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Abstract
Computational models of managerial search often build on backward-looking search 
based on hill-climbing algorithms. Regardless of its prevalence, there is some evi-
dence that this family of algorithms does not universally represent managers’ search 
behavior. Against this background, the paper proposes an alternative algorithm that 
captures key elements of Simon’s concept of satisficing which received considerable 
support in behavioral experiments. The paper contrasts the satisficing-based algo-
rithm to two variants of hill-climbing search in an agent-based model of a simple 
decision-making organization. The model builds on the framework of NK fitness 
landscapes which allows controlling for the complexity of the decision problem 
to be solved. The results suggest that the model’s behavior may remarkably differ 
depending on whether satisficing or hill-climbing serves as an algorithmic repre-
sentation for decision-makers’ search. Moreover, with the satisficing algorithm, 
results indicate oscillating aspiration levels, even to the negative, and intense—and 
potentially destabilizing—search activities when intra-organizational complex-
ity increases. Findings may shed some new light on prior computational models of 
decision-making in organizations and point to avenues for future research.

Keywords Agent-based simulation · Complexity · Hill-climbing algorithms · NK 
fitness landscapes · Satisficing · Search

1 Introduction

Computational models of managerial search often comprise adaptive processes 
based on experiential learning and backward-looking search behavior (e.g., Gavetti 
and Levinthal 2000; Kollman et  al. 2000; Dosi et  al. 2003; Ethiraj and Levinthal 
2004; Siggelkow and Rivkin 2005; Wall 2017). In computational models of 
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managerial search, for capturing experiential learning and backward-looking search 
behavior, hill-climbing algorithms prevail (for overviews see Ganco and Hoetker 
2009; Puranam et al. 2015; Baumann et al. 2019). Hill-climbing algorithms build on 
the metaphor of a landscape with multiple peaks where the hiker (decision-maker) 
is moving uphill in order to find a local or even the global peak of that landscape 
(Wright 1932; Altenberg 1997). In this metaphor, the “landscape” with its peaks 
and valleys represents, for example, the different levels (“altitudes”) of performance 
(e.g., profit) provided by the combination of choices of a multi-dimensional deci-
sion-problem. Employing local search, a particular feature of these algorithms is that 
a decision-maker would never accept or preserve performance-decreasing changes 
(e.g., Altenberg 1997; Russell and Norvig 2016). This feature of hill-climbing algo-
rithms has been criticized regarding cognitive biases such as escalation of commit-
ment, overconfidence, and confirmation bias (e.g., Staw 1981; Astebro et al. 2014; 
Mercier 2017). Based on experimental findings, Tracy et al. (2017) recently question 
that hill-climbing algorithms are appropriate representations of managerial search 
behavior. In a similar vein, Puranam et al. (2015) and Billinger et al. (2014) argue 
that, according to experimental results, decision-makers adapt their search behavior 
to performance feedback (e.g., broadening search when performance declines loom 
and vice versa). Thus, they conjecture, employing a problemistic search of bound-
edly rational agents as it was proposed by Simon (1955) and later by Cyert and 
March (1963) and Greve (2003) would lead to more realistic models (for a recent 
literature review, see Posen et al. 2018). In this vein, based on empirical and experi-
mental support, it was suggested to study alternative algorithmic representations of 
managerial search and their effects on model behavior (e.g., Billinger et  al. 2014; 
Puranam et al. 2015; Tracy et al. 2017).

The research presented here follows this line of argumentation. The starting point 
is the aforementioned body of research suggesting that a search algorithm reflect-
ing problemistic search (i.e., allowing for adaptations to problem structure and per-
formance feedback, [e.g., Cyert and March 1963; Greve 2003; Posen et al. 2018)] 
may be more appropriate to capture the search behavior of boundedly rational agents 
than hill-climbing algorithms. On this basis, the paper seeks to contribute to com-
putational management science by proposing and exemplarily applying an alterna-
tive algorithm for representing managerial search behavior. In particular, the paper 
introduces an algorithm for experiential learning and backward-looking search for 
managers based on Herbert A. Simon’s concept of satisficing1 (Simon 1955) which 
has turned out being a relevant representation of search human behavior (e.g., Güth 
2010; Caplin et al. 2011). According to Simon, satisficing means searching sequen-
tially for options until the decision-maker regards the level of utility achieved as sat-
isfactory. The aspiration level shapes what is regarded as satisfactory. The aspiration 
level and the maximum number of options searched—depending on the difficulty of 
the decision problem to be solved—may be subject to adaptation.

Against this background, the paper has a twofold research objective: 

1 The term satisficing results from a merger of the two words: satisfying and sufficing in the sense that in 
the process a solution is found which is both satisfying and sufficing (Hoffrage and Reimer 2004).
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1. Introduction of an algorithm for managerial search behavior according to Simon’s 
satisficing concept;

2. Exemplary application of the satisficing algorithm in contrast to hill-climbing 
algorithms in an agent-based simulation to showcase potential differences and 
commonalities regarding model behavior.

For this, the paper proceeds as follows: The next section provides an overview of the 
theoretical background with particular focus on Simon’s idea of satisficing, before, 
in Sect. 3, the algorithm capturing core elements of satisficing is introduced in the 
context of searching for superior solutions of combinatorial decision problems.

In Sect. 4, the proposed satisficing algorithm is contrasted to hill-climbing algo-
rithms. This is done via the example of an agent-based simulation model of organi-
zations operating on rugged performance landscapes. The performance landscapes 
are modeled according to the NK framework as initially introduced in evolutionary 
biology (Kauffman and Levin 1987; Kauffman 1993). The rationale for this choice 
is that many models dealing with search in organizations build on the NK frame-
work (for overviews, e.g., Baumann et al. 2019; Wall 2016). Hence, the NK model 
serves as a kind of “quasi-standard” in research on managerial search. This makes 
the NK model a functional basis for the second research objective mentioned above. 
A particular feature of the NK model is that it allows to systematically vary the com-
plexity of a search problem in terms of the interdependencies among its sub-prob-
lems (Li et al. 2006; Csaszar 2018) which makes it appropriate to study the search 
behavior for varying levels of difficulty to locate the global maximum. Hence, the 
illustrative agent-based simulation model presented controls for the level of intra-
organizational complexity among subordinate managerial decision-makers. This is 
particularly relevant in view of the satisficing concept since the difficulty of finding 
satisfactory solutions drives adjustments, for example, of the aspiration level. The 
model is outlined in Sect. 4.

Section  5 introduces the experimental settings for the simulations. The simu-
lations are conducted for purposes of explanation and prediction (Za et  al. 2018; 
Burton and Obel 2011) with particular focus on the differences that satisficing vs. 
hill-climbing search entail for the model behavior. The results are presented and dis-
cussed in Sect. 6 followed by concluding remarks.

2  Search and saticficing: foundations and related work

2.1  Preliminary remarks on the theoretical background

In traditional schools of economic thinking, economic actors know, at least in prin-
ciple, the entire space of solutions for their decision problems. Knowing the whole 
search space allows them to behave as utility maximizers, i.e., detecting and choos-
ing that option out of the solution space which maximizes the respective utility func-
tion (von Neumann et al. 2007). Simon (1955) claimed that there is an “absence of 
evidence that the classical concepts describe the decision-making process” (p. 104). 
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Among Simon’s arguments is that information gathering on options and their out-
comes may not be costless.

However, the cost of search and information has been introduced taking a “clas-
sical economic perspective”. Stigler (1961) claimed that information on options 
often is not known in advance but has to be searched, and this may reasonably bring 
about search costs. Accordingly, in making the concept of utility maximizing more 
realistic, a decision-maker has to solve a sophisticated problem of economic choice: 
whether or not, to incur the search cost for better information which requires to fore-
cast the information’s benefits (i.e., better choices) in terms of all its future con-
sequences including subsequent choices. Yet, it has been argued that this extended 
“version” of the utility maximizing model, though economically stringent, does not 
capture real situations of decision-making for several reasons—among them prin-
cipal problems of mathematical tractability or cognitive limitations (e.g., Conlisk 
1996; Gigerenzer 2002, 2004). Gigerenzer (2002) argues that the rule to stop search-
ing for information when the cost exceeds benefits (Stigler 1961) may paradoxi-
cally require more time, knowledge, and computational abilities of decision-makers 
(“sophisticated econometricians”) than in models with unbounded rationality.

2.2  Search in computational management science and its algorithmic 
representation

Against this background, a large body of research in computational management sci-
ence, particularly in the vein of agent-based computational economics (Tesfatsion 
2003; Chang and Harrington 2006; Chen 2012), is based on the concept of bounded 
rationality (Simon 1955, 1959). In particular, it is often assumed that economic 
agents do not dispose of a “theoretical” understanding of their problems, includ-
ing knowledge of the solution space (an exception is Gavetti and Levinthal 2000); 
instead, agents have to search stepwise for superior solutions, e.g., solutions that 
provide better outcome with respect to the objective than the status quo (Safarzyńska 
and van  den Bergh 2010). Hence, in computational models of search, instead of 
global optimization—with or without constraints imposed by the cost of informa-
tion—agents often conduct experiential learning and backward-looking search. This 
is represented by local search, meaning that only one or some attributes of the cur-
rent state (or policy) are changed; should this change be productive compared to the 
status quo, the modified policy serves as basis for a new local search. This results 
in adaptive processes. However, there is evidence that adaptive processes based on 
experiential learning are biased against new alternatives (e.g., Levinthal and March 
1981; Levinthal 1997), especially since adaptation does not correct early sampling 
errors (hot-stove effect) (Denrell and March 2001).

With the shift from “instantaneous” global optimization to stepwise and local 
search also the processual perspective—including questions of speed of perfor-
mance enhancements and of contingent factors—comes into play. In particular, 
the complexity of decision problems and environmental turbulence are among the 
predominant contingent factors in the respective stream of research. Computa-
tional studies on search behavior have been carried out in various domains like, 
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for example, organizational design, innovation, psychology, and, accordingly, the 
related approaches in prior research are rather manifold. Overviews are, for exam-
ple, given in Ganco and Hoetker (2009), Wall (2016), or Baumann et al. (2019).

In computational studies capturing backward-looking search behavior, greedy 
algorithms and, in particular, hill-climbing algorithms predominate. According to 
Cormen et al. (2009, p. 414), a “greedy algorithm always makes the choice that 
looks best at the moment” in terms of “a locally optimal choice in the hope that 
this choice will lead to a globally optimal solution”. A hill-climbing algorithm—
employing the metaphor of seeking the highest summit (Wright 1932; Altenberg 
1997)—for a move in the landscape requires that the outcome (“altitude”) will 
increase. In other words: the aspiration level is a performance improvement of 
greater than zero. For example, with a steepest ascent hill-climbing algorithm, 
that option out of more than one alternatives to the status quo is selected which 
provides the highest improvement in outcome; if none of the alternatives prom-
ises an incline in outcome, the status quo is kept. With this, hill-climbing algo-
rithms are particularly prone to get stuck in local maxima, ridges, or plateaus in 
a landscape (for overviews, e.g., Cormen et al. 2009; Macken et al. 1991; Selman 
and Gomes 2006). This is mainly because with these algorithms a short-term 
decline in favor of a long-term increase would not happen since no choice in 
favor of an option that provides an inferior outcome than the status quo would 
ever be made. Hence, hill-climbing algorithms may lead to rather myopic search 
processes. Moreover, as mentioned in the Introduction, it was argued that this is 
also in conflict with some cognitive biases which indicate that decision-makers 
eventually behave in favor of performance declines. These considerations gave 
rise to questions whether hill-climbing algorithms appropriately capture manage-
rial search behavior (e.g., Tracy et al. 2017).

While hill-climbing algorithms are customary in computational studies cap-
turing managerial search processes, it is worth mentioning that they often serve 
just as the nucleus: in many models, managerial search is embedded in a broader 
context. This context is, for example, defined by the incentive schemes shaping 
managers’ objective functions and, thus, the particular “landscapes” managers are 
searching in (e.g., Siggelkow and Rivkin 2005; Wall 2017). Another contingency 
factor is the imprecision of managers’ information, which may, accidentally, lead 
to short-term declines but long-term inclines of performance choices (Knudsen 
and Levinthal 2007; Wall 2016). Furthermore, prior research studied the decom-
position of the organizational decision problem (Dosi et al. 2003) or the coordi-
nation among managers searching on partitions of the overall decision problem 
(Siggelkow and Levinthal 2003). Moreover, the learning-based adaptation of the 
structure of search comes into play. For example, based on experience, the organ-
ization of search processes (e.g., who searches on which particular decision prob-
lem) could be subject to coevolution (e.g., Wall 2018).

However, as mentioned in the Sect. 1, the potential of hill-climbing algorithms 
to represent managerial search behavior has been questioned, and the very core 
of the research endeavor presented in this paper is to introduce and illustrate an 
algorithm for backward-looking search based on Simon’s concept of satisficing.
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2.3  Simon’s concept of satisficing: outline and related work

This section intends to provide an overview of the “satisficing” concept with par-
ticular focus on an algorithmic representation for backward-looking search.2 The 
following quote captures the core idea (Simon 1955, p. 110):

In most global models of rational choice, all alternatives are evaluated before a 
choice is made. In actual human decision-making, alternatives are often exam-
ined sequentially. We may, or may not, know the mechanism that determines 
the order of procedure. When alternatives are examined sequentially, we may 
regard the first satisfactory alternative that is evaluated as such as the one actu-
ally selected.

The satisficing concept is explained and justified extensively in Simon’s 1955 paper 
and subsequent works (e.g., Simon 1959, 1979; for a reconstruction of satisficing 
from Simon’s early works see Brown 2004). One of Simon’s arguments is that deci-
sion-makers endowed with limited information-processing capabilities may strive 
for decisions which are good enough with reasonable costs of computation (Simon 
1955,  p. 106; Simon 1979,  p. 498). The quote above indicates on three building 
blocks which are particularly relevant for an algorithmic representation of satificing. 
These are3: 

1. Sequential procedure, i.e., options are discovered and evaluated sequentially;
2. Aspiration level, i.e., options are evaluated with respect to a level of outcome that 

is regarded satisfactory;
3. Stopping rule, i.e., search is stopped when the first satisfactory option is found.

Regarding the stopping rule, Simon introduces further considerations to assure, first, 
that—at least in the long run—a satisfactory alternative can be found while, second, 
in the short-term, search can provisionally stop if no satisfactory alternative is iden-
tified. For this, in particular, he introduces a dynamic perspective by considering a 
sequence of situations with choices to be made (Simon 1955, p. 111):

The aspiration level, which defines a satisfactory alternative, may change 
from point to point in this sequence of trials. A vague principle would be 
that as the individual, in his exploration of alternatives, finds it easy to dis-
cover satisfactory alternatives, his aspiration level rises; as he finds it dif-
ficult to discover satisfactory alternatives, his aspiration level falls. Perhaps 
it would be possible to express the ease or difficulty of exploration in terms 
of the cost of obtaining better information about the mapping of A on S, 
or the combinatorial magnitude of the task of refining this mapping. There 

2 An in-depth analysis of the concept’s origin in Simon’s work is given by Brown (2004); Radner (1975) 
introduced a general formulation for purposes of mathematical optimization.
3 These three elements, in principle, correspond to building blocks proposed by Gigerenzer and Todd 
(1999) for heuristics, which are search rules, stopping rules and decision rules (see also Gigerenzer and 
Gaissmaier 2011).
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are a number of ways in which this process could be defined formally. Such 
changes in aspiration level would tend to bring about a ‘near-uniqueness’ of 
the satisfactory solutions and would also tend to guarantee the existence of 
satisfactory solutions. For the failure to discover a solution would depress 
the aspiration level and bring satisfactory solutions into existence. [empha-
sis in original]

As Simon points out, such a mechanism of adjusting aspiration levels assures that, 
satisfactory solutions exist in the long run. However, as mentioned before, a second 
aspect is the number of alternatives a decision-maker is willing to explore. In short-
term, such an upper bound assures that the search, in principle, may stop even if 
no satisfactory option is found; however, in a sequence of situations, the maximum 
number of alternatives searched may be subject to adjustment too (Simon 1955, p. 
111):

Up to this point little use has been made of the distinction between A, the set of 
behavior alternatives, and Ȧ , the set of behavior alternatives that the organism 
considers. Suppose now that the latter is a proper subset of the former. Then, 
the failure to find a satisfactory alternative in Ȧ may lead to a search for addi-
tional alternatives in A that can be adjoined to Ȧ.

Simon mentions these two types of adjustment—i.e., regarding aspiration levels 
and maximum number of options searched—as examples of how decision-making 
behavior could be adjusted to the perceived difficulty of finding satisfactory alterna-
tives. Moreover, the two types of adjustments may substitute or complement each 
other (Simon 1955, p. 112):

In one organism, dynamic adjustment over a sequence of choices may depend 
primarily upon adjustments of the aspiration level. In another organism, the 
adjustments may be primarily in the set Ȧ : if satisfactory alternatives are dis-
covered easily, Ȧ narrows; if it becomes difficult to find satisfactory alterna-
tives, Ȧ broadens... The more persistent the organism, the greater the role 
played by the adjustment of Ȧ , relative to the role played by the adjustment of 
the aspiration level.

Hence, for an algorithmic representation, the above “list” of building blocks of satis-
ficing could be extended by 

4. Adjustment of aspiration level, with downward (upward) adjustment when the 
decision-maker finds it difficult (easy) to identify a satisfactory alternative;

5. Adjustment of maximum number of options explored, with broadening (narrowing) 
adjustment when the decision-maker finds it difficult (easy) to identify a satisfac-
tory alternative.

The concept of satisficing stimulated a large body of further research in various 
domains reaching from psychology and economics to multi-agent systems (e.g., 
Bianchi 1990; Gigerenzer 2002; Todd and Gigerenzer 2003; Parker et  al. 2007; 
Schwartz 2008; Rosenfeld and Kraus 2012).
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For example, key elements of satisficing are among the foundations of “the adpa-
tive toolbox” comprising “fast and frugal heuristics” introduced by Gigerenzer 
(2002). Moreover, Simon’s satisficing provides a basis for Selten’s prominent “aspi-
ration adaption theory” (Selten 1998, 2002). However, particularly the idea of aspi-
ration levels has given rise to questions on how they are initially set and how they 
are updated (e.g., Bianchi 1990; Lant 1992; Güth 2007; Schwartz 2008). Another 
stream of research studies the effects of aspiration levels in an organizational con-
text, especially of aspirations in terms of organizational targets (e.g., Mezias 1988; 
Washburn and Bromiley 2012; Joseph and Gaba 2015).

A further body of research seeks to test how far satisficing captures real human 
decision-making behavior empirically. For example, in an experimental study Cap-
lin et al. (2011) find considerable support for key elements of satisficing behavior, 
namely sequential search and stopping a search process when a decision-maker 
regards the level of outcome satisfactory. Another stream of research refers to the 
conditions when decision-makers seek to behave as maximizers or satisficers, i.e., to 
styles of decision-making (e.g., Schwartz et al. 2002; Parker et al. 2007).

Close in spirit to these research efforts, is the paper of Billinger et  al. (2014) 
which presents an experimental study on how decision-makers adapt their search 
behavior to the complexity of the decision problem. The authors find that search 
behavior is adjusted to subjective reference points of performance feedback which 
reflect success and failure. In particular, success narrows the search activities to 
local search; in contrast, failure promotes more distant search. Since the complexity 
of a decision problem makes it more difficult to find successful solutions, complex-
ity affects the feedback that decision-makers receive in their search for new alterna-
tives, leading to an adaptation of individuals’ search behavior (with further refer-
ences, see also Puranam et al. 2015; Posen et al. 2018).

3  Algorithmic representation of satisficing managerial search 
behavior

3.1  Preliminary remarks

This section introduces a computational model of organizations with decision-mak-
ing agents that employ satisficing in backward-looking search behavior following 
Simon’s concept as introduced in Sect.  2.3. The model is presented for decision-
making agents facing a multidimensional binary decision problem. This modeling 
choice builds on two arguments:

First and most important, as it was outlined above, a considerable body of 
research in computational management science employs the prominent NK frame-
work. In its standard form, the NK framework comprises N-dimensional binary bit 
strings as the vector of choices or features adapted throughout adaptive processes 
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based on some kinds of learning or evolution. Hence, modeling the satisficing con-
cept for binary decision problems eases the integration into prior research.4

Second, a fixed dimensionality binary decision problem facilitates to model sat-
isficing search behavior. For example, the maximum number of alternatives (see 
Sect. 2.3) and the term neighborhood can be figured out easily. However, the author 
believes that the simplifying assumption of binary decision problems does not limit, 
in principle, transferring the proposed algorithm of satisficing search behavior to 
other types of decision problems.

3.2  Process structure of satisficing search

Subsequently, satisficing search behavior of a manager r is described where manager 
r may be one out of M managers in an organization (i.e., r = (1,… ,M) ). Manager r 
faces an Nr-dimensional binary decision problem.

According to the behavioral assumptions of Simon (1955), manager r is not able 
to survey the entire search space and, hence, cannot “locate” the optimal solution 
of its decision problem “at once”. Instead, manager r employs a time-consuming 
search process to identify solutions with superior performance, or even the optimal 
solution, regarding manager r’s objective.

As outlined in Sect. 2.3, a particular feature of satisficing search behavior is that, 
when searching for superior performance, an agent may adapt the aspiration level 
and the maximum number of alternatives discovered before the agent decides to stop 
searching. Hence, the proposed model comprises three adaptive processes which are 
related to each other: In each period t of time, 

1. manager r sequentially searches for novel options to its particular decision prob-
lem within the institutional framework given which includes, for example, divi-
sion of labor or rewards provided (Sect. 3.3);

2. manager r adjusts the aspiration level ar that a newly found option will have to 
meet to be selected in the next period based on the performance improvements 
resulting from the solutions implemented in the past (Sect. 3.4);

3. manager r adjusts the maximum number smax,r of options to be discovered before 
search is stopped depending on the number of options that manager r had to 
search for before a satisficing alternative was found in the past (Sect. 3.5).

Figure 1 shows the principle process of satisficing search behavior of a manager r. 
Subsequently, the model is described in more detail.

4 In Sect. 4, this paper presents simulation experiments for managerial decision-makers within organiza-
tions. The organizations face a binary decision problem according to the NK-framework. The subsequent 
description of satisficing search behavior follows some notational conventions of the NK framework.
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3.3  Sequential search for new options

A key feature of satisficing search is that new options are discovered and eval-
uated sequentially: the agent discovers one novel option �sr

t
 and evaluates (i.e., 

searches for “cues” in the terminology of Simon (1955) whether it promises a 
performance improvement compared to the status quo �r

t−1
 that, at least, meets the 

aspiration level ar(t) , i.e., when

with

(1)�Pr
t
≥ ar(t)

Fig. 1  Process structure of satisficing search behavior
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If so, this option is implemented, and search is stopped for this time step t; other-
wise, the next option is searched and evaluated as far as the maximum number of 
options smax,r(t) is not reached yet (see Fig. 1).

With manager r facing an Nr-dimensional binary decision problem, at maximum, 
2N

r

− 1 alternative configurations �r compared to the status quo could be imple-
mented. Hence, the upper bound for the maximum number of options is

For an algorithmic representation of satisficing, defining a sequence of the agent’s 
discoveries of new options is necessary. For the sequence of options’ discovery, var-
ious possibilities are feasible. For example, one obvious way is to let the agent ran-
domly discover one out of the 2Nr

− 1 alternatives (if an option has been discovered 
before in that time step t, the random draw is repeated).

However, the simulation experiments presented subsequently employ a “clos-
est-first” search policy which reflects the idea of neighborhood search: a manager 
r starts searching in the immediate “neighborhood” of the status quo. Should this 
not lead to a satisficing option, manager r extends the “circle” of search around the 
status quo. As outlined in Sect. 2.3, this modeling choice of the sequence is broadly 
supported by experimental evidence (Billinger et  al. 2014; Puranam et  al. 2015; 
Posen et al. 2018).

Hence, the sequence follows increasing Hamming distances of discovered alter-
natives to the status quo where the Hamming distance of an alternative option �sr

t
 to 

the status quo is given by

Hence, the search starts with alternatives with a Hamming distance h(�sr
t
) = 1 , then 

followed by options with a Hamming distance of two and so forth, as long as neither 
the aspiration level is met nor the maximum number of options smax,r to be consid-
ered is reached. Among the options with equal Hamming distance the sequence is 
given at random.5

The rationale for a sequence given by increasing Hamming distances is as fol-
lows: This sequence appears particularly appropriate to capture the idea of stepwise 
improvement of a given configuration. With respect to the cost of search and change, 
small steps (i.e., Hamming distance equal to 1) could be assumed to show lower cost 
than more distant options which require more changes. Hence, the “closest-first” 
search policy may be based on considerations of cost of search and change.

(2)�Pr
t
= P(�s

r

t
) − P(�r

t−1
)

(3)smax,r ≤ 2N
r

− 1

(4)h(�s
r

t
) =

Nr∑
i=1

|||�
r
t−1

− �s
r

t

|||

5 For example, with a decision problem of Nr = 3 , three alternatives to the status quo with a Hamming 
distance h(�sr

t
) = 1 , three alternatives with h(�sr

t
) = 2 and one with h(�sr

t
) = 3 exist. A manager first dis-

covers nearest neighbors; next, options with h(�sr
t
) = 2 are found etc. where the sequence among equal-

distanced options is randomly given.
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However, it is worth mentioning that other forms of the sequence of searching 
are arguable too: For example, a manager may be rewarded based on the particu-
lar novelty of the options chosen, which could give reason to start searching with 
the most distant alternatives possible.

3.4  Adaptation of the aspiration level

As mentioned in Sects. 2.3 and 3.2, a core element in satisficing is the aspiration 
level. Newly found options are evaluated according to whether or not they prom-
ise to meet the aspiration level, and the aspiration level is subject to adaptation 
based on experience (Simon 1955): The aspiration level may increase (decrease) 
depending on how easy (difficult) it was to find a satisfactory alternative in the 
past.

In the proposed model of satisficing search behavior, the aspiration level is 
adjusted according to the performance experience, i.e., an improvement or deterio-
ration of performance (see Eq. 2) achieved over time. In particular, the aspiration 
level ar(t) is captured as an exponentially weighted moving average of past perfor-
mance changes where �r denotes the speed of adjustment for manager r (Levinthal 
and March 1981; Böergers and Sarin 2000; Levinthal 2016), i.e.,

It is worth emphasizing that the aspiration level could also become negative—i.e., 
a performance decline becoming acceptable—if declines happened in the past. This 
establishes a contrast to hill-climbing algorithms where decision-makers would 
not accept performance declines (see Introduction). Section 6.1 comes back to this 
aspect.

3.5  Adaptation of the maximum number of options searched

In a similar vein, the space of options in which a manager searches for satisfactory 
alternatives may be dynamically adjusted. When it turns out to be difficult to find 
satisfactory options, the search space for alternatives is broadened; when finding 
satisfactory options is easy, search space is narrowed (Simon 1955). As mentioned 
in Sect. 2.3, this type of adjustment is supported by experimental results (Billinger 
et al. 2014).

In the modeling effort presented here, this is captured as adjustment of the max-
imum number smax,r of options that the decision-making agent r may consider in 
the next time step. In particular, if in period t a maximum number of options, i.e., 
sr(t) = smax,r , was searched and evaluated without that a satisfactory alternative to 
the status quo was identified, then for t + 1 the (potential) search space increases. 
For this, again, an exponentially weighted moving average of past search spaces 
is employed where �r denotes the speed of adjustment for manager r. Hence, the 
search space results from

(5)ar(t + 1) = �r
⋅ �Pr

t + (1 − �r) ⋅ ar(t).



277

1 3

Modeling managerial search behavior based on Simon’s concept…

However, since the maximum search space smax,r has to be an integer, the moving 
average according to the upper case of Eq. 6 is to be rounded up or down which is 
done according to

Hence, with Eq. 7, the “adjusting” procedure in Eq. 6 does not necessarily result in 
an adjusted space smax,r(t + 1) of options for the next period.

4  Example: an agent‑based model of search in collaborative 
organizations based on satisficing vs. hill‑climbing

4.1  Overview

This section intends to contrast, employing an example, the adaptive walks of organ-
izations with satisficing managers to organizations with managers employing a hill-
climbing algorithm as familiar in the domain of agent-based computational organi-
zation science.

To this end, the model captures artificial organizations that use only a few organi-
zational design elements. In particular, organizations do not comprise more elements 
than the decomposition of an overall decision problem into sub-problems, the del-
egation of sub-problems to decision-making managers, and a headquarters rewards 
managers according to their respective performance. One may think of the decision-
making managers as being the heads of respective departments. However, in terms 
of the concept of Agent Action Diagrams (AAD) proposed by Li et al. (2019), the 
model explicitly only captures the “thinking” parts of the managers’s actions (e.g., 
searching and evaluating of options, decision-making); the “command” and “exe-
cution” actions related to the choices made are not explicitly modeled; rather, it is 
assumed that these actions are put forward according to the choices.6 The Appendix 
outlines the agent entity organization diagram and the agent entity action attribute 
diagram according to the AAD concept (Li et al. 2019).

Hence, the model captures simple—for not to say: simplistic—organizations which 
refrain from many design elements as, for example, more sophisticated coordination 
mechanisms like organizational routines (e.g., Gao et al. 2018; Gao and Akbaritabar 

(6)s
max,r(t + 1) =

⎧
⎪⎨⎪⎩

𝛽r ⋅ (sr(t) + 1) + (1 − 𝛽r) ⋅ smax,r(t)

ifsr(t) = smax,r(t) and𝛥Pr
t
< ar(t)

𝛽r ⋅ (sr(t)) + (1 − 𝛽r) ⋅ smax,r(t)else

(7)smax,r(t + 1) = ⌊smax,r(t + 1) + 0.5⌋

6 The likewise applies to the headquarters’ actions: The model does not explicitly capture the headquar-
ters’ “thinking” actions (i.e., decomposition of the overall task, observation of the status quo), the “com-
mand” actions (i.e., delegation of sub-problems) and execution action (i.e., rewarding) which is why the 
they are not further documented in the Appendix.
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2021) or team-based compensation (e.g., Siggelkow and Rivkin 2005; Wall 2017) 
which were incorporated in many agent-based models.

The rationale for this is to study the effects of the satisficing compared to the hill-
climbing algorithm on managerial search in organizations in as pure a form as pos-
sible and without being entangled with organizational mechanisms that are intended 
to align individual behavior with organizational objectives.

In the following, first, the overall organizational decision problem, its decompo-
sition, and delegation to managers are introduced (Sect.  4.2). Next, a description 
of managers’ objective functions and information basis (Sect.  4.3) follows. Third, 
search and decision-making via hill-climbing are briefly outlined in contrast to satis-
ficing (Sect. 4.4).

4.2  Decision problem and structure of the organizations

In the simulation model, artificial organizations are observed while searching for 
superior solutions for a decision problem according to the framework of NK-fit-
ness landscapes (Kauffman and Levin 1987; Kauffman 1993). In particular, at each 
time step t the organizations face an N-dimensional binary decision problem, i.e., 
�� = (d1t, ..., dNt) with dit ∈ {0, 1} , i = 1, ...,N , out of 2N different binary vectors 
possible. Each of the two states dit ∈ {0, 1} provides a distinct contribution Cit to 
the overall performance V(��) . The contributions Cit are randomly drawn from a uni-
form distribution with 0 ≤ Cit ≤ 1 . Parameter K (with 0 ≤ K ≤ N − 1 ) reflects the 
number of those choices djt , j ≠ i which also affect the performance contribution 
Cit of choice dit . Hence, K captures the complexity of the decision problem in terms 
of the interactions among decisions: this means that contribution Cit may not only 
depend on the single choice dit (being 0 or 1) but also on K other choices:

with 
{
i1, ..., iK

}
⊂ {1, ..., i − 1, i + 1, ...,N} . In case of no interactions among 

choices, K equals 0, and K is N − 1 for the maximum level of complexity where 
each single choice i affects the performance contribution of each other binary choice 
j ≠ i . The overall performance Vt achieved in period t results as normalized sum of 
contributions Cit from

The organizations have a hierarchical structure and comprise two types of agents: 
(1) one headquarter and (2) M managers. The organizations make use of division of 
labor. In particular, the N-dimensional overall decision problem is decomposed into 
M disjoint partial problems, and each of these sub-problems is exclusively delegated 
to one manager r = (1,… ,M) . For the sake of simplicity, the sub-problems are of 

(8)Cit = fi(dit;di1t, ...diKt),

(9)Vt = V(��) =
1

N

N∑
i=1

Cit.
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equal size Nr.7 Each manager r is endowed with decision-making authority on its 
“own” partition of the organization’s decision problem.

The headquarter seeks to maximize the overall performance Vt according to 
Eq. 9. However, its role is restricted to—at the end of each time step t—observing 
the overall performance Vt , observing each manager’s performance contribution and 
rewarding managers accordingly.

Depending on the complexity K of the N-dimensional decision problem and the 
particular structure of interactions among the M sub-problems, indirect interactions 
among the managers’ choices may result. Let Kex denote the level of interdependen-
cies across managers’ sub-problems. In case that interdependencies across sub-prob-
lems exist, i.e., if Kex > 0 , then the performance contribution of manager r’s choices 
to overall performance V is affected by choices made by other managers q ≠ r and 
vice versa (see, for example, Fig. 2b).

4.3  Managers’ objective functions and information

The managers seek to maximize compensation which is merit-based and depends 
on the performance contribution Pr

t
(��) of manager r to overall performance V(��) 

according to Eq. 9. Hence, we have

with

(10)Vt = V(��) =

M∑
r=1

Pr
t
(��)

Fig. 2  Examples of a decomposable and b nearly decomposable interaction structures

7 With N ∈ ℕ this requires that N is divisible by M without remainder.
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and with w =
∑r−1

m=1
Nm for r > 1 and w = 0 for r = 1.

For the sake of simplicity, compensation of manager r depends linearly on the 
value base Pr

t
(��) for all levels of Pr

t
 . Hence, by increasing the performance contri-

bution Pr
t
 of the partial solution for the Nr-dimensional sub-problem to the overall 

organization’s decision-problem, manager r also increases its compensation.
However, when making choices on their respective partial configurations ��

�
 , 

the managers show some further cognitive limitations (apart from not knowing the 
entire space of solutions and, thus, having to search for options):

First, manager r cannot anticipate the other managers’ q ≠ r choices; rather man-
ager r assumes that the fellow managers will stay with the status quo, i.e., opt for 
�
q∗

t−1
 . This is since, at the the beginning of every period, manager r gets knowledge 

of the solution �∗
t−1

 to the overall decision problem of the organization and, hence, 
of the fellow managers’ choices. However, the model does not capture any further 
mutual perceptions among managers (e.g., sympathy, social identification) between 
managers (e.g., Smarzhevskiy and Solovev 2020; Ellemers et al. 2004).

Second, manager r is not able to perfectly ex-ante evaluate the effects of any 
newly discovered option �sr

t
 on the value base for compensation Pr

t
(��

r

t
) (see Eq. 11). 

Rather, ex ante evaluations are afflicted with noise which is, for the sake of sim-
plicity, an relative error imputed to the actual performance (Wall 2010; for further 
types of errors see Levitan and Kauffman 1995; for further models of managerial 
search capturing imperfect evaluations see Carley and Zhiang 1997; Chang and Har-
rington 1998; Knudsen and Levinthal 2007). The error terms er(�sr

t
) follow a Gauss-

ian distribution N(0;�) with expected value 0 and standard deviations �r ; errors are 
assumed to be independent from each other. Hence, the value base of compensation 
P̃r
t
(�s

r

t
) of a newly discovered �sr option as ex ante perceived by manager r is

Thereby, when making decisions, each manager r has a different “view” of the actual 
fitness landscape which results from (1) the decomposition of the overall decision 
problem and the delegation of sub-problems and (2) from the managers’ individual 
“perceptions” due to the individualized error terms �r . However, for the status quo 
option �r∗

t−1
 , it is assumed that manager r remembers the compensation from the last 

period. From this, manager r also knows the actual performance Pr
t
 of the status 

quo, should the manager choose to stay with it in time step t and if, in case of inter-
actions across sub-problems, also the fellow managers stay with the status quo.

4.4  Search strategies

In every time step t, each manager r seeks to identify a superior configuration for 
its partial decision problem ��

�
 with respect to the value base of compensation. The 

search strategy shapes the options a manager can choose. The simulation model 

(11)Pr
t
(��

�
) =

1

N

Nr∑
i=1+w

Cit

(12)P̃r
t
(�s

r

t
) = Pr

t
(�s

r

t
) + er(�s

r

t
)
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contrasts adaptive walks of organizations with satisficing managers to those organi-
zations with managers employing a steepest ascent hill-climbing algorithm as fre-
quently employed in computational management science. In Sect. 3, the model of 
satisficing search was introduced. Hence, at this point, a short outline of hill-climb-
ing in the context of the model follows.

In particular, as already mentioned, in the model the managers cannot survey the 
entire search space and, hence, they have to search stepwise for superior solutions. 
Following a hill-climbing algorithm, a manager searches in the neighborhood for a 
fixed number smax,r of alternatives and opts for an alternative only if it promises a 
higher performance (“fitness”) than the status quo. The distance to the status quo 
defines the term neighborhood and, in the context of the NK-model, is measured by 
the Hamming distance h(�sr

t
) of an alternative option to the status quo �r

t−1
 according 

to Eq. 4.
In the most simple case, the neighborhood is set to h(�sr

t
) = 1 and the number 

of alternatives is sr = smax,r = 1 , too. This means that only one alternative to �r
t−1

 is 
discovered where—usually at random—one bit is flipped. However, the “allowed” 
neighborhood of search could be broader than one, and also the number of alterna-
tives the manager identifies could be higher than one. Both is often employed in 
models of organizational search (e.g., Siggelkow and Rivkin 2005; Wall 2017; for 
overviews Chang and Harrington 2006; Baumann et  al. 2019). If the number of 
alternatives smax,r identified providing a performance incline is higher than one, that 
option with the highest incline is selected (steepest ascent hill-climbing). Hence, 
three aspects of this hill-climbing algorithm (HCA) appear noteworthy in compari-
son to the satisficing algorithm (see Sect. 3): 

1. In the HCA, the number sr of newly discovered alternatives per period equals the 
maximum number of alternatives allowed, i.e., sr = smax,r . Moreover, the maxi-
mum number of alternatives is not subject to adaptation based on experience over 
time like in satisficing.8

2. The HCA employs an aspiration level of zero: alternatives with a performance 
incline compared to the status quo are worth being selected by a manager (i.e., 
ar > 0 ). Additionally, unlike in satisficing, the aspiration level is not adapted 
according to experience.9

3. In the HCA, options are not searched and evaluated in sequence with a stop 
of searching when an alternative meets the aspiration level like in satisficing. 
Instead, in case that the HCA is parametrized to two or more alternatives to be 
searched (i.e., if smax,r > 1 ), the search stops when smax,r alternatives are identified. 
Then, these smax,r options are evaluated against the status quo and against each 
other to figure out the steepest ascent.

8 In this sense, the HCA could be regarded as a special case according to Eq. 6 with � = 0.
9 With this, the HCA may be regarded as a special case according to Eq. 5 with � = 0.
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The paper presents the results of simulations for organizations with managers 
employing satisficing versus hill-climbing search. For this, the next section intro-
duces the particular parameter settings of the simulation experiments.

5  Simulation experiments and parameter settings

The simulation study seeks to provide insights into how satisficing managerial 
search behavior compared to hill-climbing behavior affects the organizations’ result-
ing adaptive walks. Table 1 displays the parameter settings which are explained in 
the remainder of this section.

The parameter settings in the upper part of Table 1) apply to experiments with 
both satisficing and hill-climbing types of managers. As such, organizations are 

Table 1  Parameter settings

Parameter Values/Types

Applying to all scenarios/types of managers
Observation period T = 250

Simulation runs Per scenario 2500 runs with 25 runs on 100 distinct fitness 
landscapes

Number of choices N = 12

Interaction structures Decomposable: ( K = 2;Kex = 0 ) (see Fig. 2a)
non-decomposable:
–Low: ( K = 3;Kex = 1 ); ( K = 4;Kex = 2);
–Medium: ( K = 5;Kex = 3 ); ( K = 6;Kex = 4);
–High: ( K = 7;Kex = 5 ) (see Fig. 2b)

Number of managers M = 4 with �1 = (d1, d2, d3), �
2 = (d4, d5, d6) , 

�3 = (d7, d8, d9), �
4 = (d10, d11, d12)

Managers’ precision of ex-ante evaluation �r = 0.05 for all managers r = (1,… ,M)

Satisficing type of managers
Aspiration level
–In the beginning ar(t = 0) = 0 for all managers r = (1,… ,M)

–Speed of adjustment �r = 0.5 for all managers r = (1,… ,M)

Max. number of alternatives
–In the beginning smax,r(t = 0) = 2 for all managers r = (1,… ,M)

–Speed of adjustment �r = 0.5 for all managers r = (1,… ,M)

Hill-climbing type of managers
HC2-strategy sr = 2 alternatives per period with h(�r,a1) = 1 and 

h(�r,a2) = 1 for all managers r = (1,… ,M)

HC6-strategy sr = 6 alternatives per period with h(�r,a1) = 1 , 
h(�r,a2) = 1 , h(�r,a3) = 1 , and h(�r,a4) = 2 , h(�r,a5) = 2 , 
h(�r,a6) = 2 for all managers r = (1,… ,M)
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observed for 250 periods10 when searching for superior solutions to an N = 12

-dimensional decision problem. The overall decision problem is decomposed into 
M = 4 equal-sized sub-problems of which each is delegated exclusively to a subor-
dinate manager. The Appendix provides a graphical description following the “agent 
action diagram (AAD)” approach (Li et al. 2019).

The experiments are conducted for different levels of complexity of the organi-
zations’ decision problems: In particular, the organizations may have a perfectly 
decomposable interaction structure of decisions which captures situations where, 
for example, the task of an organization is perfectly decomposable along geographi-
cal regions or products without any interdependencies across regions or products, 
respectively (Galbraith 1974; Rivkin and Siggelkow 2007; Simon 1962). Figure 2a 
gives an example of a situation with no interactions across managers’ sub-problems 
(i.e., Kex = 0 ). Alternatively, the interaction structures captured in the experiments 
may exhibit a low, medium, or high level of interactions across sub-problems. For 
example, Fig.  2b shows a case of a high level of cross-problem interactions (i.e., 
Kex = 5 ). This interaction structure may represent situations caused by certain con-
straints of resources (budgets or capacities), by market interactions (prices of one 
product may affect the price of another) or functional interrelations (e.g., the product 
design sets requirements for logistics or procurement processes) (Thompson 1967; 
Galbraith 1973; Rivkin and Siggelkow 2007; Li et al. 2021).

When ex-ante evaluating newly discovered options, the managers suffer from 
some noise (see Eq. 12) following a Gaussian distribution with mean 0 and a stand-
ard deviation of 0.05. This parametrization intends to reflect some empirical evi-
dence according to which error levels around 10% could be a realistic estimation 
(Tee et al. 2007; Redman 1998).

Regarding experiments for organizations resided by satisficing managers (see 
middle part of Table 1), the aspiration levels of performance enhancements start at 
a level of zero for two reasons: first, this corresponds to hill-climbing (see Sect. 4.4) 
and, hence, eliminates one source of potential differences between the two modes 
in the experiments. Second, this “conservative” setting captures the desire to avoid, 
at least, situations of not-sustaining an already achieved performance level. For 
satisficing search, the maximum search space starts at a moderate level of just two 
alternatives, which also relates to a search space often specified for hill-climbing 
search in computational management science. Regarding the speed of adjustment for 
both the aspiration level of performance enhancements and the maximum number 
of alternatives, the present observation and the past are weighted equally with �r 
(Eq. 5) and �r (Eq. 6), respectively, set to 0.5.

The simulations experiments comprise two different steepest ascent hill-climb-
ing strategies (see the lower part of Table 1). In particular, in the “HC2”-strategy, 
in every time step, each manager discovers two alternatives to the respective status 
quo, each alternative with one bit flipped compared to the status quo and thus cap-
tures local search. With the “HC6”-strategy, in every time step, 6 alternatives to the 

10 The observation period T was fixed based on pretests which indicate that the results do not principally 
change for longer observation periods.
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current configuration are discovered, i.e., 3 with Hamming distance 1 and 3 with 
Hamming distance of 2.11

The HC2-strategy corresponds to agent-based models in prior research which 
study local search—often in comparison to other forms of search (e.g., Levinthal 
1997; Jain and Kogut 2014)—and, thus, serves as a basis for comparisons of simu-
lation results obtained with satisficing agents. In contrast, the HC6-strategy serves 
another purpose in the experiments: it captures a kind of “upper bound” of feasi-
ble partial alterations given the overall decision-problem of the size N = 12 and its 
decomposition into four equal-sized sub-problems. Hence, the HC6-strategy pro-
vides a broad search space and an obvious question is whether search spaces in sat-
isficing (see Eq. 6) may evolve to the same high level.

6  Results and discussion

In order to be clear and concise in exploring the parameter space, the results of the 
simulation experiments are presented in two steps. Following the idea of facto-
rial design of simulation experiments (Lorscheid et al. 2012), Sect. 6.1 introduces 
results of two baseline scenarios to analyze the principal effects of satisficing vs. 
hill-climbing managerial search behavior. In particular, organizations facing a 
decomposable decision-problem (i.e., Kex = 0 ) and organizations which have to deal 
with a medium level of complexity (i.e., Kex = 3 ) are studied. Section 6.2 provides 
an analysis of the sensitivity to intra-organizational interactions for a broader range 
of complexity levels of the organization’s decision-problem.

Table 2  Condensed results of baseline scenarios

*Confidence intervals at a level of 0.999. For parameter settings see Table 1

Search type Performance change 
in first periods 
( V

t=10 − V
t=0)

Final perfor-
mance V

t=250 (± 
CI*)

Frequ. of glob. max. 
found in t = 250  
(%)

Ratio of periods with 
altered config. � (%)

Decomposable interaction structure, Kex = 0

Satisficing + 0.3110 0.9928 ± 0.0010 60.0 22.4
HC2 hill-climbing + 0.2609 0.9507 ± 0.0031 15.3 12.3
HC6 hill-climbing + 0.3207 0.9960 ± 0.0007 66.6 20.6
Non-decomposable interaction structure: medium, Kex = 3

Satisficing + 0.1119 0.8551 ± 0.0082 9.8 59.8
HC2 hill-climbing + 0.1749 0.8900 ± 0.0046 6.8 10.9
HC6 hill-climbing + 0.0781 0.7516 ± 0.0091 4.9 83.5

11 Hence, in the HC6-strategy each manager r identifies 6 out of the 7 possible alternatives to the Nr = 3

-dimensional partial decision problem, see fn. 5. The only option that is not feasible is switching each bit 
of the 3-dimensional sub-problem of each manager. The space of alternatives considered could also be 
regarded as indication on managers’ capabilities as in Rivkin and Siggelkow (2003).
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Fig. 3  Adaptive walks of the baseline scenarios. Each line represents the average of 2500 simulations. 
For parameter settings see Table 1
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Fig. 4  Adaptation of aspiration levels in the baseline scenarios. Each line represents the average of 2500 
simulations. For parameter settings see Table 1

Fig. 5  Adaptation of maximum search space per manager in the baseline scenarios. Each line represents 
the average of 2500 simulations. For parameter settings see Table 1
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6.1  Baseline scenarios

Table 2 reports condensed results obtained from the simulation experiments for the 
baseline scenarios. For each scenario (i.e., combination of interaction structure and 
search strategy), the respective 2500 simulation runs were analyzed with respect to 
several metrics.12

The performance change achieved on average in the first ten periods informs 
about the speed of performance enhancement at the beginning of the adaptive walks, 
which may be particularly relevant in turbulent environments (Siggelkow and Rivkin 
2005). However, with respect to satisficing, the usually high performance inclines at 
the beginning of search are particularly interesting for the adjustments of aspiration 
levels and search spaces. The final performance, i.e., performance Vt=250 achieved in 
the last period of the observation time on average in the 2500 simulation runs per 
scenario, informs about the effectiveness of the search processes. This also applies 
to the relative frequency of how often the global maxima in the respective perfor-
mance landscapes have been found in the 2500 simulation runs per scenario. The 
ratio of periods in which a new configuration �� is implemented characterizes the 
adaptive walks more into detail.

Figure 3 plots the performance levels obtained in the course of adaptive walks 
over time for each scenario. Figure 4 displays the adaptation of aspiration levels over 
time for the two satisficing scenarios. Please, recall, in the hill-climbing scenarios, 
aspiration levels are zero (see Sect. 4.4), which is why they are not plotted. Figure 5 
reports on the adjustment of the search spaces in satisficing search for the decom-
posable and the non-decomposable structure; the search spaces of the scenarios 
employing hill-climbing are fixed, as is also indicated in the figure.

The following discussion of results mainly focuses on satisficing search behavior 
in contrast to the hill-climbing strategies (and less on comparing the hill-climbing 
modes against each other).

The plots in Fig. 3 indicate that the performance enhancements obtained via sat-
isficing search behavior are at medium levels compared to the two hill-climbing 
modes (which, however, perform differently well in the two interaction structures) 
for both interactions structures under investigation. The results reported in Table 2 
also suggest that satisficing search is at medium levels regarding initial performance 
enhancements and final performances. For the frequency of global maximum found, 
satisficing search outperforms both hill-climbing models in the non-decomposable 
structure. With satisficing, the ratio of periods with altered configurations is at a 
notably high level compared to the HC2 strategy. In the case of a decomposable 
structure, it even exceeds the level of the HC6 strategy. For a closer analysis of 
results, it appears helpful also to consider the adjustment processes of the aspiration 
levels and maximum search spaces as plotted in Figs. 4 and 5, respectively.

12 In the analysis of simulation experiments, the metrics related to performance V
t
 are given relative to 

the global maxima of the respective performance landscapes: otherwise, the results were not comparable 
across different performance landscapes.
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6.1.1  Decomposable interaction structure

Each manager faces a partial binary problem in the decomposable interaction struc-
ture without any interactions among the managers’ problems existing. Hence, the 
organization’s overall performance maximum could be found by identifying the 
sub-problems’ optimal solutions. Therefore, with a broad search space enabled at 
the managers’ site as with the HC6-strategy, it is not surprising that the adaptive 
walks quickly reach performance levels close to the maximum of 1. With manag-
ers employing satisficing behavior, the performance levels achieved are close to that 
of the HC6-strategy. Moreover, the maximum number of alternatives per manager 
increases rather quickly to nearly the high level of 6 as fixed for the HC6 strategy 
and remains at this high level (see Fig. 5).

The explanation for this is as follows: in the decomposable structure, managers 
likely find configurations with high or even the maximum performance level for 
their partial problem. However, from a very high (or maximal) performance level, 
it becomes more difficult (or impossible) to further increase performance. However, 
according to the behavioral assumptions underlying the idea of bounded rationality 
(Simon 1955), the managers are not aware of whether they already have identified 
the optimal solution. In consequence, since managers experience it difficult to fur-
ther increase performance, according to the satisficing concept, the search space is 
increased. It remains at a high level in the—potentially futile—attempt to increase 
performance further.

The adaption of aspiration levels follows an inverse adjustment: After a high 
incline in the first periods—due to high inclines of performance at the beginning—
the aspiration levels decline quickly to a level of zero: with being close to the best 
configuration (or having it found already), further performance enhancements are 
unlikely (or even impossible) and, hence, the aspiration levels of decision-making 
managers, persistently, remain at a level of zero. However, a closer analysis reveals 
that the aspiration levels oscillate closely around zero. This is because the managers 
in the model are not capable of evaluating options perfectly. Hence, false-positive 
choices may occur, which then affect the aspiration levels and may turn them to the 
negative (see Eq. 5).13

6.1.2  Non‑decomposable interaction structure

In the non-decomposable structure, the link between managers’ sub-problems and 
the overall decision-problem is more complicated than in the decomposable case 
for two reasons. First, when searching for superior solutions to their partial decision 
problems, managers do not necessarily increase overall performance. Hence, maxi-
mizing parochial performance and the overall performance of the organization may 
conflict with each other. The second reason refers to managers’ cognitive limitations 

13 In other words: When decision-makers can evaluate options perfectly, in the decomposable structure, 
the aspiration levels do not oscillate around zero. Instead, after an initial incline, they decline to equal 
zero.
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regarding their fellow managers’ choices. Due to interactions among sub-problems, 
manager r’s choice for the partial problem �r may affect the performance Pq

t (�
�

�
) 

(Eq. 11) of another manager q ≠ r and vice versa. Since, in the model, the manag-
ers notice their fellow managers’ choices with one period of delay, this may lead to 
frequent, time-delayed mutual adjustments in order to keep up with the fellow man-
agers’ choices, which again induces mutual adjustments and so forth. These consid-
erations reflect the lower performance levels achieved, the lower frequencies of the 
global maximum found, and the higher ratios of altered configurations compared 
to the decomposable structure reported in Table 2. These results, in principle, cor-
respond to prior research employing computational models of organizations (e.g., 
Carley 1992; Rivkin and Siggelkow 2007; Siggelkow and Rivkin 2005). However, 
the differences across search strategies are remarkable, which is analyzed in more 
detail in Sect. 6.2.

In the satisficing strategy, the adjustments of maximum search spaces and aspira-
tion levels deserve closer inspection. Regarding the adjustment of maximum search 
spaces in the satisficing strategy (Fig.  5), for the non-decomposable structure, we 
again notice an increase over time—though up to a lower level of about 5 per man-
ager and with a lower gradient compared to the decomposable structure. This may 
result from the following effects: as argued above, in non-decomposable structures, 
it is rather difficult to identify solutions that induce performance enhancements. 
However, when finding promising options becomes more difficult, with satisficing 
the maximum search space is increased. At the same time, this may counteract the 
peril of sticking to local maxima, and the peril of inertia is the more pronounced, the 
higher the complexity K (or Kex ) of a decision-problem.14

The adjustment of aspiration levels plotted in Fig. 4 shows the inverse develop-
ment, and aspiration levels decline over time. Contrary to the decomposable case, 
now the aspiration levels oscillate remarkably around a level of zero. Hence, an 
interesting question is what may cause these oscillations. Like in the decomposable 
structure, the imperfect evaluations contribute to oscillations of aspiration levels: 
imperfect ex-ante evaluations may lead to performance declines due to false-positive 
choices. Accordingly, these “negative” experiences are reflected in the adjustment of 
the aspiration levels. Additionally, in the non-decomposable structure, interactions 
among sub-problems combined with cognitive limitations regarding the choices of 
fellow managers further induce oscillating aspiration levels: 

1. When making their choices in time step t, decision-makers assume that their fel-
low managers stay with the status quo. This is particularly problematic in case of 
interactions among decision-problems and may cause “surprises” and, in conse-
quence, frequent mutual adjustments (which happens in about 60% of periods, 
see Table 2);

14 However, the search space is at a lower level than with satisficing in the decomposable structure. This 
is because, in the decomposable structure, high levels of performance are found very quickly. With this, 
further performance enhancements are difficult to achieve, which leads to an extension of the search 
space close to the upper bound.
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2. The actual choices of fellow managers are revealed only at the end of period t 
which causes a time-delay in the aforementioned mutual adjustments to the other 
managers’ choices;

Hence, due to interactions combined with alterations by fellow managers, perfor-
mance declines may happen which reduce aspiration levels even below zero.

In sum, intra-organizational complexity in combination with imperfect informa-
tion in decision-making reasonably causes frequent alterations of configurations 
� and oscillations of aspiration levels in the satisficing strategy. We return to this 
aspect in Sect. 6.2. Taking a more general perspective on the baseline scenarios, one 
may summarize the findings in the following hypotheses:

(1) Organizations in which decision-makers with satisficing search behavior reside 
and which already have identified configurations providing high levels of perfor-
mance are likely to employ extensive search and aspiration levels which enforce 
to (just) maintain the performance.

(2) Intra-organizational complexity combined with cognitive limitations of decision-
makers showing satisficing search behavior induces high levels of search activity 
and oscillating aspiration levels.

These hypotheses could be related to organizations’ maturity, and organizational 
learning in terms of both performance level achieved and organizations’ focus on 
searching for novel solutions.

6.2  Sensitivity to intra‑organizational complexity

The next step of analysis considers simulation results for all levels of intra-organiza-
tional complexity from Kex = (0,… , 5) . Thereby, we intend to provide more detailed 
insights into potential differences of satisficing behavior compared to hill-climbing 
search. For this, Fig.  6 displays—for the three search strategies under investiga-
tion—(a) the performance level achieved on average of 2500 runs in the last period 
of observation, (b) the relative frequency of runs in which the global maximum was 
found in the last period, and (c) the average ratio of periods in which the organiza-
tions implement a new solution to their decision problem.

The results reveal that, for all search strategies, the final level of performance 
decreases with increasing intra-organizational complexity, which is broadly in line 
with prior research (e.g., Rivkin and Siggelkow 2007; Levinthal 1997). However, as 
shown in Fig. 6a, the search strategies are differently sensitive to an increase in intra-
organizational complexity. The HC2-strategy—allowing only two alternatives and 
with just 1-bit changes each—is comparably robust with about 8.5 percentage points 
(p.p.) between highest and lowest final performance. In contrast, this difference is 

Fig. 6  Sensitivity of a final performance, b frequency of global maximum found and c ratio of alterations 
to intra-organizational complexity. Each mark represents the average of 2500 simulations. For parameter 
settings see Table 1

▸
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about 25 p.p. with satisficing and 34 p.p. with the HC6-strategy. Hence, these strate-
gies—allowing for more alternatives considered and longer jumps—are notably sen-
sitive to intra-organizational complexity in terms of performance declines.

These results might be counter-intuitive since one may expect that search strat-
egies allowing to consider more alternatives and making even longer jumps out-
perform the HC2-strategy since this strategy is much more “restrictive” regarding 
search space and extent of change. Moreover, concerning satisficing the result is 
particularly interesting: with this strategy, the decision-makers sequentially discover 
and ex-ante evaluate alternatives—and this with increasing Hamming distances 
starting with two options with 1-bit changed. Hence, intuition may suggest that sat-
isficing should not perform worse but even more successfully than the HC2-strategy. 
Moreover, it is worth mentioning that the satisficing strategy tends to show higher 
ratios of locating the optimal solution as Fig. 6b suggests.

The more extensive search spaces and longer jumps employed in satisficing—
and likewise with the HC6-strategy—result in a remarkable increase in alterations as 
shown in Fig. 6c. For example, for high intra-organizational complexity ( Kex = 5 ), 
with satisficing in about 83% of the periods and with HC6 hill-climbing in almost 
every period, another solution for the overall decision problem is implemented.

An interesting question is what causes these effects. The explanation may lie in 
the destabilization of the search when the strategy allows for more alternatives and 
long jumps as is the case with satisficing and HC6 hill-climbing. In particular, inter-
actions among managers’ sub-problems and imperfect information at the manag-
ers’ site subtly interfere. Each manager r = (1,… ,M)—when making its decision 
in t without knowing what the fellow managers intend to do—may not only have 
been surprised by the actual performance Pr achieved in t − 1 . Moreover, the fellow 
managers’ choices in t − 1 which—due to intra-organizational interactions—have 
affected r’s performance in t − 1 may be another source of surprise for manager r. 
This eventually lets manager r adapt configuration �r

t
 and so forth—resulting in fre-

quent time-delayed mutual adjustments. Hence, search behavior that is more flex-
ible in terms of more options and longer jumps makes it more likely that a manager 
discovers alternatives that (eventually falsely) promise to increase r’s performance. 
In this sense, the flexibility of search may induce some harmful “hyperactivity” of 
searching when intra-organizational complexity increases. The ratios of alterations 
increasing in the intra-organizational complexity with satisficing, or HC6 provide 
support for this conjecture (Fig. 6c).

These considerations may be summarized as follows: Search behavior that is 
more flexible in terms of considering a higher number of options and longer jumps 
as captured in satisficing is more prone to destabilizing (“hyperactive”) mutual 
adjustments than more restrictive forms of search behavior.

As mentioned before, prior research often employs algorithms like our HC2-strat-
egy to represent local search for superior solutions to organizations’ overall decision 
problem. In doing so, prior research puts considerable emphasis on complexity, i.e., 
interactions within the overall decision problem. The sensitivity analysis presented 
here suggests that satisficing search is remarkably more sensitive to intra-organiza-
tional complexity than local search via hill-climbing. This appears particularly rel-
evant since satisficing has received considerable support in behavioral experiments 
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(see Sects. 1 and 2.3), thus, maybe a more realistic computational representation of 
managerial search behavior than hill-climbing algorithms.

7  Conclusion

At the center of this paper are the questions of representing managerial search 
behavior in computational models and how the representation may affect models’ 
results. Prior research questions that hill-climbing algorithms—predominating in 
computational organization science—represent managerial search behavior appro-
priately. At the same time, there is considerable empirical and experimental evi-
dence on the relevance of satisficing behavior in actual human behavior. This serves 
as a starting for this paper which makes two contributions.

First, the paper introduces an algorithmic representation for backward-looking 
search according to Simon’s concept of satisficing (Simon 1955). The satisficing 
algorithm may complement other models of managerial search in (agent-based) 
computational organization science and, in this sense, may contribute to the ongoing 
discussion on how to model human decision-makers (e.g., Gode and Sunder 1993; 
Chen 2012; Hommes 2006; Billinger et al. 2014; Puranam et al. 2015; Posen et al. 
2018).

Second, in an agent-based simulation model of decision-making organizations, 
the proposed algorithm of satisficing is applied and contrasted to the steepest ascent 
variant of hill-climbing. Apart from decision-makers’ incomplete knowledge of 
the solution space, the model captures further aspects of bounded rationality. The 
simulation experiments suggest that, first, with satisficing for organizations already 
operating at a high performance level intense search activities may emerge. Second, 
oscillating aspiration levels (including accepting performance declines) and poten-
tially destabilizing search activities may occur when intra-organizational complex-
ity is high. Third, a sensitivity analysis reveals that satisficing is considerably more 
sensitive to intra-organizational complexity in terms of performance declines than 
hill-climbing algorithms.

In sum, from a more general perspective, the results suggest that the type of 
search algorithm the decision-making agents employ (i.e., whether they follow the 
satisficing concept or a hill-climbing approach) may subtly shape the model’s behav-
ior. These findings may shed some new light on prior modeling efforts building on 
hill-climbing algorithms, and may even suggest to revisit the respective computa-
tional studies in future research efforts (in a similar vein, Tracy et al. 2017).

The simulations presented in this paper require relativizing remarks, which also 
point to future research activities. First of all, it has to be emphasized that the sat-
isficing concept captures some more modeling choices and parameter settings 
than typically showing up for hill-climbing. This applies particularly to the search 
sequence and the adjustments of aspiration levels and of the maximum number of 
options. For example, the simulations presented in this paper assume a “closest first” 
sequence of search and exponential weighting with equal focus on past and presence 
for the adjustments “built-in” in the satisficing concept. While there is considerable 
experimental evidence on this proximity-driven “closest first” sequence, other types 
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of sequence may apply depending on the particular context (Puranam et al. 2015; 
Greve 2003). Moreover, there is a considerable body of empirical and experimental 
research on aspiration levels, and especially on the interrelation of organizational 
and individual aspirations in conjunction with the adjustments of aspirations (e.g., 
Lant 1992; Lant and Shapira 2008; Washburn and Bromiley 2012; Joseph and Gaba 
2015). Hence, an obvious further step would be to explore the effects of satisficing 
on model behavior for a broader parameter space with a particular focus on the ref-
erence to the reality of managerial decision-making.

Moreover, the simulation model introduced in this paper captures relatively 
simple—for not to say: simplistic—organizations. In particular, the organizational 
arrangements do not comprise much more than the division of labor (i.e., decom-
position into sub-problems and delegation to subordinate managers) and a simple 
incentive scheme that rewards parochial performance. Hence, an interesting ques-
tion is how satisficing search behavior shapes results for organizations with more 
sophisticated institutional arrangements. Of interest may be, for example, how dif-
ferent coordination mechanisms could counteract the destabilizing effects of satis-
ficing in the case of higher levels of intra-organizational complexity compared to 
hill-climbing. Studying the satisficing algorithm in models of more sophisticated 
organizational arrangements will, on the one hand, contribute to linking this repre-
sentation of managerial search behavior to prior research in computational organiza-
tion theory; on the other hand, it would allow studying the effects of satisficing in 
more realistic models of organizations.

Appendix

This appendix provides an overview of how the artificial organizations are mapped 
in the multi-agent simulation, according to  the approach of the agent action dia-
gram (AAD) as introduced by Li et  al. (2019). Among the particular features of 
the AAD approach is the differentiation between agents’ “thinking”, “command”, 
and “behavior” actions. However, it is worth mentioning that, in the “rudimentary” 
organizational structure in our model as reflecting the paper’s particular focus, the 
command and behavior actions are only captured implicitly in the model (for this, 
see also Sect. 4.1). Figure 7 shows (a) the agent entity organization diagram and (b) 
the entity action attribute diagram for the managerial decision-makers (for the head-
quarters, see footnote 6) according to the AAD concept (Li et al. 2019).
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Fig. 7  Agent entity organization diagram (a) and agent entity action attribute diagram for managers (b) 
of the agent-based model. For parameter settings see Table 1
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