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Abstract
This research introduces a systematic and multidisciplinary agent-based model to 
interpret and simplify the dynamic actions of the users and communities in an evo-
lutionary online (offline) social network. The organizational cybernetics approach is 
used to control/monitor the malicious information spread between communities. The 
stochastic one-median problem minimizes the agent response time and eliminates 
the information spread across the online (offline) environment. The performance of 
these methods was measured against a Twitter network related to an armed protest 
demonstration against the COVID-19 lockdown in Michigan state in May 2020. The 
proposed model demonstrated the dynamicity of the network, enhanced the agent 
level performance, minimized the malicious information spread, and measured the 
response to the second stochastic information spread in the network.

Keywords  Systems thinking · Complexity theory · System dynamics · 
Organizational cybernetics · Stochastic one-median problem · Misinformation 
mitigation · COVID-19 · Information diffusion delay · Agent-based model

1  Introduction

The complexities in monitoring, controlling, and analyzing the spread of so-called 
conspiracy theories, misinformation, disinformation, and fake news on social net-
works (in this research, we call malicious information) make it a challenging and 
NP-hard problem to solve. Many users in social networks have dynamic interactions, 
where the actions of the users impact both online and offline (“Robinhood, Reddit 
CEOs to Testify Before Congress on GameStop” 2021). For example, misinforma-
tion intends to mislead society during COVID-19. It has been challenging to track 
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the traveling information across social networks, analyze the impacted user and 
communities, and measure the consequences of misinformation over time (“Rob-
inhood, Reddit CEOs to Testify Before Congress on GameStop” 2021) (Wasson 
2005). However, limiting the spread of misinformation in the context of COVID-19 
is extremely important. The information may start from rumors spreading conspir-
acy theories and then quickly influence the social media network. The misinforma-
tion could distract the understanding of many online/offline communities and, later 
proven false, could bring harmful consequences for individuals and society over 
time (Shahi et al. 2021).

Moreover, to analyze the online/offline environments, we would need fast and 
automated response strategies. Over the last few years, many methods have been 
proposed to study the spread and limitation of misinformation between communi-
ties, individuals, and online/offline social networks. Authors in Shahi et al. (2021) 
proposed an exploratory study into the propagation and content of misinformation 
on Twitter. Likewise, other scholars studied limiting the spread of misinformation in 
social networks by adopting accurate information rather than the false information 
campaign on online social networks, as investigated in Budak et  al. (2011). Also, 
misinformation spreads on social media, where the elements governing misinforma-
tion circulating among Facebook’s users consuming information related to scientific 
and conspiracy news, addressed by Vicario et al. (2016). However, optimizing the 
spread of misinformation is an NP-hard problem due to the structures of social net-
works (Budak et al. 2011). This analysis involves many variables like the behavior 
of the users and communities, information propagation across the social media net-
works, and the dynamicity of the reactions. Likewise, traditional graph theories such 
as the centrality and modularity methods fall short of identifying the focal informa-
tion spreaders in online social media networks (Şen et al. 2016).

In this paper, we implemented a systematic model to enhance the analysis process 
in dynamic social networks. This research introduces advanced Systems Thinking 
model into the social network analysis. A systems design model can visualize or 
conceptualize any actions in the social network environment and perform a situa-
tional assessment of social network conditions. The major challenge in this multi-
disciplinary model is formulating, developing, and synthesizing solutions that can 
respond to user operational needs and constraints. Similarly, this systems design 
should evaluate and select the optimal solutions with acceptable risk to satisfy the 
social network stakeholders’ operational needs. Also, it could provide the best val-
ues, enhance the agent performance, observe the performance or the lack thereof, 
and analyze the contributory causes and effects in the social network (Wasson 2005).

For this research, we utilized the Organizational Cybernetic Approach (OCA) 
(Mann 2004) to control the communications between communities in online and 
offline social networks and the stochastic one-median problem (Ahituv and Berman 
1988) to minimize the response time to any stochastic malicious information spread 
across the network. The resultant approach measures the performance of the opera-
tion level’s reaction to the information spread and better decision-making. Further-
more, the proposed model should select the optimal solutions that provide accept-
able strategies to enhance the operational actions to respond to the misinformation 
on social media networks. In addition, this research makes several contributions to 
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mitigating the COVID-19-related misinformation spread. In the first contribution, 
we determine the upper bound (worst case scenario) of the misinformation spread-
ers in dynamic online communities. The second contribution is to implement a pro-
cedure to evaluate the performance and availability of the agents interacting with 
online and offline social networks. The third contribution is to introduce a math-
ematical model to minimize the response time to COVID-19 misinformation spread 
on social networks and evaluate metrics that would reduce the agents’ time to 
respond to any new misinformation spread in networks.

The rest of the paper is organized as follows. Literature review in Sect.  2, Sect. 3 
explains the solution strategy, Sect. 4 discusses the results, and Sect.  5 presents the 
conclusion and future work.

2 � Related work

In this section, we survey the current state of the research relevant to systems think-
ing and model, agent-based models in social networks, and the operational levels 
methods applied to solve real-world problems.

Alassad et  al. (Alassad et  al. 2020) presented an agent-based and theoretical 
approach to applying systems thinking and modeling in social networks. Using a 
Twitter network, the authors implemented systems thinking methods to illustrate 
noncooperative actions from two organizations to influence online and offline envi-
ronments. The agent-based model employed to study the dynamics of COVID-19 
information spread (Rajabi et al. 2021), where Epstein’s hypothesis “coupled conta-
gion dynamics of fear and disease” was used to explore fear-driven behavior adap-
tations and their impact on efforts to combat the COVID-19 pandemic. Similarly, 
the machine learning approaches applied to study and detect the online fake news 
and misinformation related to the COVID-19 pandemic (Bojjireddy et al. 2021), a 
multi-dimensional method implemented by organic the fake news. Likewise, social 
support, text mining, and media richness theories were employed to explore the dif-
ferent types of misinformation dissemination on social networks. The online rumor 
reversal model was introduced by Wang et al. (2021). The genetic algorithm-based 
rumor mitigation and precedence-based competitive cascade model propagated 
competing for rumor and counter-rumor cascades in online social networks. These 
models were used to find the minimal set of seed users for the counter-rumor.

Moreover, utilizing the agent-based models has advantages in detecting 
COVID-19-related misinformation on social media. Such models would control 
the complexity of the analysis and the costs of fact-checking or annotation over 
time. In addition, the agent-based models can control and scale up real-world 
experiments, and nonlinear dynamics can be introduced, which poses a significant 
problem in conventional experiments (Retzlaff et  al. 2021). Also, agent-based 
models were used to investigate the formation of opinions in interacting commu-
nities and whether polarization or separation emerged from this interaction (Heg-
selmann and Krause 2002). Likewise, agent-based models can better explore the 
behavior of the users- and large-scale communities and construct formal models 
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where the large-scale or global behavior is required to verify the model against 
the real-world phenomenon (Jones Jan. 2007).

Additionally, agent-based models study fear as an essential factor in users’ 
behavior during an epidemic, as investigated in Jones Jan. (2007). Finally, (Lor-
enz et  al. 2021) used agent-based models to study the different behavioral out-
comes from social theories, psychological theories, and empirical data that can 
be used to validate the model’s results in the real world. The agent-based models 
were implemented in the social network (Steinbacher, et al. 2021), including dif-
ferent components that enable agents to make decisions, involve different envi-
ronments, and adjust the rules/policies in real time.

Many other empirical studies introduced systems thinking and modeling meth-
ods as advanced classes of intelligence paths to solve many complex social net-
work problems, as (Şen et al. 2016) explained. In this field, the Casual Feedback 
method presented in the paper (VanderWeele and An 2013) investigated some of 
the variables needed in complex systems modeling and analysis. Muchnik et al. 
(Muchnik et  al. 2013) focused on implementing power laws in social networks 
and large-scale communities. Du et al. (Du et al. 2018) explained the boundary 
conditions approach in systems thinking and modeling. Control theory (Weng, 
et  al. 2013) and information theory (Peng et  al. 2017) are implemented to sup-
plement the decision based on the game theories in social networks (Chan and 
McCarthy 2014), where authors stated that these combinations could bring 
optimized solutions and enable them to model different agent-based complex 
problems.

Furthermore, to optimize the decisions of the agent levels in real-time, many 
operational methods are available to model the stochastic incidents and the interac-
tions between operation teams and the environments’ stochastic incidents in differ-
ent areas. For example, how do we enhance the performance of the operation team 
in a fire department to respond to an accident, travel and clear the crash, and void 
the traffic during rush hours? How do we enhance the operation level to react to any 
shutdown in a telecommunication network and restore the service quickly to reduce 
the losses in the network? Hakimi (Hakimi 1964) proposed the �-median location 
model to locate the optimal depots of the operation level when a particular set of 
failures occur in the infrastructure networks. In this research, the author minimized 
the shortest path between nodes and reduced the number of hubs in the network. 
Patterson et  al. (Patterson 1995) proposed a relaxed �-median model by allowing 
different service regions to overlap and reducing the loss of calls in a telecommu-
nication network. Love et al. (Love et al. 1988) proposed a model to illustrate the 
interactions between operation levels, where the �-median algorithm is represented 
as a bipartite graph.

On the other hand, Odoni (“Facility-Location Models”, in Location, Transport 
and Land-Use 2005) stated that the �-median model could build a queuing situation 
affected by extended arc operations. However, Chan et  al. (Chan 2005) suggested 
that this model becomes analytically complex when the number of operation centers 
goes beyond one location. In an alternative study, Ahituv et al. (Ahituv and Berman 
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1988) proposed a model to partition the network into smaller subnetworks, each 
capable of independent operation.

For this research, we are implementing the stochastic one-median problem to 
enhance the performance of the operation level in response to abnormal informa-
tion spread in social networks. However, the unpredictability in the behaviors of 
the online users, the dynamics of the communities, and the massive growth in 
social networks over time increased the complexity of the analysis, which makes 
the above methods fall short in modeling the behavior of online communities. For 
this analysis, multidisciplinary approaches are needed to incorporate comprehen-
sive strategies to analyze the local relationships among users and communica-
tions between communities over time and allocate all positive/negative feedback 
from the online users to online/offline environments. For this purpose, we pro-
posed a systematic agent-based approach to enhance the communication between 
the online environment and the organization/operation level to reduce the spread 
of malicious information across the network, monitor/record the information flow 
among online communities/users over time, and responses to information spread 
in real-time.

3 � Methodology

In this section, the Systems Thinking methods are applied to simplify the interactions 
in a dynamic social network.

3.1 � Problem definition

Consider a social network G = (N,A) consisted of the distinct nodes sets, N = 
{1, 2,… , n} and the set of edge (links)A = {(i, j), (k, l),… , (s, t)} represented by 
directed node pair combinations going from community i to community j . Communi-
ties i, j are associated with numerical values representing the number of intra edges 
( dj,i ) between communities i, and j . 

(
hj
)
 represents the communities’ maximum rate of 

the malicious information spread 
(
hj =

|Nj|
N

)
 , and 

(
�i
)
 is the proportion rate of opera-

tion level that can be monitored in the network.
With the complexities in social network analysis and the unpredicted behavior of 

online users and communities, this research should be able to track down the users’ 
actions, measure the agents’ performance, and monitor the dynamic environment 
in real time. Given all the above and utilizing the systems thinking and operational 
methods, the challenge is to design and model a system able to simplify the social 
network interactions, minimize the malicious information spread between commu-
nities, enhance the performance of the operation level, provide the implementation 
level of service in monitoring the (offline) online social networks, and optimize the 
community selections that minimize the response time to any malicious informa-
tion spread in G.
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4 � Data collection

This research used a Twitter API and a Python script to collect posted tweets dur-
ing the Covid-19 pandemic. For this purpose, we used Python libraries like Scarpy 
(Chan 2005) and Tweepy (Girvan and Newman 2002). Also, we obtained a preset 
list of co-hashtags related to different events on the Twitter Network. The collected 
co-hashtags network was connected to #MichiganProtest, #MiLeg, #Endthelock-
down, and #LetMiPeopleGo hashtags from April 1st through May 20th, 2020 (Alas-
sad et al. 2020). The behavior recorded polarized actions regarding COVID-19-re-
lated topics on Twitter, where some communities spread misinformation about the 
COVID-19 lockdowns in Michigan State. This dataset revealed 3,632 nodes with 
352 communities using the Modularity method (Girvan and Newman 2002). The 
data collected resulted in a 16,383 Tweets network with 9,985 unique User Ids as 
shown in Fig. 1. The model focuses on the top five communities, as these were the 
communities that included the highest number of interactions between users. Fig-
ure 2 shows the Twitter network for the COVID-19 anti-lockdown protest in Michi-
gan, where the top five communities with the highest number of users represent all 
other minor communities. Over the protest campaign from May 12th through May 
15th, users on either side of the movements, pro-gun and pro-peace, posted tweets 
related to influence and boosting dissemination of their agenda analysis. It is worth 
mentioning here that the model’s findings do not depend on the data sample size; the 
only change that would occur if we add more data or if we remove, for that matter, 
for this model, is the number of communities that change. As the number of commu-
nities changes, the interaction between the communities shown in Fig. 1 will change.

Fig. 1   Organizational cybernetic approach
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4.1 � Organizational cybernetic approach (OCA)

Organizational cybernetics is a systems thinking method that controls communi-
cation between systems and environments, including negative and positive feed-
back and unexpected behaviors from all users and communities in social network 
systems. It simplifies the analysis of the increased dynamicity in the entire system 
(Mann 2004), simultaneously recording changes in the behaviors of all parts of 
the system and the environment (Budak et  al. 2011). OCA should help all lev-
els monitor online social networks, perfectly optimize outcomes, and inject new 
inputs into the environment concerning the dynamic changes (outputs) and feed-
back from online social networks simultaneously.

The OCA is structured to communicate with the online environment and moni-
tor, record feedback, and build strategies to enhance communication with the 
online/offline social settings, as shown in Fig. 1.

OCA includes different levels to implement goals like (developing and manag-
ing plans to limit the misinformation spread, assigning agents to interact with 
the social network environments and monitor the sources of the misinformation 
spread, evaluating the performance of the agents, and developing a new output 
strategy based on the environment’s negative or positive feedback). Below we 
explain the different levels in the OCA’s structure as we explained the operation 
level in Sect. 3.3.1.

•	 The management level is used to ensure fluency in the misinformation miti-
gation process. This level should send reports related to the mitigation pro-
cesses, agents’ performance, and other related words to the control level.

•	 The development level analyzes the core information received from the opera-
tional control level, management level, and social network environments.

•	 The policy level should articulate the identity and purposes of the entire mis-
information mitigation process and reflect the whole network’s strategy.

Fig. 2   Twitter network for the COVID-19 anti-lockdown protest in Michigan State. C1 through C5 are the 
top five communities with the highest number of users, and C6 represents all other small communities
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4.1.1 � Operation level system (agent level)

This system is considered to be system one in OCA. It must be as accessible 
as possible to allow its elements to interact with their environments efficiently 
(Mann 2004). The operation level must maintain equity in monitoring significant 
communities across the network, considering factors such as reporting behav-
iors or posts in the network (Chan 2005). The operation level must always report 
to management and control levels after completing a response to any malicious 
information post or before starting a new action. Also, this level needs to monitor 
processes to respond to any negative information spread continuously. In addi-
tion, the monitoring process and the arrangements with each malicious informa-
tion spread should be in a first-in-first-out (FIFO) order.

Moreover, the monitoring process achieved at this level can be broken down into 
different operation elements and shifts of working hours based on fixed time frames. 
In this research, the agent level in OCA would not travel between communities.

Still, the purpose is to reflect in the real-world (moderators, automated processes, 
etc.) to help find and highlight the critical communities in a complex social network 
structure. Any component of the operation level may interact with the network dif-
ferently, such as sharing information between different levels or blocking malicious 
users’ accounts from the networks in real time.

4.1.2 � Stochastic one‑median problem

This operational method helps with stochastic information spreads in dynamic net-
works where the operation and the response to the malicious information may be 
undetected. This method is helpful when customers use the network more than phys-
ically interacting with the offline environment or online social networks (Ahituv and 
Berman 1988).

In this research, we utilized the stochastic one-median problem to enhance the 
performance, maximize the operation levels’ efforts, and help select the best com-
binations of communities for the best monitoring process. The stochastic monitor-
ing process can be implemented using the following model, where the expected 
response time to abnormal behaviors is measured in Eq. (1).

(1)Min TRj (C) ∀j ∈ I

(2)TR(Cj) = Q
Cj

+ t
Cj

∀j ∈ I

(3)Q
Cj

=
�◦
i
S2(Cj)

2(1 − �iS(Cj))

∀j ∈ I

∀j ∈ M

(4)t
Cj
=

I∑

j=1

hjd(Cj, I) ∀j ∈ I
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TR is the sum of the mean- queuing-delay Q and the mean response time t as shown 
in Eq. (2). Equation (3) is to define Q , where Cj is the community j in the network, �i 
is the rate of the proportion monitoring process, S

(
Cj

)
 is the mean total response time 

(starting from the first moment the abnormal behavior is detected), S2
_

(

Cj
)

 is the sec-

ond stochastic moment of the total response time to any new information spread. 
Equation (4) is to define t , where I is the number of communities in the network, hj 
represents the maximum rate of malicious information spread of the communities j , 
and d(Cj, I) is the shortest path between community Cj , and community i.

5 � Results

We used the Michigan dataset for this research to test the model’s performance. The 
main reason was related to the real-time actions among the online and offline com-
munities and the importance of this protest during the COVID-19 pandemic. Pre-
liminary analysis revealed that users from either side of the spectrum were engaged 
in an online tug of war and conducting influence operations to promote their agenda. 
While armed protesters posted tweets to influence the network to maximize the 
armed participants joining the protest, users from the other side of the spectrum 
tweeted to stop such a movement and reminded participants to use more peaceful 
options. To simplify the analysis, we chose to focus on the top five communities, as 
these were the communities with the highest number of users. Also, the model will 
represent all other small communities in one node to include any actions from (to) 
these communities in the solution procedure.

In addition, the policy level in OCA is assumed to use only two monitoring (oper-
ation) centers in the network ( M = 2 ), where each center will monitor less than ( �i< 
55%) of the entire network.

The model focuses on the top five communities, as these were the communities 
that included the highest number of interactions between users. It is worth mention-
ing here that the model’s findings do not depend on the data sample size. This means 
the possibilities of information exchanges will increase or decrease based on the dif-
ference in the data sample. Other than that, the model that has been developed will 
remain unaffected, the time it takes to run the model remains unaffected, the con-
clusion remains unaffected, and everything remains unaffected after changing the 
data. The only change is that the graph you look at in Fig. 1 becomes more or less 
connected. In addition, to simplify the network representation, the model will con-
sider/represent all small communities in one node, accounting for any behavior or 
misinformation spread source from these small communities, where the model will 
not change any linking behavior.
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5.1 � Experimental results

The results in this section were based on multiple steps explained as follows:

Step 1: Clustering the network into smaller communities based on the Modularity 
method (Girvan and Newman Jun. 2002) as presented in Fig. 2.
Step 2: Measuring the intra-edges between all six communities presented in 
Fig. 2, representing the d(Cj, I) values as shown in Fig. 1.
Step 3: Measuring the maximum malicious information spread (if all users in the 
community were spreading malicious action) proportion rate ( hj ), for all six com-
munities 

∑I

j=1
hj = 1 as shown in Fig. 1.

Step 4: Since we assumed ( M = 2 ), this step divides the network into two sub-
networks based on the �i values shown in Fig. 1. Monitoring Center number one 
( M1) is for sub-network one including ( C1,C2,C4 ), and Monitoring Center num-
ber two ( M2) is for sub-network two including ( C3,C5,C6 ). Each operation level 
(monitoring center) will cover less than 55% of the entire network as a maximum 
spreading rate.
Step 5: Apply the stochastic one-median model presented in Sect. 3.3.2. The out-
comes will provide possible solutions to minimize the response time from each 
monitoring center.

Table 1 shows nine possible answers, where the best communities’ combina-
tions allocation solution to reduce the response time to information spread would 
be at C2 and C6 . These two communities are responsible for large amounts of 
information flow from (to) other communities in the network. However, the solu-
tion procedure would ignore the communities that received the negative response 
time (infinity).

Moreover, the outcomes show the possible community combinations solu-
tions for both agent levels to minimize the misinformation spread response time. 
Table 1 presents sorted nine possible solutions measured, where the best commu-
nities’ combinations in the network for both agent levels to monitor were identi-
fied. In addition, based on the outcomes, the model assigned agent level #1 to 

Table 1   Possible solution 
combinations

Ci,j MinTR(hours)

C2 & C6 7.699 & 0.618
C2 & C5 7.699, & 1.399
C2 & C3 7.699 & 1.944
C1 & C6 ∞& 0.618
C4 & C6 ∞& 0.618
C1 & C5 ∞& 1.399
C4 & C5 ∞& 1.399
C1 & C3 ∞& 1.944
C4 & C3 ∞& 1.944
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monitor and respond to misinformation spread in C2, and agent level #2 should 
respond to misinformation spread in C6 . The agents could minimize the response 
time and limit COVID-19-related misinformation when they first handle the 
information in these communities. These two communities include many users 
and are responsible for a high volume of information units exchanged from (to) 
other communities in the network, as measured in step 2.

The model didn’t select these locations due to their scales and position in the 
network structure. However, suppose the policy level allocates monitoring centers 
to these communities based on the calculation. In that case, they cannot perform 
any response to malicious information spread at other locations due to the heavy 
number of users and community activities. For example, in case the policy level in 
OCA assigns agents to handle information spread in communities C1 , C3 & C5 , or 
any other combinations mentioned in Table 1, then the agents will fall behind due to 
local solutions and the communities’ structures. All the calculations are provided in 
Appendix A.

In summary, the research’s theoretical and practical implications include a multi-
disciplinary model integrating the operation methods and the organization’s cyber-
netic methods to reduce misinformation in social media network analysis. Also, the 
model can monitor the changes in the communities’ behavior, measure the agents’ 
performance, and adjust the mitigation strategies in real time. Likewise, the model 
can handle complex social network analysis regardless of the size and number of 
network users. Similarly, the proposed model would enhance the managers’ deci-
sions and optimize their resource allocation based on the size of the social network 
structure.

6 � Conclusion

The recent challenges in social network analysis projected the necessity to use mul-
tidisciplinary approaches such as advanced Systems Thinking and operational meth-
ods. In this research, the main challenges were to model a systematic agent-based 
model to reduce the spread of malicious information in dynamic real-world social 
networks. Also, in this research, we modeled the stochastic one-median problem to 
enhance the agent’s performance and minimize the response time to any malicious 
information spread on a Twitter network. Likewise, a dynamic monitoring proto-
col could improve the network performance, reduce the response time, optimize the 
resources, help to understand the complex structure of the social networks and cre-
ate effective agents to mitigate misinformation spread in social networks.

For future work, we will study the intra-edges’ reliability and measure the 
increase/decrease of information spread in dynamic networks. This will allow us to 
use different delay time assumptions and build an efficient frontier to illustrate the 
performances of the operation level. Also, we plan to model a stochastic social net-
work analysis where communities in both online and offline environments are expe-
riencing multi malicious information spread between the communities at the same 
time.
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Appendix A

Here we list the set of deterministic assumptions required for the solution procedure.

•	 The operation level response time to any malicious information spread is deter-
ministic ( V = 55 ) messages/hour.

•	 The maximum time required to detect, response, and finish any malicious infor-
mation spread case is normally distributed (� = 2) case/hours.

•	 The second and new stochastic malicious information spread is deterministic.
•	 The communities are active in the network over time and do not disappear.
•	 The communities are assumed to be either spreading malicious information or 

not.

This step is associated with two assumptions ( V=55 and � =2).

Sub-Network 1: includes communities C1 , C2 , C4

Community # 1 (C1)

t
c1
=

hC2

�1
∙

dC2 ,C1

V
+

hC4

�1
∙

dC2 ,c1
+dC2 ,C4

V

t
c1
= 1.020

S
c1
= � ∙ t

c1
S
c1
= 2.041

S2
_ c1

=
hC2

�1
∙

[
�∙

(
dC2 ,C1

)

V

]2

+
hC4

�1
∙

[
�∙

(
dC2 ,c1

+dC2 ,C4

)

V

]2 S2
_ c1

= 7.717

TR
(
C1

)
=

�1S2
_ c1

2

(
1−�1Sc1

) + t
c1

TR
(
C1

)
= −113.222

Community # 2 (C2)

t
c2
=

hC1

�1
∙

dC2 ,C1

V
+

hC4

�1
∙

dC2 ,C4

V

t
c2
= 0.828

S
c2
= � ∙ t

c2
S
c2
= 1.656

S2
_ c2

=
hC1

�1
∙

[
�∙

(
dC2 ,C1

)

V

]2

+
hC4

�1
∙

[
�∙

(
dC2 ,C4

)

V

]2 S2
_ c2

= 4.814

TR
(
C2

)
=

�1S2
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2

(
1−�1Sc2

) + t
c2

TR
(
C2

)
= 7.699

Community # 4 (C4)

t
c4
=

hC2
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