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Abstract This paper proposes an algorithm for solving structured optimization
problems,which covers both the backward–backward and theDouglas–Rachford algo-
rithms as special cases, and analyzes its convergence. The set of fixed points of the
corresponding operator is characterized in several cases. Convergence criteria of the
algorithm in terms of general fixed point iterations are established. When applied to
nonconvex feasibility including potentially inconsistent problems, we prove local lin-
ear convergence results under mild assumptions on regularity of individual sets and of
the collection of sets. In this special case, we refine known linear convergence criteria
for the Douglas–Rachford (DR) algorithm. As a consequence, for feasibility problem
with one of the sets being affine, we establish criteria for linear and sublinear con-
vergence of convex combinations of the alternating projection and the DR methods.
These results seem to be new.We also demonstrate the seemingly improved numerical
performance of this algorithm compared to the RAAR algorithm for both consistent
and inconsistent sparse feasibility problems.
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1 Introduction

Convergence analysis has been one of the central and very active applications of
variational analysis and mathematical optimization. Examples of recent contributions
to the theory of the field that have initiated efficient programs of analysis are [1,2,7,38].
It is the common recipe emphasized in these and many other works that there are two
key ingredients required in order to derive convergence of a numerical method (1)
regularity of individual functions or sets such as convexity and averaging property,
and (2) regularity of collections of functions or sets at their critical points such as
transversality, Kurdyka-Łojasiewicz property and metric subregularity. As a result,
the question about convergence of a solving method can often be reduced to checking
whether certain regularity properties of the problem data are satisfied. There have
been a considerable number of papers studying these two ingredients of convergence
analysis in order to establish sharper convergence criteria in various circumstances,
especially those applicable to algorithms for solving nonconvex problems [5,12,13,
19,26,27,31–33,38,42,45].

This paper suggests an algorithm called Tλ, which covers both the backward-
backward and the DR algorithms as special cases of choosing the parameter λ ∈ [0, 1],
and analyzes its convergence. When applied to feasibility problem for two sets one of
which is affine, Tλ is a convex combination of the alternating projection and the DR
methods. On the other hand, Tλ can be viewed as a relaxation of the DR algorithm.
Motivation for relaxing the DR algorithm comes from the lack of stability of this algo-
rithmwhen applied to inconsistent problems. This phenomenon has been observed for
the Fourier phase retrieval problem which is essentially inconsistent due to the recip-
rocal relationship between the spatial and frequency variables of the Fourier transform
[35,36]. To address this issue, a relaxation of the DR algorithm, often known as the
RAAR algorithm, was proposed and applied to phase retrieval problems by Luke in
the aforementioned papers. In the framework of feasibility, the RAAR algorithm is
described as a convex combination of the basic DR operator and one of the projectors.
Our preliminary numerical experiments have revealed a promising performance of
algorithm Tλ in comparison with the RAAR method. This observation has motivated
the study of convergence analysis of algorithm Tλ in this paper.

After introducing the notation and proving preliminary results in Sect. 2, we intro-
duce Tλ as a general fixed point operator, characterize the set of fixed points of Tλ

(Proposition 1), and establish abstract convergence criteria for iterations generated
by Tλ (Theorem 2) in Sect. 3. We discuss algorithm Tλ in the framework of feasi-
bility problems in Sect. 4. The set of fixed points of Tλ is characterized for convex
inconsistent feasibility (Proposition 3). For consistent feasibility we show that almost
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averagedness of Tλ (Proposition 4) and metric subregularity of Tλ − Id (Lemma 3)
can be obtained from regular properties of the individual sets and of the collection of
sets, respectively. As a result, the two regularity notions are combined to yield local
linear convergence of iterations generated by Tλ (Theorem 4). Section 5 is devoted
to demonstrate the improved numerical performance of algorithm Tλ compared to
the RAAR algorithm for both consistent and inconsistent feasibility problems. In this
section, we study the feasibility approach for solving the sparse optimization problem.
Our linear convergence result established in Sect. 4 for iterations generated by Tλ is
also illustrated in this application (Theorem 5).

2 Notation and preliminary results

Our notation is standard, c.f. [11,40,46]. The setting throughout this paper is a finite
dimensional Euclidean space E. The norm ‖ · ‖ denotes the Euclidean norm. The open
unit ball in a Euclidean space is denoted B, and Bδ(x) stands for the open ball with
radius δ > 0 and center x . The distance to a set A ⊂ E with respect to the bivariate
function dist (·, ·) is defined by

dist (·, A) : E → R+ : x �→ inf
y∈A

dist (x, y).

We use the convention that the distance to the empty set is +∞. The set-valued
mapping

PA : E ⇒ E : x �→ {y ∈ A | dist (x, y) = dist (x, A) }
is the projector on A. An element y ∈ PA(x) is called a projection. This exists for
any closed set A ⊂ E. Note that the projector is not, in general, single-valued. Closely
related to the projector is the proxmapping corresponding to a function f and a stepsize
τ > 0 [41]

proxτ, f (x) := argmin y∈E
{

f (y) + 1
2τ ‖y − x‖2

}
.

When f = ιA is the indicator function of A, that is ιA(x) = 0 if x ∈ A and ιA(x) =
+∞ otherwise, then proxτ,ιA

= PA for all τ > 0. The inverse of the projector, P−1
A ,

is defined by
P−1

A (a) := {x ∈ E | a ∈ PA(x) } .

The proximal normal cone to A at x̄ is the set, which need not be either closed or
convex,

N prox
A (x̄) := cone

(
P−1

A (x̄) − x̄
)

. (1)

If x̄ /∈ A, then N prox
A (x̄) is defined to be empty. Normal cones are central to charac-

terizations both of the regularity of individual sets and of the regularity of collections
of sets. For a refined numerical analysis of projection methods, one also defines the
Λ-proximal normal cone to A at x̄ by

N prox
A|Λ (x̄) := cone

((
P−1

A (x̄) ∩ Λ
)

− x̄
)

.

When Λ = E, it coincides with the proximal normal cone (1).
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844 N. H. Thao

For ε ≥ 0 and δ > 0, a set A is (ε, δ)-regular relative to Λ at x̄ ∈ A [13, Definition
2.9] if for all x ∈ Bδ(x̄), a ∈ A ∩ Bδ(x̄) and v ∈ N prox

A|Λ (a),

〈x − a, v〉 ≤ ε ‖x − a‖ ‖v‖ .

When Λ = E, the quantifier “relative to” is dropped.
For a set-valued operator T : E ⇒ E, its fixed point set is defined by Fix T :=

{x ∈ E | x ∈ T x }. For a number λ ∈ [0, 1], we denote the λ-reflector of T by RT,λ :=
(1 + λ)T − λ Id. A frequently used example in this paper corresponds to T being a
projector.

In the context of convergence analysis of Picard iterations, the following general-
ization of the Fejér monotonicity of sequences appears frequently, see, for example,
the book [4] or the paper [39] for the terminology.

Definition 1 (Linear monotonicity) The sequence (xk) is linearly monotone with
respect to a set S ⊂ E with rate c ∈ [0, 1] if

dist (xk+1, S) ≤ c dist (xk, S) ∀k ∈ N.

Our analysis follows the abstract analysis program proposed in [38] which requires
the two key components of the convergence: almost averagedness and metric subreg-
ularity.

Definition 2 (Almost nonexpansive/averaging mappings) [38] Let T : E ⇒ E and
U ⊂ E.

(i) T is pointwise almost nonexpansive at y onU with violation ε ≥ 0 if for all x ∈ U ,
x+ ∈ T x and y+ ∈ T y,

∥∥x+ − y+∥∥ ≤ √
1 + ε ‖x − y‖ .

(ii) T is pointwise almost averaging at y on U with violation ε ≥ 0 and averaging
constant α > 0 if for all x ∈ U , x+ ∈ T x and y+ ∈ T y,

∥∥x+ − y+∥∥2 ≤ (1 + ε) ‖x − y‖2 − 1 − α

α

∥∥(x+ − x) − (y+ − y)
∥∥2 . (2)

When a property holds at all y ∈ U on U , we simply say that the property holds on
U .

From Definition 2, almost nonexpansiveness is actually the almost averaging prop-
erty with the same violation and averaging constant α = 1.

Remark 1 (the range of quantitative constants) In the context of Definition 2, it is
natural to consider violation ε ≥ 0 and averaging constant α ∈ (0, 1].Mathematically,
it alsomakes sense to consider ε < 0 and α > 1 provided that the required estimate (2)
holds true. Simple examples for the later case are linear contraction mappings. In this
paper, averaging constant α > 1 will frequently be involved implicitly in intermediate
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steps of our analysis without any contradiction or confusion. This is the reason why in
Definition 2 (ii) we considered α > 0 instead of α ∈ (0, 1] as in [38, Definition 2.2].

It is worth noting that if the iteration xk+1 ∈ T xk is linearly monotone with respect
to Fix T with rate c ∈ (0, 1) and T is almost averaging on some neighborhood of
Fix T with averaging constant α ∈ (0, 1], then (xk) converges R-linearly to a fixed
point of T [39, Proposition 3.5].

We next prove a fundamental preliminary result for our analysis regarding almost
averaging mappings.

Lemma 1 Let T : E ⇒ E, U ⊂ E, λ ∈ [0, 1], ε ≥ 0 and α > 0. The following two
statements are equivalent.

(i) T is almost averaging on U with violation ε and averaging constant α.
(ii) The λ-reflector of T , RT,λ = (1 + λ)T − λ Id, is almost averaging on U with

violation (1 + λ)ε and averaging constant (1 + λ)α.

Proof Take any x, y ∈ U , x+ ∈ T x , y+ ∈ T y, x̃ = (1 + λ)x+ − λx ∈ RT,λx and
ỹ = (1+ λ)y+ − λy ∈ RT,λy. We have by definition of RT,λ and [4, Corollary 2.14]
that

‖x̃ − ỹ‖2 = ∥∥(1 + λ)(x+ − y+) − λ(x − y)
∥∥2

= (1 + λ)
∥∥x+ − y+∥∥2 − λ ‖x − y‖2 + λ(1 + λ)

∥∥(x+ − x) − (y+ − y)
∥∥2 .

(3)

We also note that

‖(x̃ − x) − (ỹ − y)‖ = (1 + λ)
∥∥(x+ − x) − (y+ − y)

∥∥ . (4)

(i) ⇒ (ii). Suppose that T is almost averaging on U with violation ε and averaging
constant α. Substituting (2) into (3) and using (4), we obtain that

‖x̃ − ỹ‖2

≤ (1 + (1 + λ)ε) ‖x − y‖2 − (1 + λ)

(
1 − α

α
− λ

)∥∥(x+ − x) − (y+ − y)
∥∥2

= (1 + (1 + λ)ε) ‖x − y‖2 −
1−α
α

− λ

1 + λ
‖(x̃ − x) − (ỹ − y)‖2

= (1 + (1 + λ)ε) ‖x − y‖2 − 1 − (1 + λ)α

(1 + λ)α
‖(x̃ − x) − (ỹ − y)‖2 , (5)

which means that RT,λ is almost averaging onU with violation (1+λ)ε and averaging
constant (1 + λ)α.

(ii) ⇒ (i). Suppose that RT,λ is almost averaging on U with violation (1+ λ)ε and
averaging constant (1+λ)α, that is, the inequality (5) is satisfied. Substituting (3) into
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(5) and using (4), we obtain

(1 + λ)
∥∥x+ − y+∥∥2 − λ ‖x − y‖2 + λ(1 + λ)

∥∥(x+ − x) − (y+ − y)
∥∥2

≤ (1 + (1 + λ)ε) ‖x − y‖2 − (1 + λ)

(
1 − α

α
− λ

)∥∥(x+ − x) − (y+ − y)
∥∥2 .

Equivalently,

∥∥x+ − y+∥∥2 ≤ (1 + ε) ‖x − y‖2 − 1 − α

α

∥∥(x+ − x) − (y+ − y)
∥∥2 .

Hence T is almost averaging on U with violation ε and averaging constant α and the
proof is complete. ��

Lemma 1 generalizes [13, Lemma 2.4] where the result was proved for α = 1/2
and λ = 1.

The next lemma recalls facts regarding the almost averagedness of projectors and
reflectors associated with regular sets.

Lemma 2 Let A ⊂ E be closed and (ε, δ)-regular at x̄ ∈ A and define

U := {x ∈ E | PAx ⊂ Bδ(x̄)}.

(i) The projector PA is pointwise almost nonexpansive on U at every point z ∈
A ∩ Bδ(x̄) with violation 2ε + ε2.

(ii) The projector PA is pointwise almost averaging on U at every point z ∈ A∩Bδ(x̄)

with violation 2ε + 2ε2 and averaging constant 1/2.
(iii) The λ-reflector RPA,λ is pointwise almost averaging on U at every point z ∈

A ∩ Bδ(x̄) with violation (1 + λ)(2ε + 2ε2) and averaging constant 1+λ
2 .

Proof Statements (i) and (ii) can be found in [13, Theorem 2.14] or [38, Theorem 3.1
(i) & (iii)]. Statement (iii) follows from (ii) and Lemma 1 applied to T = PA and
α = 1/2. ��

The following concept of metric subregularity with functional modulus has played
a central role, explicitly or implicitly, in the convergence analysis of Picard iterations
[1,13,38,39]. Recall that a function μ : [0,∞) → [0,∞) is a gauge function if μ is
continuous and strictly increasing and μ(0) = 0.

Definition 3 (Metric subregularity with functional modulus) A mapping F : E ⇒ E

is metrically subregular with gauge μ on U ⊂ E for y relative to Λ ⊂ E if

μ
(
dist

(
x, F−1(y) ∩ Λ

))
≤ dist (y, F(x)) ∀x ∈ U ∩ Λ.

When μ is a linear function, that is μ(t) = κt, ∀t ∈ [0,∞), one says “with constant
κ” instead of “with gauge μ = κ Id”. When Λ = E, the quantifier “relative to” is
dropped.
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A convergent relaxation of the Douglas–Rachford algorithm 847

Metric subregularity has many important applications in variational analysis and
mathematical optimization, see the monographs and papers [11,15–18,20,21,25,40,
44]. For the discussion of metric subregularity in connection with subtransversality of
collections of sets, we refer the reader to [23,24,29,30].

The next theorem serves as the basic template for the quantitative convergence
analysis of fixed point iterations. By the notation T : Λ ⇒ Λ where Λ is a subset
of E, we mean that T : E ⇒ E and T x ⊂ Λ for all x ∈ Λ. This simplification of
notation should not lead to any confusion if one keeps in mind that there may exist
fixed points of T that are not in Λ. For the importance of the use of Λ in isolating the
desirable fixed point, we refer the reader to [1, Example 1.8]. In the following, ri Λ

denotes the relative interior of Λ.

Theorem 1 [38, Theorem 2.1] Let T : Λ ⇒ Λ for Λ ⊂ E and let S ⊂ ri Λ be closed
and nonempty such that T y ⊂ Fix T ∩ S for all y ∈ S. Let O be a neighborhood of
S such that O ∩ Λ ⊂ ri Λ. Suppose that

(a) T is pointwise almost averaging at all points y ∈ S with violation ε and averaging
constant α ∈ (0, 1) on O ∩ Λ, and

(b) there exists a neighborhood V of Fix T ∩ S and a constant κ > 0 such that for all
y ∈ S, y+ ∈ T y and all x+ ∈ T x the estimate

κ dist (x, S) ≤ ∥∥(
x − x+) − (

y − y+)∥∥ (6)

holds whenever x ∈ (O ∩ Λ) \ (V ∩ Λ).

Then for all x+ ∈ T x

dist
(
x+,Fix T ∩ S

) ≤
√
1 + ε − (1 − α)κ2

α
dist (x, S)

whenever x ∈ (O ∩ Λ) \ (V ∩ Λ).

In particular, if κ >
√

εα
1−α

, then for any initial point x0 ∈ O ∩ Λ the iteration

xk+1 ∈ T xk satisfies

dist (xk+1,Fix T ∩ S) ≤ ck dist (x0, S)

with c :=
√
1 + ε − (1−α)κ2

α
< 1 for all k such that x j ∈ (O ∩ Λ) \ (V ∩ Λ) for

j = 1, 2, . . . , k.

Remark 2 [38, p. 13] In the case of S = Fix T condition (6) reduces to metric sub-
regularity of the mapping F := T − Id for 0 on the annular set (O ∩ Λ) \ (V ∩ Λ),
that is

κ dist (x, F−1(0)) ≤ dist (0, F(x)) ∀x ∈ (O ∩ Λ) \ (V ∩ Λ) .

The inequality κ >
√

εα
1−α

then states that the constant of metric subregularity κ is

sufficiently large relative to the violation of the averaging property of T to guarantee
linear progression of the iterates through that annular region.
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For a comprehensive discussion on the roles of S and Λ in the analysis program of
Theorem 1, we would like to refer the reader to the paper [38].

For the sake of simplification in terms of presentation, we have chosen to reduce
the number of technical constants appearing in the analysis. It would be obviously
analogous to formulate more theoretically general results by using more technical
constants in appropriate places.

3 Tλ as a fixed point operator

We consider the problem of finding a fixed point of the operator

Tλ := T1 ((1 + λ)T2 − λ Id) − λ (T2 − Id) , (7)

where λ ∈ [0, 1] and Ti : E ⇒ E (i = 1, 2) are assumed to be easily computed.
Examples of Tλ include the backward-backward and the DR algorithms [8,10,34,

36,43] for solving the structured optimization problem

minimize
x∈E f1(x) + f2(x)

under different assumptions on the functions fi (i = 1, 2). Indeed, when Ti are the
prox mappings of fi with parameters τi > 0, then Tλ with λ = 0 and 1 takes the form
Tλ = proxτ1, f1 ◦ proxτ2, f2 , and Tλ = proxτ1, f1

(
2proxτ2, f2 − Id

) − proxτ2, f2 + Id,
respectively.

We first characterize the set of fixed points of Tλ via those of the constituent oper-
ators Ti (i = 1, 2).

Proposition 1 Let T1, T2 : E ⇒ E, λ ∈ [0, 1] and consider Tλ defined at (7). The
following statements hold true.

(i) (1 + λ)Tλ − λ Id = ((1 + λ)T1 − λ Id) ◦ ((1 + λ)T2 − λ Id).
As a consequence,

Fix Tλ = Fix ((1 + λ)T1 − λ Id) ◦ ((1 + λ)T2 − λ Id) .

(ii) Suppose that T1 = PA is the projector on an affine set A and T2 is single-valued.
Then

Fix Tλ = {x ∈ E | PAx = λT2x + (1 − λ)x}
⊂ {x ∈ E | PAx = PAT2x}. (8)

Proof (i). We have by the construction of Tλ that

(1 + λ)Tλ − λ Id = (1 + λ) (T1 ((1 + λ)T2 − λ Id) − λ(T2 − Id)) − λ Id

= (1 + λ)T1 ((1 + λ)T2 − λ Id) − λ [(1 + λ)T2 − λ Id]

= ((1 + λ)T1 − λ Id) ◦ ((1 + λ)T2 − λ Id) .
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A convergent relaxation of the Douglas–Rachford algorithm 849

(ii). We first take an arbitrary x ∈ Fix Tλ and prove that

PAx = PAT2x = λT2x + (1 − λ)x .

Indeed, from x = Tλx , we get

x = PA ((1 + λ)T2x − λx) − λ(T2x − x)

⇔ λT2x + (1 − λ)x = PA ((1 + λ)T2x − λx) . (9)

In particular, λT2x + (1− λ)x ∈ A. Thus by equality (9) and the assumption that PA

is affine, we have

PA (λT2x + (1 − λ)x) = PA ((1 + λ)T2x − λx)

⇔ λPAT2x + (1 − λ)PAx = (1 + λ)PAT2x − λPAx

⇔ PAx = PAT2x . (10)

Substituting (10) into (9) also yields

λT2x + (1 − λ)x = (1 + λ)PAT2x − λPAx

= (1 + λ)PAx − λPAx = PAx .

Finally, let us take an arbitrary x satisfying PAx = λT2x + (1 − λ)x and prove
that x ∈ Fix Tλ. Indeed, we note that λT2x + (1 − λ)x ∈ A. Since PA is affine, one
can easily check (10) and then (9), which is equivalent to x ∈ Fix Tλ. The proof is
complete. ��

The inclusion (8) in Proposition 1 can be strict as shown in the next example.

Example 1 Let us consider E = R
2, the set A = {

(x1, x2) ∈ R
2 | x1 = 0

}
and the

two operators T1 = PA and T2x = 1
2 x (∀x ∈ R

2). Then for any point x = (x1, 0)
with x1 �= 0, we have PAx = PAT2x = (0, 0) but PAx = (0, 0) �= (1 − λ/2)x =
λT2x + (1 − λ)x , that is x /∈ Fix Tλ.

The next proposition shows that the almost averagedness of Tλ naturally inherits
from that of T1 and T2 via Krasnoselski–Mann relaxations.

Proposition 2 (Almost averagedness ofTλ) Let λ ∈ [0, 1], Ti be almost averaging on
Ui ⊂ E with violation εi ≥ 0 and averaging constant αi > 0 (i = 1, 2) and define
the set

U := {x ∈ U2 | RT2,λx ⊂ U1}.

Then Tλ is almost averaging on U with violation ε = ε1 + ε2 + (1 + λ)ε1ε2 and
averaging constant α = 2max{α1,α2}

1+(1+λ)max{α1,α2} .
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Proof By the implication (i)⇒ (ii) of Lemma 1, the operators RTi ,λ = (1+λ)Ti −λ Id
are almost averaging on Ui with violation (1+ λ)εi and averaging constant (1+ λ)αi

(i = 1, 2). Then thanks to [38, Proposition 2.4 (iii)], the operator T := RT1,λ RT2,λ is
almost averaging on U with violation (1+ λ) (ε1 + ε2 + (1 + λ)ε1ε2) and averaging
constant 2(1+λ)max{α1,α2}

1+(1+λ)max{α1,α2} . Note that Tλ = (1 + λ)T − λ Id by Proposition 1. We
have by the implication (ii) ⇒ (i) of Lemma 1 that Tλ is almost averaging on U with
violation ε = ε1 + ε2 + (1+ λ)ε1ε2 and averaging constant α = 2max{α1,α2}

1+(1+λ)max{α1,α2} as
claimed. ��

We next discuss convergence of Tλ based on the abstract results established in [38].
Our agenda is to verify the assumptions of Theorem 1. To simplify the exposure in
terms of presentation, we have chosen to state the results corresponding to S = Fix Tλ

and Λ = E in Theorem 1. In the sequel, we will denote, for a nonnegative real ρ,

Sρ := Fix Tλ + ρB.

Theorem 2 (Convergence of algorithm Tλwithmetric subregularity)Let Tλ be defined
at (7), δ > 0 and γ ∈ (0, 1). Suppose that for each n ∈ N, the following conditions
are satisfied.

(i) T2 is almost averaging on Sγ nδ with violation ε2,n ≥ 0 and averaging constant
α2,n ∈ (0, 1), and T1 is almost averaging on the set Sγ nδ ∪ RT2,λ

(
Sγ nδ

)
with

violation ε1,n ≥ 0 and averaging constant α1,n ∈ (0, 1).
(ii) The mapping Tλ − Id is metrically subregular on Dn := Sγ nδ \ Sγ n+1δ for 0 with

gauge μn satisfying

inf
x∈Dn

μn (dist (x,Fix Tλ))

dist (x,Fix Tλ)
≥ κn >

√
αnεn

1 − αn
, (11)

where εn := ε1,n + ε2,n + (1 + λ)ε1,nε2,n and αn := 2max{α1,n ,α2,n}
1+(1+λ)max{α1,n ,α2,n} .

Then all iterations xk+1 ∈ Tλxk starting in Sδ satisfy

dist (xk,Fix Tλ) → 0 (12)

and
dist (xk+1,Fix Tλ) ≤ cn dist (xk,Fix Tλ) ∀xk ∈ Dn, (13)

where cn :=
√
1 + εn − (1−αn)κ2n

αn
< 1.

In particular, if
(

(1−αn)κ2n
αn

− εn

)
is bounded from below by some τ > 0 for all n

sufficiently large, then the convergence (12) is R-linear with rate at most
√
1 − τ .

Proof For each n ∈ N, we verify the assumptions of Theorem 1 for O = Sγ nδ ,
V = Sγ n+1δ and Dn = O \ V = Sγ nδ \ Sγ n+1δ . Under assumption (i) of Theorem
2, Proposition 2 ensures that Tλ is almost averaging on Sγ nδ with violation εn and
averaging constant αn . In other words, condition (a) of Theorem 1 is satisfied with
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ε = εn and α = αn . Assumption (ii) of Theorem 2 also fulfills condition (b) of
Theorem 1 with κ = κn in view of Remark 2. Theorem 1 then yields the conclusion
of Theorem 2 after a straightforward care of the involving quantitative constants. ��

The first inequality in (11) essentially says that the gauge function μn can be
bounded from below by a linear function on the reference interval.

Remark 3 In Theorem 2, the fundamental goal of formulating assumption (i) on the
set Sγ nδ and assumption (ii) on the set Dn is that one can characterize sublinear
convergence of an iteration on Sδ via linear progression of its iterates through each of
the annular set Dn . This idea is based on the fact that for larger n, the almost averaging
property of Tλ on Sγ nδ is always improved but the metric subregularity on Dn may
get worse, however, if the corresponding quantitative constants still satisfy condition
(11), then convergence is guaranteed. For an illustrative example, we refer the reader
to [38, Example 2.4].

4 Application to feasibility

We consider algorithm Tλ for solving feasibility problem involving two closed sets
A, B ⊂ E,

x+ ∈ Tλx = PA ((1 + λ)PB x − λx) − λ (PB x − x)

= PA RPB ,λ(x) − λ (PB x − x) . (14)

Note that Tλ with λ = 0 and 1 corresponds to the alternating projections PA PB and
the DR method 1

2 (RA ◦ RB + Id), respectively.
It is worth recalling that feasibility problem for m ≥ 2 sets can be reformulated as

a feasibility problem for two constructed sets on the product space Em with one of the
later sets is a linear subspace, and the regularity properties in terms of both individual
sets and collections of sets of the later sets are inherited from those of the former ones
[3,32].

When A is an affine set, then the projector PA is affine and Tλ is a convex combi-
nation of the alternating projection and the DR methods since

Tλx = PA ((1 − λ)PB x + λ(2PB x − x)) − λ (PB x − x)

= (1 − λ)PA PB x + λ (x + PA(2PB x − x) − PB x)

= (1 − λ)T0(x) + λT1(x).

In this case, we establish convergence results for all convex combinations of the
alternating projection and the DR methods. To our best awareness, this kind of results
seems to be new.

Recall that when applied to inconsistent feasibility problems the DR operator has
no fixed points. We next show that the set of fixed points of Tλ with λ ∈ [0, 1) for
convex inconsistent feasibility problems is nonempty. This result follows the lines of
[36, Lemma 2.1] where the fixed point set of the RAAR operator is characterized.
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Proposition 3 (Fixed points of Tλ for convex inconsistent feasibility) For closed con-
vex sets A, B ⊂ E, let G = B − A, g = PG0, E = A∩(B −g) and F = (A+g)∩ B.
Then

Fix Tλ = E − λ

1 − λ
g ∀λ ∈ [0, 1).

Proof Wefirst show that E − λ
1−λ

g ⊂ Fix Tλ. Pick any e ∈ E and denote f = e+g ∈
F as definitions of E and F . We are checking that

x := e − λ

1 − λ
g ∈ Fix Tλ.

Since x = f − 1
1−λ

g and −g ∈ NB( f ), we get PB x = f .
Analogously, since g ∈ NA(e) and

(1 + λ)PB x − λx = (1 + λ) f − λx = e + 1

1 − λ
g,

we have PA((1 + λ)PB x − λx) = e.
Hence,

x − Tλx = x − PA ((1 + λ)PB x − λx) + λ (PB x − x)

= x − e + λ ( f − x) = 0.

That is x ∈ Fix Tλ.
We next show that Fix Tλ ⊂ E − λ

1−λ
g. Pick any x ∈ Fix Tλ. Let f = PB x and

y = x − f . Thanks to x ∈ Fix Tλ and the definition of Tλ,

PA((1 + λ)PB x − λx) = λ(PB x − x) + x

= − λy + y + f = f + (1 − λ)y. (15)

Now, for any a ∈ A, since A is closed and convex, we have

0 ≥ 〈a − PA((1 + λ)PB x − λx), (1 + λ)PB x − λx − PA((1 + λ)PB x − λx)〉
= 〈a − ( f + (1 − λ)y), (1 + λ) f − λx − ( f + (1 − λ)y)〉
= 〈a − f − (1 − λ)y,−y〉 = 〈−a + f, y〉 + (1 − λ) ‖y‖2 .

On the other hand, for any b ∈ B, since B is closed and convex, we have

〈b − f, y〉 = 〈b − f, x − f 〉 = 〈b − PB x, x − PB x〉 ≤ 0.

Combining the last two inequalities yields

〈b − a, y〉 ≤ −(1 − λ) ‖y‖2 ≤ 0 ∀a ∈ A, ∀b ∈ B.
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Take a sequence (an) in A and a sequence (bn) in B such that gn := bn − an → g.
Then

〈gn, y〉 ≤ −(1 − λ) ‖y‖2 ≤ 0 ∀n. (16)

Taking the limit and using the Cauchy–Schwarz inequality yields

‖y‖ ≤ 1

1 − λ
‖g‖ .

Conversely, by (15) with noting that f ∈ B and PA((1 + λ)PB x − λx) ∈ A,

‖y‖ = 1

1 − λ
‖ f − PA((1 + λ)PB x − λx)‖ ≥ 1

1 − λ
‖g‖ .

Hence ‖y‖ = 1
1−λ

‖g‖, and taking the limit in (16), which yields y = − 1
1−λ

g. Since
f ∈ B and f − g = f + (1 − λ)y = PA((1 + λ)PB x − λx) ∈ A, we have
f − g ∈ A ∩ (B − g) = E and, therefore,

x = f + y = f − 1

1 − λ
g = f − g − λ

1 − λ
g ∈ E − λ

1 − λ
g.

��
We next discuss the two key ingredients for convergence of algorithm Tλ applied

to feasibility problems: 1) almost averagedness of Tλ, and 2) metric subregularity of
Tλ− Id. The two properties will be deduced from the (ε, δ)-regularity of the individual
sets and the transversality of the collection of sets, respectively.

The next proposition shows averagedness of Tλ applied to feasibility problems
involving (ε, δ)-regular sets.

Proposition 4 Let A and B be (ε, δ)-regular at x̄ ∈ A ∩ B and define the set

U := {x ∈ E | PB x ⊂ Bδ(x̄) and PA RPB ,λx ⊂ Bδ(x̄)}. (17)

Then Tλ is pointwise almost averaging on U at every point z ∈ S := A ∩ B ∩ Bδ(x̄)

with averaging constant 2
3+λ

and violation

ε̃ := 2(2ε + 2ε2) + (1 + λ)(2ε + 2ε2)2. (18)

Proof Let us define the two sets

UA := {y ∈ E | PA y ⊂ Bδ(x̄)}, UB := {x ∈ E | PB x ⊂ Bδ(x̄)}

and note that x ∈ U if and only if x ∈ UB and RPB ,λx ⊂ UA. Thanks to Lemma 2 (iii),
RPA,λ and RPB ,λ are pointwise almost averaging at every point z ∈ S with violation
(1 + λ)(2ε + 2ε2) and averaging constant 1+λ

2 on UA and UB , respectively. Then
due to [38, Proposition 2.4 (iii)], the operator T := RPA,λ RPB ,λ is pointwise almost
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averaging on U at every point z ∈ S with averaging constant 2(1+λ)
3+λ

and violation
(1+ λ)ε̃, where ε̃ is given by (18). Note that Tλ = (1+ λ)T − λ Id by Proposition 1.
Thanks to Lemma 1, Tλ is pointwise almost averaging on U at every point z ∈ S with
violation ε̃ and averaging constant 2

3+λ
as claimed. ��

Remark 4 It follows from Lemma 2 (i) & (iii) that the set U defined by (17) contains
at least the ball Bδ′(x̄), where

δ′ := δ

2(1 + ε)
√
1 + (1 + λ)(2ε + 2ε2)

> 0.

We next integrate Proposition 4 into Theorem 2 to obtain convergence of algorithm
Tλ for solving consistent feasibility problems involving (ε, δ)-regular sets.

Corollary 1 (Convergence of algorithm Tλ for feasibility) Consider the algorithm Tλ

defined at (14) and suppose that Fix Tλ = A ∩ B �= ∅. Denote Sρ = Fix Tλ + ρB for
a nonnegative real ρ. Suppose that there are δ > 0, ε ≥ 0 and γ ∈ (0, 1) such that A
and B are (ε, δ′)-regular at avery point z ∈ A ∩ B, where

δ′ := 2δ(1 + ε)
√
1 + (1 + λ)(2ε + 2ε2),

and for each n ∈ N, the mapping Tλ − Id is metrically subregular on Dn := Sγ nδ \
Sγ n+1δ for 0 with gauge μn satisfying

inf
x∈Dn

μn (dist (x, A ∩ B))

dist (x, A ∩ B)
≥ κn >

√
2ε̃

1 + λ
,

where ε̃ is given at (18).
Then all iterations xk+1 ∈ Tλxk starting in Sδ satisfy (12) and (13) with cn :=√
1 + ε̃ − (1+λ)κ2n

2 < 1.

In particular, if (κn) is bounded from below by some κ >

√
2ε̃
1+λ

for all n sufficiently
large, then (xk) eventually converges R-linearly to a point in A ∩ B with rate at most√
1 + ε̃ − (1+λ)κ2

2 < 1.

Proof Let any x ∈ Dn , for some n ∈ N, x+ ∈ Tλx and x̄ ∈ PA∩B x . A combination of
Proposition 4 and Remark 4 implies that Tλ is pointwise almost averaging on Bδ(x̄) at
every point z ∈ A ∩ B ∩ Bδ(x̄) with violation ε̃ given by (18) and averaging constant
2

3+λ
. In other words, condition (a) of Theorem 1 is satisfied. Condition (b) of Theorem

1 is also fulfilled by the same argument as the one used in Theorem 2. The desired
conclusion now follows from Theorem 1. ��

In practice, the metric subregularity assumption is often more challenging to be
verified than the averaging property. In the concrete example of consistent alternating
projections PA PB , that metric subregularity condition holds true if and only if the
collection of sets is subtransversal. We next show that the metric subregularity of
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A convergent relaxation of the Douglas–Rachford algorithm 855

Tλ − Id can be deduced from the transversality of the collection of sets {A, B}. As
a result, if the sets are also sufficiently regular, then local linear convergence of the
iteration xk+1 ∈ Tλxk is guaranteed.

We first describe the concept of relative transversality of collections of sets. In the
sequel, we set Λ := aff(A ∪ B), the smallest affine set in E containing both A and B.

Assumption 3 The collection {A, B} is transversal at x̄ ∈ A ∩ B relative to Λ with
constant θ̄ < 1, that is, for any θ ∈ (θ̄ , 1), there exists δ > 0 such that

〈u, v〉 ≥ −θ ‖u‖ · ‖v‖

holds for all a ∈ A ∩ Bδ(x̄), b ∈ B ∩ Bδ(x̄), u ∈ N prox
A|Λ (a) and v ∈ N prox

B|Λ (b).

Thanks to [22, Theorem 1] and [28, Theorem 1], Assumption 3 also ensures

subtransversality of {A, B} at x̄ relative to Λ with constant at least
√

1−θ
2 on the

neighborhood Bδ(x̄), that is

√
1 − θ

2
dist (x, A ∩ B) ≤ max{dist (x, A), dist (x, B)} ∀x ∈ Λ ∩ Bδ(x̄). (19)

The next lemma is at the heart of our subsequent discussion.

Lemma 3 Suppose that Assumption 3 is satisfied. Then for any θ ∈ (θ̄ , 1), there exists
a number δ > 0 such that for all x ∈ Bδ(x̄) and x+ ∈ Tλx,

κ dist (x, A ∩ B) ≤ ∥∥x − x+∥∥ , (20)

where κ is defined by

κ := (1 − θ)
√
1 + θ√

2max
{
1, λ + √

1 − θ2
} > 0. (21)

Proof For any θ ∈ (θ̄ , 1), there is a number δ > 0 satisfying the property described
in Assumption 3. Let us set δ′ = δ/6 and show that condition (20) is fulfilled with δ′.

Indeed, let us consider any x ∈ Bδ′(x̄), b ∈ PB x , y = (1+λ)b −λx , a ∈ PA y and
x+ = a − λ(b − x) ∈ Tλx . From the choice of δ′, it is clear that a, b ∈ Bδ(x̄). Since
x − b ∈ N prox

B|Λ (b) and y − a ∈ N prox
A|Λ (a), Assumption 3 yields that

〈x − b, y − a〉 ≥ −θ ‖x − b‖ · ‖y − a‖ . (22)
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By the definition of Tλ, we have

∥∥x − x+∥∥2 = ‖x − b + y − a‖2
= ‖x − b‖2 + ‖y − a‖2 + 2 〈x − b, y − a〉
≥ ‖x − b‖2 + ‖y − a‖2 − 2θ ‖x − b‖ · ‖y − a‖
≥

(
1 − θ2

)
‖x − b‖2 =

(
1 − θ2

)
dist 2(x, B), (23)

where the first inequality follows from (22).
We will take care of the two possible cases regarding dist (x, A) as follows.

Case 1 dist (x, A) ≤
(
λ + √

1 − θ2
)
dist (x, B). Thanks to (23) we get

∥∥x − x+∥∥2 ≥ 1 − θ2(
λ + √

1 − θ2
)2 dist 2(x, A). (24)

Case 2 dist (x, A) >
(
λ + √

1 − θ2
)
dist (x, B). By the triangle inequality and the

construction of Tλ, we get∥∥x − x+∥∥ ≥ ‖x − a‖ − ∥∥a − x+∥∥ = ‖x − a‖ − λ ‖x − b‖
≥ dist (x, A) − λ dist (x, B) ≥

(
1 − λ

λ + √
1 − θ2

)
dist (x, A). (25)

Since

1 − θ2(
λ + √

1 − θ2
)2 =

(
1 − λ

λ + √
1 − θ2

)2

,

we always have from (24) and (25) that

∥∥x − x+∥∥2 ≥ 1 − θ2(
λ + √

1 − θ2
)2 dist 2(x, A). (26)

Combining (23), (26) and (19), we obtain

∥∥x − x+∥∥2 ≥ 1 − θ2

max

{
1,

(
λ + √

1 − θ2
)2} max

{
dist 2(x, A), dist 2(x, B)

}

≥ (1 − θ2)(1 − θ)

2max

{
1,

(
λ + √

1 − θ2
)2} dist 2(x, A ∩ B),

which yields (20) as claimed. ��
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A convergent relaxation of the Douglas–Rachford algorithm 857

In the special case that λ = 1, Lemma 3 refines [13, Lemma 3.14] and [45, Lemma
4.2] where the result was proved for the DR operator with an additional assumption
on regularity of the sets.

The next result is the final preparation for our linear convergence result.

Lemma 4 [45, Proposition 2.11] Let T : E ⇒ E, S ⊂ E be closed and x̄ ∈ S.
Suppose that there are δ > 0 and c ∈ [0, 1) such that for all x ∈ Bδ(x̄), x+ ∈ T x and
z ∈ PS x, ∥∥x+ − z

∥∥ ≤ c ‖x − z‖ . (27)

Then every iteration xk+1 ∈ T xk starting sufficiently close to x̄ converges R-linearly
to a point x̃ ∈ S ∩ Bδ(x̄). In particular,

‖xk − x̃‖ ≤ ‖x0 − x̄‖ (1 + c)

1 − c
ck .

We are now ready to prove local linear convergence for algorithm Tλ which gener-
alizes the corresponding results established in [13,45] for the DR method.

Theorem 4 (Linear convergence of algorithm Tλ for feasibility) In addition to

Assumption 3, suppose that A and B are (ε, δ)-regular at x̄ with ε̃ <
(1+λ)κ2

2 , where
ε̃ and κ are given by (18) and (21), respectively. Then every iteration xk+1 ∈ Tλxk

starting sufficiently close to x̄ converges R-linearly to a point in A ∩ B.

Proof Assumption 3 ensures the existence of δ1 > 0 such that Lemma 3 holds true.
In view of Proposition 4 and Remark 4, one can find a number δ2 > 0 such that Tλ is
pointwise almost averaging onBδ2(x̄) at every point z ∈ A∩ B ∩Bδ2(x̄)with violation
ε̃ given by (18) and averaging constant 2

3+λ
. Define δ′ = min{δ1, δ2} > 0.

Now let us consider any x ∈ Bδ′/2(x̄), x+ ∈ Tλx and z ∈ PA∩B x . It is clear that
z ∈ Bδ′(x̄). Proposition 4 and Lemma 3 then respectively yield

∥∥x+ − z
∥∥2 ≤ (1 + ε̃) ‖x − z‖2 − 1 + λ

2

∥∥x − x+∥∥2 , (28)
∥∥x − x+∥∥2 ≥ κ2 dist 2(x, A ∩ B) = κ2 ‖x − z‖2 , (29)

where κ is given by (21).
Substituting (29) into (28), we get

∥∥x+ − z
∥∥2 ≤

(
1 + ε̃ − (1 + λ)κ2

2

)
‖x − z‖2 ,

which yields condition (27) of Lemma 4 and the desired conclusion now follows from
this lemma. ��

5 Application to sparse optimization

Our goal in this section is twofold: 1) to illustrate the linear convergence of algorithm
Tλ formulated in Theorem4via the sparse optimization problem, and 2) to demonstrate
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a promising performance of the algorithm Tλ in comparison with the RAAR algorithm
for this applied problem.

5.1 Sparse optimization

We consider the sparse optimization problem

min
x∈Rn

‖x‖0 subject to Mx = b, (30)

where M ∈ R
m×n (m < n) is a full rank matrix, b is a given vector inRm , and ‖x‖0 is

the number of nonzero entries of the vector x . The sparse optimization problem with
complex variable is defined analogously by replacingR byC everywhere in the above
model.

Many strategies for solving (30) have been proposed. We refer the reader to the
famous paper by Candès and Tao [9] for solving this problem by using convex relax-
ations.On the other hand, assuming to have a good guess on the sparsity of the solutions
to (30), one can tackle this problem by solving the sparse feasibility problem [14] of
finding

x̄ ∈ As ∩ B, (31)

where As := {x ∈ R
n | ‖x‖0 ≤ s} and B := {x ∈ R

n | Mx = b}.
It is worth mentioning that the initial guess s of the true sparsity is not numerically

sensitive with respect to various projection methods, that is, for a relatively wide range
of values of s above the true sparsity, projection algorithms perform very much in the
same nature. Note also that the approach via sparse feasibility does not require convex
relaxations of (30) and thus can avoid the likely expensive increase of dimensionality.

We run the two algorithms Tλ and RAAR to solve (31) and compare their numerical
performances. By taking s smaller than the true sparsity, we can also compare their
performances for inconsistent feasibility.

Since B is affine, there is the closed algebraic form for the projector PB ,

PB x = x − M†(Mx − b) ∀x ∈ R
n,

where M† := MT (M MT )−1 is the Moore–Penrose inverse of M . We have denoted
MT the transpose matrix of M and taken into account that M is full rank. There is also
a closed form for PAs [6]. For each x ∈ R

n , let us denote Is(x) the set of all s-tubles
of indices of s largest in absolute value entries of x . The set Is(x) can contain multiple
such s-tubles. The projector PAs can be described as

PAs x =
{

z ∈ R
n | ∃ I ∈ Is(x) such that z(k) =

{
x(k) if k ∈ I,

0 else

}
.

For convenience, we recall the two algorithms in this specific setting
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R AARβ = β
(
PAs (2PB − Id)

) + (1 − 2β)PB + β Id,

Tλ = PAs ((1 + λ)PB − λ Id) − λ(PB − Id).

5.2 Convergence analysis

We analyze the convergence of algorithm Tλ for the sparse feasibility problem (31).
The next theorem establishes local linear convergence of algorithm Tλ for solving
sparse feasibility problems.

Theorem 5 (Linear convergence of algorithm Tλ for sparse feasibility)Let x̄ = (x̄i ) ∈
As ∩ B and suppose that s is the sparsity of the solutions to the problem (30). Then
any iteration xk+1 ∈ Tλxk starting sufficiently close to x̄ converges R-linearly to x̄ .

Proof We first show that x̄ is an isolated point of As ∩ B. Since s is the sparsity of the
solutions to (30), we have that ‖x̄‖0 = s and the set Is(x̄) contains a unique element,
denoted Ix̄ . Note that Ex̄ := span{ei : i ∈ Ix̄ } is the unique s-dimensional space
component of As containing x̄ , where {ei : 1 ≤ i ≤ n} is the canonical basic of Rn .
Let us denote

δ := min
i∈Ix̄

|x̄i | > 0.

We claim that

As ∩ Bδ(x̄) = Ex̄ ∩ Bδ(x̄), (32)

Ex̄ ∩ B = {x̄}. (33)

Indeed, for any x = (xi ) ∈ As ∩ Bδ(x̄), we have by definition of δ that xi �= 0 for
all i ∈ Ix̄ . Hence ‖x‖0 = s and x ∈ Ex̄ ∩ Bδ(x̄). This proves (32).

For (33), it suffices to show the singleton of Ex̄ ∩ B since we already know that
x̄ ∈ Ex̄ ∩ B. Suppose otherwise that there exists x = (xi ) ∈ Ex̄ ∩ B with x j �= x̄ j

for some index j . Since both Ex̄ and B are affine, the intersection Ex̄ ∩ B contains
the line {x + t (x̄ − x) : t ∈ R} passing x and x̄ . In particular, it contains the point
z := x + x j

x j −x̄ j
(x̄ − x). Then we have that z ∈ B and ‖z‖0 ≤ s − 1 as z j = 0. This

contradicts to the assumption that s is the sparsity of the solutions to (30), and hence
(33) is proved.

A combination of (32) and (33) then yields

As ∩ B ∩ Bδ(x̄) = Ex̄ ∩ B ∩ Bδ(x̄) = {x̄}. (34)

This means that x̄ is an isolated point of As ∩ B as claimed. Moreover, the equalities
in (34) imply that

PAs x = PEx̄ x ∀x ∈ Bδ/2(x̄).

Therefore, for any starting point x0 ∈ Bδ/2(x̄), the iteration xk+1 ∈ Tλxk for solving
(31) is identical to that for solving the feasibility problem for the two sets Ex̄ and B.
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Since Ex̄ and B are two affine subspaces intersecting at the unique point x̄ by (33),
the collection of sets {Ex̄ , B} is transversal at x̄ relative to the affine hull aff(Ex̄ ∪ B).
Theorem 4 now can be applied to conclude that the iteration xk+1 ∈ Tλxk converges
R-linearly to x̄ . The proof is complete. ��

It is worth mentioning that the convergence analysis in Theorem 5 is also valid for
the RAAR algorithm.

5.3 Numerical experiment

We now set up a toy example as in [9,14] which involves an unknown true object
x̄ ∈ R

2562 with‖x̄‖0 = 328 (the sparsity rate is .005). Letb be1/8of themeasurements
of F(x̄), the Fourier transform of x̄ , with the sample indices denoted J . The Poisson
noise was added when calculating the measurement b. Note that since x̄ is real, F(x̄)

is conjugate symmetric, we indeed have nearly a double number of measurements. In
this setting, we have

B = {x ∈ C
2562 | F(x)(k) = b(k), ∀k ∈ J },

and the two prox operators, respectively, take the forms

PAs x =
{

z ∈ R
n | ∃ I ∈ Is(x) such that z(k) =

{
Re (x(k)) if k ∈ I,

0 else

}
,

PB x = F−1(x̂), where x̂(k) =
{

b(k) if k ∈ J ,

F(x)(k) else,

where Re(x(k)) denotes the real part of the complex number x(k), and F−1 is the
inverse Fourier transform.

The initial point was chosen randomly, and a warm-up procedure with 10 DR
iterates was performed before running the two algorithms. The stopping criterion∥∥x − x+∥∥ < 10−10 was used. We have used the Matlab ProxToolbox [37] to run this
numerical experiment. The parameterswere chosen in such away that the performance
is seemingly optimal for both algorithms. We chose β = .65 for the RAAR algorithm
and λ = .45 for algorithm Tλ in the case of consistent feasibility problem correspond-
ing to s = 340, and β = .6 for the RAAR algorithm and λ = .4 for algorithm Tλ in
the case of inconsistent feasibility problem corresponding to s = 310.

The change of distances between two consecutive iterates is of interest.When linear
convergence appears to be the case, it can yield useful information of the convergence
rate. Under the assumption that the iterates will remain in the convergence area, one
can obtain error bounds for the distance from the current iterate to a nearest solution.
We also pay attention to the gaps in iterates that in a sense measure the infeasibility
at the iterates. If we think feasibility problem as the problem of minimizing the sum
of the squares of the distance functions to the sets, then gaps in iterates are the values
of that function evaluated at the iterates. For the two algorithms under consideration,
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Fig. 1 Performances of the RAAR and Tλ algorithms for sparse feasibility problem: iterate changes in
consistent case (top-left), iterate gaps in consistent case (top-right), iterate changes in inconsistent case
(bottom-left) and iterate gaps in inconsistent case (bottom-right)

the iterates are themselves not informative but their shadows, by which we mean the
projections of the iterates on one of the sets. Hence, the gaps in iterates are calculated
for the iterate shadows instead of the iterates themselves.

Figure 1 summarizes the performances of the two algorithms for both consistent
and inconsistent sparse feasibility problems. We first emphasize that the algorithms
appear to be convergent in both cases of feasibility. For the consistent case, algorithm
Tλ appears to perform better than the RAAR algorithm in terms of both the iterate
changes and gaps. Also, the CPU time of algorithm Tλ is around 10% less than that of
the RAAR algorithm. For the inconsistent case, we have a similar observation except
that the iterate gaps for the RAAR algorithm are slightly better (smaller) than those
for algorithm Tλ. Extensive numerical experiments in imaging problems illustrating
the empirical performance of algorithm Tλ will be the future work.
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