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Abstract While interior-point methods share the same fundamentals, the implemen-
tation determines the actual performance. In order to attain the highest efficiency,
different applications may require differently tuned implementations. In this paper we
describe an implementation specifically designed for optimisation in radiation ther-
apy. These problems are large-scale nonlinear (and sometimes nonconvex) constrained
optimisation problems, consisting of both sparse and dense data. Several application-
specific properties are exploited to enhance efficiency. Permuting, tiling and mixed
precision arithmetic allow the algorithm to optimally process the mixed dense and
sparse data matrices (making this step 2.2 times faster, and overall runtime reduction
of 55%) and scalability (16 threads resulted in a speed-up factor of 9.8 compared to
singlethreaded performance, against a speed-up factor of 7.7 for the less optimised
implementation). Predefined cost-functions are hard-coded and the computationally
expensive second derivatives are written in canonical form, and combined if multiple
cost-functions are defined for the same clinical structure. The derivatives are then com-
puted using a scaled matrix—matrix product. A cheap initialisation strategy based on
the background knowledge reduces the number of iterations by 11%. We also propose
a novel combined Mehrotra—Gondzio approach. The algorithm is extensively tested
on a dataset consisting of 120 patients, distributed over 6 tumour sites/approaches.
This test dataset is made publicly available.
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1 Introduction

Cancer is diagnosed in 15 million patients globally each year. Despite advances in
prevention, detection and treatment, 1.7 million people die yearly of cancer. One of
the main (and cost-efficient) modalities for treatment is radiation therapy, which is
used in ~50% of cases, mainly when the cancer is localised in a single part of the
body as a tumour. Radiation therapy is successfully used both for curing patients and
giving important symptom relief. However, even with state-of-the-art practice, damage
to healthy tissue is unavoidable, and may lead to radiation-induced side-effects. These
can have a profound, long-lasting negative impact on the patient’s well-being, resulting
in high socio-economic costs, e.g. due to required medical treatment or loss of working
days, and even in worsened overall survival.

For each patient, a so-called treatment plan is produced based on a 3D Computer
Tomography (CT) scan of the patient. The treatment plan contains personalised settings
of the applied treatment device, and a predicted patient dose distribution for these
settings, projected on the planning CT-scan. The dose describes the probability of
physical damage from irradiation. The goal is to deliver a sufficient amount of dose
to the tumour for curation, while minimising the (unavoidable) dose to other regions
of interest (healthy organs and other tissue), see Fig. 1.

Radiation therapy treatment planning is a multi-criteria problem, where minimising
the doses delivered to different regions of interest are conflicting [9, 12,54]. Function-
ality of some organs have a higher influence on the quality-of-life than others, and
thus have a higher priority in locally reducing dose. This multi-criterial aspect results
in solving a series of optimisation problems, either for Pareto-navigation [19,36] or
through automated treatment planning [13,15,33,34,37,68,70].

Another problem in some forms of radiation therapy is the placement of the ionising
beam directions [4,15,21,51]. This is a combinatorial problem, often solved through
heuristics, requiring solving hundreds or thousands smaller and larger optimisation
problems before finding an acceptable solution. When the treatment is based on protons
instead of photons, an additional discrete degree of freedom is added to the problem,
namely keeping the number of spots and energy layers as low as possible. This is again
handled by solving multiple problems [69].

In radiation therapy, optimisation time is also an important aspect. Once the patient
is scheduled for treatment, there is a single day at most to complete the treatment plan.
Depending on the type of treatment and planning approach, this requires solving one
large or multiple smaller problems. An ideal workflow for the clinic is that once the
physician (clinician/medical doctor) has delineated the tumour and other important
structures (see Fig. 1), a final plan is computed in the order of minutes. This allows the
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Fig. 1 Different cross-sections of a Computer Tomography-scan with organs-at-risk and tumour in the
head-and-neck region delineated. The predicted delivered dose (i.e. treatment plan) is projected onto the
CT. Red high dose, blue low dose (Color figure online)

physician to directly verify the treatment plan, with the patient’s background infor-
mation still in mind, rather than recollecting this the next day. If the optimisation time
can be further reduced to the order of seconds, a highly desired treatment planning
application comes within reach: online treatment planning. Radiation therapy is not
delivered once, but spread out over up to 40 fractions/days to take advantage of the
biological property that healthy cells recover faster than malignant cells. However, the
patient’s anatomy differs daily, and it is therefore desired to compute a new treatment
plan matching the current anatomical situation. Ideally, a new plan should be generated
in less than 15 s.

The focus on speed, the traditional interactive form of treatment planning, and the
large-scale origin of the problem resulted in a plethora of custom implementations,
often favouring speed over optimality (for which [2,3,8,14,18,29,39,53,62,72,74] is
a very incomplete list). Few implementations are interior-point based [2,3,53], where
[2] is used in a clinical (commercial) treatment planning system (Elekta AB, Sweden).
Our decision to use an interior-point method was the support for constrained nonlin-
ear optimisation, stability and robustness for different types of problems, optimality
of the solution, the acceptable size of the decision-space, and the leniency towards
nonconvex problems. However, full Newton-based implementations are notorious for
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Fig.2 Radiation therapy problem decomposition. Ionising radiation originates from the beam source point
and falls onto a collimator. The collimation device allows shaping the beam in different forms and intensities,
and is discretised in beamlets. The longer a beamlet is “open”, the higher the intensity through that beamlet,
and the higher the resulting dose in the patient. As soon as the beam enters the patient, the ionising radiation
interacts with the tissue, leading to dose (cell damage). The patient is discretised in voxels

their computational burden. In this paper, we describe our approaches to improve the
computational efficiency, effect on scalability on multicore computer systems, and
approaches to reduce the number of iterations.

The approach described in this paper is the mathematical solver used in Erasmus-
iCycle, our in-house developed software package for multi-criterial radiation therapy
treatment plan optimisation, including several extensions to support different clinical
techniques and approaches. Erasmus-iCycle is used in the clinical workflow since
2010, and proven to generate treatment plans which are of equal, but often of higher
quality compared to the traditional manual trial-and-error treatment planning [56,58,
67-69].

1.1 Data structure and cost-functions

The numerical decomposition of the radiation therapy problem is described in Fig. 2.
In general, the beamlets (machine parameters) are the decision-variables and cost-
functions are evaluated on the dose in the patient, who is discretised in voxels.

The relation between given 2D beamlet intensities x and the 3D dose distribution d is
linearly related by:

d = Ax ey
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where A is called the pencil-beam matrix. A single beamlet influences the intensity
of an ionising ray, resulting in dose in several parts of the patient (Fig. 2). Rather than
working with the dose to the entire patient, the dose is separated per region/structure-
of-interest/organ-at-risk, and optimised on by one or more cost-functions.

All clinical cost-functions in radiation therapy take arguments in the dose domain.
Therefore, a typical mathematical formulation looks like:

minimise  f(d;)
X

subjectto  g1(d) < by
dy < by
by <d3 < by
—bs < Bix < bs

@)

xTBzx < bg
x>0
where di = Ax
dy = Arx
d; = Ajzx.

In this formulation, d;, d» and d3 reflect the doses in different structures, and f and
g1 are general nonlinear nonconvex cost-functions. A typical interpretation is that the
dose d; to structure 1 is minimised as far as possible, subject to both a nonlinear
constraint g1 and a linear constraint d» < b, on structure 2. Structure 3 is the tumour,
for which the dose d3 is at least b3 (minimum constraint) but does not exceed b4
(maximum constraint). The relations d; = A;x are kept explicit for computational
efficiency in the case that multiple cost-functions are imposed on a single structure
(see Sect. 4.2).

In addition to the dosimetric problem, there are also constraints on the beamlets
x. First, intensities cannot be negative (energy cannot be drawn from body tissue,
only added to), so x > 0 is a fundamental constraint to the problem. Depending
on the type of radiation therapy application, there are additional constraints on the
values adjacent beamlets can take, due to limitations of the modulation device (see
Fig. 2). It goes beyond the scope of this paper to describe the physical constraints, but
an acceptable approximation is to smooth the adjacent beamlets, preventing spiked
beamlet profiles [14]. These Smoothing constraints consists of a linear (—bs < Bjx <
bs) and quadratic (xT Byx < bg) type.

Much of the preprocessing steps are done at the highest level. Interior-point methods
are known to behave badly if there are duplicate (linear) constraints, or duplicate
rows in the data matrices. Because the problem is composed at application-level, the
problems of duplicate rows/columns, multiple or redundant applied constraints are
unlikely to occur at the level of the mathematical solver.
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1.2 Overview

The paper is organised as follows. In Sect. 2, the framework for a general primal-dual
interior-point method is derived, including some basic choices relevant to our radiation
therapy application. Section 3 introduces some typical extensions, such as initialisation
and handling our nonconvex problem. Section 4 describes analytical improvements in
constructing the dual-normal matrix, whereas Sect. 5 describes efficient computation
for the dual-normal matrix from a numerical point of view. Results are presented in
Sect. 6, with discussion of the results and other approaches in Sect. 7.

1.3 Notation

Throughout the paper, the following notation is used. The vector e is the vector of
all-ones of appropriate dimension. For a vector d, the capital D denotes a diagonal
matrix with d on its diagonal.

Cost-functions are indicated by f(x) for objectives and g(x) for constraints, for
which we often drop the dependency on x for readability. The number of constraints
is indicated by m, the number of decision-variables x by n.

2 Optimisation model

In this section, we give a concise derivation of our primal-dual interior-point optimisa-
tion method for completeness. Our model is based on LOQO [6,57,64]. The approach
derived in Sects. 2.1 and 2.2 will be referenced as the default method, to distinguish
from the higher-order Mehrotra and Gondzio approaches (Sect. 2.3).

2.1 Primal-dual interior-point method

The basis is the following nonlinear inequality constrained problem with nonnegativity
constraint on x:

minimise  f(x)
subjectto  g(x) <b 3)
x>0.
Here f(x) and g(x) can contain both linear and nonlinear cost-functions. In practice,
f(x) is a scalarisation v; of cost-functions f;(x), thus f(x) = Y _ v; f; (x), where each

i
fi(x) can either be linear or nonlinear. This will be used explicitly in Sect. 4.
The equivalent Fiacco-McCormick logarithmic barrier problem of (3) is:

m n
minimise  f(x) — u Z logw; — 1 Z log x; 4)
i=1 i=1

subjectto  gx)+w="> )
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where w is an added slack variable, and the scalar u represents the duality gap. The
Lagrangian of this problem is:

Ly(x,y,w) = f(x) —py logwi —pu Yy logxi +y (gx) +w—b) (6)

i=1 i=1

where the vector y is a dual variable called the Lagrange multiplier. The corresponding
Newton system is [64,71]:

-z 'x —1I Az Ve
w-ly I Aw | | yw o

I H Vg’ Ax || %

1 Vg Ay Yy

where 7 is introduced as a dual component for x. Vector y represents the first-order
optimality conditions, and H is the Hessian:

Y, = —MZ_le—l—xc

Yo =W le—y

ye=-Vf-Vgly+z

Vw=b—g—w (®)

m
H=Vf+) »Vii. ©)
i=1

At a certain iteration, the duality gap is estimated by:

wTy—i—sz
m4+n

(10)

After solving (7) (see Sect. 2.2), the step direction (Az, Aw, Ax, Ay) is known
for the current point (z, w, x, y). The maximum steplength « is determined such that
(z, w, x, y) stays positive. If rescaling for a direction is required, we additionally
shorten the steplength by = 0.995. For purely linear problems, we use oy = oy =
min(ey, o) and oy, = o, = min(a,, ;). Otherwise, the steplength is chosen as
o = min(o;, oy, oy, ay), see [64]. Additionally, further steplength reduction may be
required for nonconvex or ill-initialised problems, see Sect. 3.3.

The updated point k + 1 is then computed by:

Zk+1 Tk Az
wi+l | | wk Aw
Xt || xx to Ax |7 an
YVk+1 Vi Ay
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Based on the steplength, the reduction o of the duality gap p (10) for the next

iteration is:
a—1\2
o= . (12)
o+ 10

Finally, primal and dual infeasibility are given by:

[[yyll |[vxll
= Inll by= (13)
T llbl+ 1 IV fll +1
We consider the problem converged when the £Z-norm of the first order optimality
conditions (8) is less than O(10~%).

2.2 Solving system (7)

The most time-consuming part of the interior-point iterations are the construction and
solution of system (7). Straightforward elimination of Az and Aw by choosing:

Az =—ZX (. + Ax) (14)
Aw = WYy — Ay) (15)

leads to the quasidefinite reduced Karush—Kuhn—Tucker system:

H+2zx ' vgl Ax\ (e —ZX 7y, (16)
ve —wy 1 )\Ay) \yy—Wwrly, )

For purely linear problems, H equals 0, and for quadratic problems H is symmetric
positive definite and static. For nonlinear nonquadratic convex problems, H changes in
every iteration, and is positive definite. For nonconvex problems, H may be indefinite
(see Sect. 4.3). Vg is usually very large (dimensions m by n), and of mixed dense and
sparse matrices. Vg is therefore never constructed explicitly, but kept as separate data
matrices, similar to the canonical form for H (Sect. 4).

If the problem is sparse and linear, system (16) can be solved directly using a sparse
indefinite Cholesky decomposition [24,64]. Because the radiation therapy problem is
fairly dense, the Karush—Kuhn—-Tucker system is impractical to construct and solve due
to the memory requirements. Therefore, we further reduce this system by eliminating
Ay:

Ay =y — WY (yy — VgAx) (17)

and defining:
N=H+zXx'"+vgl(wly)vg (18)
r=Vel WYy — )+ — ZX 1y, (19)
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The normal equation to solve in each interior-point iteration is:
NAx =r. (20)

An alternative is to eliminate Ax instead [26]. This results in a system of size m, but
is generally ill-conditioned for radiation therapy problems. It also requires the inverse
of H + ZX~", which is expensive to compute for dense H.

Compared to the alternative representations, N as (18) is well-conditioned, and
a practical form for this application of nonlinear optimisation problems [57]. For
nonconvex problems there is a high probability that the nonconvex part of the problem
is dominated by the convex part, still resulting in a positive definite system.

We solve this system by using the Cholesky decomposition, which also scales well
accross multiple threads. This decomposition may fail for nonconvex or ill-conditioned
problems. In that case, we restore positive definiteness by adding A/ to N, starting
with A = 107 and successively doubling A until success [65].

2.3 Higher-order methods: Mehrotra and novel Gondzio

Higher-order methods aim to reuse the computation and factorisation of N (20) for
different right hand sides r, in order to reduce the number of overall iterations. A suc-
cessful second-order method (predictor—corrector) was proposed by Mehrotra [41,42].
Later, Gondzio et al. [25] extended this to multiple corrections, creating a higher-order
approach. In our experience, Gondzio’s method did not work well for our application
with respect to structurally reducing the number of iterations. We therefore use a
novel combined Mehrotra—Gondzio approach, where we first take a full Mehrotra step
before applying the Gondzio update scheme. Details can be found in the Supplemen-
tary material.

3 Extensions

In this section we describe three extensions to the standard interior-point approach
(Sect.2). Section 3.1 describes an efficient initialisation approach based on the problem
background. Section 3.2 describes the use of a special nonconvex cost-function in the
optimisation. Steplength control is discussed in Sect. 3.3.

3.1 Initialisation

Proper initialisation of the primal and dual variables are essential for reasonable con-
vergence. In this section we describe our initialisation approaches, by making use of
the application’s background. We describe both a simple and advanced approach for
choosing xg.

In radiation therapy, the tumour is the defining component in the optimisation
problem. Without the tumour, the optimal radiation therapy treatment plan would be
an all-zero dose. The amount of dose prescribed to the tumour is directly related to
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the shape of the dose distribution. We therefore focus on the dose to the tumour in our
initialisation strategy.

The simple approach is to find a uniform initialisation of xo. We cannot simply
initialise e.g. xo = 10e because this could potentially result in very large values.
The dose to the tumour is usually modelled using the Logarithmic Tumour Control
Probablity [2], which exponentially penalises underdosage:

1 m
LTCP = — > emdimdh 1)
j=1

where « sets the cell-sensitivity. A homogeneous dose to the tumour (d; = d” Vj)
results in an LTCP value of 1. If x¢ is too small, the LTCP easily attains values of
O(10'9), resulting in a badly scaled interior-point problem which will often not even
start. Our simple strategy is therefore to start with xo = 100e, then iteratively increase
by a factor 1.5 until all LTCPs are <1000.

The advanced approach includes two treatment plan preferences in the initialisation:
a homogeneous dose to the tumour, and a smooth intensity profile. Let d = A;x be
the dose to the tumour, and B; a smoothing matrix used by the problem (2). We then
solve the following least-squares problem:

A\ - (d*
(32) = (%) &
which aims for both properites. This results in the initialisation xo given by:

xo = max {0, (A] A, + B) "' Al d”} (23)

where we simply add B; instead of BZT B, since B; is already symmetric and positive
definite in our problem definition. Finally, we rescale by:

1 1
X = zxo + Emean(xo) 24)

and set elements <5 equal to 5.

An additional effect of the smoothing matrix B, is that it also increases the condition
of the least-squares problem. For proton-based radiation therapy, smoothing is not
required (i.e. each element of x can have a strongly different value from its neighbours),
but we add B, = I as aregulator, which simultaneously aims at minimising the overall
beamlet intensity.

If a patient has multiple tumour volumes with different prescriptions d”, these
matrices are simply concatenated in (22).

The initial solution for the dual variable y is computed using its first order optimality
condition y, (8):

Vi) +Vgx)y—z=0 (25)
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where we assume that u© = 0, resulting in z = % = (. Using xo we can compute
V f(x0) and Vg(xo). This leads to the following problem:

Vexo) yo = =V f(x0) (26)

which we solve using an iterative least-squares implementation [48]. The iterative
least-squares method is implemented in such a way that the required multiplications
with Vg are decomposed in a series of individual matrix multiplications (using the
techniques presented in Sect. 4).

Once xp and yg have been computed, we compute zg by using (25):

20 =V f(x0) + Vg(x0)" yo @7
and similar for wy by again using the first order optimality condition y,, (8):
wo = b — g(xo). (28)

Similar to xop we set elements of yg, zo and wgy which are <5 to 5.

3.2 Nonconvex cost-function

For some organs, the remaining functionality after radiation therapy is strongly corre-
lated with the volume that receives a certain amount of dose. For example, the liver is
considered functional if at least 700 cc receives a dose less than 15 Gy (Gy or Gray,
measure for absorbed dose). If a larger volume is damaged, there is a considerable
probability that the liver has insufficient capacity to maintain functionality. Lungs and
kidneys behave similarly.

A visual example of such a case is given in Fig. 3a. This constraint is called dose-
volume, partial volume or coverage constraint. The coverage is determined by counting
the number of voxels d; receiving a dose d; > d€, d° being the critical dose level.

SIVCEASPrTTT
c S .
d=d° d>d B
HE
B *
|-+ o
l"
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4
@ ke
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E
Organ ;e
g
R
. . " ,' <
isodose lines Lo
- ——
(@ (b)

Fig. 3 a Example of the coverage cost-function. The tumour receives the highest dose, which decreases
with distance from the tumour (see also Fig. 1). The two isodose lines represent the levels where the dose
takes the same value. At the left of isodose line d°, dose is lower than d¢. In this case, &~ 20% of the organ
receives a dose higher than d¢. b Sigmoid-like approximations for the indicator function. The inflexion
point is at the critical dose level d¢
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The formal description is an accumulation of indicator functions:

1 m
DVexaer(d) = — 3 Ly <ae () (29)

i=1

resulting in the fraction of the volume (containing m voxels) receiving dose d less
than the critical dose d°.

The problem is that this cost-function is not convex and not smooth. As a result
of the degeneracy of the radiation therapy problem [1] and the fact that (physical)
dose is continuous and differentiable, the number of local minima is expected to be
limited [40]. There has been active research in directly incorporating dose-volume
cost-functions, including mixed-integer programming [31], conditional value at risk
(CvaR) [53] or using a series of generalised mean constraints [45,75].

We have adopted the more direct approach proposed by [2], who uses a smoothed
version of the indicator version (29). The slope can be set with the parameter p:

m (d,' p

1 ¢
DVapprox(d) = -3 Ty (30)
i=1 de¢
where a higher parameter results in a more accurate approximation of the indicator
function, see Fig. 3b. In this work, we use a parameter of p = 5.

In our approach, we assume that the dose-volume cost-function is used as constraint.
The reason is as follows: the dose-volume cost-function prescribes a very precise
volumetric treatment objective. If one simply wants to minimise the volume below
a certain critical dose, it is better to use a convex approach, such as the generalised
mean:

| “
Femean(x) = <Z dex)“) : (31)

i=1

The parameter a > 1 is used to focus on certain part of the dose values, where a
higher a controls the high part of the dose distribution. In practice, fgmean has proven
sufficient to replace most of the clinical dose-volume guidelines.

3.3 Steplength control and step rejection

By default, interior-point methods take a full step ¢ = oyqy in (11) the descent
directions as given in Sect. 2.1, which is only scaled to prevent the slack and dual vari-
ables from becoming negative. For nonconvex problems, steplength control is essential
for the algorithm to converge to a local minimum [6,65]. For convex problems, we
introduce another type of steplength reduction to reduce the effect of ill-initialised
problems.
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3.3.1 Markov filter

For nonconvex problems, we use the Markov filter as described in [6]. Let the barrier
function b,, be defined by:

m n
by =f(x)—puy logwi —p Y logxi (32)
i=1 i=1
and the infeasiblity given by:
Yy=b—gkx)—w. (33)
The Markov filter [6] aims to find a steplength ax+1 € (0, o4y ] that ensures a

reduction in either the barrier function or infeasibility, satisfying an Armijo condition.
Thus for 1 = uy and € = 1079, either

T
VobO\' [ Ax
pkth _ ) €011 T ( k) S
Lk e Vwb;(fk) Awy
or
I E 1B = 1y PR < —2eainly P13 4

should be satisfied if ||yy(k+l) | |§ is not already smaller than the requested primal pre-

cision (<1073). The last expression is achieved by carefully working out the Armijo
condition for yy, [65], resulting in a computationally cheap filter. We successively scale
ak+1 by 0.9 for at most 10 times.

It depends on the type of higher-order update method whether or not this rejected
step is used. If the default method is used (without higher-order updates), then the
small step is simply taken as this may result in escaping the local region where the
quadratic approximation of the nonlinear problem is poor. When the step is rejected
in the Mehrotra approach, the Default direction is computed and a new steplength is
determined for that direction. For Gondzio, we simply stop the updating scheme if a
step is rejected.

3.3.2 Ratio control

For convex problems, enabling the Markov filter for steplength control results in
general in unnecessary steplength reductions, and consequently to a higher number of
iterations. For some problems however, steplength reduction resulted in less iterations.
We observed that the objective function value often increased by more than a factor
1000, with only a negligible decrease in the infeasibility. In other cases, the infeasibility
increased in favour of a small reduction in the objective function value. Inspired by a
suggestion in [6], we search for a step o4 that satisfies:

k+1
fl+D ),5 )

L 9. (36)
k k
o, ®
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We scale a1 by 0.9 for at most 20 times, and only apply the ratio control during the
10 first iterations for performance reasons, which seem to be sufficient.

4 Construction of the dual-normal matrix

The construction of the dual-normal matrix N is the most time-consuming part of a
full-Newton interior-point iteration. For completeness, substitute H from Eq. (9) with
Eq. (18), and assume that the objective function is actually a scalarisation with weights
v; of several cost-functions:

k m m
N= Y V2ifi+Y yiVie+Y Velw 'yVe+zXx " (37)
i=1 i=1 i=1

Here, k is the number of objective functions and m the number of constraints (both
linear and nonlinear). The third term computes for each constraint i the scaled rank-1
update of Vg!.

This computation can be simplified to the condensed representation:

N=ATDA+Q+T (38)

where D and T = ZX~! are diagonal matrices, Q a symmetric matrix and A the
matrices originating from the problem data. A generally represents the pencil-beam
dose matrices, d; = A;x [see (2)]. This representation is used to efficiently compute
the Hessian for the (nonlinear) objectives and constraints [first 2 terms of (37)] and the
rank updates for the first order derivatives of the constraints [third term of (37)]. This
representation allows a very efficient computational implementation (Sect. 5), but we
will first describe the analytical advantages in the next section.

4.1 Expansion

First we expand (37) in explicit terms of linear, nonlinear and symmetric positive
definite (resulting from quadratic objectives or constraints). Let £, and L. be the
set of linear objectives and constraints respectively, NV, and N, the sets of nonlinear
cost-functions (except quadratic), and Q, and Q. the sets of quadratic cost-functions.
For linear constraints, it is assumed that there are £, “big” matrices A;, containing 7;
rows. Equation (37) then becomes:

N = Z ViV i + Z vV f; + Z v V2 fi

iel, ieN, i€eQ,
+) wiVia + Y Vi + Y Vi
iel, ieN. i€eQ,
-1 -1 —1
+ )Y Velwi Ve + ) VelwviVe + ) Vel w iV
iel. jeT; ieN. i€eQ,
+ zx~ . (39)
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For linear cost-functions the second derivative equals 0, so they can be removed from
the equation.

The cost-functions used in radiation therapy take their arguments in the dose
domain, which has a linear relation to the decision-variables x (2). For a certain cost
function i (d;) (either used as an objective or constraint), where:

di = Aix (40)

then the first and second derivatives can be expressed in the following canonical form
[32]:

Vh = c,-l(x)AiTx

2 T T (@1
Vh = cio(x)A; Ei(x)A; 4+ ¢i3(x)VhVh
where c¢;1, cj2 and c¢;3 are scalars and E; a diagonal matrix. For the remainder of this
section, we drop the dependence on x for readability.
For quadratic functions, we use the canonical form:

1 7 T
h(x):zx Bx+b'x+c 42)
resulting in:
Vh=Bx+b (43)
V’h =B '

Substituting the linear relation (40) and derivatives (41-43) into (39) gives:

N = > U,’C,'QAI-TE,'A,‘ +UiCi3VfiniT + > viB;
ieN, i€Q,
+ % yicinAT EiA; + yicizVgiVgl  + ZQ i Bi
1eN, e,
+'Z£ ATWlY; A+ % Vel w!yive +'2Qj Vel w!yivg
1eLl, 1eN¢ e,
+zx~ 1.

(44)

Rearranging to group terms that have similar operations results in:

L N=> vepAlEA + ) yicoATEiA + ) ATW A

ieN, ieN. iel,
2. + ) wenVAVET  + ) wienVgiVe!

ieN, ieN;
3. + Y Velwyive  + ) Velw iV

ieN; i€eQ,
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4. + Z v; B; + Z vi Bi

icQ, i€eQ.
5. +zx L (45)

This formulation shows different layers of the underlying computational complexity.
The rows contain consecutively: 1. matrix-matrix products, 2. vector outer-products,
3. vector dot-products, 4. symmetric positive definite terms, and 5. a diagonal term.
The matrix Q is described by rows 3 and 4, and T by row 5. The advantage of this
formulation is described in the next section.

4.2 Computational efficiency

The most time-consuming part of Eq. (45) are the matrix-matrix products. Any reduc-
tion in computational effort gained here is directly measurable. Remember that each
matrix A; represents the dose to a certain structure (i.e. the tumour, or one of the
healthy organs). It often occurs that for a single structure, multiple cost-functions are
used. For example, the tumour can both have a minimum and maximum dose, and has a
nonlinear objective that minimises the probability of recurrence (i.e. due to insufficient
irradiation). This problem is formalised as follows:

minimise £ (d;)
subjectto by <dy < by

46
x>0 (46)
where dj = Ax.
The first row of Eq. (45) for this problem is:
T Tyy—1 T -1
U16‘12A1 E1A1+A1 W2 Y2A1+A1 W3 YA, “n

where E is concerned with the Hessian of the objective f(d) (Eq. 41), W, ! Y, the
Lagrange multipliers for the linear minimum constaint by < d; and W5 'y; with the
linear maximum constraint d; < bj. In a naive implementation this would require
three expensive matrix-matrix products, but a straightforward factorisation results in:

A{DlAl

. » (48)
Dy =vicpE1+W, Yo+ W; Y3
which represents the first term of the condensed form (38).
The second term of the condensed form, the symmetric matrix Q consists of the
matrices B; (43), vector outer-products, and a small matrix-matrix product resulting
from the gradients of the nonlinear cost-functions. For computational efficiency, the
k outer-products of the gradients of the nonlinear cost-functions are concatenated in
a matrix, and computed by a matrix-matrix product. Third row of (45) becomes:
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-1
wy V1

T wy 'y
[Vgi Vg -+ Vgl . [Vg1 Vga -+ Vgil. (49)

-1
Wy Yk

Usually, the number of nonlinear cost-functions is in the order of 10 — 20.

4.3 Properties
The condensed form:

N=ATDA+Q+T (50)
with A being the data matrices of the problem, expressed as:
AT =[A, A, A3 )T (51)

has the following properties:

— A has unique rows if the problem was initialised correctly

— D is positive semidefinite for convex problems

— D may contain negative elements for nonconvex problems

— T is positive semidefinite

— Q is symmetric

— N is symmetric

— Computational complexity depends on the number of unique structures (expressed
in A; and its corresponding dose d;), not on the number of cost-functions or
constraints

For convex problems, N is positive definite. For nonconvex problems, N may still be
positive definite due to the other elements of D, Q and T'.

The quality of the matrix A depends on the correct configuration of the radiation
therapy problem. If no overlapping voxels are selected during the discretisation phase
of the patient (see Fig. 2), which is easily avoidable, it is highly likely that A is full
rank. However, 2 neighbouring voxels may be numerically identical due to limited
representation of machine precision. Careful preprocessing to ensure full rank A’s did
not reveal any improvements above compared to no preprocessing.

5 Computational advances
In this section, computational approaches to efficiently compute the matrix-matrix

product of (38) are presented, including permutation, tiling and multiple precision
arithmetic.
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Table 1 Matrix properties of a typical radiation therapy head-and-neck case (subset of Head-and-Neck
01)

Structure Rows #Nonzero Sparsity (%)
Tumour 5096 9,142,738 18.0
Spinal cord 3529 4,682,162 13.3
Brainstem 3757 1,843,820 4.9
Parotid (R) 3976 6,038,167 15.2
Parotid (L) 3975 5,602,446 14.1
SMG (R) 1406 2,640,389 18.8
SMG (L) 1769 3,252,371 18.4
Oral cavity 5298 8,259,205 15.6
Larynx 5263 10,353,470 19.7
MCS 1 4448 44.6
MCM 1 4514 45.2
MCI 1 5208 52.2
MCP 1 3465 34.7
Oesophagus 1 3316 33.2
Patient 10,917 12,627,463 11.6
PTV shell 0 mm 4908 8,173,765 16.7
PTV shell 5 mm 4954 7,719,957 15.6
PTV shell 15 mm 4823 6,147,460 12.8
PTV shell 30 mm 4805 4,298,559 9.0
PTV shell 40 mm 4726 2,795,977 5.9
External ring 20 mm 5346 1,586,997 3.0

The number of columns in each matrix is 9977 elements

5.1 Symmetric matrix-matrix product

The data matrices A; in (51) are stored separately and are not combined into a single
matrix. The sparsity of the matrices differ greatly. Table 1 shows matrix properties of
a typical problem. Structures with only a single row are only evaluated by the mean
cost-function. The number of voxels is determined by the size and type of the structure.
This table shows that the matrices are not particularly dense, but also not sufficiently
sparse to be handled efficiently by sparse algorithms. Figure 4 shows the sparsity
pattern for the tumour and oral cavity matrices. For the computation of Al.T D;A; we
use three separate procedures, described in the following sections.

5.1.1 Dense and nonnegative diagonal

For computing
N=N+ AiTD,‘Ai (52)
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Fig. 4 Sparsity patterns for typical pencil-beam matrices A; in radiation therapy. Top panels show the

original data, bottom panels show the permuted and tiled version. While the matrix for the tumour (fop-left)
seems almost completely dense, only 18% of the elements are used

for D; > 0 (all elements of the diagonal are nonnegative), we compute a matrix B as:
1
B =D?A; (53)

which is a scalar product of the square-root of each element of d; with the respective
column of the matrix A;. As a column-wise operation is linear in memory access, this
operation is as good as free.

The product is then computed by a symmetric matrix-matrix product, using the
symm BLAS function.

5.1.2 Dense and general diagonal
If the diagonal D; has negative elements, the square-root cannot be used. Instead, we
pre-multiply the matrix by the diagonal and perform a general matrix-matrix operation,

using the gemm BLAS function:

B = D;A;

55
N =N+ BTA. (53)

5.1.3 Sparse

For sparse A; we use a custom implementation based on the sparse matrix multiplica-
tion algorithm as described by [30]. We know that the resulting (dual-normal) matrix
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will be a dense matrix, and can therefore skip the symbolic part of sparse algebra. For
this algorithm, the left matrix has to be pre-transposed, and is directly multiplied with
the diagonal matrix D; [14]. The formal operation is identical to (55). We also exploit
the fact that the result is symmetric: the transposition algorithm ensures an ordered
sparse representation, allowing the multiplication algorithm to skip operations for the
lower triangle of N.

5.2 Permutation and tiling

Table 1 and Fig. 4 suggest that neither the dense nor sparse format is particularly
efficient for the matrix-matrix product. The tipping point for computational efficiency
for the matrix-matrix product lies around a sparsity level of 15% when using the method
described in the previous section (depending on matrix dimensions). However, we can
exploit the problem structure by permuting the rows and columns of each matrix. This
results in constructing a tiled matrix format with dense, sparse and all-zero tiles.

There are many partitioning algorithms available. We tested several and found that
Gibbs—Poole—Stockmeyer [23,59] from the Scotch [49] library resulted in the most
efficient partition for the matrix-matrix product, while keeping the partitioning time to
a minimum. As this algorithm only works on symmetric matrices (bipartite graphs),
we converted the rectangular matrices to symmetric square ones using:

T
]

before partitioning.

The permuted and tiled sparsity pattern is also shown in Fig. 4. For each tile, it is
determined whether it is best handled dense or sparse. All-empty tiles are tagged as
“empty”’, and are not stored.

The matrix multiplication now becomes a tiled matrix multiplication, either between
dense-dense tiles, sparse-sparse tiles, dense-sparse tiles, or any with an all-zero tile.
The tiled multiplications are then distributed over the available CPU-cores and exe-
cuted single-threadedly. For the dense-dense algebra we use the gemm function from
the BLAS library, for the other combinations algorithms from [14,30,50] are used.

Heuristics determine whether or not tiling and/or permutation is an efficient invest-
ment. Matrices over 80% dense are only tiled, not permuted. Tiling allows matrices
to be efficiently processed and multithreaded using the tiled multiplication algorithm,
which is efficient even for dense matrices [38]. Dense matrices with few rows, or large,
sparse matrices are not tiled at all, as their size results in better performance when not
multithreaded.

5.3 Multiple precision arithmetic
For the data, single precision is sufficient to model the radiation therapy problem, but

double precision is required for successful convergence of the interior-point algorithm.
The matrix-matrix product of the condensed form (38) is the most time-consuming
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step in the algorithm, so it is effective to perform this operation as much as possible in
single precision. Due to the relative few rows in computing Q (49), the time required
to compute Q and diagonal T is negligible.

Because the background of the problem is known, we can make some (but not
limiting) assumptions on the data matrices: (1) all elements and all matrices are of
similar order of magnitude (generally O(1073)), and (2) all elements are nonnegative
(except occasionally a column of —1 resulting from minimax reformulations). As a
consequence, we can focus solely on the magnitude of the elements of the diagonal
D, without taking into account the (possibly) different scalings of the rows of A.

The magnitude of the elements in the diagonal D vary between very large (>10%)
and very small (<10~19), especially in the final steps. A good indicator is the ratio
between the largest and the smallest element of D. If this ratio is <10~ (single preci-
sion accuracy is around 1.19 - 10~7), then the matrix multiplication can be performed
in single precision, otherwise double precision is required for a sufficiently accurate
multiplication.

Our strategy is to keep N in double precision, and determine per matrix which
precision is possible. This is even propagated further down to the tiled matrix imple-
mentation (Sect. 5.2), where the decision for the precision is made per ftile rather
than per matrix. In this event, the number of diagonal elements to compare is greatly
reduced, increasing the probability of more single precision operations. It is possible
that when using the tiled approach, 80% of the multiplications can be performed using
single precision.

One other advantage of the canonical form is that D is often a combination of W~y
and E (41) if both linear and nonlinear constraints are used. The addition of these result
in diminishment of extremely small elements, increasing the single precision ratio.

6 Results
6.1 Implementation and hardware

A concise overview of the algorithm is given in Algorithm 1. The solver is implemented
in C++ and compiled using the GNU C++ Compiler (version 4.6.3). For basic linear
algebra operations we used the Intel Math Kernel Library (version 11.3) wherever
possible. For the tiled matrix-vector and matrix-matrix product, as well as sparse
matrix algebra, custom functions are implemented in C++ [14,30,50]. Special attention
is given to multi-threading, which is achieved using OpenMP.

The hardware used is a dual CPU system, consisting of 2 octocore Intel Xeon E5-
2690 CPUs, running at 2.90 GHz (and up to 3.8 GHz singlethreaded) and has 20 MiB
cache. The maximum memory bandwidth is 51.2 GiB/s. Unless stated otherwise, all
results are achieved using all 16 cores, with hyperthreading disabled.
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Algorithm 1 Concise overview of the algorithm. Here, x = (z, w, x, y).

load data
permute/tile matrices, store in single/double precision (Sect. 5)
initialise x¢ (Sect. 3.1)
rewrite minimax problems to generic form (3)
for interior-point iterations k = 1, ... do
compute N according to (37) using arithmetic from Sect. 5
decompose N using Cholesky decomposition
if method == Default then
find Axy by solving (20)
determine maximum step «j according to Sect. 3.3
else
find Axy for predictor step (Sect. 2.3)
determine maximum steplength o according to Sect. 3.3
find Axy for corrector step (Sect. 2.3)
set AXy < AXp + Axg
determine maximum steplength o according to Sect. 3.3
if step rejected then
compute Axy by doing a Default step (above)
else
set Axy < AXy
if method == Gondzio then
while step is acceptable do
aim to take step X; = x;_1 + 1.1ag Axy
find Axy for Gondzio update step (Sect. 2.3)
set AXy < Axyp + AXy
determine maximum steplength ¢ according to Sect. 3.3
if step rejected OR @ < 1.07 then
stop updates and use Axy
else
accept step and set Axy < AXg
end if
end while
determine maximum steplength o according to Sect. 3.3
end if
end if
end if
take step xp = xp_1 + o Axg
compute convergence criteria and terminate if norm of (8) < 104
end for

6.2 Problem data

We used the TROTS dataset [10,11] to demonstrate the performance of the solver.
This dataset consists of 120 patients (47 GiB) for different treatment sites and problem
definitions, representing real clinical problems.

To focus on the performance and characteristics of the solver, the multi-criteria
aspect of the radiation therapy problem has been reduced to a single-criteria formu-
lation. We used our lexicographic multi-criteria optimisation approach for automated
treatment planning, which is a form of sequential e-constraint programming [12,15].
The final constrained problem is then transformed to a weighted-sum by setting the
Lagrange multipliers of the constrained objectives as their corresponding weights [12].
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Table 2 Computational complexity, average per group. Shown are the number of initial decision-
variables/constraints and the numbers after reconfiguring the problem, such as handling minimax constraints

Initial Final

n m n m Quadratic  Convex  Not convex
Prostate CK 2937 51,321 2943 97,439 24-25 3 0
Prostate VMAT 2697 67,959 2701 94,602 23 34 0
Head-and-Neck 8302 75,508 8309 97,917 23 3 0
Head-and-Neck Alt 8302 75,508 8309 97,917 23 3 0
Protons 1803 108,277 1823 408,294 0 0 0
Liver 1615 91,884 1621 119,680 15 0 3

The latter relates to the “computational burden”, i.e. final size of the data matrices. The number of constraints
m are the total constraints, including nonlinear. The number of nonlinear constraints are given per type

Our rationale for doing so is to (1) create problems of realistic complexity, and (2) the
result is a realistic treatment plan.

For details regarding the source of the data, treatment protocols, usage and visual-
isation of the TROTS data we refer to [10,11]. Here, we only provide details relevant
to the optimisation. Problem complexities are summarised in Table 2.

The Prostate CK, Prostate VMAT, Head-and-Neck and Head-and-Neck Alt patients
are all regular convex problems for intensity-modulated photon therapy. The Head-
and-Neck Alt patients are identical to the normal group, but are equipped with a more
accurate dose model, resulting in denser matrices. This allows investigating the effect
of the denseness of the data on runtime, as the problems are identical. The Liver
cases contain 3 nonconvex dose-volume constraints (Sect. 3.2). The Protons patients
are patients who are treated with intensity-modulated proton therapy. This modality
has different dosimetric properties, resulting in different types of dose matrices. In
addition, these problem configurations are fully linear.

6.3 Performance

In the following, all runtimes are reported in seconds, excluding loading the data
from disk, but including initialisation, permutation, etc., and achieved by using the
Mehrotra method, unless stated otherwise. All problems were optimised using the
same termination criteria: optimality conditions (8) <10~* and a maximum number
of iterations of 300. Steplength control in the form of the Markov filter (Sect. 3.3.1)
was only enabled for the nonconvex problems, otherwise, ratio control was used.

All tables contain summarised results, detailed results can be found in the supple-
mentary material. The reported Average per Iteration is computed by averaging to the
times per iteration for each problem, rather than based on the accumulated results. All
problems converged successfully, including the nonconvex Liver problems. Only the
Head and Neck 12 problem in the 8-threaded naive run did not converge and terminated
after 128 iterations.
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Table3 Effect of second-order and higher-order interior-point methods by number of iterations and runtime

Iterations Time (s)

Default Mehrotra Gondzio Default Mehrotra Gondzio
Prostate CK 2863 1284 1319 3501.9 1732.1 2031.3
Prostate VMAT 3007 1310 1458 4685.3 2221.3 2758.2
Head-and-Neck 1198 615 610 5660.3 3110.3 3226.0
Head-and-Neck Alt 1202 608 596 12,895.0 6756.1 6937.7
Protons 2151 1401 1063 1738.9 1321.7 1274.0
Liver 989 435 392 685.0 369.8 412.6
Total 11,410 5653 5438 29,166.3 15,511.2 16,639.8
Average per iteration 2.9 3.0 3.3

In Table 3 we report the number of iterations and runtimes for the Default (Sect. 2.1),
the Mehrotra, and the novel Gondzio methods (Sect. 2.3). Compared to the Default
method, Mehrotra’s method reduces the number of iterations by 50%, and Gondzio’s
method slightly more to 52%. Gondzio used 4370 extra updates on top of the standard
Mehrotra corrector update. While the runtime is reduced accordingly between Default
and Mehrotra, the runtime for Gondzio’s method is slightly higher. This is because
the additional higher-order corrections require additional time to compute. Only for
the Protons problems there is a strong and structural reduction.

The effect of the computational advances (Sect. 5) is demonstrated in Table 4.
Runtimes are reported for different combinations of permutation/tiling and/or multiple
precision arithmetic. The effect of multiple precision arithmetic is negligible without
permutation/tiling. This is because the single precision heuristic checks the diagonal
elements per multiplication. Smaller matrices have a higher probability of having all
elements in the same order of magnitude, while a single outlier can ruin this approach.
For large (untiled) matrices, it is likely that all multiplications are performed in double
precision. Permutation/tiling results in a reduction in time of 37% (per iteration). Using
in addition multiple precision arithmetic, the runtimes are further reduced to 54%. We
also observe a drop in number of iterations: this results in a total runtime reduction of
55%.

An additional advantage of the optimised approach is that it improves scalability,
see Table 5. Here we compare singlethreaded and multithreaded (16 cores, divided
over 2 CPUs) performance for the naive (nonoptimised) and the optimised approach.
Where the naive approach is only 7.7 times faster when using 16 threads compared to
singlethreaded, the optimised approach scales with a factor 9.8.

The effects of our initialisation and ratio control strategies is demonstrated in Table
6. Initialisation decreases the number of iterations by 9% compared to the simpler
approach. When initialisation is used, the ratio control only has a negligible advantage,
but for ill-initialised problems, the use of ratio control results in a reduction of 11%.

Figure 5 and Table 7 show the fraction of the runtime spent in each module. The
time to permute, tile matrices and initialise the problem is 5% — 10% of the runtime.
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Table 4 Iterations and runtime in seconds for different computational approaches (Sect. 5)

No Tile Tile No Tile Tile Tile

No Perm No Perm No Perm Perm Perm

No MPA No MPA MPA No MPA MPA

Iterations
Prostate CK 1285 1291 1285 1291 1284
Prostate VMAT 1365 1313 1365 1313 1310
Head-and-Neck 661 613 661 613 615
Head-and-Neck Alt 619 611 619 611 608
Protons 1565 1416 1565 1411 1401
Liver 430 437 430 437 435
Total 5925 5681 5925 5676 5653
Time (s)

Prostate CK 3060.3 2655.0 3130.8 2468.4 1732.1
Prostate VMAT 4956.0 3528.9 5017.9 3184.5 2221.3
Head-and-Neck 9981.9 8805.3 10, 382.6 3831.9 3110.3
Head-and-Neck Alt 12,974.9 14,912.8 13,385.9 9755.4 6756.1
Protons 3125.1 1381.0 3117.1 1467.4 1321.7
Liver 556.4 479.6 571.0 463.1 369.8
Total 34,654.7 31,762.6 35,605.3 21,170.7 15,511.2
Average per iteration 6.5 6.3 6.7 4.1 3.0

Each column indicates whether permutation/tiling and/or multiple precision arithmetic (MPA) is used. In
the second column, the matrices are only tiled, not permuted. Most right column is equal to Mehrotra in
Table 3

Clearly, the construction of the dual-normal matrix N (38) consumes >70% of the
time, of which only a fraction is used for the function evaluations and derivatives,
and construction of the diagonals D, T and matrix Q (48-49). The time required for
solving the system (20) (the backsolves) is between 5% — 15%. This is almost entirely
due to the two matrix-vector computations with Vg(x): one transposed to construct
the right-hand-side (19), and one to compute Ay once the system is solved (17). An
interesting observation can be made when comparing the Head-and-Neck and Head-
and-Neck Alt problems. As both problems are equal in size n (decision-variables), the
time required for the Cholesky decomposition is similar for both approaches, but the
time required for the other algebra strongly increases due to the denser matrices of the
alternative problem. By comparing the overall runtime from Table 3 with accumulated
times in Table 7, we learn that the total overhead is 414.1 s (non-measured time, which
is spent on function/library calls, I/O handling, etc.).

7 Discussion and conclusions

This paper described an interior-point implementation specifically designed and tuned
for a single application. This allows exploiting the specific problem structure, hard-

@ Springer



234 S. Breedveld et al.

Table 5 Scalability of the solver to 16 threads, comparing the standard algebra (no permutation/tiling, no
multiple precision arithmetic) with optimised algebra

No Perm/No MPA (naive) Perm/MPA
1 thread 16 threads 1 thread 16 threads
Iterations
Prostate CK 1290 1285 1284 1284
Prostate VMAT 1411 1365 1314 1310
Head-and-Neck 905 661 612 615
Head-and-Neck Alt 637 619 610 608
Protons 1530 1565 1409 1401
Liver 434 430 435 435
Total 6207 5925 5664 5653
Time (s)
Prostate CK 17,961.2 3060.3 14,921.7 1732.1
Prostate VMAT 32,406.9 4956.0 19,971.5 2221.3
Head-and-Neck 101,727.2 9981.9 30,958.6 3110.3
Head-and-Neck Alt 122,267.7 12,974.9 73,019.5 6756.1
Protons 7712.0 3125.1 5782.0 1321.7
Liver 2470.8 556.4 2345.7 369.8
Total 28,4545.7 34,654.7 146,998.9 15,511.2
Average per iteration 50.3 6.5 29.4 3.0
Speed-up factor 7.7 9.8

Table 6 Effect on the number of iterations when (not) using the initialisation strategy and/or ratio control

Iterations Initialise No initialise Initialise No initialise
ratio ratio no ratio no ratio
Prostate CK 1284 1385 1272 1404
Prostate VMAT 1310 1597 1335 2152
Head-and-Neck 615 716 637 857
Head-and-Neck Alt 608 678 619 762
Protons 1401 1437 1401 1437
Liver 435 410 435 410
Total 5653 6223 5699 7022

coding cost-functions, optimising linear algebra and initialisation. Additionally, a
typical nonconvex cost-function is supported.

The use of the Mehrotra higher-order method resulted in a higher reduction of
iterations than expected: 50%, whereas [42] reported 35% and [57] only 15%. The
added value of higher-order methods therefore seems problem-dependent.
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Fig.5 Time spent in each module (see also Table 7). The ordering of the stacked bars is the same as in the
legend

Gondzio’s method is able to further reduce the number of iterations for linear prob-
lems only (Protons), or problems with few nonlinear cost-functions (Liver). For general
convex problems, Gondzio was not advantageous, especially not when comparing run-
time. Tuning of the parameters (see Supplemantary material) demonstrated a sensitive
behaviour in the number of iterations for the nonlinear problems, while most param-
eter settings worked relatively stable for the linear problems. The Protons problems
show a very slow convergence for all methods. When using Gondzio, we see more
higher-order updates in the later iterations. It remains to be investigated if Gondzio
will always be the preferred choice for full linear problems. We did not show results
for the original Gondzio approach without the Mehrotra corrector step, because we
were unable to find acceptable parameters. With our best setting, the Protons problems
still required between 150-250 iterations.

Interestingly, the matrix permutation, tiling and multiple precision arithmetic
reduces the number of iterations. Apparently, these steps improve the numerical sta-
bility. For cases which have difficulty converging, the steps were smooth until the
problem started converging (optimality condition (8) around O (10~2)). The Cholesky
decomposition started failing because the dual-normal matrix N was not positive defi-
nite. For the single case that did not converge, the starting value of 4 = 107° added to
the diagonal of N seems to be ill-chosen: either larger 10~* or smaller 10~8 worked.
However, since the problem is convex, the problem should not become indefinite. The
problem with indefiniteness is related to not tiling the matrices, and does not seem to
be related to the multiple precision arithmetic (Table 4). We are unsure exactly why,
but one could argue that tiled matrix-matrix multiplication is able to better handle the
badly scaled diagonal D in AT DA (38). In the final iterations, these elements can
range from 10780 to 10'0, although setting the smallest elements to 0 did not solve
this issue. Tiling of the matrices is not new: this is a standard procedure in every
matrix-matrix multiplication library, and used to fit each tile in the CPU’s cache prior
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to multiplication to avoid latency in memory look-ups [5,17]. Similar to [16,38], we
tile the matrices once.

The prolonged time required for starting the problem due to permutation, tiling
and initialisation of xg is fully compensated by the reduction in runtime and required
iterations. This demonstrates that proper initialisation is extremely important for the
performance of interior-point methods. The application of a simple ratio steplength
control mechanism is capable of reducing the impact of an unfortunate chosen initial
point, which may either be x or one of the other variables. In our previous implemen-
tation, we had set the minimum of wq and yg to 10 instead of 5, which turned out to
have a high impact on the number of iterations (6369 in total compared to 5653 now).
During this implementation, the ratio control was developed, which resulted in reduc-
ing the number of iterations to 6069. Further research may be beneficial, for example
using warmstarting techniques based on the initialised variables [22,28,47,73].

The extensions for nonconvex interior-point optimisation (Sect. 3.3) were only
recently introduced in our solver, and with success: all nonconvex problems converged
without problems. Using the parameter p = 5 in the approximation of the dose-
volume constraint (30) resulted in a correspondence of within 1%-point of the exact
dose-volume function (29) for most cases. It remains to be investigated how many dose-
volume constraints can be included and how accurate we can make the approximation
by using higher values for the p parameter, and if further extensions to the algorithm
are necessary.

We also compiled the C++ source code using the Intel C++ Compiler, but this did not
result in improved performace. The majority of the runtime is spent on linear algebra,
for which we utilise highly optimised libraries. The tiled matrix-matrix multiplication
is parallellised on the distribution of tiles (each thread computes a tile-by-tile multipli-
cation). Consequently, each multiplication is performed singlethreadedly, significantly
simplifying the implementation of our custom (sparse) linear algebra routines.

The approach presented in this paper is the result of over 9 years development and
tuning of the interior-point method and algebra. The solver runs on a cluster with cur-
rently over 350 computing cores, and is estimated to have solved (sometimes without
success) over 7 million problems (estimated based on scheduler statistics). This high
number is obtained because the more complex radiation therapy problems require
solving thousands of problems for a single patient. Aside from computing treatment
plans for patients currently under treatment, our Erasmus-iCycle framework is an ideal
research environment, where novel treatment protocols are developed and evaluated
[55,56,58,61,66—69]. In this case, many configurations with different parameters are
being tested on (large) groups of previously treated patient data, resulting in this high
number of solved mathematical problems. During these years, searches for higher
performance were ever ongoing, and included investigating alternative classes of opti-
misation methods.

The most straightforward ones are quasi-Newton methods, where the Hessian is
approximated by a low-rank matrix [46]. However, quasi-Newton methods only apply
to nonlinear functions, thus the many (linear) pointwise minimum- or maximum-
constraints need to be replaced by a surrogate function, such as e.g. the log-sum-exp.
This has a practical disadvantage: if a maximum constraint of 50 is desired, achieving
this by the surrogate maximum may result in a real maximum of e.g. 53 (which
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is unacceptable) or 47. In the latter, the remaining freedom within the constraints
is not used, thereby limiting reduction of dose (sparing) elsewhere. For the same
reason of remodelling the problem to few (nonlinear) constraints, sequential quadratic
programming (SQP) is also less interesting. Computationally, the disadvantage of
quasi-Newton methods is the increased number of iterations required, whereas the time
reduction per iteration is already small due to the pre-combination of different cost-
functions for the same matrix (Sect. 4) and the permutation/tiling/multiple precision
arithmetic (Sect. 5). In [29] it is argued and demonstrated that also for larger problems
in radiation therapy, full-Newton methods are preferred above quasi-Newton and SQP
methods with respect to quality and performance.

Matrix-free methods avoid building the dual-normal matrix N, and solve system
(20) by a series of matrix-vector multiplications, where our matrix is kept in condensed
form (38) [26,60]. The main problem with this approach was preconditioning the
iterative method, which has to be done in each iteration. Without preconditioning the
system often did not converge. A simple preconditioning method that worked was
based on taking the 1000-3000 largest elements of D (38), compute N and factorise
it to obtain the preconditioner. The downside of this approach is that a Cholesky
decomposition is still required, and that multiplying 1000-3000 non-sequential rows
of A is much slower than 3000 sequential rows. Another disadvantage is that each
backsolve is expensive, so the reduction in iterations acquired by higher-order methods
result in longer runtimes. Our best implementation hardly rivalled the full matrix-
matrix multiplication approach, and did also not show stable convergence for different
problems.

Column generation (CG) is another approach for solving large problems by dimen-
sionality reduction [52], and proposed to be used in radiation therapy to optimise
directly on treatment device parameters to obtain efficient and short treatment times
by [43]. Unfortunately, column generation does not apply well to our class of con-
strained problems. In column generation, the problem is initially reduced to a single
decision-variable, resulting in an infeasible constrained problem: a plan respecting
both minimum and maximum dose constraints for the tumour is impossible. Gondzio
et. al. [27] proposes to solve such problems up to some predefined duality gap u,
and reducing the dual-infeasibility as far as possible. This is to obtain the most rele-
vant Lagrange multipliers required for selecting the subset of the decision-variables
to add for the next iteration. In the next iteration, a smaller estimate for u is made. We
have implemented this in an automated adaptive fashion where the problem is opti-
mised up to some pre-set i, and once attained p is iteratively reduced after which the
interior-point method continues from this point on. This has the advantage of obtain-
ing the smallest possible p without having to restart the optimisation multiple times.
Unfortunately, achieving feasibility and optimality using the CG approach requires a
significant number of CG iterations, where much time is spent in recreating the data
matrices for the reduced problems. Consequently, the aim of attaining an efficient
treatment plan is lost when too many columns are generated [43].

The TROTS dataset used in this paper [10, 11] was specifically constructed to eval-
uate the performance for medium- to large-scale problems consisting of dense data.
Other sets frequently used in benchmarking solvers, such as the Netlib, CUTEst, Hock
and Schittkowski, and Vanderbei’s set [20,35,44,63], often provide problems which
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are challenging to solve, but are in general too small or too sparse to be used to test
performance and scalability of denser problems [7]. By making this dataset available
we offer the field of operational research data for extensive performance testing, but
also to test stability (stable number of iterations for similar problems) of the solvers.
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