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Abstract We consider graph three-partitions with the objective of minimizing the
number of edges between the first two partition sets while keeping the size of the third
block small. We review most of the existing relaxations for this min-cut problem and
focus on a new class of semidefinite relaxations, based on matrices of order 2n + 1
which provide a good compromise between quality of the bound and computational
effort to actually compute it. Here, n is the order of the graph. Our numerical results
indicate that the new bounds are quite strong and can be computed for graphs of
medium size (n ≈ 300) with reasonable effort of a few minutes of computation time.
Further, we exploit those bounds to obtain bounds on the size of the vertex separators.
A vertex separator is a subset of the vertex set of a graphwhose removal splits the graph
into two disconnected subsets. We also present an elegant way of convexifying non-
convex quadratic problems by using semidefinite programming. This approach results
with bounds that can be computed with any standard convex quadratic programming
solver.
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1 Introduction

The vertex separator problem (VSP) for a graph is to find a subset of vertices (called
vertex separator)whose removal disconnects the graph into two components of roughly
equal size. The VSP is NP-hard. Some families of graphs are known to have small
vertex separators. Lipton and Tarjan [1] provide a polynomial time algorithm which
determines a vertex separator in n-vertex planar graphs of size O(

√
n). Their result

was extended to some other families of graphs such as graphs of fixed genus [2]. It is
also known that trees, 3D-grids and meshes have small separators. However, there are
graphs that do not have small separators.

The VSP problem arises in many different fields such as VLSI design [3] and
bioinformatics [4]. Finding vertex separators of minimal size is an important issue in
communications network [5] and finite element methods [6]. The VSP also plays a
role in divide-and-conquer algorithms for minimizing the work involved in solving
system of equations, see e.g., [2,7].

The vertex separator problem is related to the following graph partition problem. Let
A = (ai j ) be the adjacencymatrix of a graphG with vertex set V (G) = {1, . . . , n} and
edge set E(G). Thus A is a symmetric zero-one matrix of order n with zero diagonal.
We are interested in 3-partitions (S1, S2, S3) of V (G) with the property that

|Si | = mi ≥ 1.

Given A and m = (m1, m2, m3)
T we consider the following minimum cut (MC)

problem:

(MC) OPTMC := min

⎧
⎨

⎩

∑

i∈S1, j∈S2

ai j : (S1, S2, S3) partitions V, |Si | = mi ,∀i

⎫
⎬

⎭
.

It asks to find a vertex partition (S1, S2, S3) with specified cardinalities, such that
the number of edges joining vertices in S1 and S2 is minimized. We remark that this
min-cut problem is known to be NP-hard [8]. It is clear that if OPTMC = 0 for some
m = (m1, m2, m3)

T then S3 separates S1 and S2. On the other hand, OPTMC > 0
shows that no separator S3 for the cardinalities specified in m exists.

A natural way to model this problem in 0–1 variables consists in representing the
partition (S1, S2, S3) by the characteristic vectors xi corresponding to Si . Thus xi ∈
{0, 1}n and (xi ) j = 1 exactly if j ∈ Si . Hence partitions with prescribed cardinalities
are in one-to-one correspondence with n × 3 zero-one matrices X = (x1, x2, x3) such
that XTe = m and Xe = e (throughout e denotes the vector of all ones of appropriate
size). The first condition takes care of the cardinalities and the second one insures that
each vertex is in exactly one partition block. The number of edges between S1 and S2
is now given by xT1 Ax2. Thus (MC) is equivalent to

min{xT1 Ax2 : X = (x1, x2, x3) ∈ {0, 1}n×3, XTe = m, Xe = e}. (1)
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The min-cut and vertex separator problem 161

It is the main purpose of this paper to explore computationally efficient ways to get
tight approximations of OPTMC. These will be used to find vertex separators of small
size.

In Sect. 2 we provide an overview of various techniques from the literature to
get lower bounds for the min-cut problem. Section 3 contains a series of new relax-
ations based on semidefinite programming (SDP). We also consider convexification
techniques suitable for Branch-and-Bound methods based on convex quadratic opti-
mization, see Sect. 4. In Sect. 5.1 we investigate reformulations of our SDP relaxations
where strictly feasible points exist. This is crucial for algorithmsbased on interior-point
methods. We also show equivalence of some of the here introduced SDP relaxations
with the SDP relaxations from the literature, see Sect. 5.2. In particular, we prove that
SDP relaxations with matrices of order 2n + 1 introduced here are equivalent to the
SDP relaxations with matrices of order 3n + 1 from the literature. This reduction in
the size of the matrix variable enables us to further improve and compute SDP bounds
by adding the facet defining inequalities of the boolean quadric polytope. Symmetry
(m1 = m2) is investigated in Sect. 6. We also address the problem of getting feasible
0–1 solutions by standard rounding heuristics, see Sect. 7. Section 8 provides compu-
tational results on various classes of graphs taken from the literature, and Sect. 9 final
conclusions.

Example 1 The following graph will be used to illustrate the various bounding tech-
niques discussed in this paper. The vertices are selected from a 17× 17 grid using the
following MATLAB commands to make them reproduceable.

rand(′seed′,27072015),Q = rand(17) < 0.33

This results in n = 93 vertices which correspond to the nonzero entries in Q. These
are located at the grid points (i, j) in case Qi j �= 0. Two vertices are joined by an
edge whenever their distance is at most

√
10. The resulting graph with |E | = 470 is

displayed in Fig. 1. For m = (44, 43, 6)T we find a partition which leaves 7 edges
between S1 and S2. We will in fact see later on that this partition is optimal for the
specific choice of m. Vertices in S3 are marked by ’*’, the edges in the cut between S1
and S2 are plotted with the thickest lines, those with one endpoint in S3 are dashed.

Notation
The space of k × k symmetric matrices is denoted by Sk , and the space of k × k

symmetric positive semidefinite matrices by S+
k . The space of symmetric matrices is

considered with the trace inner product 〈A, B〉 = tr(AB). We will sometimes also
use the notation X � 0 instead of X ∈ S+

k , if the order of the matrix is clear from the
context.

We will use matrices having a block structure. We denote a sub-block of a matrix
Y such as in Eq. (6) by Yi j or Yi . In contrast we indicate the (i, j) entry of a matrix Y
by Yi, j . For two matrices X, Y ∈ Rp×q , X ≥ Y means Xi, j ≥ Yi, j , for all i, j .

To denote the i th column of the matrix X we write X :,i . J and e denote the all-ones
matrix and all-ones vector respectively. The size of these objects will be clear from
the context. We set Ei j = ei eTj where ei denotes column i of the identity matrix I .
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Fig. 1 The example graph: vertices in S3 are marked by ‘*’, the edges in the cut are plotted with the thickest
lines

The ‘vec’ operator stacks the columns of a matrix, while the ‘diag’ operator maps
an n × n matrix to the n-vector given by its diagonal. The adjoint operator of ‘diag’
is denoted by ‘Diag’.

The Kronecker product A ⊗ B of matrices A ∈ Rp×q and B ∈ Rr×s is defined as
the pr ×qs matrix composed of pq blocks of size r ×s, with block i j given by Ai, j B,
i = 1, . . . , p, j = 1, . . . , q, see e.g., [9]. The Hadamard product of two matrices A
and B of the same size is denoted by A ◦ B and defined as (A ◦ B)i j = Ai, j · Bi, j for
all i, j .

2 Overview of relaxations for (MC)

Before we present our new relaxations for (MC) we find it useful to give a short
overview of existing relaxation techniques. This allows us to set the stage for our own
results and also to describe the rich structure of the problem which gives rise to a
variety of relaxations.

2.1 Orthogonal relaxations based on the Hoffman–Wielandt inequality

The problem (MC) can be viewed as optimizing a quadratic objective function over
the set Pm of partition matrices where
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The min-cut and vertex separator problem 163

Pm := {X ∈ {0, 1}n×3 : XTe = m, Xe = e}.

Historically the first relaxations exploit the fact that the columns of X ∈ Pm are
pairwise orthogonal, more precisely XTX = Diag(m). The objective function xT1 Ax2
can be expressed as 1

2 〈A, X B XT〉 with

B =
⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ . (2)

We recall the Hoffman–Wielandt theorem which provides a closed form solution to
the following type of problem.

Theorem 1 (Hoffman–Wielandt Theorem) If C, D ∈ Sn with eigenvalues λi (C),

λ j (D), then

min{〈C, X DXT〉 : XTX = I } = min

{
∑

i

λi (C)λφ(i)(D) : φ permutation

}

.

The minimum on the right hand side above is attained for the permutation which
recursively maps the largest eigenvalue of C to the smallest eigenvalue of D.

Donath and Hoffman [10] use this result to bound (MC) from below,

OPTMC ≥ 1

2
min{〈A, X B XT : XTX = Diag(m)}.

The fact that in this case A and B do not have the same size can easily be overcome,
see for instance [11].

To get a further tightening, we introduce the Laplacian L , associated to the adja-
cency matrix A, which is defined as

L := Diag(Ae) − A. (3)

By definition, we have −L = A outside the main diagonal, and moreover
diag(X B XT) = 0 for partition matrices X . Therefore the objective function of our
problem satisfies 〈−L , X B XT〉 = 〈A, X B XT〉. The vector e is eigenvector of L , in
fact Le = 0, which is used in [11] to investigate the following relaxation

OPTHW := 1

2
min{〈−L , X B XT〉 : XTX = Diag(m), Xe = e, XTe = m}. (4)

This relaxation also has a closed form solution based on the Hoffman–Wielandt
theorem. To describe it, we need some more notation. Let λ2 and λn denote the
second smallest and the largest eigenvalue of L , with normalized eigenvectors v2
and vn . Further, set m̃ = (

√
m1,

√
m2,

√
m3)

T and let W be an orthonormal
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basis of the orthogonal complement to m̃, WTW = I2, WTm̃ = 0. Finally, define
B̃ = √

m1m2WTBW with factorization

QT B̃ Q = Diag([τ1 τ2]),

and eigenvalues τ1 = 1
n (−m1m2 − √

m1m2(n − m1)(n − m2)) and
τ2 = 1

n (−m1m2 + √
m1m2(n − m1)(n − m2)).

Theorem 2 ([12]) In the notation above we have OPTHW = − 1
2 (λ2τ1 + λnτ2) and

the optimum is attained at

X = 1

n
emT + (v2, vn)QTWTDiag(m̃). (5)

This approach has been investigated for general graph partition with specified sizes
m1, . . . , mk . We refer to [11,13] for further details. More recently, Pong et al. [14]
explore and extend this approach for the generalized min-cut problem.

The solution given in closed form through the eigenvalues of the input matrices
makes it attractive for large-scale instances, see [14]. The drawback lies in the fact
that it is difficult to introduce additional constraints into the model while maintaining
the applicability of the Hoffman–Wielandt theorem. This can be overcome by moving
to relaxations based on semidefinite optimization.

2.2 Relaxations using semidefinite optimization

The relaxations underlying the Hoffman–Wielandt theorem can equivalently be
expressed using semidefinite optimization. We briefly describe this connection and
then we consider more general models based on semidefinite optimization. The key
tool here is the following theorem of Anstreicher and Wolkowicz [15], which can be
viewed as an extension of the Hoffman–Wielandt theorem.

Theorem 3 ([15]) Let C, D ∈ Sn. Then

min{〈C, X DXT〉 : XTX = I } = max{tr(S) + tr(T ) : D ⊗ C − S ⊗ I − I ⊗ T � 0}.

Based on this theorem, Povh and Rendl [16] show that the optimal value of (4) can
equivalently be expressed as the optimal solutionof the following semidefinite program
with matrix Y of order 3n.
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The min-cut and vertex separator problem 165

Theorem 4 [16] We have

OPTHW = min
1

2
tr(−L)(Y12 + Y T

12)

s.t. trYi = mi , tr(JYi ) = m2
i , i = 1, 2, 3

tr(Yi j + Y T
i j ) = 0, trJ (Yi j + Y T

i j ) = 2mi m j , j > i

Y =
⎛

⎝
Y1 Y12 Y13

Y T
12 Y2 Y23

Y T
13 Y T

23 Y3

⎞

⎠ � 0. (6)

A proof of this result is given in [16]. The proof implicitly shows that also the
following holds.

Theorem 5 The following problem also has the optimal value O PTH W :

OPTHW = min
1

2
tr(−L)(Y12 + Y T

12)

s.t. tr(Yi ) = mi , tr(JYi ) = m2
i , i = 1, 2

tr(Y12 + Y T
12) = 0, tr(J (Y12 + Y T

12)) = 2m1m2

Y =
(

Y1 Y12

Y T
12 Y2

)

� 0.

We provide an independent proof of this theorem, which simplifies the arguments
from [16]. To maintain readability, we postpone the proof to Sect. 10. The significance
of these two results lies in the fact that we can compute optimal solutions for the
respective semidefinite programs by simple eigenvalue computations.

The SDP relaxation from Theorem 4 can be viewed as moving from X ∈ Pm to
Y = xxT ∈ S3n with x = vec(X) ∈ R3n and replacing the quadratic terms in x
by the corresponding entries in Y . The constraint tr(Y1) = m1 follows from tr(Y1) =
tr(x1xT1 ) = xT1 x1 = m1. Similarly, tr(Y12) = xT1 x2 = 0 and tr(JY1) = (eTx1)2 = m2

1.
Thus these constraints simply translate orthogonality of X into linear constraints on
Y .

In order to derive stronger SDP relaxations than the one from Theorem 4, one
can exploit the fact that for X ∈ Pm it follows that diag(Y ) = diag(xxT) = x with
x = vec(X). Now, the constraint Y − diag(Y )diag(Y )T = 0 may be weakened to
Y − diag(Y )diag(Y )T � 0 which is well known to be equivalent to the following
convex constraint

(
Y diag(Y )

diag(Y )T 1

)

� 0.

The general case of k−partition leads to SDP relaxations with matrices of order (nk +
1), see for instance Zhao et al. [17] and Wolkowicz and Zhao [18]. In our notation,
the model (4.1) from [18] has the following form:
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min 1
2 trA(Y12 + Y T

12)

s.t. trYi = mi , tr(JYi ) = m2
i , i = 1, 2, 3

diag(Yi j ) = 0, trJ (Yi j + Y T
i j ) = 2mi m j , j > i

Y =
⎛

⎝
Y1 Y12 Y13

Y T
12 Y2 Y23

Y T
13 Y T

23 Y3

⎞

⎠ , y = diag(Y ), Y − yyT � 0.

(7)

Literally speaking, the model (4.1) from [18] does not include the equations involv-
ing the mi above, but uses information from the barycenter of the feasible region to
eliminate these constraints by reducing the dimension of the matrix variable Y . We
make this more precise in Sect. 5 below.

Further strengthening is suggested by asking Y ≥ 0 leading to the strongest bound
contained in [18].

The min-cut problem can also be seen as a special case of the quadratic assignment
problem (QAP), as noted already byHelmberg et al. [12]. This idea is further exploited
by van Dam and Sotirov [19] where the authors use the well known SDP relaxation
for the QAP [17], as the SDP relaxation for the min-cut problem. The resulting QAP-
based SDP relaxation for the min-cut problem is proven to be equivalent to (7), see
[19].

2.3 Linear and quadratic programming relaxations

The model (MC) starts with specified sizes m = (m1, m2, m3)
T and tries to separate

V (G) into S1, S2 and S3 so that the number of edges between S1 and S2 is minimized.
This by itself does not yield a vertex separator, but it can be used to experiment with
different choices of m to eventually produce a separator.

Several papers consider the separator problem directly as a linear integer problem
of the following form

(V S)
min{eTx3 : X = (x1, x2, x3) ∈ {0, 1}n×3, Xe = e, (x1)i + (x2) j ≤ 1

∀[i, j] ∈ E, li ≤ eTxi ≤ ui i = 1, 2}.

The constraint Xe = e makes sure that X represents a vertex partition, the inequalities
on the edges inforce that there are no edges joining S1 and S2 and the last constraints
are cardinality conditions on S1 and S2. The objective function looks for a separator
of smallest size. We refer to Balas and de Souza [20,21] who exploit the above integer
formulation within Branch and Bound settings with additional cutting planes to find
vertex separators in small graphs. Biha and Meurs [22] introduced new classes of
valid inequalities for the vertex separator polyhedron and solved instances from [21]
to optimality.

Hager et al. [23,24] investigate continuous bilinear versions and show that

max{eTx1 + eTx2 − 〈x1, (A + I )x2〉 : 0 ≤ xi ≤ e, li ≤ eTxi ≤ ui i = 1, 2}
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is equivalent to (VS). Even though this problem is intractable, as the objective function
is indefinite, it is shown in [24] that thismodel canbeused toproduceheuristic solutions
of good quality even for very large graphs.

Aquadratic programming (QP) relaxation for themin-cut problem is derived in [14].
That convex QP relaxation is based on the QP relaxation for the QAP, see [15,25,26].
Numerical results in [14] show that QP bounds are weaker, but cheaper to compute
than the strongest SDP bounds, see also Sect. 4.

Armbruster et al. [27] comparedbranch-and-cut frameworks for linear and semidefi-
nite relaxations of theminimumgraph bisection problemon large and sparse instances.
Extensive numerical experiments show that the semidefinite branch-and-cut approach
is superior choice to the simplex approach. In the sequel we mostly consider SDP
bounds for the min-cut problem.

3 The new SDP relaxations

In this section we derive several SDP relaxations with matrix variables of order 2n +1
and increasing complexity. We also show that our strongest SDP relaxation provides
tight min-cut bounds on a graph with 93 vertices.

Motivated by Theorem 5 and also in view of the objective function xT1 Ax2 of (MC),
which makes explicit use only of the first two columns of X ∈ Pm we propose to
investigate SDP relaxations of (MC) with matrices of order 2n, obtained by moving
from

(x1
x2

)
to

(x1
x2

)(x1
x2

)T.
An integer programming formulation of (MC) using only x1 and x2 amounts to the

following

OPTMC = min{xT1 Ax2 : x1, x2 ∈ {0, 1}n, xT1 e = m1, xT2 e = m2, x1+x2 ≤ e}. (8)

This formulation has the disadvantage that its linear relaxation (0 ≤ xi ≤ 1) is
intractable, as the objective function xT1 Ax2 is indefinite. An integer linear version is
obtained by linearizing the terms (x1)i (x2) j in the objective function. We get

OPTMC = min

{ ∑

[i j]∈E(G)

zi j + z ji : u, v ∈ {0, 1}n, z ≥ 0, eTu = m1, eTv = m2,

u + v ≤ e, zi j ≥ ui + v j − 1, z ji ≥ u j + vi − 1 ∀[i j] ∈ E(G)

}

.

This is a binary LP with 2n binary and 2m continuous variables. Unfortunately, its
linear relaxation gives a value of 0 (by setting an appropriate number of the nonzero
entries in u and v to 1

2 ). Even the use of advanced ILP technology, as for instance
provided by GUROBI or CPLEX or similar packages, is only moderately successful
on this formulation. We will argue below that some SDPmodels in contrast yield tight
approximations to the optimal value of the integer problem.
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168 F. Rendl, R. Sotirov

Moving to the matrix space, we consider

Y =
(

Y1 Y12

Y T
12 Y2

)

,

where Yi corresponds to xi xTi and Y12 represents x1xT2 . The objective function xT1 Ax2
becomes

〈A, Y12〉 = 〈M, Y 〉,

where we set

M := 1

2

(
0 A
A 0

)

. (9)

Looking at Theorem5we consider the following simple SDPas our starting relaxation.

(SD P0) min〈M, Y 〉
s.t. tr(Yi ) = mi , tr(JYi ) = m2

i , i = 1, 2 (10)

tr(Y12 + Y T
12) = 0, tr(J (Y12 + Y T

12)) = 2m1m2 (11)

Y =
(

Y1 Y12

Y T
12 Y2

)

, y = diag(Y ), (12)

(
Y y
yT 1

)

� 0 (13)

This SDP captures the constraints from Theorem 5 and has (2n + 1) + 6 linear
equality constraints. We have replaced Y � 0 by the stronger condition Y − yyT � 0,
and we also replaced −L by A in the objective function.

There is an immediate improvement by exploiting the fact that x1 ◦ x2 = 0 (ele-
mentwise product (x1)i · (x2)i = 0 is zero). Thus we also impose

diag(Y12) = 0, (14)

which adds another n equations andmakes tr(Y12+Y T
12) = 0 redundant.We call SD P1

the relaxation obtained from SD P0 by replacing tr(Y12+Y T
12) = 0with diag(Y12) = 0.

The equations in (14) are captured by the ‘gangster operator’ in [18]. Moreover, once
these constraints are added, it will make no difference whether the adjacency matrix
A or −L is used in the objective function.

Up to now we have not yet considered the inequality

e − x1 − x2 ≥ 0, (15)

where x1 (resp. x2) represents the first n (resp. last n) coordinates of y.

Lemma 6 Let Y satisfy (12), (13) and (14). Then diag(Y1) + diag(Y2) ≤ e.
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Proof The submatrix in (13) indexed by (i, n+i, 2n+1) and i ∈ {1, . . . , n} is positive
semidefinite, i.e.,

⎛

⎝
yi 0 yi

0 yi+n yi+n

yi yi+n 1

⎞

⎠ � 0.

The proof of the lemma follows from the following inequality

(−1,−1, 1)T

⎛

⎝
yi 0 yi

0 yi+n yi+n

yi yi+n 1

⎞

⎠ (−1,−1, 1) ≥ 0

��
In order to obtain additional linear constraints for our SDPmodel, we consider (15)

and

y ≥ 0, e − y ≥ 0,

which we multiply pairwise and apply linearization. A pairwise multiplication of
individual inequalities from (15) yields

1 − (yi + y j + yn+i + yn+ j ) + Yi, j + Yi,n+ j + Y j,n+i + Yn+i,n+ j ≥ 0

∀i < j ∈ V (G). (16)

We also get

y j − Yi, j − Yn+i, j ≥ 0, yn+ j − Yi,n+ j − Yn+i,n+ j ≥ 0 ∀i, j ∈ V (G), i �= j

(17)

by multiplying individual constraints from (15) and y ≥ 0. Finally we get in a similar
way by multiplying with e − y ≥ 0

1 − yi − yn+i − y j + Yi, j + Yn+i, j ≥ 0 (18)

1 − yi − yn+i − yn+ j + Yi,n+ j + Yn+i,n+ j ≥ 0 ∀i, j ∈ V (G), i �= j. (19)

The inequalities (16)–(19) are based on a technique known as the reformulation-
linearization technique (RLT) that was introduced by Sherali and Adams [28].

In order to strengthen our SDP relaxation further, one can add the following facet
defining inequalities of the boolean quadric polytope (BQP), see e.g., [29],

0 ≤ Yi, j ≤ Yi,i

Yi,i + Y j, j ≤ 1 + Yi, j

Yi,k + Y j,k ≤ Yk,k + Yi, j

Yi,i + Y j, j + Yk,k ≤ Yi, j + Yi,k + Y j,k + 1.

(20)
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In our numerical experiments we will consider the following relaxations which we
order according to their computational effort.

Name Constraints Complexity

SD P0 (10)–(13) O(n)

SD P1 (10)–(13), (14) O(n)

SD P2 (10)–(13), (14), Yi, j ≥ 0 if Mi, j > 0 O(n + |E |)
SD P3 (10)–(13), (14), Yi, j ≥ 0 if Mi, j > 0, (16)–(19) O(n2)
SD P4 (10)–(13), (14), (16)–(19), (20) O(n3)

The first two relaxations can potentially produce negative lower bounds, which
would make them useless. The remaining relaxations yield nonnegative bounds due
to the nonnegativity condition on Y corresponding to the nonzero entries in M .

Example 2 We continue with the example from the introduction and provide the var-
ious lower bounds introduced so far, see Table 1. We also include the value of the
best known feasible solution, which we found using a rounding heuristic described in
Sect. 7 below. In most of these cases O PTeig, SD P0 and SD P1 bounds are negative
but we know that OPTMC ≥ 0. In contrast, the strongest bound SD P4 proves optimal-
ity of all the solutions found by our heuristic. Here we do not solve SD P3 and SD P4
exactly. The SD P3 (resp. SD P4) bounds are obtained by adding the most violated
inequalities of type (16)–(19) (resp. (16)–(19) and (20)) to SD P2. The cutting plane
scheme adds at most 2n violated valid constraints in each iteration and performs at
most 15 iterations. It takes about 6 minutes to compute SD P4 bound for fixed m. We
compute SD P2 (resp. SD P3) bound in about 5 s (resp. 2 minutes) for fixed m.

For comparison purposes, we computed also linear programming (LP) bounds. The LP
bound RLT3 incorporates all constraints from SD P3 except theSDPconstraint, includ-
ing of course standard linearization constraints. The RLT3 bound form = (45, 44, 4)T

is zero. Similarly, we derive the linear programming bound RLT4 that includes all
constraints from SD P4 except the SDP constraint. We solve RLT4 approximately by
cutting plane scheme that first adds all violated (16)–(19) constraints and then at most
4n violated constraints of type (20), in each iteration of the algorithm. After 100 such
iterations the bound RLT4 was still zero.

We find it remarkable that even the rather expensive model SD P3 is not able to
approximate the optimal solution value within ‘reasonable’ limits. On the other hand,
the ‘full’ model SD P4 is strong enough to actually solve these problems. We will see
in the computational section, that only the full model is strong enough to actually get
good approximations also on instances from the literature.

4 Bounds based on convex quadratic optimization

Convex quadratic programming bounds are based on the fact that minimizing a con-
vex quadratic function over a polyhedron is tractable and moreover there are several
standard solvers available for this type of problem.
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Table 1 Lower bounds for the
example graph

mT (45,44,4) (44, 43,6) (42,42,9) (42,41,10)

O PTeig −7.39 −15.66 −27.32 −31.03

SD P0 −14.61 −23.66 −34.58 −37.71

SD P1 3.16 −4.17 −13.93 −16.92

SD P2 5.69 1.53 0.00 0.00

SD P3 7.37 3.43 0.05 0.00

SD P4 11.82 6.41 1.63 0.26

feas. sol. 12 7 2 1

In our case the objective function f (x) is not convex. It can however be reformulated
as a convex quadratic L(x) such that f (x) = L(x) for all feasible 0–1 solutions by
exploiting the fact that x ◦ x = x for 0–1 valued x . This convexification is based on
Lagrangian duality and has a long history in nonlinear optimization, see for instance
Hammer and Rubin [30] and Shor [31,32]. Lemarechal and Oustry [33], Faye and
Roupin [34] and Billionet et al. [35] consider convexification of quadratic problems
and the connection to semidefinite optimization. We briefly summarize the theoretical
background behind this approach.

4.1 Convexification of 0–1 problems

We first recall the following well-known facts from convex analysis. Let f (x) :=
xTQx + 2qTx + q0 for q0 ∈ R, q ∈ Rn and Q ∈ Sn . Then

inf
x

f (x) > −∞ ⇐⇒ Q � 0 and ∃ξ ∈ Rn such that q = Qξ,

due to the first order (Qx+q = 0) and second order (Q � 0) necessary optimality con-
ditions. The following proposition summarizes what we need later for convexification.

Proposition 7 Let Q � 0 and q = Qξ for some ξ ∈ Rn and q0 ∈ R, and f (x) =
xTQx + 2qTx + q0. Set f ∗ := q0 − ξTQξ . Then

1. inf{ f (x) : x ∈ Rn} = f ∗,
2. inf{〈Q, X〉 + 2qTx + q0 : X − xxT � 0} = f ∗,

3. sup{q0 + σ :
(

Q q
qT −σ

)

� 0} = f ∗.

Proof For completeness we include the following short arguments. The first statement
follows from ∇ f (x) = 0. To see the last statement we use the factorization

(
Q Qξ

(Qξ)T −σ

)

=
(

Q
1
2 0

0 1

)(
I Q

1
2 ξ

(Q
1
2 ξ)T −σ

) (
Q

1
2 0

0 1

)

.
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Using a Schur-complement argument, this implies

(
I Q

1
2 ξ

(Q
1
2 ξ)T −σ

)

� 0 ⇐⇒ −σ − ξTQξ ≥ 0,

which shows that the supremum is attained at −ξTQξ with optimal value q0 − ξTQξ .
Finally, the second problem is the dual of the third, with strictly feasible solution
X = I, x = 0. ��

We are going to describe the convexification procedure for a general problem of
the form

min{ f (x) : x ∈ {0, 1}n, Dx = d, Cx ≥ c} (21)

for suitable data D, d, C, c. In case of (MC) we have x = (x1
x2

) ∈ R2n with n + 2

constraints eTx1 = m1, eTx2 = m2, x1 + x2 ≤ e.
The key idea is to consider a relaxation of the problem where integrality of x is

expressed by the quadratic equation x ◦ x = x . Let us consider the following simple
relaxation

inf{ f (x) : x ◦ x = x, Dx = d} (22)

to explain the details. Its Lagrangian is given by

L(x; u, α) = f (x) + 〈u, x ◦ x − x〉 + 〈α, d − Dx〉.

The associated Lagrangian dual reads

sup
u,α

inf
x

L(x; u, α).

Ignoring values (u, α) where the infimum is −∞, this is by Proposition 7 equivalent
to

sup
u,α

sup
σ

{q0 + 〈α, d〉 + σ :
(

Q + Diag(u) q − 1
2 DTα − 1

2u
(.)T −σ

)

� 0}. (23)

This is a semidefinite program with strictly feasible points (by selecting u and −σ

large enough and α = 0). Hence its optimal value is equal to the value of the dual
problem, which reads

inf{〈Q, X〉 + 2qTx + q0 :
(

X x
xT 1

)

� 0, diag(X) = x, Dx = d}. (24)

Let (u∗, α∗, σ ∗) be an optimal solution of (23). Then we have

q0 + 〈α∗, d〉 + σ ∗

= sup
σ

{q0 + 〈α∗, d〉 + σ :
(

Q + Diag(u∗) q − 1
2 DTα∗ − 1

2u∗
(.)T −σ

)

� 0}.
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Using Proposition 7 again we get the following equality

inf
x

L(x; u∗, α∗) = q0 + 〈α∗, d〉 + σ ∗. (25)

The proposition also shows that L(x; u∗, α∗) is convex (in x) and moreover
L(x; u∗, α∗) = f (x) for all integer feasible solutions x . The convex quadratic pro-
gramming relaxation of problem (21), obtained from (22), consists in minimizing
L(x; u∗, α∗) over the polyhedron

0 ≤ x ≤ e, Dx = d, Cx ≥ c.

We close the general description of convexification with the following observation
which will be used later on.

Proposition 8 Let (X∗, x∗) be optimal for (24) and (u∗, α∗, σ ∗) be optimal for (23).
Then

inf
x

L(x; u∗, α∗) = L(x∗, u∗, α∗) = q0 + 〈α∗, d〉 + σ ∗.

Thus the main diagonal x∗ from the semidefinite program (24) is also a minimizer for
the unconstrained minimization of L(x; .).

Proof From X∗ − x∗x∗T � 0 and Q + Diag(u∗) � 0 we get

x∗T(Q + Diag(u∗))x∗ ≤ 〈Q + Diag(u∗), X∗〉. (26)

We also have, using (25) and strong duality

inf
x

L(x; u∗, α∗) = q0 + 〈α∗, d〉 + σ ∗ = 〈Q, X∗〉 + 2qTx∗ + q0.

Feasibility of (X∗, x∗) for (24) shows that the last term is equal to

〈Q + Diag(u∗), X∗〉 + 2qTx∗ + q0 − u∗Tx∗ + α∗T(d − Dx∗).

Finally, using (26), this term is lower bounded by L(x∗; u∗, α∗). ��
The relaxation (22) is rather simple. In [35] it is suggested to include all equations
obtained by multiplying the constraints eTx1 = m1, eTx2 = m2 with x(i) and 1− x(i),
where x(i) denotes the i−th component of x . The inclusion of quadratic constraints is
particularly useful, as their multipliers provide additional degrees of freedom for the
Hessian of the Lagrangian function.

The main insight from the analysis so far can be summarized as follows. Given a
relaxation of the original problem, such as (22) above, form the associated semidefinite
relaxation obtained from relaxing X − xxT = 0 to X − xxT � 0. Then the optimal
solution of the dual problem yields the desired convexification.
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4.2 Convexifying (8)

Let us now return to (MC) given in (8). We have x = (x1
x2

) ∈ R2n and f (x) =
xTMx where M is given in (9). The following models are natural candidates for
convexification. We list them in increasing order of computational effort to determine
the convexification.

• Starting with inf{ f (x) : x ◦ x = x} we get the Lagrangian relaxation

min{〈M, Y 〉 : Y − yyT � 0, y = diag(Y )}
= max

σ,u
{σ :

(
M + diag(u) − 1

2u
− 1

2uT −σ

)

� 0}.

Let σ ∗, u∗ be an optimal solution to the last problem above. The Lagrangian
L(x; u∗) = xTMx + 〈u∗, x ◦ x − x〉 = xT(M + Diag(u∗))x − u∗Tx is convex
and f (x) = L(x; u∗) for all x ∈ {0, 1}2n . The convex QP bound based on this
convexification is therefore given by

min{L(x; u∗) : x =
(

x1
x2

)

, eTx1 = m1, eTx2 = m2, x1+x2 ≤ e, x ≥ 0}. (27)

The unconstrained minimization of L would result in

inf{L(x; u∗) : x ∈ R2n}. (28)

• In the previous model, no information of the mi is used in the convexification. We
next include also the equality constraints

eTxi = mi , (eTxi )
2 = m2

i , (i = 1, 2), (eTx1)(e
Tx2) = m1m2, xT1 x2 = 0.

TheLagrangian relaxation corresponds to SD P0. The dual solution of SD P0 yields
again the desired convexification.

• Finally, we replace xT1 x2 by x1 ◦ x2 = 0 above and get SD P1 as Lagrangian
relaxation. In this case we know from Lemma 6 and Proposition 8 that the convex
QP bound is equal to the value of SD P1 which in turn is equal to the unconstrained
minimum of the Lagrangian L .

Example 3 We apply the convexification as explained above to the example graph
from the introduction, see Table 2. In the first two cases we provide the unconstrained
minimum along with the resulting convex quadratic programming bound. In case
of SD P1 we know from the previous proposition that the unconstrained minimum
agrees with the optimal value of SD P1. These bounds are not very useful, as we
know a trivial lower bound of zero in all cases. On the other hand, the convex QP
bound is computationally cheap compared to solving SDP, and may be useful in a
Branch-and-Bound process.
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Table 2 Convexification for the
example graph

mT (44, 43, 6) (42, 42, 9) (42, 41, 10)

(28) −117.50 −117.50 −117.50

(27) −34.63 −48.16 −52.28

SD P0 −23.66 −34.58 −37.71

convex QP −15.65 −26.76 −30.13

SD P1 −4.17 −13.93 −16.92

feas. sol. 7 2 1

Convex quadratic programming boundsmay play crucial role in solving non-convex
quadratic 0–1 problems to optimality, see for instance the work of Anstreicher et
al. [25] on the quadratic assignment problem. Here we presented a general framework
for obtaining convexifications, partly iterating the approach from [35]. Compared to
Table 1, we note that the bounds based on convexification and using convex QP are not
competitive to the strongest SDP bounds. On the other hand, these bounds are much
cheaper to compute, so their use in a Branch and Bound code may still be valuable.
Implementing such bounds within a Branch and Bound framework is out of the scope
of the present paper, so we will leave this for future research.

5 The Slater feasible versions of the SDP relaxations

In this section we present the Slater feasible versions of here introduced SDP relax-
ations. In particular, in Sect. 5.1 we derive the Slater feasible version of the relaxation
SD P1, and in Sect. 5.2 present the Slater feasible version of the SDP relaxation (7)
from [18]. In Sect. 5.2 we prove that the SDP relaxations SD P1 and (7) are equiva-
lent, and that SD P3 with additional nonnegativity constraints on all matrix elements
is equivalent to the strongest SDP relaxation from [18].We actually show here that our
strongest SDP relaxation with matrix variable of order 2n + 1, i.e., SD P4 dominates
the currently strongest SDP relaxation with matrix variable of order 3n + 1.

5.1 The projected new relaxations

In this section we take a closer look at the feasible region of our basic new relaxation
SD P0. The following lemma will be useful.

Lemma 9 Suppose X − xxT � 0, x = diag(X), and there exists a �= 0 such that

aT(X − xxT)a = 0. Set t := aTx. Then (aT,−t)T is eigenvector of

(
X x
xT 1

)

to the

eigenvalue 0.

Proof If X −xxT � 0 and aT(X −xxT)a = 0, then (X −xxT)a = 0, hence Xa = t x .

From this the claim follows. ��
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We introduce some notation to describe the feasible region of SD P0. Let Z be a
symmetric (2n + 1) × (2n + 1) matrix with the block form

Z =
⎛

⎝
Y1 Y12 y1
Y T
12 Y2 y2

yT1 yT2 1

⎞

⎠ (29)

as in the definition of SD P0. We define

F1 := {Z : Z satisfies (29), (10), (12), (13) and tr(J (Y12 + Y T
12)) = 2m1m2}. (30)

The set F1 differs from the feasible region of SD P0 only in the constraint tr(Y12 +
Y T
12) = 0 which is not included in F1.

Lemma 10 Let Z ∈ F1. Then T =
⎛

⎝
e 0
0 e

−m1 −m2

⎞

⎠ is contained in the nullspace of

Z.

Proof The vector aT := (eT, 0, . . . , 0) satisfies aTy = m1 and aT(Y − yyT)a = 0.
Therefore, using the previous lemma, the first column of T is eigenvector of Z to the
eigenvalue 0. A similar argument applies to aT := (0, . . . , 0, eT). ��
Let Vn denotes a basis of e⊥, for instance

Vn :=
(

I
−eT

)

∈ Rn×(n−1). (31)

Then the matrix

W :=
⎛

⎝
Vn 0 m1

n e
0 Vn

m2
n e

0 0 1

⎞

⎠ (32)

forms a basis of the orthogonal complement to T , WTT = 0. Using the previous
lemma, we conclude that Z ∈ F1 implies that Z = WU WT for some U ∈ S+

2n−1. Let
us also introduce the set

F2 := {WU WT : U ∈ S+
2n−1, U2n−1,2n−1 = 1, diag(WU WT) = WU WTe2n+1}.

Here e2n+1 is the last column of the identity matrix of order 2n + 1. In the following
theorem we prove that sets F1 and F2 are equal. Similar results are also shown in the
connection with the quadratic assignment problem, see e.g., [17].

Theorem 11 F1 = F2.

Proof Wefirst show that F1 ⊆ F2 and take Z ∈ F1. The previous lemma implies that Z
is of the form Z = WU WT and U � 0. Z2n+1,2n+1 = 1 implies that U2n−1,2n−1 = 1
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due to the way W is defined in (32). The main diagonal of Z is equal to its last column,
which translates into diag(Z) = Ze2n+1, so Z ∈ F2.

Conversely, consider Z = WU WT ∈ F2 and let it be partitioned as in (29). We
have WTT = 0, so Z T = 0. Multiplying out columnwise and using the block form
of Z we get

Yi e = mi yi , yTi e = mi and Y T
12e = m1y2, Y12e = m2y1.

From this we conclude that tr(JYi ) = eTYi e = mi eTyi = m2
i and tr(J (Y12 +Y T

12)) =
eT(Y12 + Y T

12)e = 2m1m2. Finally, diag(Z) = Ze2n+1 yields diag(Yi ) = yi and we
have trYi = eTdiag(Yi ) = eTyi = mi , hence Z ∈ F1. ��

We conclude by arguing that F2 contains matrices where U � 0. To see this we
note that the barycenter of the feasible set is

Ẑ =
⎛

⎜
⎝

m1
n I + m1(m1−1)

n(n−1) (E − I ) m1m2
n(n−1) (E − I ) m1

n e
m1m2

n(n−1) (E − I ) m2
n I + m2(m2−1)

n(n−1) (E − I ) m2
n e

m1
n eT m2

n eT 1

⎞

⎟
⎠ .

Since Ẑ ∈ F2 it has the form Ẑ = WÛ WT. It can be derived from the results in
Wolkowicz and Zhao [18, Theorem 3.1.] that it has a two-dimensional nullspace, so
Û � 0.

This puts us in a position to rewrite our relaxations as SDP having Slater points.
In case of SD P1, we only need to add the condition diag(Y12) = 0 to the constraints
defining F2. It can be expressed in terms of Z as eTi Zen+i = 0 i = 1, . . . n. Here ei

and en+i are the appropriate columns of the identity matrix of order 2n +1. We extend
the matrix in the objective function by a row and column of zeros,

M̂ =
(

M 0
0 0

)

∈ S2n+1

and get the following Slater feasible version of SD P1 in matrices U ∈ S2n−1

(SD P1project) min〈WT M̂W, U 〉
s.t. eTi (WU WT)en+i = 0, i = 1, . . . , n

diag(WU WT) = (WU WT)e2n+1

U2n−1,2n−1 = 1, U � 0.

5.2 The projected Wolkowicz–Zhao relaxation and equivalent relaxations

The Slater feasible version of the SDP relaxation (7) is derived in [18] and further
exploited in [14]. The matrix variable Z in (7) is of order 3n +1 and has the following
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structure

Z̄ =

⎛

⎜
⎜
⎝

Y1 Y12 Y13 y1
Y21 Y2 Y23 y2
Y31 Y32 Y3 y3
yT1 yT2 yT3 1

⎞

⎟
⎟
⎠ . (33)

As before we can identify a nullspace common to all feasible matrices. In this case it
is given by the columns of T̄ , see [18], where

T̄ =

⎛

⎜
⎜
⎝

e 0 0 I
0 e 0 I
0 0 e I

−m1 −m2 −m3 −eT

⎞

⎟
⎟
⎠ .

Note that this is a (3n + 1) × (n + 3) matrix. It has rank n + 2, as the sum of the first
three columns is equal to the sum of the last n columns, see also [18]. A basis of the
orthogonal complement to T̄ is given by

W̄ :=

⎛

⎜
⎜
⎝

Vn 0 m1
n e

0 Vn
m2
n e

−Vn −Vn
m3
n e

0 0 1

⎞

⎟
⎟
⎠ . (34)

As before, we argue that feasible Z̄ are of the form Z̄ = W̄U W̄T with additional
suitable constraints on U ∈ S2n−1. It is instructive to look at the last n columns of Z̄ T̄
which, due to the block structure of Z̄ translate into the following equations:

Y1+Y12+Y13 = y1eT, Y21+Y2+Y23 = y2eT, Y31+Y32+Y3 = y3eT, y1+y2+y3 = e.
(35)

Given Y1, Y2, y1, y2 and Y12 these equations uniquely determine y3, Y13, Y23, and
Y3 and produce the n-dimensional part of the nullspace of Z̄ given by the last n
columns of T̄ . We can therefore drop this linear dependent part of Z̄ without loosing
any information. Mathematically, this is achieved as follows. Let us introduce the
(2n + 1) × (3n + 1) matrix

P =
⎛

⎝
In 0 0 0
0 In 0 0
0 0 0 1

⎞

⎠ .

It satisfies

W = PW̄

and gives us a handle to relate the relaxations inmatrices of order 3n+1 to our models.
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We recall the Slater feasible version of (7) from [18]:

min tr(W̄T M̄W̄ )R
s.t.eTi (W̄ RW̄T)en+i = 0, eTi (W̄ RW̄T)e2n+i = 0,

eTn+i (W̄ RW̄T)e2n+i = 0, i = 1, . . . , n
R2n−1,2n−1 = 1, R � 0, R ∈ S2n−1,

(36)

where

M̄ :=
(

M 0
0 0

)

∈ S3n+1.

In [19] it is proven that the SDP relaxation (36) is equivalent to the QAP-based SDP
relaxation with matrices of order n2 × n2. Below we prove that (36) is equivalent to
the here introduced SDP relaxation.

Theorem 12 The SDP relaxation (36) is equivalent to SD P1project.

Proof The feasible sets of the two problems are related by pre- and postmultiplication
of the input matrices by P , for instance P Z̄ PT yields the (2n + 1) × (2n + 1) matrix
variable of our relaxations. This operation basically removes the block of rows and
columns corresponding to x3. Bothmodels contain the constraint diag(Y12) = 0. From
(35) we conclude that

diag(Y1) + diag(Y12) + diag(Y13) = y1.

Thus diag(Y13) = 0 in (36) is equivalent to diag(Y1) = y1 in SD P1project. Similarly,
diag(Y23) = 0 is equivalent to diag(Y2) = y2. The objective function is nonzero only
on the part of Z̄ corresponding to Y12. Thus the two problems are equivalent. ��
The SDP relaxation (36) with additional nonnegativity constraints W̄ RW̄T ≥ 0 is
investigated by Pong et al. [14] on small graphs. The results show that the resulting
bound outperforms other bounding approaches described in [14] for graphs with up
to 41 vertices.

It is instructive to look at the nonnegativity condition Z̄i j ≥ 0, where Z̄ is has the
block form (33), in connection with (35). From Y1 + Y21 + Y31 = eyT1 we get

Y2n+i, j = y j − Yi, j − Yn+i, j ≥ 0,

which is (17). In a similar way we get from Z̄ ≥ 0 all constraints (16)–(19). This is
summarized as follows.

Theorem 13 The SDP relaxation (36) with additional nonnegativity constraints is
equivalent to SD P1project with additional constraints WU WT ≥ 0 and (16)–(19).

Note that SD P1project with additional constraints WU WT ≥ 0, (16)–(19) is actually
SD P3 with additional nonnegativity constraints.
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6 Symmetry reduction

It is possible to reduce the number of variables in SD P2 when subsets S1 and S2 have
the same cardinality. Therefore, let us suppose in this section that m1 = m2. Now,
we apply the general theory of symmetry reduction to SD P2 (see e.g., [36,37]) and
obtain the following SDP relaxation:

min〈A, Y2〉
s.t.tr(Y1) = m1, diag(Y2) = 0
tr(JY1) = m2

1, tr(JY2) = m2
1

Y =
(

Y1 Y2
Y2 Y1

)

,

(
Y e ⊗ diag(Y1)

(e ⊗ diag(Y1))
T 1

)

� 0

Y ≥ 0 on support.

(37)

In order to obtain the SDP relaxation (37) one should exploit the fact that for m1 = m2
the matrix variable is of the following form

Y = I ⊗ Y1 + (J − I ) ⊗ Y2,

for details see [37], Sect. 5.1. In particular, the above equation follows from (20),
page 264 in [37], and the fact that the basis elements At (t = 1, 2) in our case are
I and J − I . Now, (37) follows by direct verification. In a case that a graph under
consideration is highly symmetric, the size of the above SDP can be further reduced
by block diagonalizing the data matrices, see e.g., [36,37].

In order to break symmetry we may assume without loss of generality that a vertex
of the graph is not in the first partition set. This can be achieved by adding a constraint,
which assigns zero value to the variable that corresponds to that vertex in the first set.
In general, we can perform n such fixings and obtain n different valid bounds. Similar
approach is exploited in e.g., [19,37]. If the graph under consideration has a nontrivial
automorphism group, then there might be less than n different lower bounds. It is
not difficult to show that each of the bounds obtained in the above described way
dominates SD P2. For the numerical results on the bounds after breaking symmetry
see Sect. 8.

7 Feasible solutions

Up to now our focus was on finding lower bounds on OPTMC. A byproduct of all our
relaxations is the vector y = (y1

y2

) ∈ R2n such that y1, y2 ≥ 0, eTy1 = m1, eTy2 = m2
and possibly y1 + y2 ≤ e. We now try to generate 0–1 solutions x1 and x2 with
x1 + x2 ≤ e, eTx1 = m1, eTx2 = m2 such that xT1 Ax2 is small.

The hyperplane rounding idea can be applied in our setting. Feige and Langberg
[38] propose random projections followed by randomized rounding (R P R2) to obtain
0–1 vectors x1 and x2. In our case, we need to modify this approach to insure that x1
and x2 represent partition blocks of requested cardinalities.
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Table 3 SD P4 bounds for the min-cut and corresponding bounds for separators

Name n |E | m1 m2 m3 lb ub lb ub

Min-cut Separator

Example 1 93 470 42 41 10 0.07 1 11 11

bcspwr03 118 179 58 57 3 0.56 1 4 5

Smallmesh 136 354 65 66 5 0.13 1 6 6

can-144 144 576 70 70 4 0.90 6 5 6

can-161 161 608 73 72 16 0.31 2 17 18

can-229 229 774 107 107 15 0.40 6 16 19

gridt(15) 120 315 56 56 8 0.29 4 9 11

gridt(17) 153 408 72 72 9 0.17 4 10 13

grid3dt(5) 125 604 54 53 18 0.54 2 19 19

grid3dt(6) 216 1115 95 95 26 0.28 4 27 30

grid3dt(7) 343 1854 159 158 26 0.60 22 27 37

It is also suggested to consider y1 and y2 and find the closest feasible 0–1 solution
x1 and x2, which amounts to solving a simple transportation problem, see for instance
[11].

It is also common practice to improve a given feasible solution by local exchange
operations. In our situation we have the following obvious options. Fixing the set S3
given by x3 := e − x1 − x2, we apply the Kernighan-Lin local improvement [39] to S1
and S2 in order to (possibly) reduce the number of edges between S1 and S2. After that
we fix S1 and try swapping single vertices between S2 and S3 to reduce our objective
function.

It turns out that carrying out these local improvement steps by cyclically fixing Si

until no more improvement is found leads to satisfactory feasible solutions. In fact, all
the feasible solutions reported in the computational section were found by this simple
heuristic.

8 Computational results

In this section we compare several SDP bounds on graphs from the literature. All
bounds were computed on an Intel Xeon, E5-1620, 3.70 GHz with 32 GB memory.
All relaxations were solved with SDPT3 [40].

We select the partition vector m such that |m1 − m2| ≤ 1. For a given graph with
n vertices, the optimal value of the min-cut is monotonically decreasing when m3 is
increasing. We select m3 small enough so that OPTMC > 0 and we can also provide
nontrivial (i.e., positive) lower bounds on OPTMC. Thus for given m we provide lower
bounds (based on our relaxations) and also upper bounds (using the rounding heuristic
from the previous section) on OPTMC. In case of a positive lower bound we also get
a lower bound (of m3 + 1) on the size of a strongly balanced (|m1 − m2| ≤ 1) vertex
separator. Finally, we also use our rounding heuristic and vary m3 to actually find
vertex separators, yielding also upper bounds for their cardinality. The results are
summarized in Table 3.
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Table 4 Different bounds for the min-cut problem

Name n m1 m2 m3 SD P1 SD P2 SD P3 SD P4 SD Pfix ub

Example 1 93 43 43 7 −7 1 2 5 1 5

can-161 161 78 78 5 3 3 7 21 4 33

gridt(15) 120 59 59 2 2 2 4 9 3 16

grid3dt(6) 216 102 102 12 −5 2 8 29 3 35

Matrices can-xx and bcspwr03 are from the library Matrix Market [41], grid3dt
matrices are 3D cubical meshes, gridt matrices are 2D triangular meshes, and Small-
mesh is a 2D finite-element mesh. Lower bounds for the min-cut problem presented
in the table are obtained by approximately solving SD P4, i.e., by iteratively adding
the most violated inequalities of type (16)–(19) and (20) to SD P2. In particular, we
perform at most 25 iterations and each iteration includes at most 2n the most vio-
lated valid constraints. It takes 59 minutes to compute grid3dt(5) and 170 minutes to
compute grid3dt(6).

One can download our test instances from the following link: https://sites.google.
com/site/sotirovr/the-vertex-separator.

All the instances in Table 3 have a lower bound of 0 for SD P2 and SD P3 while
SD P4 > 0. This is a clear indication of the superiority of SD P4.

Table 4 provides further comparison of the our bounds. In particular, we list SD P1,
SD P2, SD P3, SD P4, SD Pfix, and upper bounds for several graphs. SD Pfix bound
is obtained after breaking symmetry as described in Sect. 6. We choose m such that
SD P2 > 0 and m1 = m2. Thus, we evaluate all bounds obtained by fixing a single
vertex and report the best among them. All bounds in Table 4 are rounded up to the
closest integer. The results further verify the quality of SD P4, and also show that
breaking symmetry improves SD P2 but not significantly.

9 Conclusion

In this paper we derive several SDP relaxations for the min-cut problem and compare
them with relaxations from the literature. Our SDP relaxations have matrix variables
of order 2n, while other SDP relaxations have matrix variables of order 3n.

We prove that the eigenvalue bound from [12] equals the optimal value of the SDP
relaxation from Theorem 5, with matrix variable of order 2n. In [16] it is proven
that the same eigenvalue bound is equal to the optimal solution of an SDP relaxation
with matrix variable of order 3n. Further, we prove that the SDP relaxation SD P1 is
equivalent to the SDP relaxation (36) from [18], see Theorem 12. We also prove that
the SDP relaxation obtained after adding all remaining nonnegativity constraints to
SD P3 is equivalent to the strongest SDP relaxation from [18], see Theorem 13. Thus,
we have shown that for the min-cut problem one should consider SDP relaxations with
matrix variables of order 2n + 1 instead of traditionally considered SDP relaxations
with matrices of order 3n + 1. Consequently, our strongest SDP relaxation SD P4
also has a matrix variable of order 2n + 1 and O(n3) constraints. SD P4 relaxation
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can be solved approximately by the cutting plane schema for graphs of medium size.
The numerical results verify the superiority of SD P4. We further exploit the resulting
strong SDP bounds for the min-cut to obtain strong bounds on the size of the vertex
separators.

Finally, our general framework for convexifying non-convex quadratic problems
(see Sect. 4) results with convex quadratic programming bounds that are cheap to
compute. Since convex quadratic programming bounds played in the past crucial role
in solving several non-convex problems to optimality, we plan to exploit their potential
in our future research.

10 Proof of Theorem 5

We prove this theorem by providing feasible solutions to the primal and the dual SDP
which have the same objective function value.

For the primal solution we take the optimizer X = (x1 x2 x3) from (5) with

objective value OPTHW and define Y =
(

x1
x2

) (
x1
x2

)T

. Feasibility of X with respect

to (4) shows that Y is feasible for the SDP (for instance trY1 = xT1 x1 = m1 and
trJY1 = (eTx1)2 = m2

1).
Next we construct a dual solution with objective value OPTHW. Let

E1 =
(
1 0
0 0

)

, E2 =
(
0 0
0 1

)

, E12 =
(
0 1
1 0

)

.

With this notation, the primal constraints become

〈E1 ⊗ I, Y 〉 = m1, 〈E2 ⊗ I, Y 〉 = m2, 〈E12 ⊗ I, Y 〉 = 0.

〈E1 ⊗ J, Y 〉 = m2
1, 〈E2 ⊗ J, Y 〉 = m2

2, 〈E12 ⊗ J, Y 〉 = 2m1m2,

and the objective function takes the form 〈E12 ⊗ (− 1
2 L), Y 〉. Thus the dual has the

following form

maxm1α1 + m2α2 + m2
1β1 + m2

2β2 + 2m1m2β12 such that

E12 ⊗ (−1

2
L) − (α1E1 + α2E2 + α12E12)

⊗I − (β1E1 + β2E2 + β12E12) ⊗ J � 0.

We recall that Le = 0, hence we can select an eigenvalue decomposition of L as
L = PDiag(λ)PT where P = ( 1√

n
e V ) with V TV = In−1, V Te = 0 and λ =

(0, λ2, . . . , λn)T contains the eigenvalues λi of L in nondecreasing order. The matrix
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P also diagonalizes J , J = PDiag((n, 0, . . . , 0))PT. We use this to rewrite E12 ⊗ L
as

E12 ⊗ L = (I2E12 I2) ⊗ (P	PT) = (I2 ⊗ P)(E12 ⊗ 	)(I2 ⊗ P)T.

The other terms are rewritten similarly by pulling out I2 ⊗ P from left and right. Let

s1 := (nβ1 + α1, α1, . . . , α1)
T, s2 := (nβ2 + α2, α2, . . . , α2)

T,

s12 := (α12 + nβ12, α12 + 1

2
λ2, . . . , α12 + 1

2
λn)

T

be n−vectors and consider the block-diagonal 2n × 2n matrix

S =
( −Diag(s1) −Diag(s12)

−Diag(s12) −Diag(s2)

)

.

Dual feasibility can be expressed as (I2 ⊗ P)S(I2 ⊗ P)T � 0 which holds if and only
if S � 0. The special form of S shows, that S � 0 breaks down to n semidefinitess
conditions in matrices of order two:

( −α1 − nβ1 −α12 − nβ12
−α12 − nβ12 −α2 − nβ2

)

� 0, (38)

( −α1 −α12 − 1
2λ2−α12 − 1

2λ2 −α2

)

� 0, . . . ,

( −α1 −α12 − 1
2λn

−α12 − 1
2λn −αn

)

� 0. (39)

We now select the dual variables in the following way. We set α12 := − 1
4 (λn + λ2)

which insures that

−α12 − 1

2
λ2 = 1

4
(λn − λ2) ≥ . . . ≥ −α12 − 1

2
λn = −1

4
(λn − λ2).

Thus all n − 1 constraints in (39) are satisfied if we select t < 0 and set

α1 := 1

16t
(λn − λ2) < 0, α2 := t (λn − λ2) < 0.

Finally, setting

β1 = −1

n
α1, β2 = −1

n
α2, β12 = −1

n
α12

insures that the matrix in (38) is 0 and hence (38) also holds. We now have a dual
feasible solution, and we conclude the proof by selecting t < 0 in such a way that the
objective function has value OPTHW.
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Let D := m1m2(n − m1)(n − m2). We recall that

OPTHW = (m1m2 + √
D)

λ2

2n
+ (m1m2 − √

D)
λn

2n

= − 1

2n

√
D(λn − λ2) + m1m2

2n
(λn + λ2).

The dual solution defined above has value

m1
λn − λ2

16t
+ m2t (λn − λ2) − λn − λ2

16tn
m2

1 − λn − λ2

n
tm2

2 + λn + λ2

4n
2m1m2.

Comparing the coefficients of λn − λ2 and λn + λ2 we note that the values agree if

−
√

D

2n
= t

n
m2(n − m2) + 1

16tn
m1(n − m1).

This equation holds for

t = −1

4

√
m1(n − m1)

m2(n − m2)
.
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