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Abstract
Interior point methods (IPM) rely on the Newton method for solving systems of non-
linear equations. Solving the linear systems which arise from this approach is the
most computationally expensive task of an interior point iteration. If, due to problem’s
inner structure, there are special techniques for efficiently solving linear systems, IPMs
demonstrate a reduced computing time and are able to solve large scale optimization
problems. It is tempting to try to replace theNewtonmethodbyquasi-Newtonmethods.
Quasi-Newton approaches to IPMs either are built to approximate theLagrangian func-
tion for nonlinear programming problems or provide an inexpensive preconditioner.
In this work we study the impact of using quasi-Newton methods applied directly to
the nonlinear system of equations for general quadratic programming problems. The
cost of each iteration can be compared to the cost of computing correctors in a usual
interior point iteration. Numerical experiments show that the new approach is able to
reduce the overall number of matrix factorizations.
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1 Introduction

Let us consider the following general quadratic programming problem

min 1
2 x

T Qx + cT x
s. t. Ax = b

x ≥ 0,
(1)

where x, c ∈ R
n , b ∈ R

m , Q ∈ R
n×n and A ∈ R

m×n . We will suppose that the rows
of A are linearly independent. Define function F : R2n+m → R

2n+m by

F(x, λ, z) =
⎡
⎣

−Qx + AT λ + z − c
Ax − b
X Ze

⎤
⎦ , (2)

where X , Z ∈ R
n×n are diagonal matrices defined by X = diag(x) and Z = diag(z),

respectively, and e is the vector of ones of appropriate size. First order necessary
conditions for (1) state that, if x∗ ≥ 0 is a minimizer, then there exist z∗ ∈ R

n , z∗ ≥ 0,
and λ∗ ∈ R

m such that F(x∗, λ∗, z∗) = 0.
Primal-Dual IPMs try to solve (1) by solving a sequence of relaxed constrained

nonlinear equations in the form of

F(x, λ, z) =
⎡
⎣

0
0
μe

⎤
⎦ , x, z > 0, (3)

where μ ∈ R is called the barrier parameter, which is associated with the logarithmic
barrier applied to the inequalities x ≥ 0 used to derive the method [14,30]. As μ → 0
more importance is given to optimality over feasibility. Systems of type (3) are not
easy to solve. When μ = 0, they can be solved by general algorithms for bounded
nonlinear systems [10,19]. In this case, a suitable merit function, usually ‖F(x)‖, has
to be used to select the step-sizes. IPMs try to stay near the solution of (3), called the
central path, and reduce μ at each iteration. Instead of solving (3) exactly, one step
of the Newton method is applied. Thus, given an iterate (xk, λk, zk), in the interior of
the bound constraints, i.e. xk, zk > 0, the next point is given by

(xk+1, λk+1, zk+1) = (xk, λk, zk) + (αP�xk, αD�λk, αD�zk), (4)

where (�xk,�λk,�zk) is computed by solving some Newton-like systems

J (xk, λk, zk)

⎡
⎣

�xk

�λk

�zk

⎤
⎦ = v, (5)
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where v ∈ R
2n+m and J : R2n+m → R

(2n+m)×(2n+m) is the Jacobian of F , defined
by

J (x, λ, z) =
⎡
⎣

−Q AT I
A 0 0
Z 0 X

⎤
⎦ . (6)

Standard predictor-corrector algorithms solve (5) twice: first the affine scaling pre-
dictor is computed for v = −F(xk, λk, zk) and then the corrector step is computed

using v = [
0 0 σkμke

]T , with σk ∈ (0, 1), μk = xk
T
zk/n. Additional correctors can

be computed in one iteration to further accelerate convergence, such as second order
correctors [22] or multiple centrality correctors [13]. Scalars αP and αD are selected
such that xk+1 > 0 and sk+1 > 0, respectively.

Themost expensive task during an interior point (IP) iteration is the resolution of (5).
The coefficient matrix J (x, λ, z) is known as unreduced matrix and has dimension
(2n + m) × (2n + m), but its nice structure allows efficient solution techniques to
be used. The most common approaches for solving the linear system in IPMs are to
work with augmented system or normal equations. If we eliminate �z in (5), we have
the augmented system for which we can solve directly using matrix factorizations or
compute adequate preconditioners and solve iteratively by Krylov subspace methods.
If matrix Q is easily invertible, or Q = 0 (linear programming problems), it is possible
to further eliminate �x and solve the normal equations by Cholesky factorization or
by Conjugate Gradients, depending on the size of the problem. For both approaches
it is known that computing good preconditioners or computing the factorization can
be most expensive part of the process. A comprehensive discussion about the solution
of linear systems arising in IPMs is carried out in [4]. Therefore (5) can be solved
several times for the same J (xk, λk, zk) with different right-hand sides, in a classical
predictor-corrector approach [22] or in the multiple centrality correctors framework
[3,14]. In this work we will extensively use the fact that the backsolves in (5) are less
expensive than computing a good preconditioner or factorization.

Although J (x, λ, z) is unsymmetric, under reasonable assumptions Greif, Mould-
ing and Orban showed that it has only real eigenvalues [18]. Based on those results,
Morini, Simoncini and Tani [25] developed preconditioners for the unreduced matrix
and compared the performance of interior pointmethods using unreducedmatrices and
augmented systems. The authors observed that the use of augmented systems resulted
in more robust and efficient algorithms, due to smaller dimensions of the involved
matrices.

It is well known that the unreduced matrix has advantages, when compared to
augmented system and normal equations. First, small changes of variables x or z
result in small changes in J (x, λ, z). Second, J is the Jacobian of F , so it is possible
to approximate it by building models or evaluating F on some extra points. These two
characteristics are explored in this work, while avoiding the drawbacks presented in
[25].

Since J is the Jacobian of F , it is natural to ask if it can be approximated by
evaluating F in some points. Function F is composed by two linear and one nonlinear
functions. Therefore, the only part of J which may change during iterations is the
third row. Moreover, it can be efficiently stored by just storing A, Q, x and z. Since
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96 J. Gondzio, F. N. C. Sobral

computing and storing J is inexpensive, the only reason to use an approximation B
of J is if system (5), using Bk instead of J (xk, λk, zk), becomes easier to solve. That
is where quasi-Newton methods and low rank updates become an interesting tool in
interior point methods.

Quasi-Newton methods are well known techniques for solving large scale nonlin-
ear systems or nonlinear optimization problems. The main motivation is to replace the
Jacobian used by the traditional Newton method by its good and inexpensive approx-
imation. Originally, they were useful to avoid computing the derivatives of F , but
they have become popular as a large scale tool, since they usually do not need to
explicitly build matrices and enjoy superlinear convergence. Classical references for
quasi-Newton methods are [6,21] for nonlinear equations and [26] for unconstrained
optimization.

In the review [21] about practical quasi-Newton methods for solving nonlinear
equations, Martínez suggests that there is room for studying such techniques in the
interior point context. The author points to thework ofDennis Jr.,Morshedi andTurner
[7] which applies quasi-Newton techniques to make the projections in Karmarkar’s
algorithm cheaper. The authors write the interpolation equations associated with the
linear system in interior point iterations and describe a fast algorithm to compute
updates and also to update an already existing Cholesky factorization. When solving
general nonlinear programmingproblemsby IPMs, awell knownapproach is to replace
the Hessian of the Lagrangian function by low rank approximations [26].

In 2000, Morales and Nocedal [24] used quasi-Newton arguments to show that
the directions calculated by the Conjugate Gradient algorithm can be used to build
an automatic preconditioner for the matrix under consideration. The preconditioner
is a sequence of rank-one updates of an initial diagonal matrix. Such approach is
efficient when solving a sequence of linear systemswith the same (or a slowly varying)
coefficient matrix. Based on those ideas, a limited memory BFGS-like preconditioner
for positive definite matrices was developed in [16] and was specialized for symmetric
indefinitematrices in [17]. Recently, Bergamaschi et al. [2] developed limited-memory
BFGS-like preconditioners to KKT systems arising from IP iterations and described
their spectral properties. The approach was able to reduce the time for solving a
sequence of KKT systems by Preconditioned Conjugate Gradient algorithm, but the
approximation deteriorates as the number of interior point iterations increase. Also,
extra linear algebra has to be performed to ensure orthogonality of the vectors used to
build the updates.

In all works, with exception of [7], the main focus was to use low rank updates of
an already computed preconditioner such that new preconditioners are constructed in
an inexpensive way and reduce the overall time taken by the algorithm. In the present
work, our main objective is to work directly with nonlinear equations and use low rank
secant updates for computing the directions in the IP iterations. We use least change
secant updates, in particular Broyden updates, and replace theNewton system (5) by an
equivalent one. Some properties of the method are presented and extensive numerical
experiments are performed. The main features of the proposed approach are:

– Low rank approximations are matrix-free and use only vector multiplications and
additions;
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– The quasi-Newton method for solving (5) can be easily inserted into an existing
IPM;

– The number of factorizations is reduced for small and large instances of linear and
quadratic problems;

– When the cost of the factorization is considerably higher than the cost of the
backsolves, the total CPU time is also decreased.

In Sect. 2 we discuss the basic ideas of quasi-Newton methods, in particular the
Broyden method, which is extensively used in the work. In Sect. 3 we show that, if the
initial approximation is good enough, least change secant updates preserve most of the
structure of the true coefficient matrix and a traditional IP iteration can be performed
with the cost of computing correctors only. New low rank secant updates, which are
able to exploit the sparsity of J are also discussed. In Sect. 4 we describe the aspects
of a successful implementation of a quasi-Newton interior point method. In Sect. 5
we compare our approach with a research implementation of the primal-dual IPM for
solving small- and medium-sized linear and quadratic problems. Finally, in Sect. 6 we
draw the conclusions and mention possible extensions of the method.
Notation Throughout this work we use Fk and Jk as short versions of vector
F(xk, λk, zk) and matrix J (xk, λk, zk), respectively. The vector e denotes the vec-
tor of ones of appropriate dimension. Given vectors a, b and c, we use the simplified

notation of the composed vector
[
a b c

]T instead of
[
aT bT cT

]T
.

2 Background for quasi-Newtonmethods

Quasi-Newton methods can be described as algorithms which use approximations to
the Jacobian in the Newton method in order to solve nonlinear systems. The approx-
imations are generated using information from previous iterations. Suppose that we
want to find x̄ ∈ R

N such that F(x̄) = 0, where F : RN → R
N is continuously

differentiable. Given the current point x̄ k at iteration k, Newton method builds a linear
model of F around x̄ k in order to find x̄ k+1. Now, suppose that x̄ k and x̄ k+1 have
already been calculated and let us create a linear model for F around x̄ k+1:

Mk+1(x̄) = F(x̄ k+1) + Bk+1(x̄ − x̄ k+1). (7)

The choice Bk+1 = Jk+1 results in the Newton method for iteration k + 1. In secant
methods, Bk+1 is constructed such that Mk+1 interpolates F at x̄ k and x̄ k+1, which
gives us the secant equation

Bk+1sk = yk, (8)

where sk = x̄ k+1 − x̄ k and yk = F(x̄ k+1) − F(x̄ k). When sk �= 0 and N > 1 there
are more unknowns than equations and several choices for Bk+1 exist [5,21].

Let Bk be the current approximation to Jk , the Jacobian of F at x̄ k (it can be Jk
itself, for example). One of the most often used simple secant approximations for
unsymmetric Jacobians is given by the Broyden “good” method. Given Bk , a new
approximation Bk+1 to Jk+1 is given by
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98 J. Gondzio, F. N. C. Sobral

Bk+1 = Bk + (yk − Bksk)sTk
sTk sk

. (9)

Matrix Bk+1 is the closest matrix to Bk , in Frobenius norm, which satisfies (8). The
update of the Broyden method belongs to the class of least change secant updates,
since Bk+1 is a rank-one update of Bk . As we are interested in solving a linear system,
it may be interesting to analyze matrix B−1

k+1 = Hk+1, which is obtained by the well
known Sherman-Morrison-Woodbury formula:

Hk+1 = Hk + (sk − Hk yk)sTk Hk

sTk Hk yk
=

(
I + uksTk

ρk

)
Hk, (10)

where uk = sk − Hk yk and ρk = sTk Hk yk . We can see that Hk+1 is also a least change
secant update of Hk . To store Hk+1, one needs first to compute Hk yk and then store
one scalar and two vectors. Storing uk is more efficient than storing Hksk when Hk+1
is going to be used more than once. According to (10), the cost of computing Hk+1v

is the cost of computing Hkv plus one scalar product and one sum of vectors times a
scalar. After � updates of an initial approximation Bk−�, current approximation Hk is
given by

Hk =
(
I + uk−1sTk−1

ρk−1

)
Hk−1 =

⎡
⎣

�∏
j=1

(
I + uk− j sTk− j

ρk− j

)⎤
⎦ Hk−�. (11)

Instead of updating Bk and then computing its inverse, the Broyden “bad” method
directly computes the least change secant update of the inverse:

Hk+1 = Hk + (sk − Hk yk)yTk
yTk yk

= HkVk + sk yTk
ρk

, (12)

where Vk =
(
I − yk yTk

ρk

)
and ρk = yTk yk . Similarly to Bk+1 in (10), Hk+1 given

by (12) is the closest matrix of Hk , in the Frobenius norm, such that H−1
k+1 satisfies (8).

The cost of storing Hk+1 is lower than that of (10), since vectors sk and yk have already
been computed. The cost of calculating Hk+1v is higher: it involves one scalar product,
two sums of vector times a scalar and Hkv. After � updates of an initial approximation
Hk−�, current approximation Hk is given by

Hk = Hk−1Vk−1 + sk−1yTk−1

ρk−1

= Hk−�

⎛
⎝

k−1∏
j=k−�

Vj

⎞
⎠ +

�∑
i=1

⎛
⎝ sk−i yTk−i

ρk−i

k−1∏
j=k−i+1

Vj

⎞
⎠

(13)
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Table 1 Comparison between Broyden “good” and “bad” updates with respect the cost of storing/updating,
the cost of computing Hkv and the cost of updating the initial approximation Hk−�

Broyden update Cost of storing Hk+1 Cost of Hkv Cost of replacing Hk−�

“Good” (11) �(2N + o(Hk−�v)) �(2N + o(Hk−�v))
�(�+1)

2 (2N + o(Hk−�v))

“Bad” (13) 0 �(3N + o(Hk−�v)) 0

The expression o(Hk−�v) represents the computational cost of computing Hk−�v and � is the number of
updates

Approach (13) has some advantages over (11). First, it does not need to compute
uk for constructing the update. When Hk−� is not easy to obtain, this is a costly
operation. Second, unlike (11), matrices Vj depend solely on y j and s j for all j =
1, . . . , �, so it is possible to replace the initial approximation Hk−� bydifferentmatrices
without updating the whole structure. Third, the computation of Hkv can be efficiently
implemented in a scheme similar to the BFGS update described in [26], as we show in
Algorithm 1. Unfortunately, the Broyden “bad” method is known to behave worse in
practice than the “good”method [6]. To avoid the extra cost of computing Hk yk in (10)
it is common to compute a Cholesky or LU factorization of Bk−� and work directly
with (9). Rank-one updates of the LU factorization can be efficiently implemented
[11]. The computational cost of the important operations for approaches (11) and (13)
is summarized in Table 1.

Algorithm 1: Algorithm for matrix-vector multiplications on Broyden “bad”
update.

Data : Hk−� ∈ R
N×N and triples (sk− j , yk− j , ρk− j ), for j = 1, . . . , �

Input : v ∈ R
N

Output: r = Hkv

1. q ← v

2. for j = 1, . . . , � do
/* Store scalar yTk− j (Vk− j+1 · · · Vk−1)v/ρk− j */

α j ← (yTk− j q)/ρk− j

/* Compute vector (Vk− j · · · Vk−1)v */
q ← q − α j yk− j

3. r ← Hk−�q
4. for i = 1, . . . , � do

/* Add the term
(
yTk−i Vk−i+1 · · · Vk−1v/ρk−i

)
sk−i */

r ← r + αi sk−i

The class of rank-one least change secant updates can be generically represented
by updates of the form

Bk+1 = Bk + (yk − Bksk)wT
k

wT
k sk

, (14)

where wT
k sk �= 0. Setting wk = sk defines the Broyden “good” method and wk =

BT
k yk defines the Broyden “bad” method. Several other well known quasi-Newton

methods fit in update (14), such as the Symmetric Rank-1 update used in nonlinear
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100 J. Gondzio, F. N. C. Sobral

optimization, which defines wk = yk − Bksk . See [5,6] for details on least change
secant updates.

3 A quasi-Newton approach for IP iterations

According to the general description of primal-dual IPMs in Sect. 1, we can see that, at
each iteration, they perform one Newton step associated with the nonlinear system (3),
for decreasing values of μ. Each step involves the computation of the Jacobian of F
and the solution of a linear system (5).

Our proposal for this work is to perform one quasi-Newton step to solve (3), replac-
ing the true Jacobian J (x, λ, z) by a low rank approximation B. The idea might seem
surprising at first glance, since, for quadratic problems, J (x, λ, z) is very cheap to
evaluate. In this section we further develop the quasi-Newton ideas applied to interior
point methods and show that they might help to reduce the cost of the linear algebra
when solving (1).

It is important to note that F and J discussed in Sect. 2 will be given by (2) and (6),
respectively, in the interior point context, which highlights the importance of using the
unreduced matrix in our analysis. Therefore, variable x̄ in Sect. 2 is given by (x, λ, z)
and, consequently, N = 2n + m.

3.1 Initial approximation and update

Suppose that k ≥ 0 is an interior point iteration for which system (5) was solved and[
xk+1 λk+1 zk+1

]T
was calculated, using any available technique. Usually, solving (5)

involves an expensive factorization or the computation of a good preconditioner asso-
ciated with Jk . Most traditional quasi-Newton methods for general nonlinear systems
compute Bk by finite differences or use a diagonal matrix as the initial approxima-
tion. According to Sect. 2, it is necessary to have an initial approximation of Jk in
order to generate approximation Bk+1 of Jk+1 by low rank updates. Most of tradi-
tional quasi-Newton methods for general systems compute Bk by finite differences or
use a diagonal matrix. Since Jk has already been computed, we will define it as Bk ,
i.e., the perfect approximation to Jk . It is clear that, in such case, Hk = J−1

k is the
approximation to J−1

k .
In order to compute Bk+1, vectors sk and yk in secant equation (8) have to be built:

sk =
⎡
⎣
sk,x
sk,λ
sk,z

⎤
⎦ =

⎡
⎣
xk+1 − xk

λk+1 − λk

zk+1 − zk

⎤
⎦

yk =
⎡
⎣
yk,c
yk,b
yk,μ

⎤
⎦ = F(xk+1, λk+1, zk+1) − F(xk, λk, zk)
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=
⎡
⎣

−Qsk,x + AT sk,λ + sk,z
Ask,x

Xk+1Zk+1e − Xk Zke

⎤
⎦ . (15)

The use of Jk as the initial approximation ensures that the first two block elements of
Bksk − yk are zero. This is a well known property of low rank updates given by (14)
when applied to linear functions (see [6, Ch. 8]). In Lemma 1 we show that rank-one
secant updates maintain most of the good sparsity structure of approximation Bk when
its structure is similar to the true Jacobian of F .

Lemma 1 Let J be the Jacobian of F given by (2). If the least change secant update
Bk+1 for approximating Jk+1 is computed by (14) using wT

k = [
ak bk ck

]T
, ak, ck ∈

R
n, bk ∈ R

m, and Bk is defined by

Bk =
⎡
⎣

−Q AT I
A 0 0
M1

k M2
k M3

k

⎤
⎦

then

Bk+1 =
⎡
⎣

−Q AT I
A 0 0

M1
k+1 M2

k+1 M3
k+1

⎤
⎦ ,

where Mi
k+1 is a rank-one update of Mi

k , for i = 1, 2, 3. In addition, if M2
k = 0 and

bk = 0, then M2
k+1 = 0.

Proof By the definition of sk and yk in (15) it is easy to see that yk−Bksk = [
0 0 uk

]T ,
where

uk = (Xk+1Zk+1 − Xk Zk)e − M1
k sk,x − M2

k sk,λ − M3
k sk,z .

Using the secant update (14), we have that the first two rows of Bk are kept the same
and

M1
k+1 = M1

k + uka
T
k /(wT

k sk)

M2
k+1 = M2

k + ukb
T
k /(wT

k sk)

M3
k+1 = M3

k + ukc
T
k /(wT

k sk).

It is easy to see that M2
k+1 = 0 when M2

k = 0 and bk = 0. 	

By Sect. 2 we know that Broyden “good” and “bad” updates are represented by spe-

cific choices ofwk and, therefore, enjoy the consequences of Lemma 1. Unfortunately,
not much can be said about the structure of the “third row” of Bk+1. When Bk = Jk ,
the diagonal structure of blocks Zk and Xk , as well as the zero block in the middle, are
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likely to be lost. However, if we select wT
k = [

sk,x 0 sk,z
]T , then, by Lemma 1, the

zero block is kept in Bk+1. The update given by this choice ofwk is a particular case of
Schubert’s quasi-Newton update for structured and sparse problems [29]. This update
minimizes the distance to Bk on the space of the matrices that satisfy (8) and have
the same block sparsity pattern of Bk [5]. Using the Sherman–Morrison–Woodbury
formula, we also have the update for Hk :

Hk+1 =
(
I − (Hk yk − sk)wT

k

wT
k Hk yk

)
Hk,

which only needs an extra computation of Hk yk to be stored. There is no need to store
wk , since it is composed by components of sk .We can say that this approach is inspired
by the Broyden “good” update.

On the other hand, if we use wT
k = [

0 yk,b yk,μ
]T

Bk , then we still have M2
k+1 = 0

by Lemma 1 and, in addition, we are able to remove the calculation Hk yk in the inverse.
This approach is inspired by the Broyden “bad” update and results in the following
update

Hk+1 = Hk + (sk − Hk yk)
[
0 yk,b yk,μ

]T
yTk,b yk,b + yTk,μyk,μ

. (16)

Up to the knowledge of the authors, this update has not been theoretically studied in
the literature.

Lemma1 also justifies our choice toworkwith approximations of J−1 rather than J .
After � > 0 rank-one updates, if Bku = v is solved by factorizations and backsolves,
it would be necessary to perform � updates on the factorization of initial matrix Bk−�,
which could introduce many nonzero elements. A clear benefit of defining Bk−� =
Jk−� is that computing Hkv uses the already calculated factorizations/preconditioners
for Bk−�, whichwere originally used to solve (5) at iteration k−�. Step 3 ofAlgorithm1
is an example of low rank update (13). Clearly, we do not explicitly compute Hk−�v,
but instead solve the system Bk−�u = v.

3.2 Computation of quasi-Newton steps

Having defined how quasi-Newton updates are initialized and constructed, we now

have to insert the approximations in an interior point framework.Denoting
[
x0 λ0 z0

]T
as the starting point of the algorithm, at the end of any iteration k it is possible to build
a rank-one secant approximation of the unreduced matrix to be used at iteration k+1.
Let us consider iteration k, where k ≥ 0 and � ≥ 0. If � = 0, then, by the previous
subsection, Bk−� = Bk = Jk and the step in the interior point iteration is the usual
Newton step, given by (5). If � > 0, we have a quasi-Newton step, which can be
viewed as a generalization of (5), and is computed by solving

Bk

⎡
⎣

�xk

�λk

�zk

⎤
⎦ = v (17)
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or, equivalently, by performing Hkv. All the other steps of the IPM remain exactly the
same.

When � > 0, the cost of solving (17) depends on the type of update that is used.
In general, it is the cost of solving system Jk−�r = q (or, equivalently, J−1

k−�q) plus
some vector multiplications and additions. However, since Jk−� has already been the
coefficient matrix of a linear system at iteration k − �, it is usually less expensive than
solving for the first time. That is one of the main improvements that a quasi-Newton
approach brings to interior point methods.

When the Broyden “bad” update (13) is used together with defining Bk−� = Jk−�

as the initial approximation, it is possible to derive an alternative interpretation of (17).
Although this update is known to have worse numerical behavior when compared with
the “good” update (10), this interpretation can result in amore precise implementation,
which is described in Lemma 2.

Lemma 2 Assume that k, � ≥ 0 and Hk is the approximation of J−1
k constructed by

� updates (13) using initial approximation Hk−� = J−1
k−�. Given v ∈ R

2n+m, the
computation of r = Hkv is equivalent to the solution of

Jk−�r = v +

⎡
⎢⎢⎣

0
0

�∑
i=1

αi
(
Zk−�sk−i,x + Xk−�sk−i,z − yk−i,μ

)

⎤
⎥⎥⎦ ,

where αi = yTk−i

∏k−1
j=k−i+1 Vj

ρk−i
v, for i = 1, . . . , �.

Proof Using the expansion (12) of Broyden “bad” update, the definition of αi and the
fact that Hk−� = J−1

k−�, we have that

r = Hkv = Hk−�

⎛
⎝

k−1∏
j=k−�

Vj

⎞
⎠ v +

�∑
i=1

⎛
⎝ sk−i yTk−i

ρk−i

k−1∏
j=k−i+1

Vj

⎞
⎠ v

= J−1
k−�

⎛
⎝

k−1∏
j=k−�

Vj

⎞
⎠ v +

�∑
i=1

αi sk−i

= J−1
k−�

(
v −

�∑
i=1

αi yk−i

)
+

�∑
i=1

αi sk−i .

(18)

Last equality comes from the definition of αi and the definition of Vk in (12), applied
recursively. One step of this recursion is given by
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⎛
⎝

k−1∏
j=k−�

Vj

⎞
⎠ v = Vk−�

⎛
⎝

k−1∏
j=k−�+1

Vj

⎞
⎠ v =

(
I − yk−�yTk−�

ρk−�

)⎛
⎝

k−1∏
j=k−�+1

Vj

⎞
⎠ v

=
⎛
⎝

k−1∏
j=k−(�−1)

Vj

⎞
⎠ v − α�yk−�.

When i = 1, we assume that
∏k−1

j=k−i+1 Vj results in the identity matrix, therefore

α1 = yTk−1v/ρk−1. Multiplying from the left both sides of equality (18) by Jk−� , we
obtain

Jk−�r = v +
�∑

i=1

αi (Jk−�sk−i − yk−i ) .

By Lemma 1 and definition (15), the first two components of Jk−�sk−i − yk−i are
zero, for all i , which demonstrates the lemma. 	


Lemma 2 states that only the third component of the right-hand side actually needs
to be changed in order to compute Broyden “bad” quasi-Newton steps at iteration k.
This structure is very similar to corrector or multiple centrality correctors in IPMs
and reinforce the argument that the cost of computing a quasi-Newton step is lower
than the Newton step. It is important to note that scalars αi are the same as the ones
computed at step 2 of Algorithm 1.

3.3 Dealing with regularization

Rank-deficiency of A, near singularity of Q or the lack of strict complementarity at
the solution may cause matrix J , the augmented system or the normal equations to
become singular near the solution of (1). As the iterations advance, it becomes harder
to solve the linear systems. Regularization techniques address this issue by adding
small perturbations to J in order to increase numerical accuracy and convergence
speed, without losing theoretical properties. A common approach is to interpret the
perturbation as the addition of weighted proximal terms to the primal and dual formu-
lations of (1). Saunders and Tomlin [28] consider fixed perturbations while Altman
and Gondzio [1] consider dynamic ones, computed at each iteration. Friedlander and
Orban [9] add extra variables to the problem, expand the unreduced system and, after
an initial reduction, arrive in a regularized system similar to [1]. In all these approaches,
given reference points x̂ and λ̂, the regularized matrix Ĵ

Ĵ (x, λ, z) =
⎡
⎣

−Q − Rp AT I
A Rd 0
Z 0 X

⎤
⎦ , (19)
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where diagonal matrices Rp ∈ R
n×n and Rd ∈ R

m×m represent primal and dual
regularization, respectively, can be viewed as the Jacobian of the following function

F̂(x, λ, z) =
⎡
⎣
AT λ − Qx − Rp(x − x̂) − c

Ax + Rd(λ − λ̂) − b
X Ze

⎤
⎦ .

Any choice is possible for reference points x̂ and λ̂. However, in order to solve the
original Newton system (5) and make use of the good properties of the regulariza-
tion (19) at the same time, they are usually set to the current iteration points xk and
λk , respectively, which annihilates terms Rp(x − x̂) and Rd(λ − λ̂) on the right-hand
side of (5) during affine scaling steps.

Matrix Ĵ given by (19) now depends on Rp and Rd in addition to x and z. The
regularization terms Rp and Rd do not need to be considered as variables, but if new
regularization parameters are used, a new factorization or preconditioner needs to be
computed. Since this is one of the most expensive tasks of the IP iteration, during
quasi-Newton step k the regularization parameters are not allowed to change from
those selected at iteration k − �, where the initial approximation was selected. That is
a reasonable decision, as the system that is actually being solved in practice has the
coefficient matrix from iteration k−�. The fact that the regularization terms are linear
in F̂ implies, by Lemma 1, that the structure of (19) is maintained during least change
secant updates.

The reference points have no influence in Ĵ , but they do influence the function F̂ .
Suppose, as an example, that � = k, i.e., the initial approximation for quasi-Newton is

the Jacobian at the starting point
[
x0 λ0 z0

]T
, and only quasi-Newton steps are taken

in the interior point algorithm. If we use x0 and λ0 as the reference points and the
algorithm converges, the limit point could be very different from the true solution, as
initial points usually are far away from the solution, especially for infeasible IPMs.
If we update the reference points at each quasi-Newton iteration, as it is usually the
choice in literature [1,9], we eliminate their effect on the right-hand side of (17) during
affine scaling steps. By (7), Bk+1 is the Jacobian of a linear approximation of F̂ which

interpolates
[
xk λk zk

]T
and

[
xk+1 λk+1 zk+1

]T
. As the regularization parameters

are fixed during quasi-Newton iterations, the reference points can be seen as simple
constant shifts on F̂ , with no effect on the Jacobian. Therefore, the only request is that

F̂ has to be evaluated at points
[
xk λk zk

]T
and

[
xk+1 λk+1 zk+1

]T
using the same

reference points, when calculating yk by (15). The effect of changing the reference
points at each iteration in practice is the extra evaluation of F̂ at the beginning of
iteration k.

4 Implementation

The quasi-Newton approach can easily be inserted into an existing interior point
method implementation. In this work, the primal-dual interior point algorithm
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HOPDM[12] was modified to implement the quasi-Newton approach. Algorithm 2
describes the steps of a conceptual quasi-Newton primal-dual interior point algorithm.

Algorithm 2: Quasi-Newton Interior Point algorithm

Initialization: F , J and
[
x0 λ0 z0

]T
. Set k ← 0 and � ← 0.

1. Solve system (17) with different right-hand sides, if necessary, to compute step
[
�xk �λk �zk

]T

2. Calculate αkP and αkD such that
[
xk+1 λk+1 zk+1

]T
given by (4) satisfy xk+1, zk+1 > 0

3. Compute sk and yk by (15)

if will store quasi-Newton information, then
Store appropriate quasi-Newton information
� ← � + 1

else
� ← 0

4. k ← k + 1 and go back to step 1

The most important element of Algorithm 2 is �, the memory size of the low rank
update, which controls if the iteration involves Newton or quasi-Newton steps. At
step 1 several systems (17) might be solved, depending on the IPM used. HOPDM
implements the strategy of multiple centrality correctors [3], which tries to maximize
the step-size at the iteration. HOPDM also implements the regularization strategy (19).
Note in (17) that we do not have to care how the systems are solved, only how to
implement the matrix-vector multiplication Hkv efficiently.

Step 3 is the most important step in a quasi-Newton IP algorithm, since it decides
whether or not quasi-Newton steps will be used in the next iteration. Several possible
strategies are discussed in this section, as well as some implementation details.

Bound constraints
l ≤ x ≤ u, l, u ∈ R

n

can be considered in the general definition (1) of a quadratic programming problem
by using slack variables. HOPDM explicitly deals with bound constraints and increases
the number of variables to 4n + m. When bound constraints are considered, function
F is given by

F(x, t, λ, z, w) =

⎡
⎢⎢⎢⎢⎣

AT λ − Qx + z − w − c
Ax − b

x + t − u
X Ze
TWe

⎤
⎥⎥⎥⎥⎦
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and the Jacobian J is

J (x, t, λ, z, w) =

⎡
⎢⎢⎢⎢⎣

−Q 0 AT I −I
A 0 0 0 0
I I 0 0 0
Z 0 0 X 0
0 W 0 0 T

⎤
⎥⎥⎥⎥⎦

.

Note that, in this case, l is eliminated by proper shifts, u represents upper shifted
constraints and t represents slacks. All the results and discussions considered so far can
be easily adapted to the bound-constrained case. Therefore, in order to keep notation
simple, we will refer to the more general and simpler formulation (1) and work in the
(2n + m)-dimensional space.

4.1 Storage of Hk and computation of Hkv

When solving quadratic problems, the Jacobian of function F used in a primal-dual
interior point method is not expensive to compute and has an excellent structure, which
can be efficiently explored by traditional approaches. Therefore, there is no point in
explicitly building approximation matrix Bk (or Hk) since, by Lemma 1, they would
be denser. For an efficient implementation of the algorithm only the computation Hkv

has to be performed in (17). To accomplish this task, we store

– Initial approximation Jk−� and
– Triples (sk−i , uk−i , ρk−i ) or (sk−i , yk−i , ρk−i ) , i = 1, . . . , �, if updates are based
on Broyden “good” or “bad” method, respectively.

In order to store Jk−� we have to store vectors xk−� and λk−�, since all other
blocks of J are constant. If regularization is being used, vectors Rp and Rd used at
iteration k−� are also stored. The reference points are not stored. The most important
structure to store is the factorization or the preconditioner computedwhen solving (17)
at iteration k − � for the first time. Without this information, the computation of Hkv

would have the same computational cost of using the true matrix Jk . Data is stored at
step 3 of Algorithm 2, whenever it has been decided to store quasi-Newton information
and � = 0.

Regarding the triples, they are composed of two (2n+m)-dimensional vectors and
one scalar. Storing yk−i is the most expensive part in Broyden “bad” updates, since
function F has to be evaluated twice. In Broyden “good” updates the computation of
uk−i is the most expensive, due to the computation of Hk−i yk−i .

The implementation of an algorithm to compute Hkv depends on the selected type
of low rank update. Algorithm 1 is an efficient implementation of the general Broyden
“bad” update (13). If the structure described by Lemma 1 is being used, then all vector
multiplications are performed before the solution of the linear system, as described
by Algorithm 3. Both algorithms can be easily modified to use updates of the form
wT
k = [

ak bk ck
]T

Bk in the generic update (14). The only changes are the storage of
an extra vector and the computation of scalars αi at step 2. The implementation of the
sparse update (16) is straightforward and there is no need to store extra information.
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Algorithm 3 uses a little extra computation, since vector q is discarded after the
computation of all αi . On the other hand, there is no need to store blocks sk−i,λ,
i = 1, . . . , �.

Algorithm 3: Algorithm for matrix-vector multiplications in Broyden “bad”
update using structural information

Data : Jk−� = J (xk−�, λk−�, zk−�) and (sk−i , yk−i , ρk−i ), for i = 1, . . . , �
Input : v ∈ R

2n+m

Output: r = Hkv

1. q ← v

2. for i = 1, . . . , � do
αi ← (yTk−i q)/ρk−i
q ← q − αi yk−i

3. q ← v

4. for i = 0, . . . , � − 1 do

q ← q +
⎡
⎢⎣

0
0

αi

(
Zk−�sk−i,x + Xk−�sk−i,z − yk−i,μ

)

⎤
⎥⎦

5. Solve Jk−�r = q

Algorithm 4 describes the steps to compute Hkv when Broyden “good” update (10)
is considered. Note that a linear system is first solved, then a sequence of vector
multiplications and additions is applied. The algorithm is simpler and more general
than Algorithm 1, but it has to be called more often in an interior point algorithm:
to compute the steps (step 1 in Algorithm 2) and to compute Hk yk , needed to build
uk (step 3 in Algorithm 2). Algorithm 4 is very general and can be easily modified
to consider any least change secant update of the form (14) without extra storage
requirements, although not necessarily in an efficient way.

Algorithm 4: Algorithm for matrix-vector multiplications in Broyden “good”
update

Data : Jk−� = J (xk−�, λk−�, zk−�) and (sk−i , uk−i , ρk−i ), for i = 1, . . . , �, as described
in (10)

Input : v ∈ R
2n+m

Output: r = Hkv

1. Solve Jk−�q = v

2. r ← q
3. for i = 1, . . . , � do

αi ← (sTk−i r)/ρk−i
r ← r + αi uk−i
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Fig. 1 Small bounds for � reduce the number of iterations, but increase the necessity of evaluating and
factorizing the Jacobian. The circles represent iterations where Newton steps were calculated

4.2 Size of �

The cost of computing Hkv increases as the quasi-Newton memory � increases.
In addition, it was observed that the quality of the approximation decreases when
the quasi-Newton memory is large [2]. In our implementation of Algorithm 2, we
also observed the decrease in the quality of the steps when � is too large. The

decrease of the barrier parameter μk = xk
T
zk/n for different bounds on � is shown

in Fig. 1, for problem afiro, the smallest example in Netlib test collection. In
this example, Newton steps were allowed after �max quasi-Newton iterations, where
�max ∈ {0, 5, 20, 100, 200}. The maximum of 200 iterations was allowed.

We can see that if the Jacobian is only evaluated once (�max = 200) then themethod
is unable to converge in 200 iterations. As the maximum memory is reduced, the
number of iterations to convergence is also reduced. On the other hand, the number of
(possibly expensive) Newton steps is increased.When �max = 0, i.e., no quasi-Newton
steps, the algorithm converges in 7 iterations. We take the same approach as [2] and
define an upper bound �max on � in the implementation of Algorithm 2. When this
upper bound is reached, we set � to 0, which, by (17), results in the computation of a
Newton step. The verification is performed at step 3 of Algorithm 2. This approach is
also known as quasi-Newton with restarts [20] and differs from usual limited-memory
quasi-Newton [26], where only the oldest information is dropped.

4.3 The quasi-Newton steps

The behavior of consecutive quasi-Newton steps depicted in Fig. 1 reminds us that it
is important to use the true Jacobian in order to improve convergence of the method.
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However, we would like to minimize the number of times the Jacobian is evaluated,
since it involves expensive factorizations and computations. Unfortunately, to use only
the memory bound as a criterion to compute quasi-Newton steps is not a reasonable
choice. When �max = 100, for example, the algorithm converges in 110 iterations,
but it spends around 60 iterations without any improvement. As the dimension of the
problem increases, this behavior is getting even worse. We can also see that the choice
�max = 20 is better for this problem, as the algorithm converges in 31 iterations,
computing only two times the Cholesky factorization of the Jacobian.

The lack of reduction is related to small step-sizes αk
P and αk

D . Our numerical expe-
rience with quasi-Newton IP methods indicates that the quasi-Newton steps often are
strongly attracted to the boundaries. The step-sizes calculated for directions originated
from a quasi-Newton predictor-corrector strategy are almost always small and need
to be fixed. Several strategies have been tried to increase the step-sizes of those steps:

(i) Perturb complementarity pairs xi zi for which the relative component-wise direc-
tion magnitude

| [�xk
]
i |

xki
or

| [�zk
]
i |

zki
, i = 1, . . . , n (20)

is high and then recompute quasi-Newton direction;
(ii) Use multiple centrality correctors [3];
(iii) Gentle reduction of μ on quasi-Newton iterations, by setting μk to

0.5(xk)T zk/n and 0.9(xk)T zk/n

for predictor and corrector steps, respectively.

Note that the terms in (i) are the inverses of the maximum step-sizes allowed by each
component.

The motivation of strategy (i) is the strong relation observed between components
of the quasi-Newton directionwhich are too largewith respect their associated variable
and components which differ too much from the respective component of the Newton
direction for the same iteration, i.e.,

∣∣∣
[
�xk

(N ) − �xk
(QN )

]
i

∣∣∣
xki

and

∣∣∣
[
�zk

(N ) − �zk
(QN )

]
i

∣∣∣
zki

, (21)

for i = 1, . . . , n. We display this relation in Fig. 2a for one iteration on linear problem
GE. Positive spikes represent the component-wise relative magnitude of quasi-Newton
steps (20) for each component of variables x and z. The higher the spikes, the smaller
the step-sizes are.Negative spikes represent the component-wise relative error between
the Newton and quasi-Newton directions (21). The lower the spikes, the larger the rel-
ative difference between Newton and quasi-Newton components. To generate this
figure, the problem was solved twice and, at the selected iteration, the Newton step
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(b)(a)

Fig. 2 Relation between small step-sizes for quasi-Newton steps (positive spikes) and large relative errors
when compared with Newton step (negative spikes) for one iteration on linear problem GE. High posi-
tive spikes represent blocking components of the quasi-Newton direction. The errors when only a simple
predictor-corrector direction is used are displayed in a. The effect of using strategy (ii) to improve step-sizes
is shown in b

and quasi-Newton step were saved. Only negative quasi-Newton directions were con-
sidered in the figure. It is possible to see in Fig. 2a that very few components are
responsible for the small step-sizes. Interestingly, most of those blocking components
are associated with components of the quasi-Newton direction which differ consider-
ably from theNewton direction. In order to implement the perturbation, the component
in the pair associated with a large value in (20) was set to 0.2μ/max{xi , zi }. Then, the
quasi-Newton step is computed again. As “large”, we defined to be greater or equal 20.
Unfortunately, numerical experiments showed that the perturbation of variables or set-
ting the problematic components of the computed direction to zero has the drawback
of increasing the infeasibility and cannot be performed at many iterations.

To test the impact of each strategy on the quality of the steps, four linear and three
quadratic programming problems were selected: afiro, GE, stocfor3, finnis,
AUG2DQP, BOYD1 and POWELL20. The tests were performed as follows. Given an
iteration k of a problem, we run algorithm HOPDM allowing only Newton steps up to
iteration k−1. At iteration k only one of each approach is applied: Newton step, quasi-
Newton step, or one of the discussed strategies (i), (ii) or (iii). Only one affine-scaling
predictor and one corrector were allowed, except for strategy (ii), where multiple
centrality correctors were used at iteration k. We repeated this procedure for k from
2 up to the total number of iterations that the original version of HOPDM needed to
declare convergence.

The average of the sum of the step-sizes for each problem and for each approach is
shown in Table 2. We can see that quasi-Newton steps are considerably smaller than
Newton steps. All improvement strategies are able to increase, on average, the sum of
the step-sizes. Strategy (i) has the drawback of increasing the infeasibility and has a
huge impact on the convergence of the algorithm. Strategy (iii) is simple and efficient
to implement but has worse results when compared to strategy (ii), based on multiple

123



112 J. Gondzio, F. N. C. Sobral

Table 2 Average of the sum αkP + αkD for improvement strategies (i), (ii) and (iii) on selected linear and
quadratic programming problems

Newton Quasi-Newton (i) (ii) (iii)

afiro 1.826500 0.849070 1.065883 1.280400 0.908283

GE 0.911343 0.079197 0.264640 0.620266 0.142124

stocfor3 1.006294 0.089973 0.569176 1.163839 0.386584

finnis 1.454824 0.074488 0.452727 1.059195 0.405455

AUG2DQP 1.531333 0.659069 0.856961 1.024709 0.818273

BOYD1 1.388485 0.626850 0.853009 0.749564 0.686274

POWELL20 1.048943 0.478416 0.560996 1.055563 0.541350

The use of multiple centrality correctors [strategy (ii)] resulted in values closer to the Newton step
For each problem, the value in bold represents the highest average among the three strategies

centrality correctors. Strategy (ii) has the ability to improve quasi-Newton directions
in almost all iterations and has the drawback of extra backsolves. Similar behavior was
observed in [3]. The effect of strategy (ii) is shown in Fig. 2b. Step-sizes are increased,
but the new quasi-Newton direction is slightly different from the Newton direction for
the same step. Strategy (ii) was selected as the default one in our implementation.

In order to perform as few Newton steps as possible, step 3 of Algorithm 2 has to
be carefully implemented. Clearly, the first basic condition to try a quasi-Newton step
at iteration k + 1, k ≥ 0, is to check if there is available memory to store it at iteration
k.

Criterion 1 (Memory criterion) If � ≤ �max.

Our experience shows that quasi-Newton steps should always be tried, since they
are cheaper than Newton steps. This means that a quasi-Newton step is always tried
(but not necessarily accepted) after a Newton step in the present implementation.
As shown in Fig. 1, using only Criterion 1 can lead to slow convergence and slow
convergence is closely related to small step-sizes. Therefore, in addition to Criterion 1
we tested two criteria, which cannot be used together. In Sect. 5 we compare those
different acceptance criteria.

Criterion 2 (α criterion) If iteration k is a quasi-Newton iteration and

αk
P + αk

D ≥ εα.

Criterion 3 (Centrality criterion) If iteration k is a quasi-Newton iteration and

xk+1T zk+1 ≤ εc

(
xk

T
zk

)
.

5 Numerical results

Algorithm 2 was implemented in Fortran 77 as a modification of the primal-dual
interior point algorithm HOPDM[12], release 2.45. The code was compiled using
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gfortran 4.8.5 and run in aDell PowerEdge R830 poweredwith RedHat Enterprise
Linux, 4 processors Intel Xeon E7-4660 v4 2.2GHz and 512GB RAM. The modifi-
cations discussed in Sects. 3 and 4 have been performed in order to accommodate the
quasi-Newton strategy. The main stopping criteria have been set to Mehrotra and Li’s
stopping criteria [3,23]:

μ

1 + |cT x | ≤ εopt,
‖b − Ax‖
1 + ‖b‖ ≤ εP ,

‖c − Qx − AT λ − z‖
1 + ‖c‖ ≤ εD, (22)

whereμ = xT z/n. Bydefault, inHOPDMparameters are defined to εopt = 10−10, εP =
10−8 and εD is set to 10−8 for linear problems and to 10−6 for quadratic problems. In
addition to (22), successful convergence is also declared when lack of improvement is
detected andμ/(1+|cT x |) ≤ 103εopt. Besides several performance heuristics,HOPDM
implements the regularization technique [1] and the multiple centrality correctors
strategy [3].

For solving linear systems (17), sparse Cholesky factorization of normal equations
or LDLT factorization of the augmented system is automatically selected on initial-
ization. HOPDM also has amatrix-free [15] implementation and the present approach is
fully compatible with it. We recall that how the linear system is solved is not important
to the proposed approach, as long as we are able to save information for future use.
The unreduced matrix is used only to compute the quasi-Newton updates.

According to Algorithm 2, once a quasi-Newton step is computed, it is used to build

point
[
xk+1 λk+1 zk+1

]T
. However, in practice, if such step is considered “bad”, it is

also possible to discard it, setting � = 0, compute the exact Jacobian and perform the
Newton step at this iteration. The idea is to avoid quasi-Newton steps which might
degrade the quality of the current point. Preliminary experiments using linear pro-
gramming problems from Netlib collection were performed, in order to test several
possibilities for �max in Criterion 1 and to select between Criterias 2 and 3. In addition
we also verified the possibility to reject quasi-Newton steps, instead of always accept-
ing them. The selected combination uses �max = 5 and Criterion 3 with εc = 0.99.
Rejecting quasi-Newton steps has not led to reductions in the number of factorizations
and has the drawback of more expensive iterations, therefore, the steps are always
taken. As mentioned in Sect. 4, the multiple centrality correctors strategy (ii) is used
to improve quasi-Newton directions.

A key comparison concerns the type of low rank update to be used. Three imple-
mentations were tested:

U1 General Broyden “bad” algorithm, described by Algorithm 1;
U2 Sparse Broyden “bad” algorithm, described by Algorithm 3 using update (16)

inspired by Schubert’s update [29];
U3 General Broyden “good” algorithm, described by Algorithm 4.

Four test sets were used in the comparison: 96 linear problems from Netlib,1 10
medium-sized linear problems from Maros-Mészáros misc library,2 39 linear prob-

1 http://www.netlib.org/lp/data/.
2 http://old.sztaki.hu/~meszaros/public_ftp/lptestset/misc/.
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Table 3 Summary of the failure cases for implementations U1, U2 and U3, before and after relaxation
of (22)

Before relaxation After relaxation

Max. iter. Sub-opt. Primal Infeas. Total Max. iter. Sub-opt. Primal Infeas. Total

U1 4 10 0 14 4 0 0 4

U2 2 5 1 8 1 0 1 2

U3 3 9 0 12 2 0 0 2

Three cases occurred: maximum number of 200 iteration (Max. iter.), sub-optimal solutions (Subopt.) and
primal infeasibility (Primal Infeas.)

lems from the linear relaxation of Quadratic Assignment Problems (QAP)3 generated
by Terry Johnson’s code4 and 138 convex quadratic programming problems from
Maros-Mészáros qpdata library.5 In order to compare algorithms in large test sets,
performance profiles were used [8]. A problem is declared solved by an algorithm
if the obtained solution

[
x∗ λ∗ z∗

]T satisfies (22). Number of factorizations or total
CPU time (in seconds) are used as performance measures.

Using the default HOPDM values for (22), implementations U1, U2 and U3 are able
to solve 269, 275 and 271 problems, respectively, out of 283. The cases where HOPDM
fails to converge are detailed in Table 3. There were three different cases of failure: the
algorithm reached themaximum of 200 iterations, a sub-optimal solution was found or
the problemwas declared primal infeasible. Sub-optimal solutions occur when there is
no improvement in the last 5 iterations, but the values used to check condition (22) are
acceptable.We observed that there weremany cases where sub-optimal solutions were
found, thus we relaxed the parameters in (22), multiplying them by a factor of 102,
and solved again 19 problems where at least one implementation failed. It is possible
to see in Table 3 that the sub-optimal cases were eliminated after the relaxation. The
resulting performance profiles are shown in Fig. 3, using number of factorizations and
CPU time as performance measures.

Update U2 is the most efficient, since it solves 208 problems using the smallest
number of factorizations and 135 problems using the smallest CPU time, while U1
solves 174 and 123 and U3 solves 121 and 83, respectively. In addition, updatesU2 and
U3 are the most robust implementations, being able to solve 281 out of 283 problems.
Therefore, U2 was used as the default update in this work. Update U2 has performed
particularly well on quadratic problems, which explains the difference in efficiency
between updates.

Based on the preliminary results, the default implementation of Algorithm 2,
denoted qnHOPDM from now on, uses update U2 for solving (17) and computing the
step, strategy (ii) to improve quasi-Newton directions and Criteria 1 and 3 to decide
when to use quasi-Newton at step 3. By default,HOPDM usesmultiple centrality correc-
tors, which were shown to improve convergence of the algorithm [3].We implemented

3 http://anjos.mgi.polymtl.ca/qaplib/inst.html.
4 https://netlib.sandia.gov/lp/generators/index.html.
5 http://old.sztaki.hu/~meszaros/public_ftp/qpdata/.
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Fig. 3 Performance profiles comparing 3 Broyden updates: Broyden “bad” given by Algorithm 1 (U1),
structured Broyden “bad” by Algorithm 3 (U2) and Broyden “good” by Algorithm 4 (U3)

two versions of Algorithm 2: with (qnHOPDM-mc) and without (qnHOPDM) multi-
ple centrality correctors for computing Newton steps. Since we are using strategy (ii),
multiple correctors are always used for quasi-Newton steps. Each implementation was
compared against its respective original version: HOPDM-mc and HOPDM.

In thefirst roundof tests only theQAPcollectionwas excluded from the comparison,
which gives 244 problems fromNetlib and fromMaros-Mészáros linear and quadratic
programming test collection. The performance profiles using number of factorizations
and CPU time as performancemeasures are shown in Fig. 4. Comparisons between the
implementation of HOPDM without multiple centrality correctors and qnHOPDM are
given byFig. 4a, b. The comparison of implementationsHOPDM-mc and qnHOPDM-mc
is displayed in Fig. 4c, d.

Similarly to the previous comparison, using default parameters, 5 problems were
not solved by qnHOPDM or HOPDM without multiple centrality correctors, while 7
problems were not solved by qnHOPDM-mc or HOPDM-mc. Criteria (22) was relaxed
in the sameway on these problems. Using this approach, HOPDM is able to solve all the
244 problems,qnHOPDM solves 242,HOPDM-mc solves 243 and qnHOPDM-mc solves
242. The quasi-Newton implementations are able to successfully reduce the number
of factorizations, as shown in Fig. 4a, c. We can see in Fig. 4a that from all 242 prob-
lems considered solved by qnHOPDM, in 237 it uses less factorizations than HOPDM
without multiple centrality correctors. On the other hand, for about 150 problems,
qnHOPDM uses at least twice as much CPU time as HOPDM (Fig. 4b). The behavior
of the implementations using multiple centrality correctors in the Newton step is sim-
ilar, but HOPDM-mc has improved efficiency results. The problems where qnHOPDM
reduces both factorizations and CPU time when compared to HOPDM without cen-
trality correctors are highlighted in Table 4. The only problem which qnHOPDM-mc
uses strictly less CPU time than HOPDM-mc is the quadratic programming problem
cont-101.

Our last comparison considers 39medium-sized problems from theQAP collection.
These problems are challenging, since they are sparse, but their Cholesky factoriza-
tions are very dense. Performance profiles were once more used for comparing the
implementations. As the algorithm approaches the solution, the linear systems become
ill conditioned. The difficulty of barrier methods for solving the linear relaxation of
QAPswas also observed in [27]. Therefore, using defaultHOPDMvalues for parameters
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Without multiple centrality correctors
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With multiple centrality correctors
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Fig. 4 Performance profiles for the comparison between the quasi-Newton IPM and HOPDM without (a
and b) and with (c and d) multiple centrality correctors for Newton steps in 244 linear and quadratic
programming problems

Table 4 Problems where the quasi-Newton implementation qnHOPDM used strictly less CPU time than
HOPDM

HOPDM qnHOPDM HOPDM-mc qnHOPDM-mc

F CPUt F CPUt F CPUt F CPUt

dfl001 53 56.975 24 36.887 24 28.178 21 36.122

maros-r7 16 2.362 8 2.080 10 1.723 8 2.361

pilot87 31 4.242 10 3.277 15 2.472 11 3.576

cont-101 11 1.138 5 1.090 9 1.255 5 1.160

cont-200 9 6.992 5 6.050 9 8.031 12 15.666

dualc8 121 0.049 5 0.029 61 0.036 23 0.056

hs35 8 0.025 3 0.023 7 0.022 3 0.023

tame 5 0.021 2 0.020 5 0.020 2 0.021

The number of factorizations and the CPU time (in seconds) are represented by F and CPUt, respectively
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Fig. 5 Performance profiles for the comparison between quasi-Newton IPM and HOPDM [(without (a) and
with (b) multiple centrality correctors] on the QAP test collection. CPU time was used as performance
measure

in (22) the number of problems solved is 21 (HOPDM), 31 (qnHOPDM), 25 (HOPDM-
mc) and 35 (qnHOPDM-mc). Clearly the quasi-Newton approach benefits from using
matrices that are not too close to the solution. From the 39 problems, 19 were solved
again using relaxed parameters for the comparison between HOPDM and qnHOPDM,
and 14 were solved again for the comparison between HOPDM-mc and qnHOPDM-mc.
The results are shown in Fig. 5. Quasi-Newton IPM is the most efficient and robust
algorithm in terms of CPU time for both implementations, solving all 39 problems.
Without multiple centrality correctors (Fig. 5a), HOPDM has a poor performance and
is not able to solve any problem using less CPU time than qnHOPDM. When mul-
tiple centrality correctors are allowed (Fig. 5b), HOPDM-mc is able to solve only 10
problems using less or equal CPU time than qnHOPDM-mc.

Clearly, the efficiency of qnHOPDM is due to the decrease in the number of fac-
torizations, as shown in Table 5. In this table we display the number of factorizations
(F) and CPU time (CPUt) for each problem and each algorithm in all QAP test prob-
lems considered. When no multiple centrality correctors are allowed at Newton steps,
qnHOPDM displays the biggest improvements, being the fastest solver in all problems.
The results are more competitive when multiple centrality correctors are allowed, but
qnHOPDM-mc was the most efficient in 29 problems while HOPDM-mc was the most
efficient in 10 problems.

6 Conclusions

In this work we discussed a new approach to IPM based on rank-one secant updates
for solving quadratic programming problems. The approach was motivated by the
multiple centrality correctors, which provide many possible points where the function
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Table 5 Numerical results for theQAPcollection. For each algorithm the number ofCholesky factorizations
(F) and CPU time (CPUt) is displayed

HOPDM qnHOPDM HOPDM-mc qnHOPDM-mc

F CPUt F CPUt F CPUt F CPUt

qap8 12 0.657 5 0.438 9 0.481 4 0.396

qap12 20 34.225 12 23.052 14 23.928 9 19.120

qap15 15 199.306a 9 149.782 13 175.021 12 179.777

chr12a 15 25.858 6 14.887 10 17.654 6 13.563

chr12b 14 24.127 6 13.110 9 16.108 5 11.558

chr12c 14 24.019 6 14.297 10 17.711 6 14.262

chr15a 28 365.526a 11 168.167 11 220.737a 11 175.070

chr15b 18 254.418 9 138.639 11 149.842 8 138.697

chr15c 15 198.142 7 110.466 10 137.979 6 102.391

chr18a 31 2267.138a 10 814.251a 13 1007.215a 10 833.171a

chr18b 15 1094.975 5 430.104 11 812.243 5 436.455

esc16a 9 233.146 4 120.412 9 229.835 5 148.167

esc16b 6 161.393 3 128.426a 7 184.806 5 152.563

esc16c 9 256.499 4 151.036 6 168.644a 3 100.523

esc16d 10 236.599 4 132.912 6 165.879a 4 126.286

esc16e 9 228.907 5 154.823 8 206.985 4 126.947

esc16f 5 137.600a,b 2 74.728 5 202.329a,b 2 78.376

esc16g 7 184.014a 4 118.925a 6 161.090a 4 135.363

esc16h 7 187.607a 4 124.728 9 229.396 4 129.765

esc16i 9 229.359a 5 147.298 8 210.252a 4 127.249a

esc16j 9 233.170a,b 4 125.714 8 190.339a,b 4 124.838

had12 15 25.463a 13 23.704 8 14.852a 6 17.055

had14 16 132.848a 6 53.987 8 63.408a 8 75.801

had16 16 407.539a 13 370.233a 8 212.278a 6 185.092a

had18 17 1221.709a 11 831.704a 8 636.914a 8 655.777a

nug12 20 33.161 12 23.069 14 23.910 9 21.327

nug14 17 129.937a 8 66.117 14 96.694 11 95.963

nug15 15 198.589a 9 141.071 13 175.054 12 190.730

nug16a 17 417.437a 11 314.709a 16 391.903 13 361.863

nug16b 15 413.183a 7 204.477 14 347.994 11 301.793

nug17 17 732.045a 8 406.272a 8 391.035a 9 443.721

nug18 16 1161.936a 7 602.210a 9 921.522a 6 508.669

rou12 23 37.859 13 24.526 13 22.755 10 23.001

rou15 23 296.984 9 132.725 12 162.789 9 148.203

scr12 28 45.440 11 21.778 13 22.485 11 23.858

scr15 27 368.647 13 187.875 16 212.057 15 235.463
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Table 5 continued

HOPDM qnHOPDM HOPDM-mc qnHOPDM-mc

F CPUt F CPUt F CPUt F CPUt

tai12a 24 39.167 10 20.823 14 24.274 8 20.890

tai15a 24 324.739 12 183.891 11 156.699 12 187.767

tai17a 24 1015.653 15 836.886 12 528.553 6 314.275

Index aindicates solver runswhen the default stopping criteriawere notmet but only the suboptimal solutions
were obtained while index bmarks cases corresponding to situations when relaxed stopping criteria were
not reached

F can be evaluated in order to build a good approximation of J . Instead of using
several points, the present approach uses only the new computed point in order to
build a low rank approximation to the unreduced matrix at the next iteration. The
computational cost of solving the quasi-Newton linear system can be compared with
the cost of computing one corrector, as all the factorizations and preconditioners have
already been calculated.

It was shown that rank-one secant updates maintain the main structure of the unre-
ducedmatrix. Also, several aspects of an efficient implementationwere discussed. The
proposed algorithm was implemented as a modification of algorithm HOPDM using
the Broyden “bad” update, modified to preserve the sparsity structure of the unre-
duced matrix. The implementation was compared with the original version of HOPDM
and was able to reduce the overall number of factorizations in most of the problems.
However, only in the test set containing linear relaxations of quadratic assignment
problems, the reduction in the number of factorizations was systematically translated
into the reduction of the CPU time of the algorithm. This suggests that the proposed
algorithm is suitable for problems where the computational cost of the factorizations
is much higher than the cost of the backsolves.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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