
Comput Optim Appl (2016) 64:881–919
DOI 10.1007/s10589-016-9831-3

Local convex hulls for a special class of integer
multicommodity flow problems

Zhiyuan Lin1 · Raymond S. K. Kwan1

Received: 12 June 2015 / Published online: 12 February 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Based on previous work in rolling stock scheduling problems (Alfieri et
al. in Transp Sci 40:378–391, 2006; Cacchiani et al. in Math Progr B 124:207–231,
2010; Lin and Kwan in Electron Notes Discret Math 41:165–172, 2013; Schrijver
in CWI Q 6:205–217, 1993; Ziarati et al. in Manag Sci 45:1156–1168, 1999), we
generalize a local convex hull method for a class of integer multicommodity flow
problems, and discuss its feasibility range in high dimensional cases. Suppose a local
convex hull can be divided into an up hull, a main hull and a down hull if certain
conditions are met, it is shown theoretically that the main hull can only have at most
two nonzero facets. The numbers of points in the up and down hull are explored
mainly on an empirical basis. The above properties of local convex hulls have led to a
slightly modified QuickHull algorithm (the “2-facet QuickHull”) based on the original
version proposed by Barber et al. (ACM Trans Math Softw 22:469–483, 1996). As
for the feasibility in applying this method to rolling stock scheduling, our empirical
experiments show that for the problem instances of ScotRail and Southern Railway,
two major train operating companies in the UK, even in the most difficult real-world
or artificial conditions (e.g. supposing a train can be served by any of 11 compatible
types of self-powered unit), the standard QuickHull (Barber et al. in ACMTrans Math
Softw 22:469–483, 1996) can easily compute the relevant convex hulls. For some
even more difficult artificial instances that may fall outside the scope of rolling stock
scheduling (e.g. a node in a graph can be covered by more than 11 kinds of compatible
commodities), there is evidence showing that the “2-facet QuickHull” can be more

B Zhiyuan Lin
z.lin@leeds.ac.uk

Raymond S. K. Kwan
r.s.kwan@leeds.ac.uk

1 School of Computing, University of Leeds, Leeds LS2 9JT, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-016-9831-3&domain=pdf

882 Z. Lin, R. S. K. Kwan

advantageous over the standard QuickHull for our tested instances. When the number
of commodity types is even higher (e.g. >19), or the number of points in a high
dimensional space (e.g. 15 dimensions) is not small (e.g. >2000), the local convex
hulls cannot be computed either by the standard or the 2-facet QuickHull methods
within practical time.

Keywords Integer multicommodity network flow · Convex hull computation ·
Rolling stock scheduling

1 Introduction

1.1 A special class of multicommodity flow problems

There are several kinds of rolling stock scheduling problems that can be modeled as a
class of integer multicommodity flow problems. For instance, the train unit schedul-
ing problem (TUSP) [14,15], where given a train operator’s timetables and a fleet
of train units, an assignment plan has to be determined such that each timetabled
train is covered by a single or coupled train units. A notable feature of the TUSP
is the unit coupling/decoupling in response to different passenger demands. There
are also the train unit circulation problems [2,12,21,23] and the train unit assign-
ment problems [5–8] belonging to this category. The locomotive assignment problem
[9,11,16,22,27,29] is another kind of rolling stock scheduling problem. A common
feature of some of the above problems arising in rolling stock scheduling is the use of
computable local convex hulls with respect to each train trip. In this paper, we gen-
eralize the use of local convex hull methods for the scenarios found in rolling stock
scheduling to a broader spectrum of integer multicommodity flow problems, ana-
lyze its feasibility range and pursue more efficient computational approaches, mainly
based on instances that are either real-world or artificial from rolling stock schedul-
ing.

Consider an integer multicommodity flow problem [1] defined over a directed
acyclic graph G = (N ,A) where j ∈ N and a ∈ A are the nodes and arcs, and
k ∈ K are the commodities to be flowed in integral amounts from origins to desti-
nations that are specific for each k. Each commodity’s total amount may be fixed or
bounded by a constant scalar bk . Here we assume that the local constraints are all
based on nodes while similar situations on arcs can be derived by analogy. Letw j

k ≥ 0
be the flow amount of commodity k passing through node j . There are compatibility
relations between the commodities and the nodes. Let K j ⊆ K denote the set of com-
modities that are allowed at node j . In general the flow amount for most (if not all)
commodities used at a node can take general positive integer values rather than only
in {0, 1}, i.e. w j

k ∈ Z+.
How the commodities should flow across the network is further restricted by two

kinds of local constraints associated with each node and/or arc. The first kind (1)
is the provision demand, which requires the total provision achieved at j from used
commodities to be at least at a required level, as

123

Local convex hulls for a special class of integer... 883

∑

k∈K j

qkw
j
k ≥ r j , ∀ j ∈ N , (1)

where qk is the “task contribution” by one unit of commodity k and r j is the total
demand at j . The second kind (2) is the bounding restriction, which caps the total
resource taken up by used commodities at j to be no more than an upper bound, as

∑

k∈K j

vkw
j
k ≤ u j , ∀ j ∈ N , (2)

where vk is the “resource consumption” taken up by a unit flow amount of commodity
k and u j is the total resource upper bound at j . We assume, as in many real-world
problems, that qk, r j , vk, u j are integers.

Equations (1) and (2) are commonly seen constraints in integer multicommodity
flow problems. To satisfy their requirements, it is sufficient to simply insert them
into the associated integer linear program (ILP) after some variable conversion, e.g.
w

j
k = ∑

p∈Pk
j
x p for a path formulation, where Pk

j is the path set of commodity k

passing through j and xp is the path variable on path p indicating the flow amount
along p. Therefore, if the variables are based on paths p ∈ Pk, k ∈ K , and let cp be
the cost of path p, the ILP model for a typical integer multicommodity flow problem
with the above requirements can be formulated as (P):

(P) min
∑

k∈K

∑

p∈Pk

cpxp (3)

s. t.
∑

p∈Pk

xp ≤ bk, ∀k ∈ K ; (4)

∑

k∈K j

∑

p∈Pk
j

qk xp ≥ r j , ∀ j ∈ N ; (5)

∑

k∈K j

∑

p∈Pk
j

vk x p ≤ u j , ∀ j ∈ N ; (6)

xp ∈ Z+, ∀p ∈ Pk,∀k ∈ K . (7)

For a TUSP, (P) can be interpreted as the following. The nodes (except a source
and a sink) in the graph represent the train trips, and the flows of different commodi-
ties represent train units of different types that are used to cover the trips. An arc is
established between two trips if they can be consecutively served by the same train
unit. bk is the fleet size limit for unit type k. A path represents a daily workload for a
train unit vehicle as a sequence of train trips and xp is the number of train units used
for that sequence. In addition, qk is the number of seats (capacity) in a train unit of
type k and r j is the passenger demand measured in number of seats for train j , while
vk is the number of cars of a unit of type k and u j is the maximum number of cars
for coupled unit formations that platforms can accommodate regarding trip j . The

123

884 Z. Lin, R. S. K. Kwan

objective minimizes the total cost of deployed units. See [6,14] and [15] for further
details. As a generic integer multicommodity flow ILP formulation, (P) or its variants
can also be interpreted as many other real-world problems[1].

As a standard integer multicommodity flow formulation, there are certain disad-
vantages or incapabilities in directly using (1) and (2) (or (5) and (6) as in (P)).

(i) Weak linear programming (LP) relaxation As often observed, the two kinds of
constraints are very likely to yield weak LP relaxation due to their knapsack
nature. The train unit/locomotive scheduling (assignment, circulation) problems
are typical examples where the qk, r j are measured in number of passengers and
vk, u j are measured in number of cars.

(ii) Combination-specific upper bounds The bounding restriction may be
combination-specific, i.e. the upper bound will vary according to different com-
binations in terms of which and how many commodities are used. The complex
upper bound restrictions for coupled train units in the train unit scheduling prob-
lem [14,15] is such an example. If different constraints with different bounds are
formed, disjunctive relations among these constraints may be required. However
coexisting constraints in an LP are conjunctive thus will not realize the target. One
remedy would be to introduce extra binary variables and constraints to represent
the use of different combinations, as given in [15]. This however may often slow
down the solution process.

(iii) Commodity compatibility Sometimes there can be compatibility relations among
the commodities used at a node where only certain collections of them can coex-
ist. For instance, when five commodities k1, . . . , k5 are allowed at a node, not
just any of them can be used together. A rule may require such that one can only
use a combination from k1 and k2 or a combination from k3, k4, k5 but nothing
else. Therefore, if flows from both k1 and k3 are used at the node, it should be
deemed as invalid. The creation of train unit families based on the train unit cou-
pling compatibility introduced in [14,15] is a result of commodity compatibility
relations. Take the above k1, . . . , k5 as an example. k1 and k2 can represent diesel
train units while k3, k4 and k5 can be electric train units. A unit type from the
diesel family cannot be coupled with a unit from the electric family.

To deal with the weak LP relaxation problem above, a class of similar methods has
been proposed in several papers [2,6,23,29], which happen to be all in railway rolling
stock assignment/scheduling problems. Also in dealing with all the three points listed
above, amethod for directly computing “train convex hulls” has been given in [14].We
will refer to this class of method as the local convex hull method and will generalize it
in the subsequent sections. Admittedly this method will not be universal for all integer
multicommodity flow problems. To apply it successfully, a problem should possess
certain features.

Observation 1 For the nodes j ∈ N , the number of commodities suitable for node
j , i.e. |K j |, should not be “large”, although the total number of commodities over the
network may still be “large”. For the commodities suitable at node j , the number of
valid commodity combinations should also not be “large”. Finally, the flow amount of
each commodity at j should be able to take appropriate general nonnegative integer
values, i.e. w j

k ∈ Z+, rather than only binary, i.e. w j
k ∈ {0, 1}.

123

Local convex hulls for a special class of integer... 885

The meaning of “large” in Observation 1 can be problem-specific. In the train unit
scheduling instance we tested, it can be regarded as “large” when |K j | > 19 and/or
the number of valid commodity combinations is above 1200.

The features in Observation 1 are commonly seen in a class of integer multicom-
modity flow problems, typically arising in rolling stock scheduling problems as train
unit or locomotive scheduling, where the nodes are train services to be covered by
rolling stock, the commodities are different types of rolling stock and w

j
k are the

number of rolling stock of type k used for train j . Despite the above features, those
scheduling problems are generally very difficult to solve as the number of nodes can
be from hundreds to several thousands with a very high density of arcs.

In addition, there are also other real-world applications formulated as integer mul-
ticommodity flow problems having the features mentioned in Observation 1 and are
thus suitable for the local convex hull method. Note that their specific formulations
do not have to be exactly the same as (P). One example is the Multivehicle Tanker
Scheduling Problem (Bellmore and Bennington [4]), which can be formulated as an
integer multicommodity flow problem in maximizing the total utilities achieved by
a fleet of heterogeneous tankers to meet a prescribed schedule of deliveries. In its
corresponding network, an arc represents a shipment that can be shared by different
types of tanker and is upper bounded due to limited delivery location capacity while
dissimilar types differ in carrying capabilities and other factors. The arc-based type-
specific flow variables represent the number of deployed tankers for the shipments
of corresponding arcs and can take integer values other than binary. The number of
tanker types in the fleet will be generally not very large, also following Observation 1.
Moreover, some problems that are not categorized as integer multicommodity flow
types also satisfy Observation 1. The Generalized Transportation Problem (Wolsey
[28]) is such an example, where the demands of clients have to be satisfied by trucks
of different types that can be used together for the same client. Notably, the number
of trucks of the same type deployed for the same client can take non-binary positive
integers.

Finally the structures of the local convex hulls may differ as the formulations differ.
For example, in most rolling stock scheduling problems, since there are two kinds of
bundle constraints (5 and 6), the main hull to be introduced in Sect. 2 has at most two
nonzero facets. However, for the Multivehicle Tanker Scheduling Problem [4], there
is no constraint of type (6). Thus the main hull only has one and only one nonzero
facets. These differences will not prevent the using of the generalized local convex
hull method and the customized convex hull computation algorithms in Sects. 2 and
3.

Herewe propose the local convex hull method and its relevant convex hull computa-
tion algorithms based on the train unit scheduling problem [14,15]. Their applications
to other suitable problems can be derived by analogy.

1.2 Local convex hull method

Ageneralization on the local convex hullmethods arising in rolling stock scheduling to
a generic integer multicommodity flow problem is given here. Here each local convex

123

886 Z. Lin, R. S. K. Kwan

hull corresponds to a single node in the network where Constraints (5) and/or (6) are
applied. For each node j , a commodity combination set Wj is defined as

Wj =
{
w j ∈ Z

K j
+

∣∣∣∣∀w j : a valid commodity combination for node j

}
, ∀ j ∈ N ,

(8)

where w j = (w
j
1 , . . . , w

j
|K j |)

T is a vector representing the flow amounts of a com-
modity combination.We assume that due toObservation 1 the number of combinations
are small enough such that Wj can be simply obtained by enumeration. For problem
instances with the demand and bounding restrictions exactly given by (1) and (2), we
also have

Wj =
{
w j ∈ Z

K j
+

∣∣∣∣
∑

k∈K j

qkw
j
k ≥ r j ,

∑

k∈K j

vkw
j
k ≤ u j

}
, ∀ j ∈ N . (9)

However, for cases with combination-specific upper bounds and commodity compat-
ibility relations, the combination set may only be obtained from (8) by enumeration.
Next for each node the local convex hull conv(Wj) of the above combination set is
computed explicitly before the optimization process, given that the number of points
|Wj | is not too large and the dimension |K j | is appropriately small:

conv(Wj) =
{
w j ∈ R

K j
+

∣∣∣∣H
jw j ≤ h j

}
, ∀ j ∈ N . (10)

The local convex hull (10) is described by nonzero facets f ∈ Fj such that H j ∈
R

Fj×K j and h j ∈ R
Fj . Via variable conversion w

j
k = ∑

p∈Pk
j
x p, the demand and

upper bounding requirements at node j can be satisfied by the following local convex
hull constraints

∑

k∈K j

∑

p∈Pk
j

H j
f,k x p ≤ h j

f ,∀ f ∈ Fj , ∀ j ∈ N . (11)

Here H j
f,k is the entry corresponding to commodity k in facet f of H j ; h j

f is the entry

corresponding to facet f in h j . H j
f,k and h j

f can be either positive or negative. Now
by replacing (5) and (6) in (P) with (11), we have (P ′), the integer multicommodity
formulation with local convex hulls:

(P ′) min
∑

k∈K

∑

p∈Pk

cpxp (12)

s. t.
∑

p∈Pk

xp ≤ bk, ∀k ∈ K ; (13)

123

Local convex hulls for a special class of integer... 887

∑

k∈K j

∑

p∈Pk
j

H j
f,k x p ≤ h j

f , ∀ f ∈ Fj ,∀ j ∈ N ; (14)

xp ∈ Z+, ∀p ∈ Pk,∀k ∈ K . (15)

Note that the upper bounds requirements that are combination-specific can be auto-
matically satisfiedby (14) as long as they canbe described by a set of linear inequalities.
One of the most beneficial effect from using the convex hull constraints (14) is that
often a much tightened LP relaxation will be obtained compared with solely using (5)
and (6). In addition, this pre-processing on local convex hull computation is carried
out before solving the ILP and thus will not yield additional burden to the solution
process on the ILP itself.

1.2.1 Removing incompatible commodities

The aforementioned point (iii) shows that logical non-linear restrictions on commodity
compatibility can occur. Generally, the local convex hulls can remove part of the
incompatible commodities but not all of them. Therefore, subsequent extra methods
in ensuring all jointly used commodities at each node are compatible have to be
designed and applied. We use an example to illustrate this.

Suppose two incompatible commodities A and B are permitted at node j , whose
demand is r j = 256 and an upper bound u j = 11 is imposed on both A and B. The
task contribution qk and resource consumption vk of A and B are given in Table 1.
Since A and B are incompatible, the valid points are all on the two axes: Wj =
{(3, 0), (0, 2), (0, 3), (0, 4), (0, 5)}, and their convex hull conv(Wj) can be computed.
Figure 1 illustrates the integer points included in the solution space in the LP relaxation
by either directly using (1) and (2) (3wA + 2wB ≤ 11 and 120wA + 180wB ≥ 256),
or using the convex hull conv(Wj). The filled integer points are valid combinations
while the blank integer points are invalid. Because of the nature of linear programming
constraints, the invalid points due to having both the commodities cannot be eliminated
either by the direct constraints (such points are labeled “†”) or the convex hull (“§”).
Nevertheless, from Fig. 1, it can be observed that since the convex hull has narrowed
down the solution space, it has already removed four invalid points (†) compared with
direct constraints. On the other hand, for the remaining three points (§†), it is important
to have a method that can further remove them.

Here we give an example on such a method named “train-family branching” pro-
posed in [14]. Define compatible commodities to be in the same family. Each time
after a relaxation is solved at a BB tree node nBB, this branching scheme identifies a

Table 1 Two incompatible
commodities to cover a node j
with r j = 256, u j = 11

Commodities k qk vk

A 120 3

B 180 2

123

888 Z. Lin, R. S. K. Kwan

Fig. 1 Integer points from incompatible commodities A and B at j

graph node j ∈ N covered by multiple families ϕ1, . . . , ϕn . Let Φ j be the set of all
families allowed at j . Then n + 1 (or n) branches are formed at nBB:

– For the first 1...n branches, say at the i-th branch where i ∈ {1, . . . , n}, only
commodities from family ϕi will be allowed to cover j .

– For the last (n + 1)-th branch, if Φ j\{ϕ1, . . . , ϕn} �= ∅, then commodities from
families ϕ1, . . . , ϕn will be forbidden to cover j ; if Φ j\{ϕ1, . . . , ϕn} = ∅, then
the (n + 1)-th branch is not needed.

The above branching scheme can be easily implemented by deleting certain columns in
the restricted master problem and certain arcs in the subproblem network if a branch-
and-price is used to solve (P ′).

123

Local convex hulls for a special class of integer... 889

Table 2 Combination-specific
coupling upper bounds (UB) for
unit type c455/8 and c456/0

Combination UB in car# UB in unit#

c455/8 (4-car) 8 (2×c455/8) 2

c456/0 (2-car) 6 (3×c456/0) 3

Mixed 8 (c455/8+2×c456/0) 3

1.2.2 A real-world example from Southern Railway

We use a real-world example from the fleet of Southern Railway, UK to illustrate the
above convex hull preprocessing approach. Table 2 gives the possible combinations
and coupling upper bounds for two compatible unit types of c455/8 and c456/0 from
Southern Railway. There are two kinds of coupling upper bounds measured in the
number of cars and units respectively. In practice, the number of restrictive factors
may be larger than two, giving more complicated restrictions that are unable to be
represented by linear constraints.

Suppose for a train “1A06” with a passenger demand of 100 seats, train units of
c455/8 (4-car, 316 seats) and c456/0 (2-car, 152 seats) are permitted. There are two
restrictive factors for the coupling upper bounds, as shown in Table 2. If represented by
explicit linear constraints, then two constraints are needed for ensuring the coupling
upper bounds (before the variables are converted fromw to x) as 4w455/8+2w456/0 ≤ 8
and w455/8 + w456/0 ≤ 3 and in this example they are not required to be disjunctive.
Another constraint 316w455/8 + 152w456/0 ≥ 100 is used for satisfying the pas-
senger demand. On the other hand, we can enumerate all valid unit combinations
as:

W1A06 =
{
(w455/8, w456/0)

∣∣∣(1, 0), (2, 0), (0, 1), (1, 1), (0, 2), (1, 2), (0, 3)
}
,

and compute its corresponding local convex hull:

conv(W1A06) =
⎧
⎨

⎩w ∈ R
2+

∣∣∣∣∣∣

f1 : 2w455/8 + w456/0 ≤ 4
f2 : w455/8 + w456/0 ≤ 3
f3 : w455/8 + w456/0 ≥ 1

⎫
⎬

⎭ ,

which is a polytope with three nonzero facets f1, f2, f3, giving three correspond-
ing local convex hull constraints for train 1A06. Figure 2 gives an illustration on
the above example. The filled points indicate valid unit combinations and the blank
points are the invalid ones. The dashed lines give the constraints if explicit linear
constraints are used and the shaded area is the convex hull of the valid combination
points if the local convex hull is used. One can see that compared with the explicit
demand satisfaction constraint (316w455/8 + 152w456/0 ≥ 100), the local convex
hull has narrowed down the solution space shown at the bottom-left corner area in
Fig. 2.

123

890 Z. Lin, R. S. K. Kwan

Fig. 2 The local convex hull for train 1A06

1.2.3 Previous studies on local convex hulls

Within the realm of railway rolling stock scheduling/assignment/circulation, the
method of using explicitly computed local convex hulls to strengthen LP relaxation
first appears in Schrijver [23] for a train unit scheduling problem, where since at most
two commodities are involved, the convex hull computation is done inR2+. This princi-
ple is also used in subsequent researches in train unit circulation in [2,18]. Ziarati et al.
[29] propose a similar method to generate cuts for a locomotive assignment problem.
For |K j | = 2 they have established a relationship for their problem instance that the
maximum number of nonzero facets of the lower envelope of conv(Wj) is 2m when

maxw
j
k = m2+5m

2 and 2m + 1 when maxw
j
k = m2+5m

2 + 1, where m ∈ N+. They
also show that this facet number will not exceed 4 when |K j | = 3 and maxw

j
k ≤ 6.

Cacchiani et al. [6] give a local convex hull method for the train unit assignment
problem to tighten the LP relaxation. Taking advantage of the problem’s feature that
u j = 2, vk = 1,∀k ∈ K j ,∀ j ∈ N and based on the combination sets in the form
of (9), they find an explicit description of the dominants of the local convex hulls
and apply this method to real-world instances where |K j | = 10. Also the charac-

123

Local convex hulls for a special class of integer... 891

teristics of relevant integer polytopes have been studied [10]. In [14], local convex
hulls are explicitly computed by standard QuickHull [3] to deal with combination-
specific upper bounds and commodity compatibility, as well as to tighten the LP
relaxation.

In all the instances above utilizing local convex hulls, it is either the case that the
magnitudes of dimension |K j | and point number |Wj | are small such that standard
convex hull algorithms (e.g. QuickHull [3]) would suffice (e.g. [2,14,23]), or the prob-
lem has special features to allow an analytical description on the relevant dominants
(e.g. [6]). However, the use of standard convex hull algorithms are not guaranteed for
more difficult cases with higher dimensions and a larger number of points.

In this paper, first a further exploration on the feasibility of the local convex hull
method subject to instances whose combination sets Wj have higher dimensions (e.g.
5–20) and a larger number of points (e.g. hundreds to several thousands) will be
given. Then a customized convex hull computation algorithm based on QuickHull
will be presented. The computational feasibility of this method must have a limit
when the number of points and space dimensions are getting large. Therefore empirical
experiments will also be conducted to explore the feasibility range of the local convex
hull method, mainly within the context of rolling stock scheduling.

2 The structure of local convex hulls

In this section we assume that everything is based on the n-dimensional Euclidean
space Rn (and its subset Rn+), associated with a commodity combination setW ⊂ Z

n+
containing |W | finite points representing all possible combinations from n available
commodities indexed by i = 1, . . . , n. The node name j will be omitted. Let r be
the required demand or provision and let u be the shared resource upper bound for
all combinations when W can also be represented by (9). A point in R

n is written
as w = (w1, . . . , wn)

T . We are interested in explicitly computing H = conv(W) ={
w ∈ R

n+
∣∣Hw ≤ h

}
, the convex hull of W .

Among all the combinations in W , consider those where only one commodity
is used. In R

n+ the points representing them should lie precisely on the axes each
associated with a single commodity and there will be only one nonzero entry in each
of these points. A set containing all such points on axes is defined as

W ′ = {
w ∈ W

∣∣w is on an axis of Rn+
}
. (16)

Moreover, denoteW ′
i = {

w ∈ W ′∣∣w is on axis i
}
,∀i = 1, . . . , n, i.e. the set of points

on axis i . We assume that for all commodities i = 1, . . . , n,W ′
i �= ∅. Taking the TUSP

for example, it is uncommon for a train to have an available unit type which can only
be coupled with other types but is not allowed to run on its own. For a combination set
W that can be represented by (9), this assumption means

⌈ r
qi

⌉
<

⌊ u
vi

⌋
,∀i = 1, . . . , n.

The rare situation that this “single-commodity-presence” condition is not satisfied will
be discussed in Sect. 2.3.

123

892 Z. Lin, R. S. K. Kwan

Now consider a combination set W that satisfies the above “single-commodity-
presence” assumption. Within each W ′

i , let

ai = min
w∈W ′

i

wi , ∀i = 1, . . . , n, (17)

bi = max
w∈W ′

i

wi , ∀i = 1, . . . , n. (18)

Then for each commodity (axis) i = 1, . . . , n, ai and bi are the minimum and max-
imum flow amounts achieved by single commodity i . For W that can be represented
by (9), ai = ⌈ r

qi

⌉
and bi = ⌊ u

vi

⌋
, ∀i = 1, . . . , n. The axis points having the entries of

ai and bi are referred to as end axis points, denoted by

wi = {
w ∈ W ′

i

∣∣wi = ai
} = ai ei , ∀i = 1, . . . , n, (19)

wi = {
w ∈ W ′

i

∣∣wi = bi
} = bi ei , ∀i = 1, . . . , n, (20)

where ei ∈ R
n is the unit vector with a 1 in the i-th entry and 0’s in the other entries.

Let V ′ = {w1, w1, . . . , wn, wn} be the set of all end axis points. Note that it is
possible for a commodity i to have the case of ai = bi such that wi = wi . Therefore
n ≤ |V ′| ≤ 2n.

We then define a polytopeH′ called themain hull as the convex hull of all end axis
points, i.e.H′ = conv(V ′). Since V ′ ⊆ W , thenH′ ⊆ H. Figure 3 shows an example
of the main hull in the convex hull of the aforementioned example with Train 1A06.
For V ′ and H′ we also have the following result.

Proposition 1 V ′ is the set of vertices of H′ = conv(V ′).

Proof Let V ′′ be the set of vertices of H′. First it is true that V ′′ ⊆ V ′[26]. Second
any point in V ′ cannot be expressed as a convex combination of any other points in
V ′, since they are the end axis points of the axes. Thus all points in V ′ are vertices of
H′, or V ′ ⊆ V ′′. Therefore V ′ = V ′′. ��

The importance ofH′ lies in two aspects: First it can only have at most two nonzero
facets; second it often contains a large proportion of the points inW for many problem
instances in practice. The subsequent sections will elaborate the above two aspects.

2.1 Nonzero facets of main hull H′

2.1.1 Preliminaries

We will first show that H′ has no more than two nonzero facets. For an optimization
problem defined in R

n+, a zero facet represents a constraint in the form of wi ≥ 0
which is often satisfied implicitly. Here we briefly give some results in polyhedral
combinatorics that will be used in deriving the above conclusion. For details of the
results, see Nemhauser and Wolsey [20], Webster [26] and Mahjoub [17].

In Rn , a set of r points w(1), . . . , w(r) ∈ R
n×1 is affinely independent if the unique

solution of the system of r variables
∑r

i=1 λiw
(i) = 0,

∑r
i=1 λi = 0 is λi = 0,∀i =

123

Local convex hulls for a special class of integer... 893

Fig. 3 The main hullH′, the up hullH and the down hull (empty) for Train 1A06

1, . . . , r . Equivalently, letting A{w(1),...,w(r)} = (
w(1), ..., w(r)

1, ..., 1

) ∈ R
(n+1)×r be thematrix

associatedwith the system, the points are affinely independent if rank
(
A{w(1),...,w(r)}

) =
r . r affinely independent points will uniquely define an (r − 1)-flat (aka an (r − 1)-
dimensional affine set) which equals their affine hull. In particular, an (n − 1)-flat is
also called a hyperplane in Rn . A set Π in Rn is a hyperplane if and only if there exist
scalars π0, π1, . . . , πn , being not all zero, such that

Π = {
w ∈ R

n|π1w1 + . . . + πnwn = π0
} :=

{
w ∈ R

n|πTw = π0

}
. (21)

Each r -flat (r = −1, 0, . . . , n) can be expressed as the intersection of n − r hyper-
planes, and so is the solution set of some system of n − r linear equations.

Let S′ be a subset of a finite set S in Rn such that aff(S′) ∩ conv(S \ S′) = ∅. Then
conv(S′) is a face of the polytope conv(S). If F is a nonempty (r −1)-face of conv(S),
then there are r affinely independent points in S∩ F . A face F of conv(S) is a facet of
conv(S) if dim(F) = dim(conv(S)) − 1. Therefore a nonempty facet F∗ will imply
dim(conv(S)) affinely independent points in S ∩ F∗.

A polyhedron P ∈ R
n is full-dimensional if dim(P) = n. It has a unique minimal

representation
P = {

w ∈ R
n
∣∣(π i)Tw ≤ π i

0,∀i = 1 . . . , t
}

(22)

123

894 Z. Lin, R. S. K. Kwan

as a finite set of t linear inequalities each representing a facet of P . For a polyhedron
P ∈ R

n that is not full-dimensional with dim(P) = n − k, k > 0, its minimal
representation is

P =
{
w ∈ R

n
∣∣∣∣
(π i)Tw = π i

0,∀i = 1, . . . , k;
(π i)Tw ≤ π i

0,∀i = k + 1, . . . , k + t.

}
, (23)

where each inequality of i = k + 1, . . . , k + t is from the equivalence class of
inequalities representing a facet of P .

2.1.2 Number of nonzero facets of main hull

The following Theorem 1 gives the number of nonzero facets ofH′ = conv(V ′).

Theorem 1 When ai �= bi for at least one commodity i , then the main hull H′ =
conv(V ′) is full-dimensional and has precisely 2 nonzero facets represented by

w1

a1
+ · · · + wn

an
≥ 1, (24)

w1

b1
+ · · · + wn

bn
≤ 1, (25)

and has at most n zero facets represented by

wi ≥ 0, ∀i = 1, . . . , n. (26)

When ai = bi ,∀i = 1, . . . , n, then H′ degenerates into an (n − 1)-face per se
represented by a single nonzero hyperplane

w1

a1
+ · · · + wn

an
= 1, (27)

and n zero facets each corresponding to one of the inequalities as in (26).

Proof To get the very details ofH, we use a straightforward way in proving based on
the points in W .

(1) First consider the case ai �= bi for at least one commodity i .

Let I = {1, . . . , n}. Divide the commodities into two groups as I �= = {i ∈ I |ai �=
bi } and I= = {i ∈ I |ai = bi } such that I = I �= ∪ I=, 1 ≤ |I �=| ≤ n and 0 ≤ |I=| ≤
n− 1. Since |I �=| ≥ 1, without loss of generality, ∃k ∈ I �= such that we can find n+ 1
points fromH′ as w1, . . . , wk, wk, . . . , wn . Then we have

rank
(
A{

w1,...,wk ,wk ,...,wn
}) = rank

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

w1
1

w2
2

.
.
.

wk
k wk

k

.
.
.

wn
n

1 1 ... 1 1 ... 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= n + 1, (28)

123

Local convex hulls for a special class of integer... 895

which shows the n+1 points are affinely independent. ThereforeH′ is full-dimensional
with dim(H′) = n. Its minimal representation is a finite set of inequalities each
corresponding to a facet of H′.

Based on the n < |V ′| ≤ 2n points in V ′, we can find all possible facets of
conv(V ′) by enumerating the

(|V ′|
n

)
combinations and checking their validity. Two

cases are identified and will be discussed separately.
Case 1: Collect the n points by taking one and only one from each of the n axis as

w(1), . . . , w(n) such thatw(i) ∈ {wi , wi },∀i ∈ I . Then points are affinely independent
since it can be verified that rank

(
A{w(1),...,w(n)}

) = n. Suppose the hyperplane formed
by them is {w ∈ R

n|πTw = π0}, (π0, π) �= 0. Then the solution of the system

πTw(i) = π0,∀i ∈ I is (π0, π) = c
(
1, 1

w
(1)
1

, . . . , 1
w

(n)
n

)T
,∀c ∈ R\{0}. Letting c = 1

gives a convenient expression of this nonzero hyperplane:

w1

w
(1)
1

+ · · · + wn

w
(n)
n

= 1. (29)

Ifw(i) = wi ,∀i ∈ I , then (29) becomes w1
a1

+· · ·+wn
an

= 1, or in short as (a−1)Tw = 1,

which supports conv(V ′) since (i) (a−1)Tw ≥ 1,∀w ∈ V ′; (ii) There are n affinely
independent points w1, . . . , wn ∈ V ′ such that (a−1)Twi = 1,∀i ∈ I . Therefore,
(a−1)Tw ≥ 1, w ∈ R

n defines a nonzero facet of conv(V ′) as given by (24). By
similar reasoning, it can be concluded that if w(i) = wi ,∀i ∈ I , then (29) will give
another nonzero facet of conv(V ′) as given by (25).

If neither w(i) = wi , ∀i ∈ I nor w(i) = wi , ∀i ∈ I (which can only happen
when |I �=| ≥ 2, since when |I �=| = 1, the only two possible combinations are still
w(i) = wi and w(i) = wi , ∀i ∈ I), the hyperplane given by (29) cannot yield any
valid inequality. To see this, suppose |I �=| ≥ 2 and not all commodities in I �= are from
the same group of {wi }∀i∈I �= or {wi }∀i∈I �= . Divide the commodities in I �= into two

nonempty subsets as I �= = I �= ∪ I
�=
such that i ∈ I �= if w(i) = wi and i ∈ I

�=
if

w(i) = wi . Then the hyperplane given by (29) would be

h(w) =
∑

i∈I �=

wi

ai
+

∑

i∈I �=

wi

bi
+

∑

i∈I=

wi

ai
− 1 = 0. (30)

Now we can always find at least two points in V ′ as w p = apep, p ∈ I
�=

and

wq = bqeq , q ∈ I �=, such that h(w p) = ap
bp

− 1 < 0 and h(wq) = bq
aq

− 1 > 0.

Therefore (30) cannot yield any valid inequality and is not facet-defining for conv(V ′).
Case 2: Collect the n end axis points such that the points from k of the axes will not

be present. Note that since each axis only has at most two distinct points and there are
n axes, then points from an axis p ∈ I are absent if and only if another axis q ∈ I �=
has both wq and wq collected. Thus for a given set of collected points it is true that
1 ≤ k ≤ |I �=|, i.e. there will be no more than |I �=| absent axes or “double-collected”
axes.

123

896 Z. Lin, R. S. K. Kwan

Suppose p1, . . . , pk ∈ I are absent and q1, . . . , qk ∈ I �= are correspond-
ingly “double-collected” and let the n points be w(1), . . . , w(n) such that w(i) ∈
{wi , wi },∀i ∈ I \ {p1, . . . , pk}, w(p j) ∈ {wq j , wq j } and w(p j) �= w(q j), ∀ j =
1, . . . , k. Then by a similar reasoning as in (28) and noticing there are k rows of all zeros
in A{w(1),...,w(n)} corresponding to the k missing axes, we have rank

(
A{w(1),...,w(n)}

) =
n − k + 1 .

When k = 1, the above rank is n showing the n points are still affinely independent.
Suppose they forma hyperplane {w ∈ R

n|πTw = π0}, (π0, π) �= 0. Then the solution
of the system πTw(i) = π0,∀i ∈ I is πp1 = c,∀c ∈ R \ {0}, πi = 0,∀i �= p1, which
however leads to a zero facet represented by wp1 ≥ 0.

When 1 < k ≤ |I �=|, the above rank is less than n, showing the n points are
no longer affinely independent. They can be disregarded in the search for the facets
of H′. We will show that none of the facets can be derived from them. Suppose
aff{w(i)}ni=1 ∩ conv(V ′ \ {w(i)}ni=1) = ∅ such that conv{w(i)}ni=1 defines a face F
of H′, then we have dim(F) = dim(conv{w(i)}ni=1) = dim(aff(conv{w(i)}ni=1)) =
dim(aff{w(i)}ni=1) < n − 1. In fact here the points can only yield some zero faces of
dimensions less than n − 1 as the intersections of some zero facets.

Now we can have an exact description of the zero facets inH′. Since the absence of
points from one and only one axis p leads to a zero facet wp ≥ 0, the zero facets are
solely determined by the axes that are absent in all possible point combinations with
k = 1. We only focus on the cases when n > 1 as the condition n = 1 is trivial. If
|I �=| > 1, when an axis p ∈ I is absent there is always at least a q ∈ I �= available to be
“double-collected”, including those p ∈ I �= with a q ∈ I �= \ {p}. So there are n zero
facets wi ≥ 0, i ∈ I . If |I �=| = 1, however, there is no axis to be “double-collected”
if the only axis p ∈ I �= is absent. Thus there are n − 1 zero facets wi ≥ 0,∀i ∈ I=.

(2) Second consider the case ai = bi , ∀i = 1, . . . , n, such that |V ′| = n and |I �=| = 0.

Let the vertex set V ′ = {w(1), . . . , w(n)}, which contains n affinely indepen-
dent points. We have dim(H′) = dim(conv{w(i)}ni=1) = dim(aff(conv{w(i)}ni=1)) =
dim(aff{w(i)}ni=1) = n − 1. Therefore H′ is not a full-dimensional polytope. Since
dim(H′) = n − 1, its minimal representation consists of (i) a finite set of inequalities
each corresponds to a facet of H′ and (ii) an equality that is attained by all points in
H′.

The equality is just the hyperplane Π0 = aff{w(1), . . . , w(n)} = {w ∈
R
n| ∑n

k=1
wk
ak

= 1} as given by (29).
Facets of H′ are (n − 2)-faces each being a convex hull formed by n − 1 affinely

independent points in V ′. Moreover, each facet is also associated with a supporting
(n − 2)-flat which is the affine hull of the same n − 1 points that forms the facet.
The number of facets will not exceed n as at most n such point combinations can be
from V ′ by each time removing a point in axis p, ∀p ∈ I . Now consider the n flats of
dimension n− 2: Φp = aff{w(i)}∀i∈I\{p},∀p ∈ I as intersections of two non-parallel
hyperplanes Π0 and Πp

Φp :
{

Π0 : w1
a1

+ · · · + wn
an

= 1,
Πp : wp = 0.

∀p ∈ I. (31)

123

Local convex hulls for a special class of integer... 897

Let h0(w) = w1
a1

+ · · · + wn
an

− 1 and h p(w) = wp, ∀p ∈ I . Then Φp supports

H′, ∀p ∈ I since (i) h0(w(i)) = 0, h p(w
(i)) ≥ 0, ∀i ∈ I and (ii) there are n − 1

affinely independent points {w j } j∈I\{p} ∈ H′ such that h0(w j) = 0 and h p(w
j) = 0.

Therefore, apart from the redundant valid inequality from Π0, the remaining valid
inequalities representing facets ofH′ are just wp ≥ 0,∀p ∈ I , as given by (26). ��

Now we have the exact description of the main hull, as (it is also valid for degen-
erated H′)

H′ =
{
w ∈ R

n+
∣∣∣∣
w1

a1
+ · · · + wn

an
≥ 1,

w1

b1
+ · · · + wn

bn
≤ 1

}
. (32)

It can be verified that this is actually a frustum of a simplex formed by the intersection

of an n-simplex
{
w ∈ R

n+
∣∣∣(b−1)Tw ≤ 1

}
and a halfspace

{
w ∈ R

n
∣∣∣(a−1)Tw ≥ 1

}
.

See [25] for details on a frustum of a simplex.
Similar conclusions can bemade by analogy for other integer multicommodity flow

problems suitable for the local convex hull method. For example, for the Multivehicle

Tanker Scheduling Problem, the corresponding main hull is then an n-simplex
{
w ∈

R
n+
∣∣∣(b−1)Tw ≤ 1

}
with n zero facets and only one nonzero facet.

2.2 Number of outside points

Now consider the points in W outside the main hull H′ which we refer to as outside
points as the remaining points in W \ W ′. Since H′ has only at most two nonzero
facets, for an outside point w ∈ W \ W ′, it is either in W = {

w ∈ W
∣∣(b−1)Tw > 1

}

or in W = {
w ∈ W

∣∣(a−1)Tw < 1
}
. Thus we define an up hull and a down hull as

H =
{
w ∈ H

∣∣∣∣
w1

b1
+ · · · + wn

bn
> 1

}
, (33)

H =
{
w ∈ H

∣∣∣∣
w1

a1
+ · · · + wn

an
< 1

}
. (34)

such that W = W ′ ∪ W ∪ W and H = H′ ∪ H ∪ H. Note that H and H are convex
sets each formed by a polytope without one of its facet. It is also not difficult to verify
thatW = H∩Z

n+ andW = H∩Z
n+. Figure 3 gives an example of the upper hull and

the down hull (empty) in the convex hull from Sect. 1.2.2.
If the number of outside points is of a moderate size, and the dimension n is

appropriately small, then the entire convex hull H can be computed based on H′,
W and W by some convex hull algorithms. This might be more efficient and less
intractable than computingH directly starting with the given points in W . In this part
we will briefly explore the number of outside pointsW andW and leave the discussion
of this convex hull algorithm to Sect. 3.

123

898 Z. Lin, R. S. K. Kwan

2.2.1 Two special conditions

The number of outside points can be analytically determined under two special con-
ditions, i.e. when all commodities are incompatible and when u (or r) as given in (9)
is a multiple of all elements in v (or q).

For an instance with commodity compatibility relations as mentioned in Sect. 1.1,
the combination point enumeration and outside point counting can be decomposed
into subsets of compatible commodities. Let I1, . . . , IS ⊂ I = {1, . . . , n} be the
subsets of commodities each containing compatible commodities such that Is1 ∩ Is2 =
∅,∀s1 �= s2. With respect to each subset s = 1, . . . , S, we have the combination set
Ws such that

⋃S
s=1 Ws = W , and the outside pointsWs,Ws defined by

∑
i∈Is

wi
bi

> 1

or
∑

i∈Is
wi
ai

< 1 such that
⋃S

s=1 Ws = W and
⋃S

s=1 Ws = W . In fact in this case
H = conv(W) can be constructed by “wrapping the projections” of the sub-hulls
of each subset. Moreover, when commodities are all incompatible with each other
(which can be found in real-world instances in train unit scheduling), the following
Proposition 2 states that the convex hull can be given directly by the main hull since
W and W are both empty.

Proposition 2 For a combination set W where all commodities k ∈ K are incompat-
ible with each other, W will only have axis points such that W = W ′ and H = H′.

In addition, consider a combination set W = {
w ∈ Z

n+
∣∣qTw ≥ r, vTw ≤ u

}
that

can be defined by (9). Two simplices can be found such that their difference contains
the up hull as H ⊆ P = Svu \ Sb, where Svu = {

w ∈ R
n+
∣∣vTw ≤ u

}
, Sb = {

w ∈
R
n+
∣∣(b−1)Tw ≤ 1

}
and bi = ⌊ u

vi

⌋
,∀i = 1, . . . , n. The situation is slightly more

complicated for the down hull where H ⊆ P = Sa \ Sqr ∪ Πqr \ Πa , where Sqr ={
w ∈ R

n+
∣∣qTw ≤ r

}
, Sa = {

w ∈ R
n+
∣∣(a−1)Tw ≤ 1

}
, Πqr = {

w ∈ R
n+
∣∣qTw = r

}
,

Πa = {
w ∈ R

n+
∣∣(a−1)Tw = 1

}
, and ai = ⌈ r

qi

⌉
,∀i = 1, . . . , n.

Here we have the following properties for the emptiness of P and P , due to the fact
that ai = ⌈ r

qi

⌉
, bi = ⌊ u

vi

⌋
,∀i = 1, . . . , n.

Proposition 3 For a combination set W that can be defined by (9), if u is a multiple
of all vi , i = 1, . . . , n, then P = Svu \ Sb = ∅ such that H = ∅; if r is a multiple of
all qi , i = 1, . . . , n, then P = Sa \ Sqr ∪ Πqr \ Πa = ∅ such that H = ∅.

The above condition can often happen in real-world instances. Taking the train unit
scheduling problem for example, where the upper bound u is measured in number of
cars and vi are the number of cars of unit type i , there can be many trains with u as
the multiple of all types’ car numbers in the instances both from Southern Railways
and ScotRail. If u is measured in number of units, as in [6], then this condition for the
upper hull will always hold. Also note that when P �= ∅ it is still possible thatH = ∅.
On the other hand, r , as the demand measured in passenger numbers, can hardly be a
multiple of all qi , which are the numbers of seats of unit types i = 1, . . . , n. Although
P can hardly be empty, the size of |W | tends to be very small, even often be zero,
since a non-empty P does not necessarily imply a non-empty W . Figure 3 is a good
example. This fact can also be observed in the experiments to be reported in Sect. 4.

123

Local convex hulls for a special class of integer... 899

Fig. 4 Example of non-standalone type k3 with three branched convex hulls in blue (wk3 = 0), red
(wk3 = 1) and green (wk3 = 2) (Color figure online)

2.2.2 Empirical experiments

Pragmatically for a given setW with points w, it is sufficient to determine the number
of outside points simply by checking the values of ha(w) = (a−1)Tw−1 and hb(w) =
(b−1)Tw − 1. If ha(w) < 0 then w ∈ W and if hb(w) > 0 then w ∈ W . A series of
computational experiments were conducted to show the characteristics on the number
of outside points under different circumstances. They will be reported in Sect. 4 in
detail.

2.3 Non-standalone types

Although very rare under train unit scheduling scenarios, theoretically we cannot
eliminate the possibility that a unit type canonly beusedwith other types, e.g. as a result
of a demand/upper bound pair at certain levels.We call this unit type that cannot satisfy
the “single-commodity-presence” assumption for a train as a “non-standalone” type.
When a non-standalone type exists, it is not possible to straightforwardly construct
the main hull and the customized convex hull algorithm to be introduced in Sect. 3
will thus be inapplicable. However, it is still possible to computeH using the standard
convex hull algorithm as given in [3].

Nonetheless, if there is only one non-standalone type, it is possible to modify
the original problem to keep “single-commodity-presence” condition. Let k∗ be the
unique non-standalone type at train j . The basic idea is to branch the problem into
subproblems by fixing the possible values of wk∗ used at j . For each fixed wk∗ , the
convex hulls on other types can be constructed in a subspace one dimension less

123

900 Z. Lin, R. S. K. Kwan

due to the absence of k∗, where the “single-commodity-presence” condition will be
preserved. Thus the original problem will be branched into subproblems. When there
is more than one train having unique non-standalone types, a tree structure is required
to organize the subproblems as computationally independent nodes on the tree. The
tree can be constructed in advance given the input information (where all convex hull
constraints will be given once-for-all) or embedded into the branch-and-bound tree
(where the convex hull constraints on trains with standalone types will have to be
computed “on-line” during branching).

We use an example to illustrate the above method. Suppose at train j we have the
unit combination set

Wj = {
(1, 0, 0), (2, 0, 0), (0, 1, 0), (1, 1, 0), (2, 1, 0), (0, 2, 0)

(1, 0, 1), (2, 0, 1), (0, 1, 1), (1, 1, 1), (0, 2, 1),

(1, 0, 2), (0, 1, 2)
}

that does notmeet the single-commodity-presence condition due to the non-standalone
type k3. Then the original problem can be split into three subproblems with wk3 =
0, 1, 2, or in the model, with constraints

∑

p∈P
k3
j

x p = 0, 1, 2 (35)

added respectively. For each fixed value on wk3 , the points in subspaces over Rk1×k2+
satisfy the single-commodity-presence condition. Their local convex hulls to be used
in the subproblem models are:

conv{Wj (wk3 = 0)} =
{
w ∈ R

2+|wk1 + wk2 ≥ 1, wk1 + 2wk2 ≤ 4, wk1 ≤ 2
}

,

conv{Wj (wk3 = 1)} =
{
w ∈ R

2+|wk1 + wk2 ≥ 1, wk1 + wk2 ≤ 2
}

, and

conv{Wj (wk3 = 2)} =
{
w ∈ R

2+|wk1 + wk2 = 1
}

.

Figure 4 gives an illustration on the three convex hulls from the above example.
If there aremultiple non-standalone types at a train, theoretically it is still possible to

enumerate all possibilities over the non-standalone types and for each case a convex
hull in the subspace over the other types can be constructed satisfying the single-
commodity-presence condition. However it is unclear about its practicality under this
more difficult circumstance as the scheme may become quite complex to implement
and the resulting tree may be too huge to tackle with. We will leave the relevant
investigation to future work.1

1 The authors would like to thank an anonymous reviewer for the valuable suggestions on Sect. 2.3.

123

Local convex hulls for a special class of integer... 901

3 A customized QuickHull algorithm to compute local convex hulls

In this section we will describe how to use a customized QuickHull algorithm adapted
from [3] to exactly compute the convex hull H = conv(W) based on the main hull
H′ and the outside points in W ,W . QuickHull is an algorithm that is theoretically
able to compute the convex hull of a finite set of points in R

n . The computational
performance of the QuickHull algorithm is usually problem-specific, although it is
reported that a generic QuickHull is suitable for medium/large-sized inputs for n ≤ 8
while not suitable for medium-sized inputs for n ≥ 9 [24]. Its rationale is based on
the following simplified Grünbaum’s Beneath-Beyond Theorem [3,13].

Theorem 2 (Grünbaum) LetH be a convex hull inRn, and letw be a point inRn \H.
Then F is a facet of conv

(
w ∪ H)

if and only if

(i) F is a facet of H, and w is below F; or
(ii) F is not a facet of H, and its vertices are w and the vertices of a ridge (i.e. an

(n − 2)-face) of H with one incident facet below w and the other incident facet
above w.

A point’s position as being above or below a hyperplane/facet is defined by giving
the hyperplane/facet an orientation as their outer normal’s direction and if the signed
distance of a point to the hyperplane/facet is positive (negative), then the point is said
to be above (below) the hyperplane/facet. A facet is said to be visible to a point if the
point is above it. A realizable (feasible) point is below every hyperplane/facet.

For a given set of points, QuickHull first selects a non-degenerated subset of them
to form an initial simplex as their convex hull. If possible, this initial simplex will
be selected such that it will cover as many points as possible by choosing the points
with either a maximum or minimum coordinate. Each point outside the initial simplex
will be assigned to one and only one of its visible facet(s) of this simplex. Then the
following recursive processes will be applied to each facet of the updated hull with
its associated outside points. Within each facet, one of its associated point (generally
the “furthest” one) will be selected. New facets will be made by joining this point
and all horizontal ridges that enclose all visible facets of this point. A process called
partitioning will either reallocate each outside points associated with one visible facet
to a new facet or include that point into the hull. Then the point’s visible facets will be
discarded. This will be repeated for the hull with updated facets until all facets have
empty outside point sets. See [3] for details of the QuickHull algorithm.

From the view of the QuickHull algorithm, it can be seen that for the case of
commodity combination set W , the “up” and “down” points in W and W should
be above the hyperplanes (b−1)Tw = 1 and (a−1)Tw = 1 respectively. Moreover,
the main hull H′, as a frustum of a simplex, should be an ideal alternative for the
initial simplex in the QuickHull’s first stage (by Theorem 2, any full-dimensional
convex polytope inside H would do the job). Moreover, when H′ is chosen as the
“initial simplex”, there are initially only two visible facets, the two nonzero facets
with respect to (b−1)Tw = 1 and (a−1)Tw = 1, to be further processed possibly in
parallel with the “up” and “down” points. Therefore, given the “initial simplex” as
the analytically known main hull H′, it is only needed to apply standard QuickHull

123

902 Z. Lin, R. S. K. Kwan

to W and W in parallel to computeH, which might be more efficient than applying it
to W directly if W ′ contains most of the points in W . Based on the above principle,
a customized “2-facet” QuickHull algorithm is given in Algorithm 1, which can be
regarded as a tailored version of [3] only differing in how to construct the “initial
simplex”.

Algorithm 1 A 2-facet QuickHull for computing H
given: W
create the main hullH′
generate two nonzero facets: F = {w ∈ R

n+|(a−1)T w = 1}, F = {w ∈ R
n+|(b−1)T w = 1}

generate the outside points W ,W
initialize the nonzero facet set F ← {F, F}
initialize the outside point set OP(F) ← W , OP(F) ← W ,
for all F ∈ F |OP(F) �= ∅ do
select the furthest point w in OP(F)

initialize the visible set V(w) ← {F}
for all unvisited neighbor facets FN of facets in V(w) do
if w is above FN then
V(w) ← V(w) + {FN }

end if
end for
V(w)’s boundary ∂V(w) is the set of horizon ridges
initialize the new facet set of w as F+(w) ← ∅
for all R ∈ ∂V(w) do
create a new facet F ′(R, w) from R and w

F+(w) ← F+(w) + {F ′(R, w)}
end for
for all F ′ ∈ F+(w), F ′′ ∈ V(w) do
for all unassigned v ∈ OP(F ′′) do
if v is above F ′ then
OP(F ′) ← OP(F ′) + {v}

end if
end for

end for
F ← F + F+(w), F ← F − V(w)

end for

In practice, implementing Algorithm 1 from scratch may require a considerable
amount of work. Pragmatically having the free and highly efficient QuickHull pro-
gramavailable from its officialwebsite [24], onemay consider the following alternative
Algorithm 2 by using the official QuickHull program from [24]. Compared with Algo-
rithm 1 which computes the local convex hulls all by itself, Algorithm 2 assumes that
a tool for computing convex hulls is at hand (e.g. standard QuickHull) and it computes
the local convex hulls indirectly using this tool.

A special case in computing local convex hulls for instances with incompatible com-
modities QuickHull is very sensitive to increasing dimensions. When a node is to be
served by commodities divided into subsets I1, . . . , IS ∈ I = {1, . . . , n} of compati-
ble ones, it is possible to first compute the convex hullsHs (either by the customized
Algorithm 1 or by a standard QuickHull) within each subset s in spaces with lower

123

Local convex hulls for a special class of integer... 903

Algorithm 2 An alternative 2-facet QuickHull H using the standard QuickHull
given: W
obtain the up and down end axis points V ′ = {w1, . . . , wn} and V ′ = {w1, . . . , wn}
generate two nonzero facets: F = {w ∈ R

n+|(a−1)T w = 1}, F = {w ∈ R
n+|(b−1)T w = 1}

generate the outside points W ,W
initialize the nonzero facet set F ← ∅
for W and W in parallel do
if W �= ∅ then
compute the up hullH = conv{V ′,W } by standard QuickHull
obtain the set of nonzero facets of the up hull F
F ← F + F \ {F}

else
F ← F + F

end if
if W �= ∅ then
compute the down hull H = conv{V ′,W } by standard QuickHull
obtain the set of nonzero facets of the down hull F
F ← F + F \ {F}

else
F ← F + F

end if
end for

dimensions R|Is |+ , ∀s = 1, . . . , S and merge the above “sub-hulls” into the target one
as H = ⋃S

s=1Hs . One way of performing such merging is to construct H based on
the vertices of all sub-hulls in R

n . There is a nice property such that vertices from
different sub-hulls are orthogonal. It is not apparent if this method can be competitive
with Algorithm 1 subject to different n. We will leave this alternative method to future
research.

4 Computational experiments on local convex hulls

4.1 Feasibility range of local convex hull method

The feasibility range of the local convex hull method is an interesting topic, which asks
to what limit in terms of the input parameters it will become impractical or intractable
to computeH explicitly based on points inW (standard QuickHull) or indirectly based
onH′,W andW (2-facet QuickHull). This would be very useful to guide the modeling
and solving for some upgraded or new problem instances. For example, in [14] the
local convex hulls are easily computed by QuickHull since |K j | ≤ 4, |Wj | ≤ 9,
∀ j ∈ N . However, if a new instance requires that |K j | = 10 for train j as a result of
the electrification upgrades in some routes such that electric units can also run on the
routes that were previously only covered by diesel units, then it is important to see if
the original methods are still practical.

However the problem of determining the feasibility of convex hull algorithms is
complicated itself. Generally the difficulty of convex hull computation grows drasti-
cally when the dimension n becomes large, as a result of the complex components and
structural sophistication of high dimensional polytopes. The Upper Bound Theorem

123

904 Z. Lin, R. S. K. Kwan

[19] states that the total complexity of the convex hull of m points in n dimensions is
O(m�n/2�). Particularly for the QuickHull algorithm, the authors in [3] conjecture that
the time complexity of QuickHull form points (with p processed points) in dimension
n is in average O(m logm) when n ≤ 3 and O(m fp/p) when n ≥ 4, where f p is the
maximum number of facets for p vertices. According to [19], in the worse case the
complexity of f p can be O(p�n/2�). Therefore the time complexity of QuickHull in
computing m points with p processed points can be O(mp�n/2�−1) for n ≥ 4. This
gives a theoretical way in estimating the time complexity of QuickHull subject to
different inputs of m, n and p.

In practice, if the number of outside points are within a reasonable range, like
in many practical problems in rolling stock scheduling, the computation may still be
possible for some not too large n.Within possibly themost difficult artificial conditions
(with space dimensions no greater than 11) in the context of train unit scheduling, a
series of computational experiments have been conducted giving some positive results
on the feasibility range of the local convex hull method. Since there is evidence that
those problems are not challenging enough for standard QuickHull, the convex hull
computation results on the above experiments will not be reported for every individual
instance but only for the possibly hardest ones among them. For the same reason,
we only report the number of points rather than the total complexity O(mp�n/2�)
or computational times for those experiments. Investigations on to what extent local
convex hulls are still computable for a broader range of problem instances arising in
various integer multicommodity flow problems cannot be comprehensively covered in
this paper.Nevertheless, to check the performance of the 2-facetQuickHull undermore
difficult circumstances, we will report a series of experiments on more challenging
artificial instances based on the fleets of ScotRail and Southern Railway by increasing
the space dimensions from 2 to 21 and using both the standard and the “2-facet”
QuickHull methods. Various results such as the numbers of points, computational
times and complexity will be reported in detail.

4.2 Number of points in the three hulls: empirical tests based on real-world and
artificial instances

In this part, datasets fromScotRail will be testedwith respect to the number of points in
W ′,W andW . ScotRail is the major passenger rail operator in Scotland and Southern
Railway is the major passenger rail operator in South England whose datasets were
also used in the experiments to be reported later. Originally, although ScotRail has
a train unit fleet with 10 unit types, what makes the scenario quite simple is the fact
that for each train service (represented by a node in the network) no more than 4
unit types (commodities) are permitted to cover it. Moreover, there are type coupling
compatibility relations that divide the type set into 6 subsets (known as “families” in
[14,15]) of compatible types. This makes computing the convex hulls for any train in
the timetable a trivialmatter in spaces of dimensions nomore than 4with the number of
points less than 9. Tables 3 and 4 give the fleet and coupling upper bound information
of ScotRail and Southern Railway.

We would like to see the potential of the local convex hull method regarding the
number of points in the main, up and down hulls on an artificial train with modified

123

Local convex hulls for a special class of integer... 905

Table 3 Train unit types and their associated families of the fleets of ScotRail and Southern Railway
(“c156” stands for “Class 156” and so on)

Operator Family Type Capacity # of car per unit
(seats)

ScotRail SR.I c156 145 2

SR.II c158 136 2

c170 189 3

c170S 198 3

SR.III c314 212 3

SR.IV c318 219 3

c320 230 3

SR.V c334 183 3

SR.VI c380/0 208 3

c380/1 282 4

Southern Railway SN.I c171/7 107 2

c171/8 241 4

SN.II c455/8 316 4

c456/0 152 2

SN.III c313/1 194 3

SN.IV c460/0 366 8

SN.V c442/1 320 5

SR.VI c377/1 223 4

c377/2 223 4

c377/3 160 3

c377/4 243 4

type-route and type-type relations that are rendered more complex and difficult. Two
kinds of conditions were tested, as:

(i) Assume each train can be served by all the 10 types, but retain the original com-
patibility relations among unit types and the combination-specific upper bounds.

(ii) Assume each train can be served by all the 10 types, where all unit types are
compatible and have the same coupling upper bound.

The first condition makes the convex hull computation into R
10+ with a slightly

increased number of points. The second condition will give a greatly increased num-
ber of points in R

10+ , where as there are many new combinations that do not exist in
practice, unified uppers bound u will be used for all combinations varying from 4 to
8 cars which sufficiently covers the real-world cases in ScotRail.

Table 7 in the Appendix gives the exact number of points in the upper (W), main
(W ′) and down (W) unit combination sets as triplets (|W |, |W ′|, |W |) for condition
(i). When the main set W ′ cannot be defined since the “single-commodity-presence”
condition (16) is not satisfied (usually due to the demand is too high), the number of all
points inW will be reported as a singleton |W |. This reporting style regarding “single-

123

906 Z. Lin, R. S. K. Kwan

Table 4 Coupling upper bounds in number of cars associated with type combinations, regardless of other
factors as routes etc., from fleet of ScotRail and Southern Railways

Operator Family Combination Upper bound
(in # of cars)

ScotRail SR.I c156 6

SR.II Any combinations by c158, c170, c170S 6

SR.III c314 6

SR.IV Any combinations by c318, c320 6

SR.V c334 8

SR.VI Any combinations by c380/0,1 7

Southern Railway SN.I c171/7 only 4

c171/8 only 8

c171/7 and c171/8 6

SN.II c455/8 only 8

c456/0 only 6

c455/8 and c456/0 8

SN.III c313/1 3

SN.IV c460/0 8

SN.V c442/1 10

SN.VI Any combinations by c377/1,2,3,4 12

commodity-presence” also applies to Tables 8 and 9 in the Appendix. The passenger
demand r varies from 25 to 500, which represents the range commonly seen in the
ScotRail datasets. Table 8 in the Appendix shows the result based on Condition (ii).
In these artificially created scenarios, when the coupling upper bounds are small and
the demands are large, no feasible combination can be made, as shown by those cells
in the bottom-left corner of the table.

Experiments on the number of points in W ,W ′,W were also performed based on
instances from other available sources. Table 9 in the Appendix gives the results on
the number of points in W taken the Instance A from Cacchiani et al. [6] with 8 train
unit types. 50 random number from a uniform distribution on the range of [360, 1404]
(as given in [6] as the passenger demand range) were used as the passenger demands.
Since in [6] the coupling upper bound is measured in the number of units and for all
trains this upper bound is 2 units, it was set that vk = 1 and u = 2 for all the 8 types.
Moreover, the 8 types are all compatible.

From the above experiments, for the instances within the context of train unit
scheduling, generally the numbers of points in the train combination sets are very
small and are thus within the capability of a standard convex hull algorithm. The next
section will further justify this conclusion empirically. As for the numbers of outside
points in W and W , they can be either small or large compared with the main part
W ′. However, in the real-world example “Instance A” from Cacchiani et al. [6] and
with the artificial condition (i) where unit type compatibility is retained, which are the

123

Local convex hulls for a special class of integer... 907

two most realistic instances, the proportions of outside points are all quite small if the
three parts can be divided.

4.3 Computing local convex hulls using standard QuickHull under rolling stock
scheduling contexts

Some train unit operatorsmay havemore difficult problem instances than those tackled
by us, and the advancements of railway infrastructure and engineering technology
may pose new challenges that might also make the TUSP more complex. Bearing in
mind that the local convex hull method cannot be used universally for all kinds of
integer multicommodity flow problems, it is useful to have a preliminary idea on its
practical range subject to different scenarios. Therefore, three groups of experiments
on computing local convex hulls under the context of rolling stock scheduling were
conducted. The convex hull computation tool used was an official version of the
QuickHull algorithm available from [24]. All experiments were performed on a Dell
workstation with 8G RAM and an Intel Xeon E31225 CPU.

The first group of experiments was based on the three instances (A,B,C) from
Cacchiani et al. [6], where the authors have analytically proved the inequalities repre-
senting relevant local convex hulls for each train and have applied them to their model
(also see [10] formore details on the proof). The passenger demand ranges for the three
instances are given in rA, rB, rC respectively. In Instance A, there are 8 compatible
types with their capacities given in qA. In Instances B and C, there are 10 compatible
types respectively with their capacities given in qB and qC . The coupling upper bound
is measured in number of units and is 2 for all trains. The experiments were carried
out by increasing the passenger number evenly within the given range and calculating
the number of points in the corresponding train unit combinations sets, as shown in
Table 10 in the Appendix. The samples with a passenger demand in italic were the
ones with the largest number of points in their unit combination sets and having their
local convex hull computed by QuickHull by directly taking the points in W . Notably
as for the three samples from Table 10, since the number of points were too small, the
computation times were all displayed as 0’s.

The second group was based on the ScotRail fleet as described before. Originally
there were strict type compatibility relation among the 10 types and for each train no
more than 4 types can be used. This real-world scenario has no challenge for testing
the workability of the local convex hull method. Therefore, an artificial scenario is
designed to increase the difficulty in computing the local convex hulls. We assume
that all the 10 types are compatible, and for the train to be tested, all the 10 types can
be used to serve it. Moreover, we have widened the range of coupling upper bounds
to be [4, 12] and the range of passenger demand numbers to be [25, 900]. Table 11
in the Appendix gives the corresponding results. When the passenger demand is too
high and the coupling upper bound is too small, there will be no feasible combination
(marked as “–”). The maximum number of points in W is 1029 in three cells, which
are still too easy for QuickHull to compute, by merely 0.006 s.

The third group was based on the datasets from Southern Railway, whose real-
world conditions are not challenging for the standard QuickHull algorithm. A similar

123

908 Z. Lin, R. S. K. Kwan

series of experiments were carried out for the 11 unit types in the Southern Railway
fleet, assuming that they were all compatible and were all allowed to serve any trains.
The ranges of passenger demand r and coupling upper bound u were also widened.
Table 12 in the Appendix gives the corresponding results. It has some similar patterns
as the experiments for ScotRail in Table 11. The convex hull of one of the u, r pairs
yielding themaximum number of combination points, r = 25, u = 12 with 505 points
was computed by standard QuickHull, giving a computation time of 0.015 s.

4.4 Computing local convex hulls using standard and 2-facet QuickHull for
more difficult cases

Computing local convex hulls in spaceswith even higher dimensions (e.g.Rn+ with n >

11)maynot be a real-world issue formost rolling stock scheduling instances.Neverthe-
less, more difficult conditions may occur in other integer multicommodity problems.
Testing more difficult instances will also give useful information on the feasibility
range of the local convex hull method. Moreover, a comparison between standard
QuickHull and “2-facet” QuickHull can be made under these more difficult conditions
because as shown in Sect. 4.3, the instances with n ≤ 11 are not challenging enough.

There are two groups of experiments to be reported in this section. First, a series
of experiments on artificial problem instances with a fixed shared coupling upper
bounds u = 9 while varying dimensions n from 2 to 21 will be reported. The second
group of experiments are based on the same artificial instances with a fixed dimension
n = 15 while varying shared coupling upper bounds u from 4 to 12. Both of them are
designed to get a better understanding of the behaviors of local convex hull computa-
tions in more difficult scenarios. As the dimensions get higher and/or the numbers of
points increases due to larger upper bounds, the difficulty in computing relevant local
convex hulls often drastically increase. To some certain limits, both the standard and
the 2-facet QuickHull will be unable to compute relevant local convex hulls within
reasonable time and resources.

4.4.1 Varying dimension n with fixed coupling upper bound u = 9

The first group of experiments was conducted on the same machine as described in
Sect. 4.3. The instances are artificially created based on the fleets of ScotRail (10
types) and Southern Railway (11 types) by gradually increasing the number of types
(assuming all compatible) one by one in the “merged” artificial fleet from 2 to 21 in a
way that the types of ScotRail will be included first and the types of Southern Railway
will be added later when all the 10 types from ScotRail have been added. A fixed
demand r = 107 and a fixed shared coupling upper bound u = 9 regardless of type
combinations are used. Since 107 is the smallest unit capacity among all unit types,
this may give different unit combinations as many as possible. Moreover, since any
type can handle the demand 107 on its own, we have ai = 1,∀i = 1, . . . , n, and this
impliesWi = ∅,∀i = 1, . . . , n such that there is no need to compute any down hulls.

Table 5 gives the results of the above experiments. The first column gives the
dimensions n. The second column gives the number of input pointsm (|W | for standard

123

Local convex hulls for a special class of integer... 909

and |V ′|+|W | for 2-facet). The third columngives the number of facets of the computed
up hulls including (b−1)Tw = 1. Note that the number of facets of the main hulls
will have exactly n more facets than the corresponding up hulls. The fourth to seventh
columns give the information on the standard QuickHull method in the numbers of
processed points p, the theoretical average time complexity mp�n/2�−1, the numbers
of merged facets and the computational times in seconds respectively. The eighth to
eleventh columns give the above information on the 2-facet QuickHull method. The
computational times in bold indicate the instances where the 2-facet variant performed
the same or better than the standard QuickHull.

From Table 5, it can be observed that when n ≤ 13, both methods can compute the
local convex hulls very quickly in about 1 s ormuch less. The time consumptions begin
to increase drastically for bothmethodswhenn ≥ 14 and the standardQuickHull failed
for n = 17 up to 21 while the 2-facet QuickHull failed for n = 19 up to 21. Note that
the numbers of up facets as shown in the third column increase almost linearly as the
dimensions get larger; however the numbers ofmerged facets increase in an accelerated
manner. As for the numbers of processed points p, which havemore impact on the time
complexity than the total number of pointsm, notice that the proportions of processed
points among all (p/m) for the standard QuickHull are almost always smaller than
in 2-facet QuickHull, as the entire hulls generally will contain more interior points.
The time complexity columns clearly show how the problem difficulty is drastically
increased when the dimension n gets larger. In conclusion, the tested instances show
that there can be computational limits for the local convex hull method when the
dimension and the corresponding theoretical time complexity are large enough, as
shown by the last few rows in Table 5.

To compare the two methods, the results obtained from the 2-facet QuickHull are
generally better than the standard version, both in theoretical time complexity and
actual computational times. Especially when n is relatively large as 17 and 18, the
standard QuickHull failed while the 2-facet version was still capable of computing
the convex hulls. In conclusion, the above results in Table 5 show that the 2-facet
QuickHull based on a modification of the standard QuickHull can outperform the
latter under some circumstances such as the tested instances.

4.4.2 Varying coupling upper bound u with fixed dimension n = 15

The second group of experiments was conducted based on the same artificial instances
as in Sect. 4.4.1. Similarly for the reason to have asmany unit combinations as possible,
a fixed passenger demand r = 107 was used for all experiments. As aforementioned,
the down hulls will be always empty and the experiments would only consider the up
hulls. In addition, a fixed dimension n = 15was usedwhich would represent moderate
difficult level in terms of dimension as observed from Table 5. The coupling upper
bound u was varied from 4 to 13 cars. The main purpose of this group is to explore the
limit of using the local convex hull method subject to larger numbers of input points
as a result of higher coupling upper bounds. It will also make useful comparisons
between the standard QuickHull and its 2-facet variant.

123

910 Z. Lin, R. S. K. Kwan

Ta
bl
e
5

R
es
ul
ts
in

co
m
pu
tin

g
H

by
st
an
da
rd

an
d
2-
fa
ce
tQ

ui
ck
H
ul
li
n
R
n +,

n
=

1.
..
21

,
u

=
9,
r

=
10

7

n
m

U
p
fa
ce
t#

p
m
p�

n/
2�

−1
#
of

m
er
ge
d
fa
ce
ts

T
im

e
(s
)

p
m
p�

n/
2�

−1
#
of

m
er
ge
d
fa
ce
ts

T
im

e
(s
)

(|W
|,|

V
′ |+

|W
|)

(s
ta
nd
ar
d)

(s
ta
nd
ar
d)

(s
ta
nd
ar
d)

(s
ta
nd
ar
d)

(2
-f
ac
et
)

(2
-f
ac
et
)

(2
-f
ac
et
)

(2
-f
ac
et
)

2
14

,–
–

4
m
lo
g
m

≈
37

0
0

N
N
a

N
N

N
N

N
N

3
28

,7
5

8
m
lo
g
m

≈
93

6
0

5
m
lo
g
m

≈
14

1
0

4
47

,1
2

7
13

61
1

24
0

8
96

9
0

5
72

,1
7

8
16

11
52

46
0

11
18

7
26

0

6
10

4,
22

9
20

41
,6
00

84
0

14
43

12
54

0

7
14

4,
27

10
26

97
,3
44

17
1

0
17

78
03

96
0

8
19

3,
32

11
29

4,
70

7,
07

7
23

8
0

22
34

0,
73

6
20

0
0

9
25

2,
37

12
41

17
,3
68

,0
92

56
6

0
23

45
0,
17

9
23

9
0

10
28

0,
42

14
57

2,
95

5,
68

0,
28

0
23

49
0.
03

1
42

13
0,
69

1,
23

2
17

69
0

11
35

3,
59

15
64

5,
92

2,
35

7,
24

8
42

02
0.
03

1
44

22
1,
13

7,
66

4
23

80
0.
01

5

12
38

5,
76

16
96

3.
13

91
8×

10
12

13
,8
60

0.
17

1
61

64
,1
89

,3
18

,8
76

10
91

1
0.
12

4

13
41

8,
93

17
96

3.
40

82
6×

10
12

39
,1
41

1.
12

3
77

2.
51

73
1×

10
12

33
,2
66

0.
81

1

14
59

0,
16

6
18

13
8

4.
07

49
9×

10
15

26
5,
86

6
43

.7
6

12
7

6.
96

51
5×

10
14

26
2,
61

1
39

.1
9

15
70

3,
18

6
19

16
1

1.
22

43
6×

10
16

52
6,
22

0
16

5.
3

14
7

1.
87

68
×1

01
5

54
2,
25

5
28

2.
9

16
70

4,
18

7
20

20
7

1.
14

64
8×

10
19

1,
09

7,
35

2
98

0
15

1
3.
34

71
9×

10
17

64
3,
01

3
30

0.
5

17
70

4,
18

7
Fb

F
F

F
F

17
1

8.
93

55
×1

01
7

1,
04

3,
42

0
12

26

18
77

7,
23

8
F

F
F

F
F

20
8

8.
33

84
2×

10
20

1,
04

3,
42

0
3,
73

1,
45

1

19
82

9,
26

7
F

F
F

F
F

F
F

F
F

20
96

5,
29

4
F

F
F

F
F

F
F

F
F

21
10

22
,3
26

F
F

F
F

F
F

F
F

F

T
he

bo
ld

va
lu
es

ar
e
th
e
ru
ns

w
he
re

th
e
“2
-f
ac
et
Q
ui
ch
H
ul
l”
m
et
ho
d
ga
ve

le
ss

co
m
pu
ta
tio

na
lt
im

e
th
an

th
e
“s
ta
nd
ar
d
Q
ui
ck
H
ul
l”
m
et
ho
d

a
N
N
:N

o
ne
ed

to
co
m
pu
te
si
nc
e
W

=
∅,

H
is
gi
ve
n
by

(a
−1

)T
w

≥
1
an
d

(b
−1

)T
w

≤
1
di
re
ct
ly
.

b
F:

Fa
ile

d
du

e
to

va
ri
ou

s
re
as
on

s.
T
he

m
os
tc
om

m
on

on
e
w
as

re
po

rt
ed
ly

as
“Q

H
60

82
qh

ul
le
rr
or

(q
h_

m
em

al
lo
c)
”
m
ea
ni
ng

in
su
ffi
ci
en
tm

em
or
y
to

al
lo
ca
te
re
le
va
nt

da
ta

123

Local convex hulls for a special class of integer... 911

Ta
bl
e
6

R
es
ul
ts
in

co
m
pu
tin

g
H

by
st
an
da
rd

an
d
2-
fa
ce
tQ

ui
ck
H
ul
li
n
R
15 +
,u

=
4.

..
13

,
r

=
10

7

n
m

U
p
fa
ce
t#

p
m
p�

n/
2�

−1
#
of

m
er
ge
d
fa
ce
ts

T
im

e
(s
)

p
m
p�

n/
2�

−1
#
of

m
er
ge
d
fa
ce
ts

T
im

e
(s
)

(|W
|,|

V
′ |+

|W
|)

(s
ta
nd
ar
d)

(s
ta
nd
ar
d)

(s
ta
nd
ar
d)

(s
ta
nd
ar
d)

(2
-f
ac
et
)

(2
-f
ac
et
)

(2
-f
ac
et
)

(2
-f
ac
et
)

4
21

,–
–

18
7.
14

25
6

×
10

8
27

0
N
N
a

N
N

N
N

N
N

5
48

,4
2

3
45

3.
98

58
1

×
10

11
26

04
0.
01

5
42

2.
30

53
9

×
10

11
96

0.
01

5

6
11

2,
24

3
39

3.
94

09
9

×
10

11
20

13
0.
01

5
24

4.
58

64
7

×
10

9
18

7
0

7
19

3,
10

5
4

93
1.
24

86
9

×
10

14
12

2,
89

2
11

.0
3

81
2.
96

55
1

×
10

13
43

12
8.
37

7

8
36

7,
15

0
3

10
3

4.
38

21
7

×
10

14
26

0,
43

5
85

.3
8

44
1.
08

84
5

×
10

12
78

03
0.
01

6

9
70

3,
18

6
19

16
1

1.
22

43
6×

10
16

52
6,
22

0
16

5.
3

14
7

1.
87

68
×1

01
5

54
22

55
28

2.
9

10
11

77
,5
49

4
31

7
1.
19

43
5

×
10

18
6,
04

0,
46

8
2.
44

7
×

10
4

20
4

3.
95

68
8

×
10

16
34

0,
73

6
1.
57

×
10

4

11
20

23
,1
39

5
Fb

F
F

F
F

F
F

F
F

12
34

92
,–

–
42

1.
91

67
7

×
10

13
33

17
0.
07

8
N
N

N
N

N
N

N
N

13
55

98
,2
12

1
F

F
F

F
F

F
F

F
F

T
he

bo
ld

va
lu
es

ar
e
th
e
ru
ns

w
he
re

th
e
“2
-f
ac
et
Q
ui
ch
H
ul
l”
m
et
ho
d
ga
ve

le
ss

co
m
pu
ta
tio

na
lt
im

e
th
an

th
e
“s
ta
nd
ar
d
Q
ui
ck
H
ul
l”
m
et
ho
d

a
N
N
:N

o
ne
ed

to
co
m
pu
te
si
nc
e
W

=
∅,

H
is
gi
ve
n
by

(a
−1

)T
w

≥
1
an
d

(b
−1

)T
w

≤
1
di
re
ct
ly
.

b
F:

Fa
ile

d
du

e
to

va
ri
ou

s
re
as
on

s.
T
he

m
os
tc
om

m
on

on
e
w
as

re
po

rt
ed
ly

as
“Q

H
60

82
qh

ul
le
rr
or

(q
h_

m
em

al
lo
c)
”
m
ea
ni
ng

in
su
ffi
ci
en
tm

em
or
y
to

al
lo
ca
te
re
le
va
nt

da
ta

123

912 Z. Lin, R. S. K. Kwan

Table 6 gives the results of the above experiments. It has the same structure as
Table 5 except the first column shows the values of the upper bounds u. The computa-
tional times in bold indicate the instances where the 2-facet variant used the same or
less time than the standard QuickHull. In the two cases of u = 4 and u = 12, the up
unit combination sets W = ∅ such that the entire convex hulls H are given directly
by (a−1)Tw ≥ 1 and (b−1)Tw ≤ 1 without any computation if the 2-facet method
is used. Note that when u = 12, it is a multiple of the car numbers of all unit types
(either 2, 3 or 4), and by Proposition 3 it is true that W = ∅.

It can be observed that the actual numbers of the facets of the up hulls are still
very small, similar as in Table 5. Both the two methods can compute relevant convex
hulls very quickly when u < 10, and the 2-facet method performs better than the
standard one. The results for n = 9 is an exception where the 2-facet performs worse.
When n ≥ 10, the difficulty in convex hull computation increased drastically for both
methods, except for u = 12 which is easy for the standard method and does not need
explicit computation by the 2-facet method as H = H′. This different behavior for
u = 12 is consistent with relevant indicators such as the numbers of processed points,
the numbers of merged facets and the theoretical complexity, and is likely a result of
the simpler structure of the convex hull making the computation process a lot easier. In
all the cases, as long as the convex hulls can be computed, the 2-facet variant generally
performs better than the standard version. Moreover, this group of experiments shows
there is a computational limit for both methods when the number of points gets larger
as given in the last few rows of Table 6.

5 Conclusions and future research

In this paper we have generalized the local convex hull method arising in rolling
stock scheduling problems using integer multicommodity flow models where each
timetabled train is represented by a node in the network graph. Its major characteristic
is to use enumeration to capture all the possible combinations at a node with different
commodities and the convex hull of such combinations will be computed explicitly
if possible. With the nonzero facets of the local convex hulls, a conversion makes
the combination variables (based on flow amount per node per commodity) to the
original network flow variables (e.g. based on paths) and thus the facets will take
their effects as valid inequalities for the original problem. This method can be used
to strengthen the LP relaxation as well as to satisfy complex and difficult restrictions
such as combination-specific coupling upper bounds. We are especially interested in
the feasibility range of this method subject to higher dimensional cases and efficient
methods in computing local convex hulls taking advantage of their structures.

We have shown that if the “single-commodity-presence” condition is met, which
is a prevailing case in real-world rolling stock scheduling, a local convex hull can be
divided into a main hull, an up hull and a down hull, and the main hull can have no
more than 2 nonzero facets that are known analytically. For these instances, a 2-facet
QuickHull method based on the standard version [3] can be used to compute convex
hulls only focusing on outside points. On the other hand, it is also possible that no

123

Local convex hulls for a special class of integer... 913

such three-hull division can be made since some unit types (commodities) cannot be
used alone, especially when the passenger demands get large while the coupling upper
bound is low. For them the 2-facet QuickHull cannot be used. Nevertheless, in many
of such cases the numbers of feasible combinations also tend to be small, which may
ease the process of convex hull computation.

Computational experiments on the number of points and computational feasibility
for the local convex hull method are reported. As long as the context is set within train
unit scheduling with the parameter settings either the same or modified to increase the
computational difficulty, the local convex hulls can be easily computed by the standard
QuickHull within a very short time. Note that in theUK and other countries where train
units are commonly used in passenger railway, it is very rare for a train operator to have
a route or train service that can be served by more than 10 types of unit being all com-
patible with each other. Due to this reason, we find the standard QuickHull sufficient
for computing local convex hulls arising in train unit scheduling problems in all cases.

In practice, using the customized 2-facet QuickHull to speed up the computation
process is less necessary for train unit scheduling problems. Nevertheless, there might
be other fields employing integer multicommodity flowmodels where the local convex
hull method can also be applied. It is possible that some of them may have a far larger
number of commodities and combination points at a node or an arc such that the stan-
dardQuickHull algorithmmay fail ormay be less efficient. In those cases, the proposed
2-facet QuickHull may be helpful in improving the computational efficiency or the
computability. Section 4.4 gives some computational results on the above point, where
there is evidence showing that the 2-facet QuickHull can outperform the standard
QuickHull in both the efficiency and computability aspects for the instances tested.
When the number of commodity types is even higher (e.g.>19) or the number of input
points gets larger (e.g. >1200) due to higher upper bounds, both the standard and the
2-facet QuickHull will fail in computing the local convex hulls in the tested instances.

The future work on the local convex hull method will be focused on the following
aspects. First, more rigorous theoretical investigation on the polyhedral combinatorics
side will be conducted. More computational experiments will be carried out on the
customized 2-facetQuickHull on other integermulticommodityflow instances. Finally
we would like to further design an alternative convex hull computation method by
computing sub-hulls with respect to subsets of compatible commodities and then
using a final “wrapping” over all sub-hulls to get the entire hull.

Acknowledgments This research is supported by an Engineering and Physical Sciences Research Council
(EPSRC) Project EP/M007243/1. We would like to thank First ScotRail and Southern Railway for their
kind and helpful collaboration and for providing us data to support this study. Thanks are also given to the
Geometric Center of the University of Minnesota for providing the free software QuickHull [24]. Finally,
thanks are due to the Associate Editor and to the referees for their valuable comments and suggestions. We
acknowledge that First ScotRail and Southern Railway has provided their operational data for the research.
The data has been abstracted and presented within this paper such that the readers will be able to replicate
all the experiments and results if so desired.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

914 Z. Lin, R. S. K. Kwan

Appendix: Experiment results for Sects. 4.2 and 4.3

See Tables 7, 8, 9, 10, 11, and 12.

Table 7 Condition (i) in R
10+ , passenger demands r varies from 25 to 500

r 25 50 100 150 200 250 300 350 400 450 500

(|W |, |W ′|, |W |) or |W | (1,25,0) (1,25,0) (1,25,0) (1,23,0) (1,20,0) (1,16,0) 14 12 8 2 0

Table 8 Numbers of point as “(up, main, down)” or “total” under Condition (ii) in R
10+ , unified upper

bounds u = 4, . . . , 8, demand r = 25, . . . , 500

r\u 4 5 6 7 8

25 (0,13,0) (14,13,0) (2,59,0) (30,59,0) (56,98,0)

50 (0,13,0) (14,13,0) (2,59,0) (30,59,0) (56,98,0)

100 (0,13,0) (14,13,0) (2,59,0) (30,59,0) (56,98,0)

150 (0,11,0) (14,11,0) (2,57,0) (30,57,0) (56,96,0)

200 8 22 (2,54,0) (30,54,0) (56,93,0)

250 4 18 (2,50,0) (30,50,0) (56,89,0)

300 – – 48 76 (56,69,16)

350 – – 40 68 (56,69,8)

400 – – 25 53 118

450 – – 1 29 94

500 – – – – 73

Table 9 Numbers of points as “(up, main, down)” or “total” in R8+ based on “Instance A” from Cacchiani
et al. [6]

r 1133 625 815 1296 794 1286 1047 1017 395 936

|W | 26 (0,40,0) 37 20 37 20 29 32 (0,43,0) 34

r 1017 1047 1390 746 804 828 809 774 943 546

|W | 29 29 18 38 37 37 37 38 34 (0,40,0)

r 1344 389 964 1137 786 389 1065 1285 1085 1360

|W | 18 (0,43,0) 34 26 38 (0,43,0) 27 20 27 18

r 1056 1105 1373 965 1295 852 1169 621 641 575

|W | 29 29 18 34 20 37 24 (0,40,0) (0,40,0) (0,40,0)

r 1097 424 663 383 1031 837 421 427 659 709

|W | 26 (0,43,0) (0,40,0) (0,43,0) 32 37 (0,43,0) (0,43,0) (0,40,0) (0,39,0)

Input specifications: r ∈ U [360, 1404], q ∈ {1150, 1044, 786, 702, 543, 516, 495, 360}

123

Local convex hulls for a special class of integer... 915

Ta
bl
e
10

N
um

be
r
of

co
m
bi
na
tio

n
po
in
ts
ba
se
d
on

“I
ns
ta
nc
e
A
,B
,C
”
fr
om

C
ac
ch
ia
ni

et
al
.[
6]

r A
36

0a
41

0
46

0
51

0
56

0
61

0
66

0
71

0
76

0
81

0
86

0
91

0
96

0
10

10
11

60
12

10
12

60
13

10
13

60
14

10

|W
|

44
43

43
42

40
40

40
39

38
37

36
34

34
33

28
26

24
23

21
19

r B
59

0b
64

0
69

0
74

0
79

0
84

0
89

0
94

0
99

0
10

40
10

90
11

40
11

90
12

40
12

90
13

40
13

90
14

40
14

90
15

30

|W
|

64
64

64
64

64
61

59
59

58
58

58
57

56
56

56
56

56
52

50
50

r C
59

0c
64

0
69

0
74

0
79

0
84

0
89

0
94

0
99

0
10

40
10

90
11

40
11

90
12

40
12

90
13

40
13

90
11

40
14

90
15

40

|W
|

64
64

64
64

64
61

59
59

59
59

59
58

57
57

57
57

57
53

51
51

In
pu
t
sp
ec
ifi
ca
tio

ns
:
r A

∈
[36

0,
14

04
],q

A
∈

{11
50

,
10

44
,
78

6,
70

2,
54

3,
51

6,
49

5,
36

0},
r B

∈
[58

8,
15

34
],q

B
∈

{15
34

,
14

73
,
11

28
,
98

0,
88

7,
84

0,
83

4,
82

4,
80

5,
58

8},
r C

∈[
58

8,
16

10
],q

C
∈{

16
44

,
16

24
,
14

73
,
11

28
,
88

7,
84

0,
83

4,
82

4,
80

5,
58

8}
a
Fo

r
In
st
an
ce

A
,t
he

tim
e
to

co
m
pu

te
th
e
co
nv
ex

hu
ll
of

th
e
44

po
in
ts
fr
om

r
=

36
0
by

st
an
da
rd

Q
ui
ck
H
ul
li
s
di
sp
la
ye
d
as

0
s

b
Fo

r
In
st
an
ce

B
,t
he

tim
e
to

co
m
pu

te
th
e
co
nv
ex

hu
ll
of

th
e
64

po
in
ts
fr
om

r
=

59
0
by

st
an
da
rd

Q
ui
ck
H
ul
li
s
di
sp
la
ye
d
as

0
s

c
Fo

r
In
st
an
ce

C
,t
he

tim
e
to

co
m
pu

te
th
e
co
nv
ex

hu
ll
of

th
e
64

po
in
ts
fr
om

r
=

59
0
by

st
an
da
rd

Q
ui
ck
H
ul
li
s
di
sp
la
ye
d
as

0
s

123

916 Z. Lin, R. S. K. Kwan

Ta
bl
e
11

N
um

be
r
of

po
in
ts
fo
r
th
e
ar
tifi

ci
al
in
st
an
ce

of
Sc
ot
R
ai
li
n
R
10 +

u
\r

25
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

4
13

13
13

11
8

4
–

–
–

–
–

–
–

–
–

–
–

–
–

5
27

27
27

25
22

18
–

–
–

–
–

–
–

–
–

–
–

–
–

6
61

61
61

59
56

52
48

40
25

1
–

–
–

–
–

–
–

–
–

7
89

89
89

87
84

80
76

68
53

29
–

–
–

–
–

–
–

–
–

8
15

4
15

4
15

4
15

2
14

9
14

5
14

1
13

3
11

8
94

73
38

–
–

–
–

–
–

–

9
28

0
28

0
28

0
27

8
27

5
27

1
26

7
25

9
24

4
22

0
19

9
16

3
10

0
16

–
–

–
–

–

10
40

4
40

4
40

4
40

2
39

9
39

5
39

1
38

3
36

8
34

4
32

3
28

7
22

4
13

6
51

–
–

–
–

11
63

5
63

5
63

5
63

3
63

0
62

6
62

2
61

4
59

9
57

5
55

4
51

8
45

5
36

7
27

8
–

–
–

–

12
10

29
10

29
10

29
a

10
27

10
24

10
20

10
16

10
08

99
3

96
9

94
8

91
2

84
9

76
1

67
2

54
5

33
5

99
3

a
T
he

tim
e
to

co
m
pu

te
th
e
co
nv
ex

hu
ll
of

th
e
10

29
po

in
ts
fr
om

r
=

10
0,

u
=

12
by

st
an
da
rd

Q
ui
ck
H
ul
li
s
0.
00

6
s

123

Local convex hulls for a special class of integer... 917

Ta
bl
e
12

N
um

be
r
of

po
in
ts
fo
r
th
e
ar
tifi

ci
al
in
st
an
ce

of
So

ut
he
rn

R
ai
lw
ay

in
R
11 +

u
\r

25
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

4
12

12
12

11
8

3
2

–
–

–
–

–
–

–
–

–
–

–
–

5
17

17
17

16
13

8
6

–
–

–
–

–
–

–
–

–
–

–
–

6
34

34
34

33
30

25
23

12
4

2
–

–
–

–
–

–
–

–
–

7
52

52
52

51
48

43
41

30
19

8
–

–
–

–
–

–
–

–
–

8
96

96
96

95
92

87
85

74
62

44
21

7
3

–
–

–
–

–
–

9
13

6
13

6
13

6
13

5
13

2
12

7
12

5
11

4
10

2
84

57
28

11
–

–
–

–
–

–

10
22

3
22

3
22

3
22

2
21

9
21

4
21

2
20

1
18

9
17

1
14

3
10

7
63

27
9

3
–

–
–

11
32

0
32

0
32

0
31

9
31

6
31

1
30

9
29

8
28

6
26

8
24

0
20

3
15

4
92

42
15

–
–

–

12
50

5a
50

5
50

5
50

4
50

1
49

6
49

4
48

3
47

1
45

3
42

5
38

8
33

6
26

8
17

8
97

38
15

4

a
T
he

tim
e
to

co
m
pu

te
th
e
co
nv
ex

hu
ll
of

th
e
50

5
po

in
ts
fr
om

r
=

25
,
u

=
12

by
st
an
da
rd

Q
ui
ck
H
ul
li
s
0.
01

5
s

123

918 Z. Lin, R. S. K. Kwan

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Pren-
tice Hall, Englewoods Cliffs, USA (1993)

2. Alfieri, A., Groot, R., Kroon, L.G., Schrijver, A.: Efficient circulation of railway rolling stock. Transp.
Sci. 40(3), 378–391 (2006)

3. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans.
Math. Softw. 22(4), 469–483 (1996)

4. Bellmore, M., Bennington, G., Lubore, S.: A multivehicle tanker scheduling problem. Transp. Sci.
5(1), 36–47 (1971)

5. Cacchiani, V.: Models and algorithms for combinatorial optimization problems arising in railway
applications. Q. J. Oper. Res. 7(1), 109–112 (2009)

6. Cacchiani, V., Caprara, A., Toth, P.: Solving a real-world train-unit assignment problem. Math. Progr.
B 124(1–2), 207–231 (2010)

7. Cacchiani, V., Caprara, A., Toth, P.: Models and algorithms for the train unit assignment problem.
In: Combinatorial Optimization, Lecture Notes in Computer Science, vol. 7422, pp. 24–35. Springer,
Heidelberg (2012)

8. Cacchiani,V., Caprara,A., Toth, P.:ALagrangian heuristic for a train-unit assignment problem.Discret.
Appl. Math. 161(12), 1707–1718 (2013)

9. Cordeau, J.F., Desaulniers, G., Lingaya, N., Soumis, F., Desrosiers, J.: Simultaneous locomotive and
car assignment at via rail canada. Transp. Res. Part B Methodol. 35(8), 767–787 (2001)

10. Cacchiani, V., Caprara, A., Maróti, G., Toth, P.: On integer polytopes with few nonzero vertices. Oper.
Res. Lett. 41(1), 74–77 (2013)

11. Cordeau, J.F., Soumis, F., Desrosiers, J.: Simultaneous assignment of locomotives and cars to passenger
trains. Oper. Res. 49(4), 531–548 (2001)

12. Fioole, P.J., Kroon, L., Maróti, G., Schrijver, A.: A rolling stock circulation model for combining and
splitting of passenger trains. Eur. J. Oper. Res. 174(2), 1281–1297 (2006)

13. Grünbaum, B.: Measures of symmetry for convex sets. In: Convexity: Proceedings of the Seventh
Symposium in Pure Mathematics of the American Mathematical Society, vol. 7, p. 233. American
Mathematical Society (1963)

14. Lin, Z., Kwan, R.S.K.: An integer fixed-charge multicommodity flow (FCMF) model for train unit
scheduling. Electron. Notes Discret. Math. 41, 165–172 (2013)

15. Lin, Z., Kwan, R.S.K.: A two-phase approach for real-world train unit scheduling. Public Transp. 6(1),
35–65 (2014)

16. Lingaya, N., Cordeau, J.F., Desaulniers, G., Desrosiers, J., Soumis, F.: Operational car assignment at
VIA rail canada. Transp. Res. Part B Methodol. 36(9), 755–778 (2002)

17. Mahjoub, A.R.: Polyhedral approaches, chap. 10. In: Paschos, V.T. (ed.) Concepts of Combinatorial
Optimization, pp. 261–320. Wiley, Hoboken, USA (2010)

18. Maróti, G.: Operations research models for railway rolling stock planning. Ph.D. thesis, Eindhoven
University of Technology, The Netherlands (2006)

19. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17(02), 179–184
(1970)

20. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. Wiley, New York (1988)
21. Peeters, M., Kroon, L.G.: Circulation of railway rolling stock: a branch-and-price approach. Comput.

Oper. Res. 35(2), 538–556 (2008)
22. Rouillon, S., Desaulniers, G., Soumis, F.: An extended branch-and-bound method for locomotive

assignment. Transp. Res. Part B Methodol. 40(5), 404–423 (2006)
23. Schrijver, A.: Minimum circulation of railway stock. CWI Q. 6, 205–217 (1993)
24. The Geometry Center of the University of Minnesota: The QuickHull’s official website. http://www.

qhull.org/
25. Varsi, G.: The multidimensional content of the frustrum of the simplex. Pac. J. Math. 46, 303–314

(1973)
26. Webster, R.: Convexity. Oxford University Press, New York (1994)
27. Wolfenden, K., Wren, A.: Locomotive scheduling by computer. In: Proc. British Joint Computer

Conference, vol. 1, pp. 31–37. IEEE Conference Publication No. 19, London, UK (1966)

123

http://www.qhull.org/
http://www.qhull.org/

Local convex hulls for a special class of integer... 919

28. Wolsey, L.A.: Integer Programming.Wiley-Interscience Series in DiscreteMathematics and Optimiza-
tion. Wiley, New York (1998)

29. Ziarati, K., Soumis, F., Desrosiers, J., Solomon, M.M.: A branch-first, cut-second approach for loco-
motive assignment. Manag. Sci. 45, 1156–1168 (1999)

123

	Local convex hulls for a special class of integer multicommodity flow problems
	Abstract
	1 Introduction
	1.1 A special class of multicommodity flow problems
	1.2 Local convex hull method
	1.2.1 Removing incompatible commodities
	1.2.2 A real-world example from Southern Railway
	1.2.3 Previous studies on local convex hulls

	2 The structure of local convex hulls
	2.1 Nonzero facets of main hull mathcalH'
	2.1.1 Preliminaries
	2.1.2 Number of nonzero facets of main hull

	2.2 Number of outside points
	2.2.1 Two special conditions
	2.2.2 Empirical experiments

	2.3 Non-standalone types

	3 A customized QuickHull algorithm to compute local convex hulls
	4 Computational experiments on local convex hulls
	4.1 Feasibility range of local convex hull method
	4.2 Number of points in the three hulls: empirical tests based on real-world and artificial instances
	4.3 Computing local convex hulls using standard QuickHull under rolling stock scheduling contexts
	4.4 Computing local convex hulls using standard and 2-facet QuickHull for more difficult cases
	4.4.1 Varying dimension n with fixed coupling upper bound u=9
	4.4.2 Varying coupling upper bound u with fixed dimension n=15

	5 Conclusions and future research
	Acknowledgments
	Appendix: Experiment results for Sects. 4.2 and 4.3
	References

