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Abstract In this article, we introduce the Generalized {0, 1, 2}-Survivable Network
Design Problem ({0, 1, 2}-GSNDP) which has applications in the design of backbone
networks. Different mixed integer linear programming formulations are derived by
combining previous results obtained for the related {0, 1, 2}-GSNDP and Generalized
Network Design Problems. An extensive computational study comparing the cor-
respondingly developed branch-and-cut approaches shows clear advantages for two
particular variants. Additional insights into individual advantages and disadvantages
of the developed algorithms for different instance characteristics are given.

Keywords Generalized network design · Survivability · Biconnectivity ·
Branch-and-cut · Mixed integer linear programming

1 Introduction

The optimal design of (telecommunication) networks has been the topic of numerous
scientific articles and a variety of different (classes of) combinatorial optimization
problems arising in that domain have been studied in detail. Generalized Network
Design Problems (GNDPs) are one particular class among these that are motivated
from the design of backbone networks, see, e.g. [3,4,10,22] and the references therein.
In GNDPs we are given an undirected graph G = (V, E) with nonnegative edge
weights ce,∀e ∈ E , in which the set of nodes V is partitioned into k disjoint clusters
Vi , 1 ≤ i ≤ k. Thereby, each node represents a possibility to connect a local network
to a backbone network and all nodes within the same cluster belong to the same local
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network. Usually, the goal is to identify a minimum-cost backbone network such that
precisely one node from each local network is connected to it. Depending on the
additional constraints on the structure of the backbone network one obtains different
GNDPs such as the Generalized Minimum Spanning Tree Problem (GMSTP), see,
e.g. [5,6,9,13,19,21,23,24], or the Generalized Traveling Salesman Problem, cf. [7,
11,16,27].

To ensure connectivity of the backbone network even after the outage of a single
link, Huygens [15] introduced the generalized minimum edge biconnected network
design problem (GMEBCNP) and studied possibilities to model this problem as an
integer linear program (ILP). TheGMEBCNPaswell as a variant inwhich connectivity
is maintained even after a single node failure have also been studied in [12,14] where
mainly (meta-) heuristic approaches are proposed. While the issue of survivability
has received only little attention for the case of generalized network design, a huge
amount of literature is available for “classical” survivable network design (SND), see,
e.g. [20]. One particular subclass that is of major relevance for what follows are the
so-called {0,1,2}-SND problems where a value associated to each node specifies the
required level of redundancy, see, e.g. [2].

In this work, we generalize the latter problem to the case of generalized network
design by introducing the Generalized {0,1,2}-Survivable Network Design Problem
({0,1,2}-GSNDP). To formally define the problem, let G = (V, E) be an undirected
graph with nonnegative weights ce ≥ 0 associated to edges e ∈ E whose node
set is partitioned into k disjoint clusters Vi , i = 1, . . . , k. Let furthermore, ρi ∈
{0, 1, 2}, i = 1, . . . , k, denote the connectivity requirements of cluster i . Thereby,
mandatory clusters with ρi ∈ {1, 2} need to be connected in any feasible solution
while all remaining ones (with ρi = 0) are optional clusters. As in classical survivable
network design problems, redundant clusters Vi with ρi = 2 need to be connected
redundantly, i.e., they need to remain connected (to all other redundant clusters) after
a single node or edge failure.

A feasible solution G ′ = (V ′, E ′) to an instance of the {0,1,2}-GSNDP is a sub-
graph of G that contains precisely one node from each mandatory cluster and at most
one node from each optional cluster. Furthermore, for each pair of clusters Vi and
Vj (i, j ∈ {1, . . . , k}, i �= j) solution G ′ has to contain at least ρi j = min{ρi , ρ j }
vertex disjoint paths connecting the nodes selected in these clusters. Thus, two redun-
dant clusters Vi and Vj remain connected after a single node or edge failure (unless
the selected node in either Vi or Vj is the one failing). The objective is to identify
a solution G∗ = (V ∗, E∗) yielding overall minimum edge costs

∑
e∈E∗ ce. Figure 1

shows an example instance of the {0,1,2}-GSNDP together with a solution to this
instance.

Scientific contribution and outline of the paper The main contributions of this article
are the introduction of the new problem with applications in backbone network design
and the development of (mixed) integer linear programming ((M)ILP) formulations of
polynomial and exponential size. As these formulations heavily rely on a recent result
byChimani et al. [2], we recall this result and discuss its consequences at the end of this
section after summarizing necessary notation. Compact MILP formulations involving
a polynomial number of variables and constraints (w.r.t. to the size of the input graph)
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Fig. 1 An instance and a feasible solution of an instance to the {0,1,2}-GSNDP for ρi = 2, i ∈
{2, 5, 8}, ρi = 1, i ∈ {1, 6, 7}, and ρi = 0, i ∈ {3, 4}. Dotted edges are not included in the solution

based on multi-commodity flows are introduced in Sect. 2.1. ILP formulations with
an exponential number of (efficiently separable) constraints are proposed in Sect. 2.2.
In addition we analyze possibilities to formulate the problem by using an exponential
number of path and cycle variables in Sect. 2.3. Branch-and-cut approaches for the
formulations fromSects. 2.1 and2.2 are developed and compared fromacomputational
perspective in Sect. 3 using well known benchmark instances for GNDPs. Finally,
conclusions are drawn in Sect. 4. We also note, that all formulations described in the
following are easilymodified to the edge-disjoint variant of the problem. They can also
be directly used for the important special case when all clusters need to be connected
redundantly, i.e., when ρi = 2, 1 ≤ i ≤ k.

Notation and assumptions In the following, C = {1, . . . , k} is used to denote the set
of clusters and Cl = {i ∈ C | ρi = l}, l ∈ {0, 1, 2}, to easily distinguish between the
different cluster classes. Throughout this article we will also assume that there exist
at least two type-2 clusters, i.e., |C2| ≥ 2. For C ′ ⊆ C , we will also use V (C ′) =⋃

i∈C ′ Vi to denote all nodes of cluster subset C ′. In the formulations in Sect. 2, we
will also make use of arc set A = {(u, v) | {u, v} ∈ E} obtained by bi-directing
edge set E and assume that the given cost function is appropriately defined on it as
well, i.e., cuv = cvu = ce,∀e = {u, v} ∈ E . For node sets S, S′ ⊂ V , common
notation for cutsets δ+(S) = {(u, v) ∈ A | u ∈ S, v /∈ S}, δ−(S) = {(u, v) ∈ A |
u /∈ S, v ∈ S}, and δ(S, S′) = {(u, v) ∈ A | u ∈ S, v ∈ S′} will be used. Notation
A(w) = δ+({w}) ∪ δ−({w}) will be used to refer to the set of arcs adjacent to node
w ∈ V . Finally, for a set of variables ω defined on set � and subset �′ ⊆ �, we will
use notation ω[�′] = ∑

i∈�′ ωi .

Orientation of 2-node connected graphs All MILP formulation introduced in the
following section exploit the following recent orientation result for 2-node connected
graphs by Chimani et al. [2].
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Theorem 1 (Chimani et al. [2]) An undirected graph G ′ = (V ′, E ′) is 2-node-
connected if and only if for an arbitrary chosen root node s ∈ V ′ there exists an
orientation Ĝ such that the in-degree of the root node is exactly 1 and for each node
v ∈ V ′ \ {s}, Ĝ contains a directed path from s to v and a directed path from v to s
which are node-disjoint except for s and v.

Chimani et al. [2] used their result to derived strong ILP formulations and effective
branch-and-cut approaches for the {0,1,2}-SNDP. For the {0, 1, 2}-GSNDP studied in
this article, their result implies that each solution can be oriented based on an arbitrarily
chosen “root cluster” r ∈ C2 as follows: (i) There exists a directed path Pi ⊂ A from
the node chosen in Vr to a node selected in any other mandatory cluster i ∈ C1 ∪ C2;
(ii) There exists a directed path P ′

i ⊂ A from a node selected in cluster i ∈ C2 to the
chosen node in Vr that is node disjoint with Pi except for its start and end node in Vi
and Vr , respectively.

This characterization has two important consequences for MILP formulations such
as the ones introduced in the next section: (i) Instead of the need to consider paths
between all pairs of (mandatory) clusters, it is sufficient to consider paths from the
root cluster to all other mandatory clusters and from all redundant clusters to the
root cluster. (ii) It allows to derive directed formulations which have been shown
to be theoretically stronger than undirected ones for many related problems. More
specifically, the directed formulations derived by Chimani et al. [2] were shown to
theoretically dominate a previously existing undirected one and in fact their proof
techniques could be used directly to derive similar results for the {0, 1, 2}-GSNDP.
Thus in the following we refrain from giving the details which would require to
additionally introduce undirected counterparts of our formulations.

2 Integer programming formulations

In this section, we detail our directed (mixed) integer linear programming formulations
for the {0,1,2}-GSNDP. All formulations will make use of decision variables xuv ∈
{0, 1},∀(u, v) ∈ A, indicating whether or not arc (u, v) is included in the (directed)
solution and variables zi ∈ {0, 1},∀i ∈ V , which denote membership of node i in the
solution subgraph.

2.1 Flow formulations

Next, we describe multi-commodity formulations for the {0,1,2}-GSNDP that differ
in the number of involved flow variables and their interpretation.

A first and somewhat natural flow formulation (Fsv) one may think of would be
based on establishing flows between relevant pairs of selected nodes. Thus, flow vari-
ables f stuv,∀s ∈ Vr ,∀t ∈ V (C1 ∪ C2 \ {r}),∀(u, v) ∈ A, would indicate the amount
of flow sent from node s ∈ Vr to node t from a mandatory cluster. Furthermore, flow
variables gtsuv,∀t ∈ V (C2 \ {r}),∀s ∈ Vr ,∀(u, v) ∈ A, would indicate the flow sent
back from a node t that requires a redundant connection (if selected) to a node s from
the root cluster r . In addition, binary variables wsv,∀s ∈ Vr ,∀v ∈ V (C1 ∪ C2 \ {r}),
would be used. The latter would be equal to one if and only if both s and v are included

123
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in the solution (i.e., wsv = zs zv) and thus indicate whether or not a connection needs
to be installed between them.

It is well known, however, that using standard techniques to linearize equations
wsv = zs zv one obtains an extremely weak formulation. In fact, as will be detailed
in Sect. 2.2, the linear programming (LP) relaxation of a resulting formulation will
be close to zero in almost all cases. To summarize, one obtains a theoretically weak
formulation with a quite huge number of variables. Thus, we refrain from giving
further details. In Sect. 2.2 we will, however, introduce an analogous formulation but
which avoids the use of flow variables through exponentially many constraints.

Our next model given by (1)–(13) to which we will refer to as (Fu) significantly
reduces the number of necessary flow variables and eliminates the “quadratic” vari-
ables wsv of above variant. Formulation (Fu) is based on flow variables f tuv,∀t ∈
V (C1 ∪ C2 \ {r}),∀(u, v) ∈ A, indicating the amount of flow sent from the node
selected in Vr to node t selected in a mandatory cluster along arc (u, v). Similarly,
flow variables gtuv,∀t ∈ V (C2 \ {r}),∀(u, v) ∈ A, denote the flow along arc (u, v)

of the required backward path from node t chosen in a redundant cluster to the node
selected in Vr

min
∑

(u,v)∈A

cuvxuv (1)

s.t. z[Vi ] = 1 i ∈ C1 ∪ C2 (2)

z[Vi ] ≤ 1 i ∈ C0 (3)

x[δ−(u)] = zu u ∈ Vr (4)

xuv + xvu ≤ zv v ∈ V, {u, v} ∈ E (5)

f t [δ+(u)] − f t [δ−(u)]

⎧
⎪⎨

⎪⎩

≥ zu + zt − 1 if u ∈ Vr
= −zu if u ∈ Vt
= 0 otherwise

t ∈ V (C1 ∪ C2 \ {r}), u ∈ V (6)

gt [δ+(u)] − gt [δ−(u)]

⎧
⎪⎨

⎪⎩

= zu if u ∈ Vt
≤ 1 − zu − zt if u ∈ Vr
0 otherwise

t ∈ V (C2 \ {r}), u ∈ V (7)

f t [δ−(u)] + gt [δ−(u)] ≤ zt t ∈ V (C2 \ {r}), u ∈ V (8)

f tuv ≤ xuv t ∈ V (C1), (u, v) ∈ A (9)

f tuv + gtuv ≤ xuv t ∈ V (C2 \ {r}), (u, v) ∈ A (10)

f tuv ≥ 0 t ∈ V (C1 ∪ C2 \ {r}), (u, v) ∈ A (11)

gtuv ≥ 0 t ∈ V (C2 \ {r}), (u, v) ∈ A (12)

(x, z) ∈ {0, 1}|A|+|V | (13)

The objective function (1) minimizes the installation costs of all arcs included in
the (directed) solution, while constraints (2) and (3) ensure that exactly (at most) one
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node is selected within each mandatory (optional) cluster. Equation (4) are indegree
constraints for all nodes from the root cluster that are valid since the selected root
node must have indegree equal to one, cf. aforementioned result by Chimani et al. [2].
Inequalities (5) ensure that at most one among each pair of oppositely directed arcs can
be selected and that only arcs (u, v) for which nodes u and v are selected as well may
be used. Constraints (6) ensure that exactly one unit of flow f t , t ∈ V (C1∪C2\{r}), is
consumed by node t (if selected) and that the corresponding flow can only be sent out
from a node u ∈ Vr . Using the linking constraints (5) and (9) we observe that indeed
flow f t can only be produced at the node selectedwithin Vr . Thus, one unit of flowwill
be sent from the node selected in Vr to each selected node contained in a mandatory
cluster. By similar arguments, one can conclude that the required backward paths from
selected nodes within redundant clusters will be established due to constraints (7) and
the two sets of linking constraints. Inequalities (8) ensure node-disjointness of flows
f t and gt for each selected node t ∈ V (C2 \ {r}) while (9) and (10) link flow and arc
design variables. Finally, notice that (Fu) does not contain unnecessary flow variables
f tus, s ∈ Vr , (u, s) ∈ A, and gtut , (u, t) ∈ A, which are however included in above
formulation to simplify notation.

Pop [22] observed that the GMSTP can be modeled by using variables describing
inter-cluster (which he called “global”) connections. Using a classical spanning-tree
model for describing the set of feasible “global” solutions together with additional
variables and constraints ensuring that the cheapest “local” connections corresponding
to a particular global solution is chosen, he proposed a new MILP model for the
GMSTP [22]. This idea has turned out to also allow to derive quite effective heuristic
approaches to different GNDPs, see, e.g. [12–14]. Recently, it has also been used to
derive an efficient branch-and-cut approach for the GMSTP with hop constraints by
the current author [17].

Next, we show how to exploit this concept in order to derive an additional multi-
commodity flow formulation for the {0,1,2}-GSNDP with a significantly smaller
number of flow variables than the two formulations described above. Thereby, arc
set AC = {(i, j) | ∃(u, v) ∈ A, u ∈ Vi , v ∈ Vj } is used that contains an arc
between a pair of clusters whenever the there exists at least one edge between
two nodes from the corresponding clusters in the original graph G. In formulation
(14)–(20), paths from the root cluster to each other required cluster k are realized
by using flow variables f ki j ,∀k ∈ C1 ∪ C2 \ {r},∀(i, j) ∈ AC, while paths from
each redundant cluster k back to the root cluster are realized using flow variables
gki j ,∀k ∈ C2\{r},∀(i, j) ∈ AC. As before both kinds of variables indicate the amount
of flow of a particular type on each arc. Indicating that flows are actually sent between
clusters rather than between nodes, (CF)will be used to refer to model (14)–(20) in the
following.

Note that (CF) also uses notation δ+
c (i) (and δ−

c (i)) to refer to the set of outgoing
(incoming) inter-cluster arcs from AC that are adjacent to cluster i .

min
∑

(u,v)∈A

cuvxuv (14)
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s.t. (2) − (5)

f k[δ+
c (i)] − f k[δ−

c (i)] =

⎧
⎪⎨

⎪⎩

1 if i = r

−1 if i = k

0 otherwise

k ∈ C1 ∪ C2 \ {r}, i ∈ C (15)

gk[δ+
c (i)] − gk[δ−

c (i)] =

⎧
⎪⎨

⎪⎩

1 if i = k

−1 if i = r

0 otherwise

k ∈ C2 \ {r}, i ∈ C (16)

f k[δ−
c (i)] + gk[δ−

c (i)] ≤ z[Vi ] k ∈ C2 \ {r}, i ∈ C (17)

0 ≤ f ki j ≤ x[δ(Vi , Vj )] k ∈ C2 \ {r}, (i, j) ∈ AC (18)

0 ≤ gki j ≤ x[δ(Vi , Vj )] k ∈ C2 \ {r}, (i, j) ∈ AC (19)

(x, z) ∈ {0, 1}|A|+|V | (20)

Flow conservation constraints (15) and (16) together with disjointness constraints
(17) model the necessary (disjoint) flows on the inter-cluster level while linking con-
straints (18) and (19) ensure that for each used inter-cluster connection at least one
original arc is chosen as well.

A valid formulation is obtained together with previously discussed constraints (2)–
(5) that ensure that precisely one node is selected within each cluster to (or through)
which flow is sent and that only arcs adjacent to two selected nodes may be used.

Aggregated flow formulations We note that alternative—but usually theoretically sig-
nificantly weaker—formulations could be obtained by certain aggregations of flow
variables in the formulations above. One such option is to consider only a single com-
modity of flow variables for all type-1 clusters (nodes in such clusters, respectively).
Thus, |C1| units of such flow will be sent out from (the node selected in) the root
cluster while one unit is consumed by each (node selected in a) type-1 cluster. It is,
however, well known that the additional coefficient |C1| in the constraints linking flow
and arc design variables will result in weak LP relaxation bounds and thus the result-
ing formulations typically do not perform well from a computational perspective. In
addition, this concept cannot be used for (nodes selected in) type-2 clusters as the
information on the destination (source) of each commodity is crucial to ensure the
existence of the two disjoint paths.

2.2 Cut formulations

It is well known that branch-and-cut approaches based on formulations utilizing an
exponential number of directed connectivity constraints often outperform approaches
based on flow-based models. In this section we describe three such models that con-
ceptually correspond to the flow formulations described above. Thus, we start with
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model (Csv) defined by (21)–(28) which uses the “quadratic” variableswsv introduced
above for model (Fsv); besides using the arc and node design variables xuv and zu ,
respectively.

min
∑

(u,v)∈A

cuvxuv (21)

s.t. (2) − (5)

wsv ≤ zs s ∈ Vr , v ∈ V (C1 ∪ C2 \ {r}) (22)

wsv ≤ zv s ∈ Vr , v ∈ V (C1 ∪ C2 \ {r}) (23)

wsv ≥ zs + zv − 1 s ∈ Vr , v ∈ V (C1 ∪ C2 \ {r}) (24)

x[δ−(S)] ≥ wsv S ⊂ V, s ∈ Vr \ S, v ∈ V (C1 ∪ C2 \ {r}) ∩ S (25)

x[δ+(S)] ≥ wsv S ⊂ V, s ∈ Vr \ S, v ∈ V (C2 \ {r}) ∩ S (26)

x[δ−(S1) \ A(u)] + x[δ+(S2) \ A(u)] ≥ wsv u ∈ V \ {s, v},
S1, S2 ⊂ V, s ∈ Vr \ (S1 ∪ S2), v ∈ V (C2 \ {r}) ∩ S1 ∩ S2 (27)

(w, x, z) ∈ {0, 1}|Vr |×|V (C1∪C2\{r})|+|A|+|V | (28)

Constraints (2)–(5) have been discussed in Sect. 2.1. Constraints (22)–(24) are the
linear inequalities stating that variable wsv is equal to one if and only if nodes s and v

are part of the solution. Inequalities (25) are directed connectivity cuts that ensure the
existence of a path from the selected node in Vr to any other node from a mandatory
cluster that is included in the solution. Similarly, directed connectivity constraints (26)
enforce the required path from a chosen node that needs to be connected redundantly
to the selected root node. Disjointness of the two paths associated to selected nodes
from redundant clusters is guaranteed due to connectivity cuts (27) which have also
been used by Chimani et al. [2]. The latter state, that a selected node v ∈ V (C2 \ {r})
must still be connected to a chosen node s ∈ Vr (in one of the two directions) after
removing an arbitrary node u ∈ V \ {s, v} and all its adjacent arcs.

Theorem 2 shows that (Csv) is a quite weak formulation.

Theorem 2 If every mandatory cluster contains at least two nodes, then the optimal
value of the LP relaxation of (Csv) does not exceed min{ cus+cvs′

2 | {(u, s), (v, s′)} ⊆
δ−(Vr ), s �= s′}.

Proof For eachmandatory cluster i ∈ C1∪C2, letui andvi be twonodes inVi , ui �= vi .
We first observe that assigning values of 0.5 to the corresponding node variables
(zui = zvi = 0.5,∀i ∈ C1 ∪ C2) values wsv = 0,∀s ∈ Vr ,∀v ∈ V (C1 ∪ C2 \ {r}),
are feasible according to inequalities (22)–(24). Hence, only indegree constraints (4)
of nodes from Vr force nonzero values of arc variables. Let s and s′ be the two nodes
from Vr such that zs = zs′ = 0.5. Then, a feasible LP solution can be constructed by
setting x[δ−(s)] = x[δ−(s′)] = 0.5. The theorem follows by choosing s, s′ ∈ Vr and
arcs (u, s), (v, s′) ∈ δ−(Vr ) (with xus = xvs′ = 0.5) in a cost minimal way. ��
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We note, that one can strengthen formulation (Csv) by equations

∑

s∈Vr

∑

v∈Vi
wsv = 1 i ∈ C1 ∪ C2 \ {r} (29)

These equations ensure that each cut containing all nodes from the root cluster on
its source (target) and all nodes from another mandatory (redundant) cluster on its
target (source) is at least one. It is immediate that they are strengthening as, e.g. the
solution described in the proof of Theorem 2 violates them.

Similar to (Fu), model (30)–(34) denoted as (Cu) avoids using variables indicating
whether a pair of nodes is included in the solution but instead focuses on cuts between
the root cluster and other selected nodes.

min
∑

(u,v)∈A

cuvxuv (30)

s.t. (2) − (5)

x[δ−(S)] ≥ zu S ⊂ V \ Vr , u ∈ V (C1 ∪ C2 \ {r}) ∩ S (31)

x[δ+(S)] ≥ zu S ⊂ V \ Vr , u ∈ V (C2 \ {r}) ∩ S (32)

x[δ−(S1) \ A(w)] + x[δ+(S2) \ A(w)] ≥ zu w ∈ V \ (Vr ∪ {u}),
S1, S2 ⊂ V \ Vr , u ∈ V (C2 \ {r}) ∩ S1 ∩ S2 (33)

(x, z) ∈ {0, 1}|A|+|V | (34)

To avoid the need of variables indicating the inclusion of node pairs, we use slightly
modified connectivity constraints (31) and (32) ensuring that no nodes from the root
cluster Vr are contained in set S. Thus, the node selected within Vr (one of them needs
to be selected in any solution) is not contained in S as well and valid connectivity
constraints are obtained by using the variable corresponding to a node to which (from
which, respectively) a path may be realized on the right hand side of (31) and (32),
respectively. The same argument is used for ensuring disjointness by (33)where neither
S1 nor S2 may contain a node from Vr . Recall that due to (5) only arcs adjacent to
two selected nodes may be used and thus, we eliminate infeasible solutions that would
satisfy the connectivity constraints by using cheap edges out from Vr (or into Vr ,
respectively) adjacent to (potentially different) non-selected nodes.

Theorem 3 shows that formulation (Cu) is theoretically weaker than the con-
ceptually similar flow formulation (Fu). For showing this result, let P(M) denote
the polyhedron associated with the LP relaxation of some formulation M and
projx,z(P(M)) be its orthogonal projection to the (x, z)-space.

Theorem 3 Formulation (Fu) is stronger than formulation (Cu), i.e.,projx,z(P(Fu))⊆
P(Cu) and there exist instances for which the inclusion is strict.

Proof We first show that every solution in P(Fu) satisfies constraints (31), (32),
and (33), i.e., projx,z(P(Fu)) ⊆ P(Cu). Notice that despite the inequalities in
flow conservation constraints (6) and (7) exactly zt units of flow f t (gt ) are sent
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Fig. 2 Graph of a feasible
solution to P(Cu) with
ρi = 2, i = 1, . . . , 4, Vr =
V1, z5 = z6 = 1, zi = 0.5, i =
1, . . . , 4, x56 = 1, xuv =
0.5, (u, v) ∈
{(2, 3), (2, 4), (3, 5), (4, 5), (6, 1), (6, 2)}

V1
V2

V3

V4

1
2

3 4

5
6

out from (consumed by) the root cluster and consumed by (sent out from) node
t ∈ V (C1 ∪ C2 \ {r}) (t ∈ V (C2 \ {r}). Thus, from linking constraints (9), (10)
and the max-flow-min-cut theorem, we conclude that every solution inP(Fu) satisfies
forward and backward cut constraints (31) and (32), respectively. Furthermore, from
inequalities (8) we observe that for each t ∈ V (C2 \ {r}) at most zt units of the 2 · zt
units of flow ( f + g)t are sent via arcs adjacent to any node w ∈ V \ {Vr ∪ {t}}.
Thus, at least zt units of flow ( f + g)t are routed in A \ A(w) and hence (33) follow
from this observation, (9), (10), and the max-flow-min-cut theorem. To see that (Fu) is
stronger than formulation (Cu), consider the solution given in Fig. 2 which is feasible
forP(Cu) but infeasible forP(Fu) since flow conservation constraints (6) are violated,
e.g. for u = 1 and t = 5. ��

Finally, we propose formulation (CC) given by (35)–(40) that makes use of arc
set AC introduced in Sect. 2.1 to consider a solutions structure, i.e., its inter-cluster
connections. Thereby, additional variables yi j ∈ {0, 1},∀(i, j) ∈ AC, will indicate
whether or not an arc from a node in cluster i to a node in cluster j is included in the
solution or not. Similar to model (CF), δ+

c (S) (δ−
c (S)) is used to refer to the outgoing

(incoming) inter-cluster arcs from AC for a set of clusters S ⊂ C .

min
∑

(u,v)∈A

cuvxuv (35)

s.t. (2) − (5)

x[δ(Vi , Vj )] = yi j (i, j) ∈ AC (36)

y[δ−
c (S)] ≥ 1 S ⊂ C \ {r}, S ∩ (C1 ∪ C2 \ {r}) �= ∅ (37)

y[δ+
c (S)] ≥ 1 S ⊂ C \ {r}, S ∩ (C2 \ {r}) �= ∅ (38)

y[δ−
c (S1) \ AC(w)] + y[δ+

c (S2) \ AC(w)] ≥ 1 w ∈ C \ {r},
S1, S2 ⊂ C \ {r}, ∃ j ∈ S1 ∩ S2 ∩ C2, j �= r (39)

(x, y, z) ∈ {0, 1}|A|+|AC+|V | (40)

The objective function (35) as well as constraints (2)–(5) have been discussed
before. Equation (36) are linking constraints ensuring that variable yi j is set to one
whenever an arc from a node in cluster i to a node in cluster j is selected and also
ensure that at most one such arc can be chosen. Inequalities (37) and (38) are the
directed connectivity constraints appropriately modified to the arc set AC (i.e., they
enforce the existence of the required paths on an inter-cluster level). Node disjointness
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of the two paths associated to a cluster from C2 is ensured by appropriately modified
cutset constraints given by inequalities (39).

A stronger variant of (CC) is obtained by additionally considering node cuts (31),
(32), and (33). We will use (CC)+ to refer to the variant augmented by these three sets
of inequalities.

2.3 Connection formulations

A third class of possible formulations is obtained from considering exponentially
many variables rather than constraints. The basic idea is to introduce one variable
for each feasible connection between the chosen root node and each other selected
node from a mandatory cluster. Similar formulations which are typically solved by
branch-and-price (i.e., by embedding column generation into branch-and-bound) have
shown to yield quite effective solution methods for related problems, see, e.g. [25]. In
the following we detail one such formulations that conceptually corresponds to (Cu)

and analyze the resulting pricing subproblems. In addition we describe necessary
modifications to a further model that corresponds to (CC).

To derive a set partitioning formulation, consider the set of feasible connections
Pu ⊆ 2|A| for each node u ∈ V (C1 ∪ C2 \ {r}). For nodes u ∈ V (C1), set Pu

contains all directed paths in (V, A) that start from a node s ∈ Vr and end at
node u which do contain at most one node from each cluster, i.e., Pu = {{(s =
v0, v1), (v1, v2), . . . , (vl−1, vl = u)} | s ∈ Vr , |Vi ∩ (

⋃l
j=0 v j )| ≤ 1, 1 ≤ i ≤

k, (v j , v j+1) ∈ A, 0 ≤ j < l}. Similarly, for nodes u ∈ V (C2\{r}), setPu contains all
directed cycles in (V, A) that contain nodes u and s ∈ Vr and which do contain at most
one node from each cluster, i.e., Pu = {{(s = v0, v1), (v1, v2), . . . , (vl−1, vl = s)} |
s ∈ Vr , u ∈ ⋃l−1

j=1 v j , |Vi ∩ (
⋃l−1

j=0 v j )| ≤ 1, 1 ≤ i ≤ k, (v j , v j+1) ∈ A, 0 ≤ j < l}.
Using variables λp ∈ {0, 1},∀p ∈ ⋃

u∈V (C1∪C2\{r}) Pu , indicating which feasible
connections will be realized, formulation (Cu) is obtained from (Cu) by replacing
(31)–(33) by (41)–(43).

∑

p∈Pu

λp = zu u ∈ V (C1 ∪ C2 \ {r}) (41)

∑

p∈Pu :(i, j)∈p

λp ≤ xi j u ∈ V (C1 ∪ C2 \ {r}), (i, j) ∈ A (42)

λp ∈ {0, 1} u ∈ V (C1 ∪ C2 \ {r}), p ∈ Pu (43)

Equations (41) ensure that one feasible connection is chosen for each node selected
in a mandatory cluster while inequalities (42) are linking constraints ensuring that all
arcs contained in at least one realized connection are included in the final solution. A
valid formulation is obtained together with the objective function (30), the previously
discussed constraints (2)–(5), and the definitional constraints (34) and (43).

Pricing subproblem To dynamically add connection variables, we need to identify
u ∈ V (C1 ∪ C2 \ {r}) and p ∈ Pu such that variable λp has negative reduced costs
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or prove that no such variable exists. Associating dual variables μu and νui j ≥ 0
to constraints (41) and (42), respectively, a connection corresponding to a vari-
able with minimum reduced can be identified by solving the optimization problem
argminu∈V (C1∪C2\{r}),p∈Pu

{−μu + ∑
(i, j)∈p νui j }.

Thus, it suffices to find a cheapest feasible connection in (V, A) with respect to
nonnegative arc costs νui j for each u ∈ V (C1 ∪ C2 \ {r}). If the costs of such a
connection are less than μu the corresponding variable has negative reduced costs. As
we will, however, show by the following two theorems, identifying such a minimum
cost connection is NP-hard both for nodes from type-1 and type-2 clusters.

Theorem 4 It is NP-hard to decide whether (V, A) contains a directed path from an
arbitrary (but fixed) node in Vr to a particular node u ∈ V (C1) that contains at most
one node from each cluster Vi , 1 ≤ i ≤ k.

Proof This result follows by reduction from the path with forbidden pairs prob-
lem (PFPP). Given a directed graph (V,A), two vertices s, t ∈ V , and a collection
L = ({u1, v1}, . . . , {un, vn}), of pairs of vertices from V , the PFPP is the problem of
deciding whether there exists a directed path from s to t in G that contains at most
one vertex from each pair in L. The PFPP is NP-hard even if all forbidden pairs are
disjoint [8]. A transformation of each such instance to the pricing subproblem for
nodes in type-1 clusters is obtained by considering clusters Vi = {ui , vi }, 1 ≤ i ≤ n,
and Vj = {u j },∀u j ∈ V \ ⋃n

i=1 Vi with Vr = {s} and u = t . ��
The following result has been slightly rewritten but otherwise corresponds to an

analogous one shown in Leitner et al. [18] via a reduction from the disjoint pair of
paths problem. As it treats the special case when all clusters contain a single node
only, it implies that the pricing subproblem for nodes u ∈ V (C2) is NP-hard as well.

Theorem 5 It is NP-hard to decidewhether (V, A) contains a directed cycle including
nodes s ∈ Vr and u ∈ V (C2 \ {r}).

An alternative formulation conceptually corresponding to (CC) is obtained from
considering the set of feasible inter-cluster connections, i.e., directed paths (from the
root cluster to the respective target cluster) and cycles (containing the root cluster
and the respective target cluster) on the graph induced by AC. Considering the set of
feasible inter-cluster connections Fu ⊆ 2|AC| for each mandatory cluster u ∈ C1 ∪C2
and associated decision variablesπp ∈ {0, 1},∀p ∈ ⋃

u∈C1∪C2
Fu , a valid formulation

is obtained from (CC) by replacing (37)–(39) by (44)–(46).

∑

p∈Fu

πp = 1 u ∈ C1 ∪ C2 \ {r} (44)

∑

p∈Fu :(i, j)∈p

πp ≤ yi j u ∈ C1 ∪ C2 \ {r}, (i, j) ∈ AC (45)

πp ∈ {0, 1} u ∈ C1 ∪ C2 \ {r}, p ∈ Fu (46)

The interpretation of these three sets of constraints is analogous to the one of (41)–
(43). From the discussion above it is easy to conclude that for type-1 clusters u ∈ C1,
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the pricing subproblem can be solved by computing a minimum cost path on the graph
induced by AC and given non-negative arc costs obtained from the dual multipliers
associated to constraints (45). Similarly, for each u ∈ C2, a minimum cost directed
cycle containing the root cluster r and u needs to be identified. Thus, the pricing
subproblem can be solved in polynomial time for type-1 clusters while it is NP-hard
for type-2 clusters.

3 Computational study

The flow formulations introduced in Sect. 2.1 as well as branch-and-cut algorithms
corresponding to the models from Sect. 2.2 have been implemented in C++ using IBM
CPLEX 12.6. In what follows, we do, however, not consider the first two models (Fsv)
and (Fu) as preliminary experiments (as expected) showed their inferior performance
due to the large numbers of variables involved and theirweakLP relaxation bounds.We
also refrain from considering the two connection formulations introduced in Sect. 2.3
since the computational results obtained in Leitner et al. [18] for a closely related
problem are not very promising. In fact, the pricing subproblems arising in the present
work even generalize the ones from Leitner et al. [18]. Hence, a good performance
of the resulting branch-and-price approaches may only be possible through the use of
sophisticated and clever pricing heuristics next to considering stabilization techniques
and primal heuristics. Thus, we will compare the developed algorithms based on
models (CF), (Csv), (Cu), (CC), and (CC)+.

An implementation of the push-relabel maximum flow algorithm by Cherkassky
andGoldberg [1] has been used for separating the different classes of cutset constraints
and we generally add cutset constraints only if they are violated by a value of at least
0.1 in the current LP solution. For (Csv) we only search for violated “disjointness
cuts” (27) if no violated forward (25) or backward (26) cuts have been identified for
the current solution. Strengthening inequalities (29) are initially added to the model.
An analogous strategy is used for (Cu), (CC), and (CC)+. For the latter, node cuts are
only separated if no further cluster cuts are violated. Each computational experiment
has been performed on a single core of a cluster of computers each consisting of 20
cores (2.3 GHz) and 64 GB RAM. An absolute time limit of 10,000 CPU-seconds and
a memory limit of 2.5 GB has been applied to each individual run.

3.1 Test instances

We created sets of benchmark instances with different relative percentage values of
required and redundant clusters that are based on instances by Fischetti et al. [7]
that have been widely used for the evaluation of algorithmic approaches to GNDPs,
see, e.g. [13,14]. Note that these original instances contain information about the
underlying graph, edge costs and the assignment of nodes to clusters. Furthermore,
for each original TSPlib [26] instance, five instances exist in which the assignment
of nodes to clusters has been done either geographically or grid based (with different
numbers of average nodes per cluster μ according to parameter μ ∈ {3, 5, 7, 10}),
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see [3,7] for more details. The number of nodes of the underlying (complete) graph
is encoded in the name of each instance, cf. Tables 1 and 2.

To create benchmark instances for the {0, 1, 2}-GSNDP, for each such instance
we randomly select 	 = �r · k�, r ∈ {0.5, 0.75, 1}, clusters to be mandatory and
�r2 · 	�, r2 ∈ {0.5, 0.75, 1}, among those as redundant clusters. By repeating this
process, five different instances have been created for each considered combination
of r and r2 except for the case (r, r2) = (1, 1) where we would obtain five identical
instances.

3.2 Results

To analyze the performance of the branch-and-cut algorithms developed for the dif-
ferent models proposed in Sects. 2.1 and 2.2 we first discuss the results obtained for
the five considered variants on instances with less than 100 nodes. Table 1 reports
numbers of instances solved to proven optimality, average CPU-times in seconds, and
average gaps (gaproot) in percent of the lower bound obtained from solving the root
node of the branch-and-cut tree (or the current lower bound in case the root node
could not be solved within the time- or memorylimit). These gaps are computed as
100 · (UB∗ − LB)/UB∗ where UB∗ is the value of the best known solution com-
puted from any of the considered variants (i.e., the optimal cost in almost all cases)
and LB is the root node lower bound of the respective variant. Notice that these gaps
do not necessarily reflect the theoretical strength of the formulations due to presolving
and preprocessing by CPLEX and since we only separate cutset constraints if they
are violated by a value of at least 0.1. To gain insight into potential advantages and
disadvantages of the methods, these results are grouped according to three different
characteristics (original instance graph, clustering method, and relative amount of
required and redundant clusters, respectively). The CPU-times of all experiments that
terminated due to reaching the memory limit have been considered as 10,000 s when
computing the average times.

We observe that, even though the number of flow variables of (CF) is significantly
smaller than for the other flowmodels it is only able to solve approximately two-thirds
of the instances. Its performance (relative to the other variants) clearly improves when
the number of clusters is relatively small compared to the number of nodes (i.e., for
instances with grid clustering and μ ∈ {7, 10}). Given the fact that its implementation
requires significantly less effort compared to the variants with an exponential number
of dynamically added inequalities, it might therefore be a viable option for medium
sized instances with a moderate number of clusters. Surprisingly, variant (CC) which
is also based on the idea of focusing on inter-cluster connection, but models them by
means of dynamically separated directed cutset constraints performs even worse than
(CF). Notice that the observed root node gaps also indicate that the lower bounds at
the root node from these two variants are almost identical. We suppose that one reason
for the higher efficiency of (CF) might be a better performance of the general purpose
heuristics implemented in CPLEX for compact models where complete information
is available to the solver. In addition the presolving, probing, and bound strengthening
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routines of CPLEX as well as identification of general purpose valid inequalities may
be more effective for the same reason.

It is also rather surprising that (Cuv) involving the “quadratic” variables denoting
whether pairs of nodes are selected, outperforms (CC) and (CF) in particular since its
root node gaps are extremely large (in accordance with Theorem 2). We conclude, that
a large number of nodes from the branch-and-cut tree that can be processed relatively
fast seems to partly compensate the poor bounds (obtained in the root node). We also
observe that the performance (Cuv) deteriorates with an increasing number of average
nodes per cluster (i.e., with increasing value of μ). Clearly, a smaller number of nodes
per cluster (and thusmuch less choices for node pairs in the solution)will typically lead
to better bounds already after few branching decisions given the chosen linearization
of the quadratic variables.

Finally, we observe that the branch-and-cut based on cuts to individual nodes (Cu)

and variant (CC)+ combining cluster and node cuts clearly outperform the other
options. Slight advantages with respect to the total number of solved instances and for
cases with relatively few numbers of nodes per cluster can be observed for (Cu) while
the root node gaps of (CC)+ are consistently smaller than the one of (Cu). In general,
however, their performance does not differ too much on the instances considered in
Table 1.

To gain additional insights on the relative performance of these two variants an
additional set of results on larger instances containing at least 100 nodes is given in
Table 2. Besides the numbers of instances solved to proven optimality, average CPU-
times (again all cases of terminations due to the memory limit have been considered
as 10,000 s) and average root node gaps in percent, we also report the numbers of
cases in which one of the two algorithms outperformed the other. Thereby, an algo-
rithm is considered to outperform the other on an instance, if it solved it to proven
optimality faster (with a difference of at least 10 s) or alternatively if its optimality
gap is smaller (by at least 1%) in case none of the two variants solved the instance to
proven optimality.

The results from Table 2 show that both (Cu) and (CC)+ perform reasonably good
on the considered set of larger instances. Despite the fact the differences between
the two variants are not too large in some cases one can clearly observe that (CC)+
outperforms (Cu) with respect to all considered criteria. No clear correlation between
their relative performance and the size of the underlying instances can be observed. To
this end, we note that the performance of (Cu) and (CC)+ is almost identical for the
largest instances considered (i.e, those based on instance bier127). More conclusions
can be drawn when considering the average number of nodes per cluster, i.e., the
influence of parameterμ. Despite an increasing root node gap, the efficiency of (CC)+
clearly improves with an increasing value of μ (more instances can be solved to
optimality and the average CPU-times tend to decrease). On the other hand, (Cu)

exhibits a relatively stable (but significantly worse) performance independent of the
average number of nodes per cluster. We also conclude (for both variants) that the
difficulty of an instance seems to correlate with the number of required clusters while
this is not so clear for the relative number of redundant clusters. Independently of
the considered combination (r, r2), however, (CC)+ outperforms (Cu). While their
relative difference is relatively constant among the considered combinations with
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Table 2 Numbers of instances solved to proven optimality (#solved)

# #solved tavg (s) #best Gaproot(%)

(Cu) (CC)+ (Cu) (CC)+ (Cu) (CC)+ (Cu) (CC)+

Inst kroa100 205 182 201 1630 692 56 138 21.5 15.3

krob100 205 168 184 2327 1442 39 149 21.2 14.0

kroc100 205 162 178 2635 1709 29 159 24.7 18.1

krod100 205 184 192 1516 1023 55 136 18.8 12.9

kroe100 205 191 202 1048 401 31 153 14.8 8.7

rd100 205 190 192 1019 822 38 140 16.5 10.7

eil101 205 199 201 649 543 91 97 20.1 13.8

pr107 205 117 199 4998 681 0 205 36.6 4.6

pr124 205 92 143 5893 3361 10 185 25.7 14.8

bier127 205 106 108 5082 4990 72 97 13.8 11.4

Clust geo 410 308 355 3086 1851 107 275 24.7 13.8

μ = 3 410 294 310 2986 2544 86 265 11.7 9.9

μ = 5 410 337 370 2123 1183 69 299 15.1 6.4

μ = 7 410 327 378 2603 1237 72 310 26.6 15.6

μ = 10 410 325 387 2601 1017 87 310 28.8 16.4

(r, r2) (0.5,0.5) 250 225 240 1649 825 51 183 25.1 12.4

(0.5,0.75) 250 226 243 1424 624 52 168 24.6 12.6

(0.5,1) 250 233 240 1087 648 51 170 21.3 11.6

(0.75,0.5) 250 188 220 2987 1662 54 177 19.9 11.3

(0.75,0.75) 250 189 220 2847 1532 46 189 19.6 11.3

(0.75,1) 250 187 213 2859 1746 50 177 20.1 12.3

(1,0.5) 250 155 198 4201 2476 51 190 19.7 12.7

(1,0.75) 250 160 191 3969 2682 57 170 19.9 13.6

(1,1) 50 28 35 4753 3247 9 35 26.0 20.3

Total - 2050 1591 1800 2680 1566 421 1459 21.4 12.4

Best values are given in bold
Average CPU-times in seconds (tavg), numbers of cases where an approach obtained the best performance
(#best), and average gaps after solving the root node in percent (gaproot) for (Cu) and (CC)+ grouped by
original instance, clustering method, and relative amounts of required and redundant clusters, respectively.
Average CPU-times (rounded to the nearest integer) have been computed using a value of 10,000 swhenever
an approach terminated earlier due to the memory limit. An algorithm is considered to yield a better
performance than another one, if it could solve an instance to proven optimality at least 10 s faster, if the
other one could not solve the corresponding instance, or if the remaining optimality gap was at least 1%
smaller in case both algorithms failed to solve the instance

respect to average CPU-times and numbers of cases where one of the two achieves a
better performance, it tends to slightly increase with respect to the numbers of solved
instances with increasing value of r and/or r2.
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Overall, we conclude that both (Cu) and (CC)+ achieve a relatively good and stable
performance with clear advantages of the latter variant which seems particularly well
suited for instances with many nodes per cluster and many mandatory or redundant
clusters.

4 Conclusions

In this article, we studied the Generalized {0, 1, 2}-Survivable Network Design Prob-
lem a new survivable network design problem that arises in the context of backbone
network design and generalizes well-known GNDPs as well as classical problems
from survivable network design. Using a recent orientation result with respect to two-
node connected graphs by Chimani et al. [2], a number of MILP formulations based
on multi-commodity flows, directed cutset constraints, and exponentially many con-
nection variables have been derived. One aim of the article was derive formulations
with less variables/constraints by focusing on inter-cluster connections, a concept that
is known to be quite effective for related generalized network design problems. Our
computational study on a large set of benchmark instances revealed that the achieved
reduction of the formulation size is partly foiled by weaker LP formulations. It also
turned out, however, that combining this formulation with standard cutset constraints
yields a variant that clearly outperforms all other variants studied in this article. The
latter is particularly true when the number of nodes per cluster is relatively large.

Aspects that could be considered in future research include the development of
branch-and-price approaches based on the connection formulations introduced in
Sect. 2.3. To this end, primal and pricing heuristics as well as stabilization techniques
and careful tuning of parameters are likely to be necessary in order to obtain a good
performance.
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