Comput Optim Appl (2010) 47: 431453
DOI 10.1007/s10589-008-9228-z

Using an iterative linear solver in an interior-point
method for generating support vector machines

E. Michael Gertz - Joshua D. Griffin

Received: 21 February 2006 / Revised: 13 August 2008 / Published online: 6 January 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract This paper concerns the generation of support vector machine classifiers
for solving the pattern recognition problem in machine learning. A method is pro-
posed based on interior-point methods for convex quadratic programming. This
interior-point method uses a linear preconditioned conjugate gradient method with a
novel preconditioner to compute each iteration from the previous. An implementation
is developed by adapting the object-oriented package OOQP to the problem structure.
Numerical results are provided, and computational experience is discussed.

Keywords Machine learning - Support vector machines - Quadratic programming -
Interior-point methods - Krylov-space methods - Matrix-free preconditioning

1 Introduction

Researchers have expressed considerable interest in the use of support vector machine
(SVM) classifiers in pattern recognition problems (see Burges [6]; Cristianini and
Shawe-Taylor [8]; and Vapnik [35].) The problem of generating an SVM classifier
can be reduced to one of solving a highly structured convex quadratic program. This
quadratic program can be very large, and one must exploit the structure of the problem
to solve it efficiently.

Several methods for solving the SVM quadratic subproblem have been devel-
oped. Active-set methods, such as those studied by Osuna et al. [29], Joachims [24],

E.M. Gertz ()
University of Wisconsin, Madison, USA
e-mail: emgertz@mac.com

J.D. Griffin

Computational Sciences and Mathematical Research Division, Sandia National Laboratories,
Livermore, CA 94551, USA

e-mail: Joshua.Griffin@sas.com

@ Springer

mailto:emgertz@mac.com
mailto:Joshua.Griffin@sas.com

432 E.M. Gertz, J.D. Griffin

Platt [31, 32], and Keerthi et al. [25] are popular, along with the more recent ap-
proaches Fan et al. [11], Glasmachers et al. [20], Dong et al. [37], and Schein-
berg [33]. Other methods have also been proposed, such as the Lagrangian methods
of Mangasarian and Musicant [28] and the semismooth methods of Ferris and Mun-
son [13]. Jung et al. [23] employ an approach that uses adaptive constraint reduction
to reduce the number of constraints considered at each iteration.

Recently, Ferris and Munson [12] have shown how to efficiently solve large prob-
lems, with millions of observations, using a primal-dual interior-point algorithm and
specialized linear algebra. They vastly reduce the size of the linear systems to be
solved by using the Sherman-Morrison-Woodbury (SMW) formula (see [21]), which
is equivalent to using the Schur complement arising in a block row-reduction of the
linear system. In this paper, we take a similar approach in formulating the SVM prob-
lem.

Interior-point methods based on the SMW formulation are relatively insensitive
to the number of observations [12]. However, the computational cost of using these
methods grows at least quadratically in the number of observed features. We present a
new technique for reducing the run time of interior-point methods that use the SMW
formulation when the number of observed features grows moderately large. In doing
s0, we increase the range of problems to which the SMW formulation may profitably
be employed.

In Sect. 2, we briefly review the theory of support vector machines. The use of
interior-point methods to generate SVM classifiers is considered in Sect. 3. The pro-
posed matrix-free iterative method is outlined in Sect. 5. Numerical experiments with
a specific implementation using the object-oriented QP solver OOQP [17, 18] are de-
scribed in Sect. 6.

2 Support vector machines

A learning machine finds a mapping, known as a classifier, between a population
of objects and a set of labels. For the pattern recognition problem, the labels are
“yes” and “no,” which we represent here as 1 and —1. A support vector machine is
a specific type of learning machine for the pattern recognition problem. The simplest
SVM generates a linear classifier—an affine function x > w’x — g that is used to
define the classifier

1 ifwlx—p=>0;
X = .
—1 otherwise.

Classifiers are created by determining appropriate values of w and 8 by observing the
features of a training set, a subset of the population that has a known classification.
Let n denote the number of observations in the training set. Let m be the number of
features in each observation vector x;, and let d; € {—1, 1} indicate its classification.
Let X denote the n x m matrix whose rows are the observations x;; in other words,
XT = (x; ---x,). Similarly, let D denote the n x n diagonal matrix diag(d). Then, a

@ Springer

Using an iterative linear solver in an interior-point method 433

linear SVM classifier may be created by finding w and g that solve the minimization
problem

. l 2 T
minimize > lwll; + e’z
subjectto D(Xw — Be) > e —z, M
220,

where e is a vector of all ones, z is a vector of appropriate size, and t is a positive
constant that is a parameter of the problem.

This formulation may be motivated by regarding e’z as a measure of the misclas-
sification of the training set by the generated classifier. The term e’z is known as
an £ penalty function in the theory of constrained optimization. A well-known prop-
erty of the £; penalty functions is that if there are values of w and 8 that separate
the training data correctly, then these values will be the solution of the optimization
problem for all sufficiently large t (see, e.g., Fletcher [15]). It is easily shown that
the distance between the two hyperplanes xl.T w—pf=1and xiTw — B =—1isgiven
by 2/||lw]2 (see e.g. Burges [6]). Thus the objective in the optimization problem (1)
can be seen as a balance between trying to minimize the empirical misclassification
error and trying to maximize the separation margin. (See Vapnik [35] for a discussion
of the composite objective and of why a larger separation margin may improve the
generalization capability of the classifier.)

The dual of the problem (1) is

1
minimize —e' v+ -v'DXX'Dv
e'v+ 5)

subject to eTDv=0, 0<v<re.

For the primal-dual methods described in Sect. 3, there is little difference between
the primal (1) and dual (2) formulations. It is not hard to see that by making ry,
identically zero in (5) and eliminating Aw from the system, one may obtain a primal-
dual iteration on the dual problem (2). However, the constraints of the dual problem
are mainly simple bounds, a fact that has been used to great effect in a number of
algorithms, notably the chunking algorithms introduced by Osuna et al. [29].

The dual formulation has also been used to generalize the classical linear prob-
lem (1). This generalization involves replacing the product DXX”D in (2) by a
matrix Q such that g;; = d;K(x;, x;)d;, where K is a given kernel function K :
N x RN — N. This yields a problem of the form

minimize —elv+ lUTQv
2 3)

subjectto e’Dv =0, 0 <v <re.

The n x n matrix Q is large and typically dense, making it inefficient to apply a
primal-dual iteration naively to (3). Under suitable conditions, however, the use of
a kernel function is equivalent to defining a transformation @ (x) that maps the data
into a larger, possibly infinite-dimensional feature space and finding a separating hy-
perplane in this space (see Burges [6] or Cristianini and Shawe-Taylor [8] for details).
For some kernels, particularly polynomial kernels, the mapping @ (x) is not hard to

@ Springer

434 E.M. Gertz, J.D. Griffin

define. For other kernels, it may be possible to find a low-rank approximation to @ (x)
for use in a primal-dual method. Low-rank approximations are an active field of re-
search; see for example A. J. Smola and B. Scholkopf [34], Fine and Scheinberg [14],
Bach and Jordan [3], Louradour et. al. [27], and Drineas and Mahoney [10].

3 Interior-point methods

The problem (1) has a convex quadratic objective and only linear constraints. A gen-
eral class of methods that have proven effective in solving such a problem is the
class of interior-point methods. For a discussion of such methods, see Wright [36].
The method we derive here, previously described in Gertz and Wright [18], is the
formulation used by the SVM module of OOQP. The method is similar to that de-
rived in [12]. The preconditioned conjugate gradient method described below may be
applied to either formulation.

As a general rule, primal-dual interior-point methods such as MPC operate by re-
peatedly solving Newton-like systems based on perturbations of the optimality con-
ditions of the problem. For the SVM problem (1), these optimality conditions are

w—Yv=r, =0, (4a)

d™v = pg =0, (4b)
te—v—u=r;,=0, (4¢)
Yw—-Bd+z—e—s=r;=0, 4d)
ZUe =0, (4e)

SVe=0, (4f)

s, u, v, >0, (4g)

where Y = DX and S, U, V, and Z are diagonal matrices whose diagonals are the
elements of the correspondingly named vector. These conditions are mathematically
equivalent to those given in [12]. In (4b) we use pg to denote the residual, rather than
rg, to emphasize that this quantity is a scalar.

The Newton system for (4a)—(4f) is

Aw—YTAv = —ry, (5a)

dTAv = —pg, (5b)

—Av — Au = —r,, (5¢)
YAw—dAB + Az — As = —ryg, (5d)
ZAu+UAz = —ry, (5e)

SAv+ VAs = —ry, (50)

where r, = Zu and r, = Sv. The MPC method solves systems with the same matri-
ces, but for which the residuals r,, and r, have been perturbed from their values in the
Newton system.

@ Springer

Using an iterative linear solver in an interior-point method 435

The matrix of this system is large but sparse and highly structured. We use reduc-
tions similar to those described in Ferris and Munson [12] to reduce the system to a
smaller dense system that may be efficiently solved by means of a Cholesky factor-
ization. First, we eliminate the slack variables u# and s from the system. Combining
(5¢) with (5e), and (5d) with (5f), we obtain the system

—Av+Z'UAz = —F,, (6a)
YAw —dAB + Az + V7 ISAv = —F, (6b)

where the residuals are defined to be 7, =r, + Z~'r, and 7, = r; + V" 'r,. We may
eliminate Az from this system to obtain

YAw —dAB + Q2Av=—rg,
where we define
=vls+ulz @)

and rg =7, — U~ ZF,.
In matrix form, the remaining equations are

I 0 =YT\ [Aw Fu
0 d’ ABl=—|ps
Y —d 2 Av ro

Simple row eliminations yield the block-triangular system

I+YT2"ly —yT-la 0\ (Aw rw + Y127 rg
—d'e~'y d'e7'a o||aB|=—|ps—d'2 rg
Y —d 2 Av ro

A final row-reduction may be used to solve for Aw and AS. Let us introduce the
notation

Fo=rw+YT027rg, (8a)
pp=pp—d 27 'rg, (8b)
ya=YT27 4, (8¢)
o=d'@27'd. (8d)

The scalar o is nonzero because §2 is positive definite and d is nonzero. Then Aw
and AB may be found from the reduced system

1+1/Tsz—1y—l MNAaw=—(r 15 9
S YdYa |Aw = rw+0,0ﬂyd (9a)

1
AB = —(=pp + yjAw). (9b)

o

@ Springer

436 E.M. Gertz, J.D. Griffin

The value of Av may be obtained by the forward-substitution
Av=—2 'rg+YAw —dAB). (10)

Equation (6a) may then be used to compute Az = —U~'Z(#, — Av). The values
of Au and As may be obtained through the equations Au = —Z~'(r, + UAz) and
As = -V~ (r, + SAv), which are derived from (5¢) and (5f), respectively.

Numerical experience has shown that the cost of solving this system is typically
dominated by the cost of forming the matrix

1
M=I+YT.Q’1Y—;ydy1, an

which is the coefficient matrix for (9a). In particular, if Y is dense, then O (nm?/2)
multiplications are needed to compute M explicitly. The next most significant op-
erations, in terms of multiplications, are the O (nm) multiplications needed to com-
pute products with ¥7 and ¥ when computing the residuals of the optimality con-
ditions (4), in computing 7, and y; in the row-reduction (8), and in computing Av
through (10). If M is computed explicitly, it requires O (m>/6) multiplications to
perform a Cholesky factorization of M. If m is much smaller than n, as is typical in
many applications, the cost of this factorization is minor.

4 Active-set methods

A broad class of methods that is commonly used to generate SVMs is the class of
active-set methods. The algorithms in this class differ considerably, but we call a
method for generating an SVM an active-set method if it solves the dual problem (3)
by performing iterations that explicitly fix a subset of the variables v at their current
value. A variable that is on one of its bounds at the solution is called active. Active-set
methods are based on the principle that if one knows which elements of v are active
at the solution, then finding the value of the other elements becomes a linear algebra
problem (see Fletcher [15] and Gill et al. [19]).

The set of variables explicitly fixed at an iteration of an active-set method is known
as the working set. A classical active-set method searches through the space of all
working sets to find the set of variables active at the solution. As such, the worst-case
running time of an active-set method is inherently exponential in 7, the number of
observations. Modern variants of the active set method, sometimes known as domain
decomposition methods, may add variables that are not on their bounds to the work-
ing set. Such methods do not necessarily terminate in a finite number of steps, because
unlike active set methods they do not have a finite number of possible configurations.
They do, however, limit the number of variables that change at each iteration, and
may therefore significantly reduce the cost of each iteration. The algorithm used by
the SVM'gM package is an example of such a method.

In practice, active-set methods are often able to find solutions quickly, while con-
sidering only a small subset of the search space of all possible working sets. They
are also often able to use only large working sets at every iteration, leaving only a

@ Springer

Using an iterative linear solver in an interior-point method 437

small subset of the variables off their bounds. Moreover, there are frequently iterates
that provide a good solution, if not an optimal solution, and so active-set methods
for SVMs may terminate early with an effective classifier. However, the number of
possible working sets, even for those methods that only use large working sets, grows
quickly in the number of observations, and an active-set method may require a large
number of iterations.

By contrast, interior-point methods can work in provably polynomial time, though
the method described here lacks the globalization technique necessary for this proof.
In practice, however, neither active-set methods nor interior-point methods tend to
behave according to their worst case bounds. The numerical experiments we present
in Sect. 6 are consistent with the observation that the number of iterations of an
interior-point method are only weakly dependent on problem size [12, 36]. Since the
cost of an iteration of an interior-point method based on the SMW [12] or a low-
rank update to a matrix inverse [14] is linear in the number of observations, interior-
point methods are a promising alternative to active-set methods when the number of
observations is large.

An advantage to active-set methods, however, is that the cost of a typical iteration
is relatively small. Since active-set methods differ greatly in how they define an iter-
ation, one can only speak in general terms about the cost per iteration. However, one
may observe that variables that are fixed on their bounds may temporarily be elimi-
nated from the problem (3), yielding a lower-dimensional subproblem. The number
of features effects the cost of computing elements of Q, but the cost of computing an
element of QO grows only linear in the number of features, whereas the cost of com-
puting M grows quadratically. The method we propose here avoids part of the cost
of using the SMW formulation by skipping, when possible, part of the computation
for the dual variables that approach their bounds. How this is done is the topic of the
next section.

It is worth repeating that active-set methods may be used directly with nonlin-
ear kernels, whereas the interior-point method presented here cannot. This is further
discussed in Sect. 7.

5 Preconditioned Krylov-space methods

As discussed in Sect. 3, the cost of computing the matrix M tends to dominate the
overall computing time. Recall that the matrix M, introduced in (11), is the coefficient
matrix of the linear system (9a). An alternative to computing M is to apply a matrix-
free iterative method to solving the system (9a). Iterative techniques for solving linear
systems, also known as Krylov-space methods, do not require that M be computed
explicitly; they require only a mechanism for computing matrix-vector products of
the form Mx.

A total of O(2nm + n) multiplications is needed to compute the matrix-vector
product Mx if the computation is done in the straightforward manner. On the other
hand, O (nm?/2) multiplications are required to compute M explicitly. Thus, in order
to gain any advantage from using an iterative method, the system must be solved in
fewer than m /4 iterations. For small values of m, there is little hope that this will

@ Springer

438 E.M. Gertz, J.D. Griffin

be the case, but if m is moderately large, then an iterative strategy can be effective.
However, the effectiveness and efficiency of an iterative method strongly depend on
the availability of an adequate preconditioner.

5.1 The SVM preconditioner

The Krylov-space method that we use is the preconditioned linear conjugate-gradient
(PCG) method. We do not discuss the PCG method in detail, but rather refer the reader
to Golub and Van Loan [21] and the references therein. A technique for defining a
suitable preconditioner is to find a matrix that in some sense approximates the matrix
of the linear system to be solved yet is inexpensive to factor using a direct method.
In this section we describe a suitable preconditioner for the linear system (11). In
Sect. 5.2, we investigate properties of this preconditioner that make it a good choice
for this system.

A predictor-corrector interior method solves two linear systems per iteration with
the same matrix but different right-hand sides. Thus, it might be supposed that a di-
rect factorization of M has some advantage over a Krylov-space method because the
factorization need be computed only once. To some degree, this supposition is true,
but the apparent advantage of direct methods is partially negated by three facts. First,
the preconditioning matrix used by the iterative method need be computed only once
per iteration; thus the iterative method derives some benefit from solving multiple
systems with the same matrix. Second, it is not necessary to solve both the predictor
and corrector steps to the same accuracy. Third, the right-hand sides of the systems
differ but are related. Therefore the computed predictor step can be profitably used as
an initial guess for the combined predictor-corrector step.

The product ¥ '2~!Y may be written as the sum of outer products

_ 1 1
IR ly = —yiyl - 4 —yuyl. (12)
w] Wy

Recall from (7) that
;i = i [vi + z2i /u;.

The complementarity conditions (4e) and (4f) require that at the solution v;s; =0
and u;jz; =0foralli €1, ..., n. A common regularity assumption, known as strict
complementarity, is that v; +s; > 0 and u; +z; > 0 at the solution. For any i for which
strict complementarity holds, the limit of w; as the iterations progress is necessarily
zero or infinity.

It follows that in the later iterations of a primal-dual algorithm, the terms in the
sum (12) have widely differing scales. A natural approximation to Y7271V is ob-
tained by either omitting terms in the sum (12) that are small or by replacing these
small terms by a matrix containing only their diagonal elements. We have found that
the strategy of retaining the diagonal elements is more effective.

Let A be the set of indices for which the terms in the sum (12) are large in a
sense that we make precise below. An appropriate preconditioner for M, which we

@ Springer

Using an iterative linear solver in an interior-point method 439

henceforth refer to as the SVM preconditioner, is then
1. ., 1 T . 1 T
Pa=1—=Ja5i+ Y —yiyi +)_diag(—yiy/), (13)
o ‘ wj 4 wj
icA igA
where yq = Y ; . 4(di /w;)y; and

5= YieA a)i_1 if A is nonempty;
1 otherwise.

If the preconditioner is chosen wisely, the size of A may be significantly smaller than
the number of observations, allowing P 4 to be formed at significantly less cost than
it would take to form M.

The PCG method is well defined and convergent if both M and preconditioning
matrix P4 are positive definite. As the following propositions show, this is always
the case.

Proposition 1 Let T be a nonempty subset of the integers from 1 to n. Let 2 be the
diagonal matrix whose diagonal elements are w; for i € I. Let d and Y be defined
similarly, with the d defined to be the vector whose elements are d; fori € Z and Y
the matrix whose rows are y; for i € I. Then the matrix

0=V13 'Y - (d"@7'a)" (T2 a) (¥ e a)"
is positive semidefinite.
Proof Because 27 1is positive definite, one may define the inner product
(Yo =x"2""y
and associated inner-product norm || x ||, = +/{x, x). For a vector v,
(Yv,d)?2
iz

T Va2
v Qu=|[Yvll;, -

But by the Cauchy-Schwartz inequality |(17v, d~)w| < ||I7v||w||c?||w. It immediately
follows that Q is positive semidefinite. O

Proposition 2 For any index set A, the matrix P 4 defined by (13) is positive definite.
Furthermore, the matrix M of (11) is positive definite.

Proof The preconditioner, P 4, has the general form
. 1
Pp=1+ Zdlag (—y,'yiT> + 0.
igA @i

If A is empty, then Q = 0. If A is nonempty, then Q satisfies the conditions of
Proposition 1. In either case Q is positive semidefinite. For any vector v, the product

@ Springer

440 E.M. Gertz, J.D. Griffin

vuT is positive semidefinite and therefore has nonnegative diagonal elements. Thus
P 4 is the sum of I with several positive semidefinite matrices. It follows that P4 is
positive definite.

If A contains all integers from 1 to n, then P4 = M. Hence, it immediately follows
that M is positive definite. |

Next we develop a rule for choosing the set A at each iteration. Consider the
quantity

w="s+u'z)/@2n),

and observe that by definition v;s; < p and u;z; < puforalli =1, ..., n. For a typical
convergent primal-dual iteration, we have

visi > pp and u;z; > pp (14)

for some positive value p that is constant for all iterations. Thus those w; that con-
verge to zero typically converge at a rate proportional to w. Similarly, those w; that
grow without bound typically grow at a rate proportional to 1/u.

Based on the observations above, we choose i € A if and only if

1
—ylyi = ymin (1, 1'/?), (15)
Wi

where the value y is a parameter of the algorithm. Eventually the test will exclude all
w; that are converging to zero at a rate proportional to .

Although one does not know a priori the most effective value for the parameter
y for a particular problem, we have found that an initial choice of y = 100 works
well in practice. Sometimes, however, typically at an early primal-dual iteration, the
PCG method will converge slowly or will diverge because of numerical error. In such
cases, we use a heuristic to decrease the value of y and include more indices in A.
We describe this heuristic in Sect. 5.3. We emphasize that y never increases during
the solution of a particular SVM problem.

5.2 Analysis of the SVM preconditioner

For any positive-definite A, the worst-case convergence rate of the conjugate-gradient
method is described by the inequality

k
*/E”), (16)

K
where k = k2(A) £ ||A||2]|A™" ||2, is the condition-number of A and |[v|l4 = vvTAv
for any vector v. (For a derivation of this bound, see, e.g., Golub and Van Loan [21].)

For the PCG method with the SVM preconditioner, the relevant condition number
is /<2(PJZ1M). In this section, we show that the definition (13) of P4, together with

llx —xxll2 <2)lx — XOIIA<

the rule (15) for choosing indices to include in A, implies that Kz(P;ll M) converges

@ Springer

Using an iterative linear solver in an interior-point method 441

to one as u converges to zero. Thus, as the optimization progresses, P4 becomes an
increasingly accurate preconditioner for M.

Note that both M and P4 have the form I + G, where G denotes a positive-
semidefinite matrix. This motivates the following proposition.

Proposition 3 If A =1 + G, where G is positive-semidefinite, then A is invertible,
and |A” 2 < 1.

Proof By definition of A,
lvll2l Avlla = v Av=v"v + 0" Gv > |v]i3,
holds for any vector v. But by Cauchy-Schwartz inequality, ||v|2]|Av]2 > v Av, and
so a factor of ||v]l, may be canceled from both sides of the preceding inequality
to conclude that ||Av||2 > ||v]|2. This inequality establishes the nonsingularity of A
because Av = 0 implies that v = 0.
If u is any vector such that |||, = 1, then

1= AA ullr > A ull,.

But | A" |2 = max,=1 A~ ull2, and so A7 |2 < 1. O
The preceding proposition yields a bound on Kz(P;llM).

Proposition 4 Let M and P 4 be defined as in (11) and (13), respectively. Then

Kka(PL'M) < (14 |M — Pall2)™.

Proof Note that PI‘IM =1+ P;l(M — P4). Therefore, from Proposition 3 it fol-
lows that

1P M2 <1+ ([P 12lM — Pyl < 1+ M — Palla.
It follows from a similar argument that
IPL M) 2 = IM~ Palla < 1+ M — Pylla.
The result follows. g

The SVM preconditioner is specifically designed to bound M — P 4.

Proposition 5 Let P4 be defined by (13), and let A be chosen by the rule (15) for
some y <y, where the upper bound y is independent of the iteration number. Then
there is a positive constant & such that, for any positive choice of the variables v, s,
u, and z, it holds that |M — P4|l» < &Eu'/?.

@ Springer

442 E.M. Gertz, J.D. Griffin

Proof In the case in which all the observation vectors are zero, the proposition is
obviously true because M = P 4. We assume for the remainder of the proof that at
least one of the observations is nonzero. With this assumption in mind, we define the
two positive constants

cr =max{|lyill2li=1,...,n},
co =min{||y;ll2 | i #0,i=1,...,n}

that we use below.
Consider the matrix difference

M—PAzxx

1 S 1. . 1
—wﬂ—m%ﬂﬂwg)+:mﬁ——mﬂ-
A\ w; & o

1

By rule (15), y/yi /w; < yul/? fori ¢ A. But then fori & A,

T T A 1/2
vy ll2/@i = vl yifoi < '’
Because y; y,.T is a rank-one matrix, its two norm is equal to its Frobenius norm.
Subtracting the diagonal elements from a matrix can only decrease the Frobenius
norm, and so

<npu'/? (17)

1) 1
Z H — iyl — dlag(—yi y,-T)
wj wj 2

igA

We now seek to establish an upper bound on

|

Consider first the case in which 4 is nonempty. If A is nonempty, we define the
necessarily nonnegative value ® = (o — 6)/6. We may expand the product

1. .+ 1 T
6)’(1)’(1 aydyd

2

1.

1
gyd§;= ;(1 +) (ya — a — Ya)) (ya — (va — id))T,

gather terms, and apply norm inequalities to determine that

O 5, /1406 .
< Zlal +2(—=) Iya = Falalvall2
2 o o

1., 1
H 5 Yd¥q pu Yd¥q
1+0 -

+ (==) ya = 5ull. (18)

Suppose A is nonempty, in other words that there is at least one i that satisfies
rule (15). Then,

min(l,,ul/z).

@ Springer

Using an iterative linear solver in an interior-point method 443

Similarly,
oc—0= wal < gymin (l,ul/z).
/ c
igA 2

Thus, whenever 4 is nonempty, it follows that

~ ~ ~ 2
@:"“’<1+"fc’)s"_"<1+<n—1>(c—1)>. (19)
o o o (6]

We emphasize that this bound is independent of the choice of y > 0 so long as A is
nonempty for that value of y.

By definition, y; =Y 7, (d;i /w;)y; and yg — Ya = Y ¢.A(di /@) y;. Therefore,

n n
llyill2 1
< —_—<c — =10, 20
||yd||2__2 o = 12@_ cl (20)
i=1 i=1
and for the same reason
|y — Yall2 < c10. (21)
Furthermore,
i L alyil 1y n,
lya=Falh = — 3 =>=<—3 === <—pu' (22)
2 igA i 2 igA i 2

Here again we have made use of rule (15). If 4 is nonempty, we may combine in-
equalities (17)—(22) to conclude that there is an £ > 0 so that |M — P4|l» < & u'/%.
If A is empty, then y; = 0 and idig/c? = 0. Therefore, if A is empty, it follows
from (20) and (22) that

1, 1 T
Hg)’d)’d Gydyd

1 T
=\ =YdYa
2 H o 2

Thus, there is an & for which [|M — P4]l2 < ’.;‘2/1,1/ 2 whenever A is empty. The result
follows by setting & = max (&1, &). O

5.3 Termination criteria for the PCG method

The PCG method does not solve linear systems exactly but only to some relative
tolerance that is typically much greater than machine precision. We have found it
advantageous to solve the early primal-dual systems to low accuracy and to increase
the accuracy as iterations proceed.

Consider a single primal-dual iteration, and let Mx = bp denote the system (9a)
with the right-hand side associated with the predictor step. Similarly, let Mx = b¢
denote the system associated with the corrector step. Let

rtol =min(10~", 107).

@ Springer

444 E.M. Gertz, J.D. Griffin

The PCG algorithm is terminated when the predictor step, x p, satisfies the condition
—-12
lbp — Mxp|2 <max(rtol x [bpll2, 107'7).
For the corrector step, xc, we tighten the tolerance and impose the condition
-2 -12
lbc — Mxcll» < max(lO x rtol x ||b¢c|l2, 10)

We maintain a count of the cumulative number of PCG iterations used in solving both
the predictor and corrector equations. While solving either system, if the cumulative
number of iterations exceeds

Imax = Max (m/8, 20),

then the value of y is decreased, thereby increasing the size of the active-set. The
preconditioner is then updated before proceeding to the next PCG iteration.
The following rule is used to adjust the value of y. For j > 1, let

kj =min (|A| + jlm/2], n).
Then, if d; is the k}h largest value of yiTy,- Jwi fori =1, ..., n, define

108
Vi= min(l,ul/z)’
and let A; be the set of indices chosen if y = y; in the rule (15). The intent of these
definitions is to ensure that the size of A; is at least k;. For each j > 1 in turn, we
use the indices in A j to form the preconditioner, reset the cumulative iteration count
to zero, and continue the PCG iteration for at most iy, additional iterations. Note
that A C A; and that A; C A; 4 for j > 1. Therefore for each j, the preconditioner
may be updated rather than being recalculated. Because the preconditioner is exact
for sufficiently large j, there must be some y; for which both predictor and corrector
systems converge. We choose this final y; to be y for subsequent iterations of the
optimization.

6 Numerical results

We present two sets of numerical tests of our new method, which in this paper we call
the SVM-PCG method. First we test the performance of the SVM-PCG on several
publicly available test sets. We compare its performance on these sets to a related
method that uses a direct linear solver, SVM-Direct, and to the active-set package
SVM'ight Second, we compare the new method against itself on artificially generated
datasets of varying size to test the method’s sensitivity to the number of features and
to the number of observations.

@ Springer

Using an iterative linear solver in an interior-point method 445

6.1 Implementation details

SVM-PCG solver was implemented using the object-oriented quadratic programming
code OOQP. The code implements Mehrotra’s Predictor-Corrector algorithm (MPC)
entirely in terms of an abstract representation of a convex quadratic program. We im-
plemented the SVM solver by providing concrete implementations of the necessary
abstract routines and data structures, tailoring these implementations to handle the
SVM-PCG subproblem efficiently. We use an algorithm, supplied by OOQP, that fol-
lows Mehrotra’s algorithm with minimal modifications necessary to handle quadratic,
rather than linear, programs. This algorithm is described in Gertz and Wright [18].

The implementation described in all tests below uses a sparse representation for
the matrix Y. To keep the results simple, we use the same implementation for all
tests, even those with mostly dense data. The observation data is stored internally
as 4-byte single precision floating point numbers, but these data are promoted to
double precision as they are used. Linear algebra operations are usually performed
using BLAS [4, 9] and LAPACK [2] routines, but operations not directly available in
BLAS were coded in C++. We implemented the linear conjugate gradient solver in
C++ using OOQP’s internal data structures.

Some of our tests compare SVM-PCG to SVM-Direct, an algorithm that uses a
direct linear solver to solve (9a). SVM-PCG and SVM-Direct are implemented using
the same code. To cause the implementation to solve (9a) directly, we set y =0 at
each iteration. With this setting, M = P 4. Thus, M is factored at each step, and the
linear conjugate gradient method converges in one iteration. When compared to the
cost of factoring M, the cost of performing a single iteration of the conjugate gradient
method is negligible.

For all problems described below, we use OOQP’s default starting point strategy,
described in [18]. The QP solvers in OOQP are said to converge when

w=ls+u’2)/2n) <107% and |r|e <107 x max;; |x;jl,
where

r= (rws p/g,rz,rs)T,

with ry, pg, 1z, and ry defined in (4).

OO0QP was compiled using GCC version 3.4.6 with the optimization option-O3.
All tests were performed on one processor of a quad-processor Intel Xeon 1.8 GHz
Intel processor CPU with 8 GB of RAM.

6.2 Svmliht

We compare SVM-PCG with the active-set package SVM! M The test sets we are
using should be of reasonable size for this package. In our tests, we use version
6.01, compiled using GCC version 3.4.6 with the optimization option-O3. We run
SVM!ight’s solver, svm_learn, with its default settings, except that we provide the
penalty parameter 7 as described below. The default error tolerance of SVM!ight jg
1073.

@ Springer

446 E.M. Gertz, J.D. Griffin

Table 1 Comparison of SVM-PCG, SVM-Direct, and SVMIENt for five data sets

Name Obs. Feat. Avg. SVM-PCG SVM-Direct svmMlight
Features seconds seconds seconds

Adult 32561 123 13.9 6.84 5.21 274

Website 49749 300 11.7 30.9 28.5 34.1

Faces 6979 361 360 18.4 113 93

Isolet 7779 617 615 36.4 330 5.11

MNIST 60000 780 150 217 888 52 min

6.3 Comparison of PCG on standard problems

We use the following six problem sets to test the new solver:

Adult The documentation accompanying this data set states, “The benchmark task
is to predict whether a household has >$50K income based on 14 other fields in
a census form. Eight of those fields are categorical, while six are continuous. The
six fields are quantized into quintiles, which yields a total of 123 sparse binary
features.” We obtained the test set directly from the SMO web site [30], but they
in turn obtained it from the repository of machine learning composed by Hettich,
Blake, and Merz [22] at the University of California, Irvine.

Website According to the accompanying documentation, “The benchmark task is
to predict whether web page belongs to a category based on the presence of 300
selected keywords on the page.” This benchmark is described in [32]. We obtained
this test set, specifically the set web-a.dist, from the SMO web site [30].

Face Recognition The faces dataset is a collection of 19 x 19 images, some of which
represent faces and some of which do not. There are two sets: a training set of 6,977
images and a testing set of 24,045 images. Each observation is “a single image,
histogram equalized and normalized so that all pixel values are between 0 and 1.”
We obtained from data from the MIT CBCL web site [7]. It is the exact data used in
Alvira and Rifkin [1].

Isolet Spoken Letter Recognition Database This database was created by Ron
Cole and Mark Fanty [22]. Data was generated from 150 subjects who spoke each
letter of the alphabet twice. Two data sets were provided, which we concatenated to
create a single data set with 7,779 data points and 617 features.

MNIST Handwriting Recognition The MNIST database, consisting of 60,000
handwritten digits, originates from AT&T Research Labs [26]. We obtained this
data from the LASVM website [5], where it is available in the correct input for-
mat for OOQP or SVM'g"(or LASVM). We used training set 8, which has 60,000
observations with 780 sparse, continuous features.

The Adult problem was solved with T = .05 as was done in [32]. The Faces prob-
lem was solved using 7 = 10, as was done in [38]. All others were solved with T = 1.
Table 1 compares the run times for SVM-PCG, SVM-Direct, and svMlight Times
shown for the SVM-PCG and SVM-Direct methods only include the time spent in
the QP solver, not the time taken to read the data and write the results. The times

@ Springer

Using an iterative linear solver in an interior-point method 447

Table 2 Times and iteration counts for SVM-PCG and SVM-Direct on five data sets

Name SVM-Direct SVM-Direct SVM-PCG SVM-PCG Avg. PCG
iterations seconds iterations seconds iterations
Adult 35 5.21 36 6.84 12.3
Website 93 28.5 93 30.9 12.9
Faces 26 113 26 18.4 16.5
Isolet 24 330 25 36.4 18.8
MNIST 48 888 47 217 35.6

shown for SVM'g" were reported by the svm_learn program and also appear to only
include time spent in the solver. The one exception to this is the time reported for
SVM'ight on MNIST. On this problem SVM'" reports a negative time, presumably
because the numerical type that it uses to measure time overflows. In this case, we
used the “time” built-in command of the BASH shell to obtain an estimate of elapsed
time.

Table 1 shows the number of observations for each data set, the number of features,
and the average number of nonzero features in each observation. The problem sets are
sorted by the number of nonzero data points in each set. The Adult and Website data
sets, in particular, are quite sparse, and have too few nonzero features for the PCG
method to show an advantage. Table 1 does demonstrate, however, that the sparse
implementation is efficient, and the extra overhead of applying the PCG method is
small. For the datasets with a moderately large number of nonzero features, the PCG
method shows a clear improvement.

Table 1 shows that on these datasets, the PCG method is competitive with
SVM'ight The time required by SVM'€ht is not entirely predictable, though it gen-
erally needs more time on sets with larger numbers of observations. For the Isolet
problem, SVM'" is much faster.

Table 2 shows a more detailed comparison of the SVM-PCG and SVM-Direct
methods. Columns two and three compare the number of MPC iterations required by
each method to solve each the test problems. The iteration counts are nearly identical.
The SVM-PCG method does not require more MPC iterations, even though it solves
the linear systems used in each MPC iteration to a more relaxed tolerance.

The final column of Table 2 shows the average number of SVM iterations per MPC
iteration. The average number of PCG iterations is modest for each of these problems.
Note that we report the average per MPC iteration, not per linear solve. The average
per MPC iteration is the more relevant number because SVM-PCG uses the solution
from the predictor step as a starting point for the corrector step. OOQP’s default start
strategy [18] also performs a linear solve. To be conservative, we include the itera-
tions from the start strategy in the total number of PCG iterations when computing
the average.

6.4 Tests on sampled data

We sample data from the Faces database to test the effectiveness of the PCG method
for different values of m and n, where m is the number of features and » the number

@ Springer

448 E.M. Gertz, J.D. Griffin

Table 3 Times and iterations counts for data sets formed by sampling observations from Faces

Observations MPC SVM-Direct SVM-PCG SVM-PCG Avg. PCG
iterations seconds iterations seconds iterations
10000 32 197 32 339 20.8
15000 39 363 39 70.2 25.8
20000 43 514 44 112 27.9
25000 47 696 47 148 29.5
30000 53 981 54 209 30.6

Table 4 Times and iterations counts for data sets formed by sampling features from Faces

Features MPC SVM-Direct SVM-PCG SVM-PCG Avg. PCG
iterations seconds iterations seconds iterations

50 54 22.1 55 17.7 11.8

150 27 57.3 29 28.3 153

250 60 354 62 128 23.1

350 34 591 33 180 17.5

of observations. To test different values of m we must sample features, and therefore
create artificial problems. We sample features, rather than resizing images, to avoid
overly smoothing the data.

We prefer sampling to using purely randomly generated data. For iterative linear
solvers, uniformly distributed random data tend to create simple problems. In gen-
eral, a randomly generated square matrix tends to be well-conditioned. PCG linear
solvers perform well on such matrices. In the SVM-PCG algorithm, there is a com-
plex interaction between the MPC and PCG methods that makes it difficult to analyze
exactly why the PCG does well on random data, but we have found it to generally be
the case.

We sample without replacement from the data set formed by concatenating both
the testing and training sets of Faces. The combined data sets has 361 features and
31022 observations. Table 3 shows the results of running both SVM-PCG and SVM-
Direct on five data sets that each have 361 features but that have either 10000, 15000,
20000, 25000, or 30000 observations. Similarly, Table 4 shows the results of running
the same algorithms on four data sets with 31022 observations, but having either 50,
150, 250, or 350 features. Tables 3 and 4 have the same format at Table 2.

Figure 1 plots CPU time against number of observations for both the SVM-Direct
and SVM-PCG methods. Figure 2 plots CPU time against number of features for the
same methods. These figures are another view of the timing data in Tables 3 and 4
respectively.

For each of the sampled data sets, the SVM-PCG method and the SVM-Direct
method required a similar number of MPC iterations. Furthermore, the average num-
ber of PCG iterations per MPC iteration remains modest; for all these sets it was less
than 33. For the data shown in Table 3 and Fig. 1, growth in CPU time is faster than

@ Springer

Using an iterative linear solver in an interior-point method 449

1000 ‘ g

- [G—£] SVM-Direct ,
& SVM-PCG

800

600

CPU seconds

400

0 \ \ \
10000 15000 20000 25000 30000
Observations

Fig.1 The CPU time needed by SVM-PCG to generate an SVM for subsets of Faces created by sampling
observations

600 I

B 3—£] SVM-Direct 7
500 &0 SVM-PCG |
400 — —

CPU seconds
w
o
o
I

200 — —
100 — —
0 \ \ \
0 100 200 300 400
Features

Fig.2 The CPU time needed by SVM-PCG to generate an SVM for subsets of Faces created by sampling
features

linear in the number of observations, which is expected. The number of multiplica-
tions needed to perform the forward multiplication in a PCG iteration is linear in the
number of observations, and the number of MPC iterations generally grows weakly

@ Springer

450 E.M. Gertz, J.D. Griffin

with size. Table 4 and Fig. 2 show a complex relationship between the number of
features and the CPU time. This reflects the fact that the iteration counts of the MPC
and PCQG iterations are strongly influenced by the data itself, rather than just by the
size of the data. While it is not possible to predict CPU time based on data size, Ta-
bles 3 and 4 show acceptable performance and do not show excessive growth as the
problem size increases.

7 Discussion

We have described a new technique for reducing the computational cost of generat-
ing a SVM using an interior-point method based on the SMW formulation. The most
time-consuming step in using the SMW formulation is obtaining a solution to (9a).
We have implemented a solver for (9a) based on the preconditioned conjugate gradi-
ent method. This method is applicable when the number of features in the problem
is moderately large. Thus, we have extended the number of problems to which the
interior-point method may practically be applied. Because the cost-per-iteration of the
interior-point method is linear in the number of observations, and because the number
of iterations of the interior-point method is only weakly dependent on size [12, 36],
the new method is promising for generating SVMs from a relatively large number of
observations.

We have adapted the object-oriented interior-point package OOQP to solve the
SVM subproblem using the PCG method with a new preconditioner that is based
on the structure of the SVM subproblem itself. We denote this implementation SVM-
PCG. We have presented numerical experiments that compare SVM-PCG to a related
algorithm, SVM-Direct, that solves the linear system (9a) using a direct linear solver.

In our tests, when the average number of nonzero features per observation was
moderately large, the SVM-PCG method was superior to the SVM-Direct methods.
As our tests show, the time taken by the SVM-PCG method is not entirely predictable
because it depends not only on the data set size, but also on the content of the data
itself. Thus it is not possible to give a precise lower bound on the number of features
for which the SVM-PCG method is superior to SVM-Direct. However, the SVM-
PCG method is efficient even for those data sets in our tests, Adult and Web, that
are too sparse to benefit from the use of the PCG linear solver. This suggests that the
cost of incorrectly choosing to use the SVM-PCG, rather than the SVM-Direct, is not
large.

We have also compared SVM-PCG with the active-set method SVM! €M and have
shown that on our problem set, the new method is competitive. However, one must
be careful when interpreting these data. SVM!"€h, and active-set methods in general,
can solve the SVM subproblem quickly. Moreover, SVM!™ has capabilities that our
implementation does not, including support for nonlinear kernels. Active-set meth-
ods, however, are inherently exponential algorithms and can require a large number
of iterations.

Active-set methods have an important advantage over interior-point methods in
that they can use nonlinear kernels directly. The radial basis function (RBF) kernel is
a popular nonlinear kernel, and problems that use a RBF kernel cannot be mapped to

@ Springer

Using an iterative linear solver in an interior-point method 451

a finite dimensional linear SVM. Ultimately, the value of the method presented here
when used with a nonlinear kernel will depend on the effectiveness of these low-rank
approximations. The efficiency of producing such approximations is also relevant,
though the approximation need only be computed once. For instance, the cost of
producing a low-rank approximation using a QR decomposition is proportional to
the cost of an interior-point iteration of the resulting low-rank SVM using a dense
factorization. The use of low-rank approximations with this method is a topic for
further research. The PCG method, however, may allow for the use of higher-rank
approximations than were previously possible.

Some SVM problems use a very large number of sparse features. Clearly there is
a limit to the number of features beyond which the PCG method will have difficulty.
At the very least, it would not make sense to do a dense factorization of the pre-
conditioner if the number of features exceeds the number of observations. One must
currently use active-set methods to solve such problems. Further research would be
needed to determine how an interior point method can be applied in this case.

A natural extension of this PCG method would be to implement a version that may
run in parallel on multiple processors, as the linear algebra operations of the MPC
method may be performed using data-parallel algorithms. The primal-dual interior-
point algorithm must solve several perturbed Newton-systems. Because the number
of Newton-like systems that must be solved is typically modest, the cost of forming
and solving each system tends to dominates the computational cost of the algorithm.
Thus a strategy that reduces the solve time for (9a), can reduce the time required to
compute a classifier.

In this paper we applied serial preconditioned iterative methods to solve (9a).
A similarly motivated parallel direct-factorization approach, resulting in substan-
tial time reductions, was also explored in [16]. In the parallel approach, Y7 2~y
from (9a) was formed using multiple processors and the equation was solved using a
direct-factorization of M (defined in (11)).

For a PCG based method, one would form P4, which has the same structure as
M, in parallel. The matrix-vector operations of the conjugate-gradient method itself
could be performed in parallel on distributed data. However, in order to maximize
the effectiveness of a parallel iterative method, necessary precautions would need be
taken to ensure a proper distribution of data. The worst case scenario when forming
P 4 in parallel would occur if all vectors corresponding to A were to lie on a single
processor. In this cases, little gain would be seen over a serial approach. Robust and
effective methods of balancing the cost of forming P 4 across available processors
are the subject of further research.

Acknowledgements This work was supported by National Science Foundation grants ACI-0082100
and the Mathematical, Information, and Computational Sciences Division subprogram of the Office of
Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract
W-31-109-ENG-38 and the Mathematical, Information, and Computational Sciences Program of the U.S.
Department of Energy, under contract DE-AC04-94AL85000 with Sandia Corporation. The second author
was supported in part by the National Science Foundation grants DMS-0208449 and DMS-0511766 while
a graduate student at the University of San Diego California.

We thank Todd Munson for informative discussions about support vector machine solvers. We thank
Philip Gill, Steven J. Wright, and the anonymous referees for their careful reading of the paper and helpful
suggestions.

@ Springer

452 E.M. Gertz, J.D. Griffin

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Alvira, M., Rifkin, R.: An empirical comparison of snow and svms for face detection. A.I. memo
2001-004, Center for Biological and Computational Learning, MIT, Cambridge, MA (2001)

2. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammar-
ling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK User’s Guide. SIAM, Philadelphia
(1992)

3. Bach, ER., Jordan, M.1.: Predictive low-rank decomposition for kernel methods. In: ICML ’05: Pro-
ceedings of the 22nd International Conference on Machine Learning, pp. 33—40. ACM Press, New
York (2005)

4. Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M., Kaufman,
L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., Whaley, R.C.: An updated set of basic linear
algebra subprograms (BLAS). ACM Trans. Math. Soft. 28, 135-151 (2002)

5. Bottou, L.: LaSVM. http://leon.bottou.org/projects/lasvm/

6. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl.
Discov. 2, 121-167 (1998)

7. CBCL center for biological & computational learning. http://cbcl.mit.edu/projects/cbcl/

8. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University
Press, Cambridge (2000)

9. Dongarra, J.: Basic linear algebra subprograms technical forum standard. Int. J. High Perform. Appl.
Supercomput. 16, 1-111 (2002), 115-199

10. Drineas, P., Mahoney, M.W.: On the Nystrom method for approximating a gram matrix for improved
kernel-based learning. J. Mach. Learn. Res. 6, 2153-2175 (2005)

11. Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working set selection using second order information for training
support vector machines. J. Mach. Learn. Res. 6, 1889-1918 (2005)

12. Ferris, M.C., Munson, T.S.: Interior point methods for massive support vector machines. SIAM J.
Optim. 13, 783-804 (2003)

13. Ferris, M.C., Munson, T.S.: Semismooth support vector machines. Math. Program. 101, 185-204
(2004)

14. Fine, S., Scheinberg, K.: Efficient SVM training using low-rank kernel representations. J. Mach.
Learn. Res. 2, 243-264 (2001)

15. Fletcher, R.: Practical Methods of Optimization. Constrained Optimization, vol. 2. Wiley, New York
(1981)

16. Gertz, E.M., Griffin, J.D.: Support vector machine classifiers for large data sets, Technical memo
ANL/MCS-TM-289, Argonne National Lab, October 2005

17. Gertz, E.M., Wright, S.J.: OOQP user guide. Technical Memorandum ANL/MCS-TM-252, Mathe-
matics and Computer Science Division, Argonne National Laboratory, Argonne, IL (2001)

18. Gertz, E.M., Wright, S.J.: Object oriented software for quadratic programming. ACM Trans. Math.
Softw. (TOMS) 29, 49-94 (2003)

19. Gill, PE., Murray, W., Wright, M.H.: Practical Optimization. Academic, London (1981)

20. Glasmachers, T., Igel, C.: Maximum-gain working set selection for SVMs. J. Mach. Learn. Res. 7,
1437-1466 (2006)

21. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Balti-
more (1996)

22. Hettich, C.B.S., Merz, C.: UCI repository of machine learning databases (1998). http://
www.ics.uci.edu/~mlearn/MLRepository.html

23. In Hyuk Jung, A.L.T., O’Leary, D.P.: A constraint reduced IPM for convex quadratic programming
with application to SVM training. In: INFORMS Annual Meeting (2006)

24. Joachims, T.: Making large-scale support vector machine learning practical. In: Scholkopf, B., Burges,
C., Smola, A. (eds.) Advances in Kernel Methods—Support Vector Learning, pp. 169-184. MIT
Press, Cambridge (1998)

25. Keerthi, S., Shevade, S., Bhattacharyya, C., Murthy, K.: Improvements to Platt’s SMO algorithm for
SVM classifier design. Neural Comput. 13, 637-649 (2001)

@ Springer

http://leon.bottou.org/projects/lasvm/
http://cbcl.mit.edu/projects/cbcl/
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

Using an iterative linear solver in an interior-point method 453

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recogni-
tion. Proc. IEEE 86, 2278-2324 (1998)

Louradour, J., Daoudi, K., Bach, F.: SVM speaker verification using an incomplete Cholesky decom-
position sequence kernel. In: IEEE Odyssey 2006: The Speaker and Language Recognition Workshop,
IEEE, June 2006

Mangasarian, O.L., Musicant, D.R.: Lagrangian support vector machines. J. Mach. Learn. Res. 1,
161-177 (2001)

Osuna, E., Freund, R., Girosi, F.: Improved training algorithm for support vector machines. In: Pro-
ceedings of the IEEE Workshop on Neural Networks for Signal Processing, pp. 276-285. (1997)
Platt, J.: Sequential minimal optimization. http://research.microsoft.com/en-us/projects/svim/default.
aspx

Platt, J.: Fast training of support vector machines using sequential minimal optimization. In:
Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods—Support Vector Learn-
ing, pp. 41-65. MIT Press, Cambridge (1998)

Platt, J.: Sequential minimal optimization: A fast algorithm for training support vector machine. Tech-
nical Report TR-98-14, Microsoft Research, (1998)

Scheinberg, K.: An efficient implementation of an active set method for SVMs. J. Mach. Learn. Res.
7,2237-2257 (2006)

Smola, A.J., Scholkopf, B.: Sparse greedy matrix approximation in machine learning. In: Proceedings
of the 17th International Conference on Machine Learning, Stanford University, CA, pp. 911-918.
(2000)

Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

Wright, S.J.: Primal-Dual Interior—Point Methods. SIAM Publications. STAM, Philadelphia (1996)
Xiong Dong, J., Krzyzak, A., Suen, C.Y.: Fast SVM training algorithm with decomposition on very
large data sets. IEEE Trans. Pattern Anal. Mach. Intell. 27, 603-618 (2005)

Yang, M.-H.: Resources for face detection. http://vision.ai.uiuc.edu/mhyang/face-detection-survey.
html

@ Springer

http://research.microsoft.com/en-us/projects/svm/default.aspx
http://research.microsoft.com/en-us/projects/svm/default.aspx
http://vision.ai.uiuc.edu/mhyang/face-detection-survey.html
http://vision.ai.uiuc.edu/mhyang/face-detection-survey.html

	Using an iterative linear solver in an interior-point method for generating support vector machines
	Abstract
	Introduction
	Support vector machines
	Interior-point methods
	Active-set methods
	Preconditioned Krylov-space methods
	The SVM preconditioner
	Analysis of the SVM preconditioner
	Termination criteria for the PCG method

	Numerical results
	Implementation details
	SVMlight
	Comparison of PCG on standard problems
	Tests on sampled data

	Discussion
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

