), i ∈ Il,

|��u,C
i

− ��
u,N

i
| = O(�2), i ∈ Iu.

(39)�xi =

⎧⎪⎨⎪⎩

(35) or (36a) i ∈ Al,

(35) or (36b) i ∈ Au,

0 i ∈ Ix,

��i =

⎧⎪⎨⎪⎩

0 i ∈ Ax,

(37a) i ∈ Il,

(37b) i ∈ Iu.

‖(xN
+
, �N

+
) − (x+, �+)‖ ≤ ‖(xN

+
, �N

+
) − (x, �)‖.
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In this section we give results analogous to those given in Sect. 3.2 together with some 
complementary remarks. Note that Ix ∩Al = � and Ix ∩Au = � . By partitioning 
(�xN ,��N) = (�xN

Ax

,�xN
Ix
,��

l,N

Al

,��
l,N

Il
,��

u,N

Au

,��
u,N

Iu
) , (2) can be written as

Suppose that an approximate solution of �xN
Ax

 is given, e.g., (35) or (36a) and (36b) 
of Proposition  4 and Proposition  5 respectively. Insertion of an approximate �xAx

 
into (40) yields

whose solution is labeled with “ls” since it will lead to least squares system, simi-
larly as in Sect. 3.2. The second, fourth and sixth block of (41) provide unique solu-
tions of �xls

Ix
 , ��l,ls

Il
 and ��u,ls

Iu
 which satisfy

(40)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

HAxAx
HAxIx

− IAxAl
− IAxIl

IAxAu
IAxIu

HIxAx
HIxIx

− IIxIl IIxIu
�l

AlAx

(X − L)AlAl

�l
IlAx

�l
IlIx

(X − L)IlIl
−�u

AuAx

(U − X)AuAu

−�u
IuAx

− �u
IuIx

(U − X)IuIu

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�xN
Ax

�xN
Ix

��
l,N

Al

��
l,N

Il

��
u,N

Au

��
u,N

Iu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∇f (x)Ax
− �l

Ax

+ �u
Ax

∇f (x)Ix − �l
Ix
+ �u

Ix

�l
AlAl

(X − L)AlAl
e − �e

�l
IlIl

(X − L)IlIl e − �e

�u
AuAu

(U − X)AuAu
e − �e

�u
IuIu

(U − X)IuIue − �e

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(41)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

HAxIx
− IAxAl

− IAxIl
IAxAu

IAxIu

HIxIx
− IIxIl IIxIu

(X − L)AlAl

�l
IlIx

(X − L)IlIl
(U − X)AuAu

−�u
IuIx

(U − X)IuIu

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

�xls
Ix

��
l,ls

Al

��
l,ls

Il

��
u,ls

Au

��
u,ls

Iu

⎤⎥⎥⎥⎥⎥⎥⎦

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∇f (x)Ax
− �l

Ax

+ �u
Ax

+ HAxAx
�xAx

∇f (x)Ix − �l
Ix
+ �u

Ix
+ HIxAx

�xAx

�l
AlAl

(X − L)AlAl
e − �e + �l

AlAx

�xAx

�l
IlIl

(X − L)IlIl e − �e + �l
IlAx

�xAx

�u
AuAu

(U − X)AuAu
e − �e − �u

AuAx

�xAx

�u
IuIu

(U − X)IuIue − �e − �u
IuAx

�xAx
,

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
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The solution of (42) can be obtained by first solving with the Schur complement of 
(X − L)IlIl and (U − X)IuIu

and then 

 Note that the matrix of (43) is by Assumption  1 a symmetric positive definite (|Ix| × |Ix|
)
-matrix. The remanding part of the solution of (41), that is ��l,ls

Al

 and 
��

u,ls

Au

 are then given by

where ∇xL(x, �)Ax
= ∇f (x)Ax

− �l
Ax

+ �u
Ax

 . If the approximate �xAx
 is exact then so 

is �xls
Ix

 by (43). In consequence, the over-determined system (45) has a unique solu-
tion that satisfies all equations, i.e., ��ls

Ax

 , or equvalently ��l,ls
Al

 and ��u,ls
Au

 since 
Ax = Al ∪Au , are the corresponding parts of the solution to (2). The solutions cor-
responding to the first and second block equation of (45) will be labeled with super-
script “b” and “−” respectively. These are given by

(42)

⎡
⎢⎢⎣

HIxIx
− IIxIl IIxIu

�l
IlIx

(X − L)IlIl
−�u

IuIx
(U − X)IuIu

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

�xls
Ix

��
l,ls

Il

��
u,ls

Iu

⎤
⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎣

∇f (x)Ix − �l
Ix
+ �u

Ix
+ HIxAx

�xAx

�l
IlIl

(X − L)IlIl e − �e + �l
IlAx

�xAx

�u
IuIu

(U − X)IuIue − �e − �u
IuAx

�xAx

⎤
⎥⎥⎥⎦
.

(43)

(
HIxIx

+ IIxIl (X − L)−1
IlIl

�l
IlIx

+ IIxIu (U − X)−1
IuIu

�u
IuIx

)
�xls

Ix

= −
(
∇f (x)Ix + HIxAx

�xAx

)
+ IIxIl (X − L)−1

IlIl

(
�e − �l

IlAx
�xAx

)

− IIxIu(U − X)−1
IuIu

(
�e + �u

IuAx
�xAx

)
,

(44a)��
l,ls

Il
= −�l

Il
+ (X − L)−1

IlIl

(
�e − �l

IlAx
�xAx

− �l
IlIx

�xls
Ix

)
,

(44b)��
u,ls

Iu
= −�u

Iu
+ (U − X)−1

IuIu

(
�e − �u

IuAx
�xAx

+ �u
IuIx

�xls
Ix

)
.

(45)

⎡⎢⎢⎣

−IAxAl
IAxAu

(X − L)AlAl

(U − X)AuAu

⎤
⎥⎥⎦

�
��

l,ls

Al

��
u,ls

Au

�

= −

⎡
⎢⎢⎢⎣

∇xL(x, �)Ax
+ HAxAx

�xAx
+ HAxIx

�xls
Ix
− IAxIl

��
l,ls

Il
+ IAxIu

��
u,ls

Iu

�l
AlAl

(X − L)AlAl
e − �e + �l

AlAx

�xAx

�u
AuAu

(U − X)AuAu
e − �e − �u

AuAx
�xAx

⎤
⎥⎥⎥⎦
,



188 D. Ek, A. Forsgren 

1 3

and

Alternatively, ��l,ls
Al

 and ��u,ls
Au

 can be obtained as the least squares solution of (45)

since IT
AxAl

IAxAl
= IAlAl

 , IT
AxAu

IAxAu
= IAuAu

 and IT
AxAl

IAxAu
= IT

AxAu

IAxAl
= 0 . The 

equations can also be written as 

 Finally, we state the main result which is analogous to the result of Theorem 1.

Theorem 2 Under Assumption 1, let B((x∗, �∗), �) and �̂� be defined by Lemma 1 and 
Lemma  2 respectively. For 0 < 𝜇 ≤ �̂� and (x, �) ∈ B((x∗, �∗), �), let (�xN ,��N) be 

(46)

[
−IAxAl

IAxAu

] [��l,b
Al

��
u,b

Au

]
= −

[
∇f (x)Ax

− �l
Ax

+ �u
Ax

+ HAxAx
�xAx

+ HAxIx
�xls

Ix

− IAxIl
��

l,ls

Il
+ IAxIu

��
u,ls

Iu

]
,

[
(X − L)AlAl

(U − X)AuAu

][
��

l,−

Al

��
u,−

Au

]

= −

[
�l

AlAl

(X − L)AlAl
e − �e + �l

AlAx

�xAx

�u
AuAu

(U − X)AuAu
e − �e − �u

AuAx

�xAx

]
.

�
IAlAl

+ (X − L)2
AlAl

IAuAu
+ (U − X)2

AuAu

��
��

l,ls

Al

��
u,ls

Au

�

=

⎡⎢⎢⎣
IT
AxAl

�
∇f (x)Ax

− �l
Ax

+ �u
Ax

+ HAxAx
�xAx

+ HAxIx
�xls

Ix
− IAxIl

��
l,ls

Il

−IT
AxAu

�
∇f (x)Ax

− �l
Ax

+ �u
Ax

+ HAxAx
�xAx

+ HAxIx
�xls

Ix
− IAxIl

��
l,ls

Il

+IAxIu
��

u,ls

Iu

�
− (X − L)AlAl

�
�l

AlAl

(X − L)AlAl
e − �e + �l

AlAx

�xAx

�

+IAxIu
��

u,ls

Iu

�
− (U − X)AuAu

�
�u

AuAu

(U − X)AuAu
e − �e − �u

AuAx

�xAx

�
⎤⎥⎥⎦
,

(47a)

��
l,ls

Al

=
(
IAlAl

+ (X − L)2
AlAl

)−1[
IT
AxAl

(
∇f (x)Ax

− �l
Ax

+ �u
Ax

+ HAxAx
�xAx

+ HAxIx
�xls

Ix
− IAxIl

��
l,ls

Il
+ IAxIu

��
u,ls

Iu

)

− (X − L)AlAl

(
�l

AlAl
(X − L)AlAl

e − �e + �l
AlAx

�xAx

)]
,

(47b)

��
u,ls

Au

= −
(
IAuAu

+ (U − X)AuAu

)−1[
IT
AxAu

(
∇f (x)Ax

− �l
Ax

+ �u
Ax

+ HAxAx
�xAx

+ HAxIx
�xls

Ix
− IAxIl

��
l,ls

Il
+ IAxIu

��
u,ls

Iu

)

+ (U − X)AuAu

(
�u

AuAu
(U − X)AuAu

e − �e − �u
AuAx

�xAx

)]
.
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the solution of (2) with �+ = ��, where 0 < 𝜎 < 1. Moreover, let the search direc-
tion components be defined as 

 Assume that 0 < 𝜇 ≤ �̂� and (x, �) is sufficiently close to (x�, ��) ∈ B((x∗, �∗), �) such 
that ‖F�(x, �)‖ = O(�). Then there exists �̄�, with 0 < �̄� ≤ �̂�, such that for 0 < 𝜇 ≤ �̄� 
it holds that
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