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Abstract
Social systems are uniquely complex and difficult to study, but understanding them 
is vital to solving the world’s problems. The Ground Truth program developed a 
new way of testing the research methods that attempt to understand and leverage 
the Human Domain and its associated complexities. The program developed simula-
tions of social systems as virtual world test beds. Not only were these simulations 
able to produce data on future states of the system under various circumstances and 
scenarios, but their causal ground truth was also explicitly known. Research teams 
studied these virtual worlds, facilitating deep validation of causal inference, predic-
tion, and prescription methods. The Ground Truth program model provides a way to 
test and validate research methods to an extent previously impossible, and to study 
the intricacies and interactions of different components of research.

Keywords Human domain · Causal ground truth · Simulation test beds · 
Metascience · Complexity

1 Introduction

With growing appreciation for the national security challenges arising from compe-
titions short of war (Jones 2019), gray zone competitions (Gray Zone Project 2020), 
hybrid warfare (Chivvis 2017), and operations that are all-domain (Underwood 
2020), one domain is proving to be particularly difficult but particularly critical: the 
Human Domain (Gregg 2016; USSOCOM 2015; Bryant 2018; Branch 2021). As 
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an emerging term of art, the Human Domain invokes—but builds upon—the more 
common social science notion of social systems. The term is used here (and else-
where1) to highlight the challenges of solving real world problems in the face of 
dynamic and evolving social complexities that we often barely understand. While 
every other domain—cyber, maritime, space, land, and air—presents its own sig-
nificant challenges, the social systems that define the Human Domain present unique 
complexity, since they are defined and shaped by increasingly interconnected socio-
technical systems where strategic agents, collective fictions, emergent and mutable 
norms and rules, and changing motivations and values end up meeting and interact-
ing (Russell 2019). Given this complexity, the study of social systems as manifest 
in the Human Domain presents a set of challenges beyond what is seen in other sci-
entific disciplines. For those who believe that social science problems have simple 
solutions, it is worth considering the caveats of two Nobel laureate physicists: Mur-
ray Gell-Mann purportedly noted how much harder physics would be if electrons 
could think, and Richard Feynman opined how much harder physics would be if 
electrons had feelings (Lo 2010).

In spite of this complexity, researchers and decision makers still need reliable 
ways of understanding complex social systems and the dynamics that drive them. 
Since the social sciences have worked for centuries to find ways of studying and 
understanding the causal processes that shape system behaviors, and to predict and 
influence those systems, it would seem logical to turn to the social sciences to pro-
vide understanding, predictions, and recommendations for the Human Domain. 
However, while the social sciences have developed many important statistical, 
empirical, and computational methods for understanding these systems, studying 
social systems remains extremely difficult.

Reasons for this difficulty are abundant. For example, the causal processes that 
drive system behavior (or “causal ground truth”) are almost never known or observ-
able in sociotechnical systems; experimentation on real world human systems is 
extremely difficult due to ethical considerations as well as the inability to separate 
people from their environments or implement controlled experiments (Gerber and 
Green 2011); data, measures, and models are often biased (Olteanu et  al. 2019); 
methods are designed for and applied to different social systems with different char-
acteristics, limiting the comparability of those methods; and other concerns regard-
ing the reproducibility and robustness of social science research methods and mod-
els, stemming in part from evidently pervasive “Questionable Research Practices” 

1 For more information on the origin and use of the term “Human Domain,” its definitional and concep-
tual challenges, and why it is used in place of more common social science terms like “social systems”, 
please see https:// small warsj ournal. com/ jrnl/ art/ does- the- human- domain- matter; https:// small warsj our-
nal. com/ jrnl/ art/ joint- force- 2020- and- the- human- domain- time- for-a- new- conce ptual- frame work; https:// 
www. soc. mil/ SWCS/ SWmag/ archi ve/ SW2703/ human% 20dom ain. pdf; https:// othjo urnal. com/ 2019/ 06/ 
17/ an- appro achab le- look- at- the- human- domain- and- why- we- should- care/; https:// mwi. usma. edu/ the- 
penta gon- burea ucracy- and- the- human- domain- of- war/; https:// apps. dtic. mil/ dtic/ tr/ fullt ext/ u2/ a6237 48. 
pdf; https:// small warsj ournal. com/ jrnl/ art/ opera tiona lizing- scien ce- human- domain- great- power- compe 
tition- speci al- opera tions- forces; https:// nsite am. com/ social/ wp- conte nt/ uploa ds/ 2017/ 01/ SOF- OHD- 
Conce pt- V1.0- 3- Aug- 15. pdf; https:// www. army. mil/ artic le/ 141535/ future_ joint_ conce pts_ focus_ on_ 
human_ eleme nts.

https://smallwarsjournal.com/jrnl/art/does-the-human-domain-matter
https://smallwarsjournal.com/jrnl/art/joint-force-2020-and-the-human-domain-time-for-a-new-conceptual-framework
https://smallwarsjournal.com/jrnl/art/joint-force-2020-and-the-human-domain-time-for-a-new-conceptual-framework
https://www.soc.mil/SWCS/SWmag/archive/SW2703/human%20domain.pdf
https://www.soc.mil/SWCS/SWmag/archive/SW2703/human%20domain.pdf
https://othjournal.com/2019/06/17/an-approachable-look-at-the-human-domain-and-why-we-should-care/
https://othjournal.com/2019/06/17/an-approachable-look-at-the-human-domain-and-why-we-should-care/
https://mwi.usma.edu/the-pentagon-bureaucracy-and-the-human-domain-of-war/
https://mwi.usma.edu/the-pentagon-bureaucracy-and-the-human-domain-of-war/
https://apps.dtic.mil/dtic/tr/fulltext/u2/a623748.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a623748.pdf
https://smallwarsjournal.com/jrnl/art/operationalizing-science-human-domain-great-power-competition-special-operations-forces
https://smallwarsjournal.com/jrnl/art/operationalizing-science-human-domain-great-power-competition-special-operations-forces
https://nsiteam.com/social/wp-content/uploads/2017/01/SOF-OHD-Concept-V1.0-3-Aug-15.pdf
https://nsiteam.com/social/wp-content/uploads/2017/01/SOF-OHD-Concept-V1.0-3-Aug-15.pdf
https://www.army.mil/article/141535/future_joint_concepts_focus_on_human_elements
https://www.army.mil/article/141535/future_joint_concepts_focus_on_human_elements
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(Munafò et al. 2017), as well as a general dearth of efforts (and funding) to replicate 
or evaluate the robustness of certain methods across different systems, contexts, and 
under different conditions. Further, there are increasingly sophisticated, data-driven 
efforts that are being adopted by the social sciences (Zhang et  al. 2020), which 
increasingly depend upon machine-learning tools that enable researchers to model 
human systems using previously-impossible numbers of parameters, but without any 
real sense of whether those methods are better than more traditional social science 
approaches, and no seeming way to quantify the improvements if they are. Finally, 
future social science research is likely to be conducted by increasingly multidiscipli-
nary teams (Lazer et al. 2020), but in the absence of having ways to best understand 
how and why certain disciplines and skill sets might be used for tackling different 
kinds of social systems challenges, teaming may remain unnecessarily ad hoc.

To try to make progress in the face of these seemingly intractable problems for 
enhancing social science capabilities, DARPA’s Ground Truth program was devised 
as a new way of testing a range of social science methods. The program addressed 
common difficulties by shifting away from testing methods on real-world systems, 
and instead testing the methods on carefully designed and controlled simulations of 
social systems. The simulations had known causal ground truth, known future states, 
and were able to produce counterfactual data, all key features that allowed explicit 
validation of social science research methods in ways completely unavailable from 
real-world systems. Data availability was controllable, as was the complexity of the 
simulation test beds. Researchers were able to collect their own data from the simu-
lations, including conducting various kinds of experiments, which led to far more 
targeted, and potentially less biased, data availability than would typically be avail-
able from a real-world system. By using the same simulations as test beds for a vari-
ety of research methods, and by ensuring there was causal ground truth and data 
needed for their explicit validation, the program also allowed true comparability of 
methods across a range of metrics.

While there were multiple potential payoffs for the high-risk work that Ground 
Truth undertook, two key motivating questions guided the design of the program. 
First, are social simulations useful test beds for social science research methods? 
The program developed and deployed multiple simulations to compare their utility 
and tease out characteristics of the simulations that may have made them useful as 
test beds. Second, what could the program teach us about the abilities and limita-
tions of a range of social science and data-driven research methods? With multiple 
research teams and multiple test beds, the program was able to compare explicitly 
validated results, analyze trends, and determine which methods seemed to work bet-
ter for studying different types of social systems.

2  Program structure

The Ground Truth program was organized around three challenges, each consist-
ing of three tests: explain, predict and prescribe (Table 1). The complexity of the 
social simulation test beds varied over the challenges, reflecting a range of types 
of complexity (Castellani 2014), while each type of test assessed a different set of 
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capabilities and a different ambition of social science. The explain tests asked the 
research teams to determine the causal structure of the system and tested their 
causal inference abilities. What influenced the actors, and what determined the 
behaviors of both the people and their environments? What were the important 
variables, and how were they causally connected to each other? The predict tests 
involved specific questions for the research teams to answer. The predict ques-
tions were specific to each social simulation test bed, but included near and far 
term predictions, baseline and counterfactual (“what if”) predictions, and assess-
ments of uncertainty. Prescribe tests examined the research teams’ ability to find 
ways of influencing the test bed systems to achieve desired goals. The prescribe 
tests involved simulation-specific question sets, which included questions cover-
ing multiple levels of analysis at the individual, group, and system levels.

Three categories of teams participated in the program, including the social simu-
lation teams, the research teams, and a test and evaluation team (which for this dis-
cussion includes program design/management and other government partners). Four 
simulation teams designed and built the simulation test beds (Parunak 2022; Pyna-
dath et al. 2022; Rager et al. 2022; Züfle et al. 2022). The simulations focused on 
different Human Domain topics and systems (urban life, financial governance, dis-
aster response, and geopolitical conflict), but all of the simulations involved actors 
making decisions, implementing behaviors, and interacting with each other and 
their environments. Accordingly, the simulations were considered virtual worlds. 
The simulations were not meant to reproduce real world systems, and the simula-
tion teams were discouraged from describing them as such, although the teams were 
asked to design social simulations that would be plausible as virtual worlds (for 
example, in no world did agents have total omniscience or reproduce via partheno-
genesis). Each simulation was thoroughly evaluated by the test and evaluation team 
using a range of measures described in more detail below, either before each chal-
lenge launched or early in the challenge timeline. The simulation teams also devel-
oped, in consultation with the test and evaluation team, the specific questions and 
details for each test. Key research challenges presented by each simulation, as well 
as the relative importance of agency versus structure to each, is presented in Fig. 1.

To begin each test, each simulation team produced an initial data package for the 
research teams. The initial data packages included carefully selected sets of data 
collected from the simulations, as well text documents with any information the 
research teams would need. The research teams were then allowed to collect data 
from the simulations, using a constrained but representative set of research and 
experimental approaches and methods (see “accessibility to research methods” sec-
tion for more detail). The simulation and research teams were entirely firewalled, 
and all communication between them was conducted through, and filtered by, the 
test and evaluation team. This ensured that team identities were kept unknown (to 
the greatest extent possible), and that no information would pass between teams that 
did not fit with the program concept. For example, the simulation teams were not 
allowed to directly release information during the program about the causal ground 
truth driving the simulations (although this did not prevent the research teams from 
trying, which justified the firewall principle).
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To collect data, the research teams submitted research requests to the test and 
evaluation team, which were evaluated, logged, and passed on to the simula-
tion teams. A question and answer process was also enacted, so that the research 
teams and simulation teams could communicate about what types of research the 
simulations enabled, what research questions made sense within the context of 
the simulations, and how information passed between the teams should be inter-
preted. The simulation teams then implemented the research requests, produced 
the applicable data from the simulations, and sent the data to the test and evalua-
tion team, who evaluated the data before sending it on to the research teams.

At the end of each test, the research teams submitted results to the test and 
evaluation team. More information on the methods used to develop these submis-
sions can be found in Graziul et  al. (2022), Schmidt et  al. (2022), and Volkova 
et al. (2022). The test and evaluation team collected any necessary data (for exam-
ple, historical projects from the simulations) and evaluated the research teams’ 
performance. Evaluations were shared with the research teams, so that their per-
formance on each test was known early in data collection process of the following 
test. The evaluations did not include specific feedback (such as the subsets of the 

Ag
en

cy

Structure

Disaster Response
• Boundedly rational decision-making

process
• Recursive models of Theory of Mind
• Decision making under uncertainty

and with conflicting goals
• Agents with subjective risk

perceptions that can influence social
network

Financial Governance
• Explicit interdependent causality at

individual, group, and system levels

Urban Life
• Patterns of daily life (agents commute,

eat, sleep, etc.)
• Explicit spatial networks (roads, food

supply chain)
• Scale (10,000 agents)
• Alien world features

Geopolitical Conflict
• External causality modeled via causal

event graphs (CEGs)
• Agents move stochastically between

events based on preferences
determined by a hierarchal goal
network (HGN)

• Agents deposit digital “pheromones”,
affecting the course of the agents that
follow

Fig. 1  Key research challenges and relative importance of agency and structure for the four virtual 
worlds
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inferred causal ground truths that were correct), instead focusing at a higher level 
(such as the fraction of elements in the inferred ground truths that were correct). 
An overview of the key roles and interactions between the simulation, research 
and test and evaluation teams is shown in Fig. 2.

Three research teams participated in the program. Two of the teams participated 
in all nine tests (explain, predict, and prescribe over each of three challenges). The 
final research team had a different role; they did not collect data, instead working 
with the datasets collected by the other teams, as well as full datasets, for Challenge 
1 of the program. The purpose of this team was to study the same systems using dif-
ferent datasets, to provide insight into the relative importance of data as compared to 
methodology.

3  Evaluating the simulations

Before each program challenge, the test and evaluation team evaluated the simula-
tions. Evaluation metrics were chosen around two goals. First, we wanted to ensure 
that the simulations would be useful as test beds for the research methods being 
used. The metrics that were evaluated in this category included the accessibility, 
verifiability, flexibility, and plausibility of the simulations. The second goal of simu-
lation evaluation, which focused on simulation complexity, was to better understand 
the situations in which the research teams did well (or poorly), and potential contrib-
uting factors.

Some of the simulation evaluation metrics, as well as some of the evaluation 
methods for the research teams, relied on explicit graphical representations of 
the virtual worlds’ causal structures. We called these representations the causal 
ground truth graphs, and specified guidelines for their representation of causality. 
Each node in a causal ground truth graph represents a variable in the associated 
simulation. Nodes are connected by directed edges representing causal relation-
ships, so that an edge going from node A to node B would indicate that variable 
A was used in the equation/algorithm that determined the value of variable B. 

3

Test &
Evaluation
Team

Research
Teams

Simulation
Teams

develop
simulations

causal ground truth leads to
observed states and behaviors

produce
data

mediate
interactions

receive
datasets

generate
research
requests

use modeling methods and
simulation datasets to explain,

predict, and prescribe

evaluate

Fig. 2  Key roles and interactions between teams
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The test and evaluation team provided guidance on how the ground truth graphs 
should be developed, so that the simulation and research teams were applying the 
same processes. These guidelines included aggregating nodes and edges where 
possible, and not including parameters (which had no capacity to change during 
the simulation time horizon) or initial values as nodes. To illustrate the concept 
of a causal ground truth graph, Fig.  3 shows such a graph for the well-known 
Schelling segregation model (Schelling 1971) as implemented in the in the Net-
Logo (Wilesnky 1999) models library (Wilensky 1997). The simulation virtual 
worlds used for the Ground Truth program were significantly more causally com-
plex than this example, but the causal ground truth graphs were developed using 
the same principles.

3.1  Accessibility to research methods

The first evaluation metric for the Ground Truth simulations was simulation 
accessibility, or the simulation’s ability to accommodate the range of data col-
lection methods that might be used by social science research teams. To push the 
state of the art in this area, research teams were encouraged to use a wide range of 
methods and were asked to provide lists of research methods that they might want 
to apply to the simulations. These methods ranged from highly qualitative meth-
ods (such as interviews) to highly quantitative methods (such as regression and 
time-series analyses, as well as more advanced machine-learning approaches). To 
ensure that the research teams were able to use a sufficient range of methods, the 
simulation teams needed to be able to interpret requests, conduct analyses, and 
return the data appropriate to the methods. To test accessibility, the test and eval-
uation team developed accessibility demonstrators, simple examples of research 
requests for each method that were targeted toward the respective simulations. 
The simulation teams answered these accessibility demonstrators as they would 
research requests and were evaluated based on the percent of methods to which 
they were accessible. The simulation teams were asked to strive to be accessible 
to 100% of the proposed methods and were required to be accessible to at least 
50% in order to continue in the program.

Pseudo Code (adapted from Wilensky 1997) Causal Ground Truth
create turtles on random patches in a grid
at each �me step:
  if all turtles are happy then stop
  for each turtle
      if unhappy, randomly move to new unoccupied patch
      similar-nearby count =
            number of neighbors with color = turtle’s color
      other-nearby count =
            number of neighbors with color != turtle’s color
      total-nearby = similar-nearby + other-nearby
      happy? = yes if
           similar-nearby >= (%-similar-wanted * total-nearby/100)

Fig. 3  Example of a causal ground truth graph, for the Schelling segregation model
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3.2  Verifiability of causal ground truth

To achieve the goals of the Ground Truth program, a key requirement for the social 
simulations was the ability to define the exact causal processes that drive the simu-
lation’s agent, group, and system behavior. In the real world we can try to derive 
causal inferences using data, but simulation virtual worlds allow for explicit valida-
tion of causal inference by comparison of inferred and true causal ground truths. 
The Ground Truth program evaluated simulations on their verifiability to assure that 
the simulations had this quality. Along with the metrics discussed below, the simula-
tion teams were required to do unit testing and verification of their simulations.

The set of metrics for evaluating verifiability tested the similarity between the 
simulation’s actual causal structure and the causal ground truth graph representa-
tion of that structure. The simulation teams submitted their ground truth graphs and 
annotated simulation code for the verifiability evaluations. The test and evaluation 
team identified and evaluated two metrics based on these: completeness and preci-
sion. The completeness metric measured the fraction of variables (nodes) and rela-
tionships between variables (edges) in the simulation equations that were included 
in the ground truth graph. Precision measured the fraction of ground truth graph 
edges and nodes that were included in the simulation equations. The simulation 
teams were asked to strive for 100% completeness and precision to ensure that their 
ground truth graphs would accurately reflect their simulations, and thus serve as 
appropriate grading rubrics for the research teams’ causal inference efforts.

3.3  Complexity

The Ground Truth simulations were meant to serve as proxies for the real world. The 
simulations needed to be simple enough to provide reasonable tests for the research 
teams, yet complex enough to emulate characteristics that research methods might 
encounter in real world situations. The original program concept was that simula-
tion complexity should increase through successive challenges, from simple systems 
in Challenge 1 to organized complex systems in Challenge 3. Complexity was also 
considered a potential indicator of the difficulty of understanding the simulations, 
useful for comparing the performance of the research teams across simulations and 
challenges.

While many definitions of complexity have been proposed (Ladyman 2013; 
Mitchell and Newman 2002; Bar-Yam 2002; Watts 2017), no definition is widely 
accepted. To ensure that an appropriate range of characteristics were considered, the 
test and evaluation team identified a suite of metrics that captured different elements 
of simulation complexity. Using a carefully chosen combination of methods, we 
hoped to gain a deeper and more nuanced understanding of simulation complexity 
than could be achieved with a single metric.

Complexity metrics were chosen based on an organizing structure involv-
ing two dimensions applicable to the Ground Truth program (Table 2). The first 
dimension differentiated between metrics that require knowledge of the causal 
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structure (or ground truth graph) of the simulation and those that do not. Metrics 
that require knowledge of causal structure are useful for causal simulations, but 
we generally do not have knowledge of the causal structure of real-world systems; 
we thus chose metrics covering each of these categories. The second dimension 
related to the application space, distinguishing between metrics that are inspired 
by the social and behavioral sciences and those that are more broadly applicable.

The test and evaluation team developed a metric of causal complexity, which 
required knowledge of system structure and was not tied to the social and behav-
ioral sciences. This metric integrated cyclomatic complexity (which captures the 
interconnectedness of a graph) and feedback density (the fraction of the ground 
truth diagram’s nodes and edges that are involved in at least one feedback loop) 
(Naugle 2019). Causal complexity captured how complicated and intricate the 
causal structure, represented by the causal ground truth graph, was for each 
simulation.

Approximate forecast complexity, which measures the information content of a 
simulation’s output data, was selected as the metric that did not require knowledge 
of the system structure and was not tied to the social and behavioral sciences. Fore-
cast complexity (Shalizi 2006) is the amount of information needed for optimal pre-
diction where a past portion of a time series is used to predict a future portion. The 
test and evaluation team approximated forecast complexity by using Normalized 
Compression Distance (NCD) (Cilibrasi and Vitanyi 2005), an estimate of Normal-
ized Information Distance (NID), between past and future data. Normalized com-
pression distance captures the similarity between two data sets.

The number of differentiated relationships was selected, because of its use in 
real-world social science research, as the metric that required knowledge of the 
system structure and was tied to the social and behavioral sciences. For the pur-
poses of the Ground Truth program, this metric was calculated as the number of 
distinct types of relationships available to actors in a simulation, as defined in the 
causal ground truth.

The final complexity metric, global reaching centrality (Mones 2012), requires 
no knowledge of the system structure and is inspired by the social and behavio-
ral sciences. This metric quantifies hierarchy in a social network by considering 
the distribution of reach centralities, or the number of nodes that can be reached 
within a defined number of steps, in that network. Global reaching centrality was 
calculated on the social network resulting from a simulation, and was interpreted 
as a measure of the emergent organization of that social network.

Table 2  Organizing structure for choosing complexity metrics

Not tied to social/behavioral 
sciences

Inspired by social/behavioral sciences

Requires knowledge of 
system structure

Causal complexity Number of differentiated relationships

Requires no knowledge of 
system structure

Forecast complexity Global reaching centrality
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While there were no targets or benchmarks for these metrics, simulation com-
plexity was used to compare the simulations across challenges and simulation teams.

3.4  Flexibility

To ensure that the simulations could systematically control and increase their com-
plexity over the successive challenges of the Ground Truth program, they were eval-
uated on their flexibility. The simulation teams were asked to ensure that at least 
30% of their simulation parameters had potential to significantly increase or decrease 
simulation complexity. This was tested using a main effects analysis (Vik 2013) that 
compared the forecast complexity and global reaching centrality for a baseline result 
versus parameter-varied simulation scenarios. To implement this analysis, simu-
lation teams generated sets of runs with varied input parameters, and complexity 
metrics were calculated for each of those runs. Flexibility was evaluated by testing 
for significant differences among those complexity metrics, indicating whether the 
varied input parameters had a significant impact on the complexity of the simulated 
world. The range (upper and lower bounds) of the potential forecast complexity and 
global reaching centrality were also measured to indicate the controllability of the 
simulation’s complexity.

3.5  Plausibility

Plausibility metrics were designed to test each simulation’s credibility as a virtual 
world test bed. Plausibility evaluations tested the simulations’ social plausibility as 
well as their ability to provide non-trivial results without requiring external interven-
tion. Social plausibility was tested based on qualitative requirements that increased 
in realism as program progressed: in Challenge 1 the simulations were required to 
include multiple actors interacting with each other, in Challenge 2 those actors were 
required to form groups that interacted both with actors and with other groups, and 
in Challenge 3 those actors and groups were required to influence the system or 
environment in which they resided. To establish non-triviality of results, the simula-
tion teams were required to show that the normalized entropy of their simulation 
results was not equal to minimum or maximum entropy (which would have indi-
cated unchanging or random behavior respectively), and that the variance of quan-
tities of interest over time was not zero (which would have indicated unchanging 
quantities of interest).

4  Evaluating the research methods

The research teams were given three different types of tests: explain, predict, and 
prescribe. The test and evaluation team evaluated their performance for accuracy, 
robustness, and efficiency.
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4.1  Explain test accuracy

Validating causal structures is extremely difficult in real-world situations. Valida-
tion generally focuses on assessing the similarity of predictions to observed behav-
iors, which does not account for causality because different causal mechanisms 
might generate similar results. In the physical modeling field, this is known as non-
uniqueness or non-identifiability of explanatory or causal structure (Oreskes 1994). 
Because of this, methods for validating a model’s causal structures against the real 
world are limited. Since the Ground Truth simulations were built around explicit, 
known causal ground truths, the program facilitated explicit causal validation of the 
research teams’ results.

The research teams’ explain test goal was to infer the causality of each simula-
tion. To assess the accuracy of these inferences, the test and evaluation team com-
pared the research teams’ inferred ground truth graphs to the ground truth graphs 
representing each simulation’s causal structure. Research teams submitted inferred 
ground truth graphs, and the simulation teams mapped the nodes (or variables) 
in those graphs to nodes in the simulation ground truth graphs. This allowed for 
translation between the graph structures and facilitated quantitative comparison. 
The inferred and simulation graphs were then assessed for precision (the fraction of 
inferred items that were in fact in the simulation ground truths) and recall (the frac-
tion of items from the simulation ground truths that were inferred) for both edges 
and nodes, and F1 scores (the harmonic mean of precision and recall) (Rijsbergen 
1979; Yang 1999).

4.2  Predict test accuracy

The predict tests focused on a common goal of data analysis and science in general: 
forecasting future states of the system of interest. The use of simulation test beds 
allowed not only for single-state prediction to be validated, but also for explicit gen-
eration, exploration, and comparison of counterfactuals and alternative scenarios. 
The predict tests focused on specific questions generated by the simulation teams, 
and appropriate evaluation metrics were identified for each question. In general, the 
evaluations focused on metrics such as differences between point estimates and Jac-
card indices for comparing sets.

4.3  Prescribe test accuracy

The prescribe tests examined the research teams’ ability to prescribe system inter-
ventions to influence the simulations in desired ways. As with the predict tests, pre-
scribe tests varied, and were defined by question sets identified by the simulation 
teams. In general, prescriptions were made by the research teams, and the simula-
tion teams implemented those prescriptions in their simulations to determine their 
results. Those results were then compared to a baseline (with no prescriptions imple-
mented), as well as to optimal or best available results, based on analysis by the 



13

1 3

The Ground Truth program: simulations as test beds for social…

simulation teams. Prescribe results were evaluated based on the specific questions 
posed and included things like the percentages of prescribed actions that produced 
responses in a desired direction (increasing/decreasing) as compared to a baseline, 
and percentage of the distance between baseline and target outcome achieved by the 
prescription.

4.4  Robustness

Robustness refers to how well a research method performed over a range of applica-
tions of the method. Robustness was measured as an indication of whether a method 
is useful for a range of applications. This is similar to the concept of generalizability. 
For example, a social science modeling method might be very good at predicting the 
results of a very specific scenario for which it was developed. If that method doesn’t 
do well at predicting results of other scenarios, then it will be considered less robust 
than a method that performs well over many scenarios. To evaluate robustness, this 
program measured average accuracy, both over different questions from a single 
simulation, and over multiple simulations.

4.5  Efficiency

Many different methods could be used to explain, predict, and prescribe social sys-
tems. The efficiency of those methods, including how long it takes a TA2 team to 
apply the methods, how much computational power is required, and how much data 
is required, affects the functional utility of the methods. More efficient methods 
should require less effort and may therefore be more applicable in real-world situ-
ations. For the purposes of this program, we focused efficiency evaluations on how 
much data was attained by the research teams to produce results. Efficiency was cal-
culated as the bytes of data, after compression, received by a research team from a 
virtual world simulation.

5  Program evolution

The Ground Truth program was designed to use social simulations as plausibly real-
istic proxies for real world social systems, with complexity of the simulation test 
beds increasing over the course of the program. Some of the aspects of the Chal-
lenge 1 tests that were meant to reflect real-world complexity proved to be overly 
difficult for the research teams. For example, the simulation teams were instructed 
in Challenge 1 to limit data collection to levels that would seem reasonable in the 
real world. Initial data packages were small, as is common when approaching a new 
problem or social system, and the simulation teams implemented limits on what per-
centage of their populations could be sampled using particular research methods (in 
reality it is not plausible to survey every human being, all the time, about anything). 
This presented major frustrations for the research teams, who realized that part 
of operating in the Human Domain means having to become acquainted with the 
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“worlds” in question, determining what types of research could and should be done 
on each simulation, and collecting sufficient data to implement analytic methods.

To adjust for this difficulty, Challenge 2 of the program shifted in character from 
the original program plan. The simulation teams were asked not to make their simu-
lations more complex in Challenge 2, instead keeping very similar causal ground 
truths as in Challenge 1 and maintaining or even reducing complexity. The simula-
tion teams also relaxed some of the realism-focused restrictions around data collec-
tion, allowing substantially higher sampling rates as compared to Challenge 1.

In Challenge 3, simulation complexity increased as originally planned. The 
research teams indicated that data availability was still a major bottleneck in their 
performance, thus driving a decision to increase data availability substantially for 
Challenge 3, making what would be in many cases an ideal scenario for social sci-
entists. For the explain test, the simulation teams were encouraged to include quite a 
lot of data in their initial data packages, and to allow very high data collection rates 
through the research process. For the predict and prescribe tests, the research teams 
were given full datasets from the simulations, including all observable data pro-
duced over the observed timelines. The teams were still allowed to conduct experi-
ments to collect further data. After the initial Challenge 3 explain test, the research 
teams were given access to full datasets from Challenges 1 and 3 to reconduct the 
explain tests.

6  Conclusions

The Ground Truth program showed that simulations can be used as test beds for 
research methods in the Human Domain, serving as a proof of concept of a new way 
for social science to build upon its current paradigm of “discover and know” towards 
a paradigm of “create and solve” (Prabhakar 2020). The Ground Truth simulations 
served as functional test beds for data collection methods, and provided abundant 
data and information on causal structures, potential future states, and the results of 
policy prescriptions and system manipulations. This abundance of data – produced 
under conditions of controlled complexity and known ground truth—allowed for 
explicit validation, not only of straightforward predictions, as is typically done for 
validation exercises of predictions against real-world data, but also of causal infer-
ence results and counterfactuals.

The explain, predict, and prescribe tests gave the program broad applicability to 
real world problems. Explaining the causal structure of a social system can help a 
decision maker to understand the underlying causes and solutions to problems of 
interest, and has potential to improve both prediction and prescription. Prediction 
allows decision makers to anticipate and prepare for the future, and to understand 
likely impacts of our actions. Prescription is perhaps the true aspirational endeavor 
– to produce actions and interventions that achieve desired outcomes. The Ground 
Truth program brought these three real-world goals together, pushing the research 
teams to consider different key purposes of social science in context and in a con-
trolled time frame.



15

1 3

The Ground Truth program: simulations as test beds for social…

The Ground Truth program design also offered a new opportunity for rich study 
of metascience. Research teams were tasked with end-to-end study of the simula-
tions as virtual worlds. They collected data, ran experiments, analyzed information, 
and produced theories about how the virtual worlds worked. Each of these tasks is 
extremely challenging, and in the real world these activities are often siloed, with 
different researchers attacking each problem, their methods relying on the quality of 
previous work. While silos provide an opportunity to develop highly technical and 
intricate theories and algorithms, they reduce understanding of context and interac-
tion. They also conceal how assumptions made in one silo affect other parts of the 
system. By tasking the research teams with a more holistic mission, this program 
design forced research teams to consider interactions among the typical silos. Abun-
dant data was collected on data collection strategies and effectiveness, methodology, 
the evolution of approaches, and even the frustrations of the different teams. This 
offers an incredible opportunity for studying not only how social science is done, but 
also how the typical silos interact with each other, and opportunities for improve-
ment of the field – that is to say, how social science might be done better. Note that 
we provide a detailed analysis of the Ground Truth results, including team perfor-
mance and comparative metrics, later in this special issue (Naugle et al. 2022).

This removal of silos also makes a Ground Truth-like program valuable as a 
potential teaching tool. By participating in a controlled, end-to-end research task, 
with broad goals covering explain, predict, and prescribe tasks, researchers could 
begin to truly understand the breadth of methods, potential pitfalls, dependencies, 
and metascience in which their fields exist. This type of learning opportunity could 
also be vital for decision makers who need to be able to interpret social science find-
ings in their full context.

This program came at a vital time in the evolution of social science as a field. 
As computational social science rises in prominence (Lazer 2020), there has been 
a growing demand from academia, industry, and government to better understand 
how the results of data-driven algorithms are influenced by assumptions, biases in 
data, and environmental conditions. As data-driven algorithms, spearheaded by the 
surge in artificial intelligence and machine learning capabilities, take more promi-
nent roles in government and other decision making, it is even more important to 
understand these issues.

While the Ground Truth program successfully showed that simulations can be 
used as test beds for social science research methods, continued work in this area is 
needed to further test the concept and improve effectiveness. First, this program was 
designed to be plausibly representative of some real-world systems, with all of their 
associated complexity. The program incorporated four relatively complex simula-
tions and allowed the research teams to tackle the associated tests in any ways they 
found useful. A similar program with a carefully controlled research design could 
further enhance our ability to test methods and understand their design utility. In 
such a program, simulations would progress from very simple (only a few variables 
and causal relationships) to more complex in a very structured manner, and research 
teams would apply exactly the same methods to the same data produced from the 
respective simulations. This would allow more unambiguous evaluation of the util-
ity of specific social science research methods. Recent large-scale data analysis 
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programs (Salganik et  al. 2020; Botvinik-Nezer et  al. 2020) might serve as mod-
els, but have not utilized simulations with known causal ground truth and known 
complexity, thus lacking the capability for deep, explicit validation that the Ground 
Truth program provided.

Another major need is investigation into the generalizability of Ground Truth 
results to the real world. While it was out of scope for the initial program given all 
the other high-risk challenges that had to be first addressed, there remains the obvi-
ous question of how to assess whether—and to what degree—a research method that 
performs well on a simulation test bed would perform equally as well on an associ-
ated real-world system. One way to build on this program’s achievements would be 
to study characteristics, including complexity, of simulation test beds and associ-
ated real-world systems that might indicate applicability of results. This study could 
incorporate a broad set of characteristics and metrics along with three validation 
efforts: one comparing the simulation test beds to the real-world systems of interest, 
one comparing research method results to those test beds, and one comparing the 
same research method results to the associated real-world systems.

The Human Domain is hard, which makes the social sciences – often referred to 
as the soft sciences – potentially the “hardest sciences” (White 2012). The Ground 
Truth program introduced a novel, controllable method for developing, testing, and 
validating a growing diversity of social science research methods. The study of 
social simulation test beds does differ from the study of social science; human sys-
tems under study in social science research are presumably much more complex and 
unpredictable than those in the simulations used for this program. More investiga-
tion is needed to understand exactly how simulation test beds should be used, but we 
believe this program showed that it is not only possible, but potentially enlightening 
to test social science research methods on social simulations with known ground 
truth.
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