
A new binary chaos-based metaheuristic algorithm for software defect
prediction

Bahman Arasteh1,2 • Keyvan Arasteh1 • Ali Ghaffari1 • Reza Ghanbarzadeh3

Received: 13 December 2023 / Revised: 27 March 2024 / Accepted: 28 March 2024
� The Author(s) 2024

Abstract
Software defect prediction is a critical challenge within software engineering aimed at enhancing software quality by

proactively identifying potential defects. This approach involves selecting defect-prone modules ahead of the testing phase,

thereby reducing testing time and costs. Machine learning methods provide developers with valuable models for cate-

gorising faulty software modules. However, the challenge arises from the numerous elements present in the training

dataset, which frequently reduce the accuracy and precision of classification. Addressing this, selecting effective features

for classification from the dataset becomes an NP-hard problem, often tackled using metaheuristic algorithms. This study

introduces a novel approach, the Binary Chaos-based Olympiad Optimisation Algorithm, specifically designed to select the

most impactful features from the training dataset. By selecting these influential features for classification, the precision and

accuracy of software module classifiers can be notably improved. The study’s primary contributions involve devising a

binary variant of the chaos-based Olympiad optimisation algorithm to meticulously select effective features and construct

an efficient classification model for identifying faulty software modules. Five real-world and standard datasets were utilised

across both the training and testing phases of the classifier to evaluate the proposed method’s effectiveness. The findings

highlight that among the 21 features within the training datasets, specific metrics such as basic complexity, the sum of

operators and operands, lines of code, quantity of lines containing code and comments, and the sum of operands have the

most significant influence on software defect prediction. This research underscores the combined effectiveness of the

proposed method and machine learning algorithms, significantly boosting accuracy (91.13%), precision (92.74%), recall

(97.61%), and F1 score (94.26%) in software defect prediction.

Keywords Software defect prediction � Binary olympiad optimisation algorithm � Feature selection � Machine learning �
Module classification

1 Introduction

The presence of defects within a software system poses a

considerable risk to its overall quality. Predicting software

defects is a critical aspect of software engineering, aimed at

improving software quality by identifying and addressing

these defects [1]. Detecting defects before the software is

released is vital for enhancing its overall quality. The

Pareto principle, which underscores that a majority of

software defects arise within specific modules, is applica-

ble here. Hence, forecasting and spotting defects in the

early stages of software development significantly enhan-

ces the resulting software’s quality. Software defect pre-

diction entails identifying modules susceptible to defects

before the testing phase, thus reducing testing time and

costs. As software systems grow in size and complexity,

testing every module comprehensively becomes unfeasible,

underscoring the importance of predicting modules prone

to defects to enhance software quality. In this pursuit,

machine learning (ML) methods provide valuable models

& Bahman Arasteh

Bahman.arasteh@istinye.edu.tr

1 Department of Software Engineering, Faculty of Engineering

and Natural Science, Istinye University, Istanbul, Turkey

2 Applied Science Research Center, Applied Science Private

University, Amman, Jordan

3 Faculty of Science and Engineering, Southern Cross

University, Gold Coast, Australia

123

Cluster Computing
https://doi.org/10.1007/s10586-024-04486-4(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04486-4&domain=pdf
https://doi.org/10.1007/s10586-024-04486-4

that empower developers to classify faulty software mod-

ules effectively [2].

Recently, there has been a surge in the adoption of

software defect prediction approaches to bolster software

quality. This study delves into software defect prediction,

concentrating on categorising software components (mod-

ules) into two categories: prone to defects and non-prone to

defects [1, 2]. The classification technique hinges on

extracting a model based on the history of defective

modules, subsequently employed to enhance accuracy in

predicting defects in new modules. Past research reveals a

robust correlation between software module metrics and

defect prediction [3]. Multiple algorithms exist for software

module classification, including Decision Trees (DT), the

K-Nearest Neighbour algorithm (KNN), the Naive Bayes

(NB) algorithm, Support Vector Machines (SVM), and

Artificial Neural Networks (ANN). However, a prevalent

challenge in classification lies in handling a vast array of

features, which compromises classification accuracy. Fea-

ture selection methods come into play to mitigate this

challenge and decrease feature dimensions. The process of

identifying effective features for classification is an NP-

hard problem that can be addressed using evolutionary

algorithms [4].

This paper introduces a novel approach to predicting

software defects. Initially, a Binary variant of the Chaos-

based Olympiad Optimisation Algorithm (BCOOA) was

developed to select the most impactful features from the

training dataset. Subsequently, various ML algorithms

were employed to construct a classification model using

this optimal training set. BCOOA draws inspiration from

swarm intelligence and is designed to emulate the learning

process of a group of students preparing for the Olympiad

examination. The stages of teaching and learning amongst

students produce population evolution. The primary

objective here is to leverage BCOOA’s capability to select

crucial features for predicting software defects using ML

algorithms. The aim is to employ these algorithms to detect

and address software defects before software release.

Diverse ML algorithms, such as KNN, DT, SVM, NB, and

ANN, were utilised for faulty module classification. By

selecting the most influential features in classification,

there’s potential to enhance precision and accuracy in the

software module classifier. Ultimately, in the testing phase,

the effectiveness of the new feature selection method was

assessed using test data.

The following are the main objectives of the current

study:

• Determining the most effective features of software

defect prediction datasets.

• Increasing the accuracy, precision, and sensitivity of

software defect predictors.

• Enhancing the performance and stability of software

defect predictors.

The primary contributions of this study are:

• Proposing a novel binary and hybrid version of the

Olympiad Optimisation Algorithm (OOA) to select the

most effective features of the defect prediction dataset.

To achieve greater population diversity, the operators of

the Genetic Algorithm (GA) were embedded into the

OOA.

• Developing and adapting the theory of chaos in the

OOA to improve its convergence with regard to both

exploration and exploitation. Chaos maps have been

used for population initialisation. The developed binary

and chaos-based OOA was adapted to address the

challenge of software defect prediction.

• Developing an effective and efficient classification

model to detect faulty software modules.

• Increasing the efficiency of software defect detection

methods by selecting the smallest subset and the most

effective features.

The remainder of the current paper is organised as fol-

lows: Sect. 2 reviews the related works on the problem of

software defect prediction. In Sect. 3, the details of the

proposed method are presented. This section includes two

subsections; the first subsection suggests and utilises

BCOOA to select the most effective features in the training

dataset. The second subsection discusses the development

of the desired classifier using the optimal train set and

different machine learning algorithms. Section 4 presents

all the relevant results from the tests conducted with the

specified criteria on real-world datasets, and Sect. 5 con-

cludes the article and recommends guidelines for future

work.

2 Related works

During software development, the testing phase holds

significant importance [5–7]. The reliability of software

hinges on the presence of bugs1(faults) within the software

[8, 9]. This phase incurs substantial expenses in terms of

both budget and time, underscoring the criticality of pre-

dicting software modules prone to defects. This prediction

occurs before commencing the testing phase, aiding in

identifying and rectifying modules susceptible to defects.

Drawing from the historical data of problematic software

modules in prior project implementations or similar pro-

jects, a model is derived to facilitate accurate defect pre-

diction in newly developed modules. Research in defect

1 In this paper, the terms ‘‘fault’’, ‘‘defect’’, ‘‘bug’’ and ‘‘mistake’’

have been used in the same meaning and can be used interchangeably.

Cluster Computing

123

prediction and estimation indicates that the underlying

hypothesis used in constructing the model significantly

influences the efficiency of the prediction model [10].

Various approaches exist for software defect prediction.

This section scrutinises four ML 5ethods: normalisation-

based, unbalanced learning-based, feature selection-based,

and blended learning-based methods.

2.1 Normalisation learning methods

Data normalisation involves pre-processing datasets prior

to training and testing to standardise the values of inde-

pendent features within the dataset. This process ensures

consistency across the diverse range of feature values

present in datasets, which is crucial as some ML algo-

rithms’ objective functions may not perform optimally

without normalisation. This pre-processing technique plays

a pivotal role in enhancing algorithm accuracy by remap-

ping the measured values to a consistent range [11]. In the

realm of software defect prediction research, three primary

normalisation methods—logarithmic normalisation, min-

max, and Z-standardisation—have been widely adopted.

Logarithmic normalisation transforms all sample feature

values into their logarithmic equivalents, effectively

managing skewed data distributions and reducing the

impact of outliers. The min–max method normalises fea-

tures within a specified range by identifying the minimum

and maximum values for each feature and scaling accord-

ingly. In contrast, Z-standardisation adjusts feature values

based on their mean and standard deviation, remapping

them to a range where the mean is 0 and the standard

deviation is 1. These techniques have been applied in

various studies, utilising logarithmic normalisation, min–

max, and Z-standard methods, respectively [12]. It is

important to note that in classification problems, the

number of samples in each class may vary, presenting

additional challenges in data pre-processing and model

training. By employing these normalisation techniques,

researchers and practitioners can mitigate some of these

challenges, ensuring more robust and accurate software

defect prediction models.

2.2 Unbalanced learning-based methods

In binary classification scenarios, the challenge of imbal-

ance occurs when there is a significant disparity between

the number of samples in one class compared to the other.

This imbalance can lead to suboptimal performance of

learning algorithms, as they generally assume an equal

distribution of samples across classes. To mitigate the

adverse effects of dataset imbalance on prediction accu-

racy, several strategies have been developed, broadly cat-

egorised into data-level, algorithm-level, and cost-sensitive

learning approaches. Data-level approaches focus on pre-

processing techniques that aim to rebalance the dataset

before the learning process begins, without directly altering

the algorithm itself. These methods adjust the data distri-

bution at the pre-processing stage to counteract the

imbalance. They achieve this by either augmenting the

number of samples in the underrepresented class (over-

sampling) or reducing the samples in the overrepresented

class (undersampling), thus fostering a more balanced class

distribution for the training process [13]. Oversampling

seeks to enhance the representation of the minor class by

duplicating existing samples or generating new ones,

whereas undersampling reduces the imbalance by remov-

ing some samples from the major class.

On the other hand, algorithm-level approaches modify

the learning algorithms to make them more sensitive to the

minority class. These methods do not alter the distribution

of the data but instead adjust the learning process to focus

more on correctly classifying the underrepresented class.

Techniques such as bagging and boosting are examples of

algorithm-level approaches that can improve classification

performance in the context of imbalanced datasets by

enhancing the model’s focus on the minority class. Toge-

ther, these strategies provide a multifaceted toolkit for

addressing the challenges posed by imbalanced datasets in

binary classification scenarios, ensuring more accurate and

equitable predictions across both classes.

2.3 Feature selection-based methods

Machine learning methods dealing with high-dimensional

data, such as datasets with a large number of features,

encounter several challenges. These include increased

computational complexity, difficulty in extracting mean-

ingful insights, and the need to manage model complexity

to avoid overfitting during training [14]. To address these

issues, dimensionality reduction techniques aim to simplify

datasets by representing them in a lower-dimensional space

while preserving essential characteristics of the original

data. Dimension reduction strategies can be broadly cate-

gorised into feature extraction-based methods and feature

subset selection-based methods. Feature extraction meth-

ods work by transforming the original high-dimensional

data into a lower-dimensional space, effectively combining

existing features to create a new, smaller set of features that

capture the core information of the original dataset. A well-

known technique in this category is Principal Component

Analysis (PCA), which identifies the principal components

that account for the most variance in the data. Feature

subset selection is another critical approach in machine

learning, especially relevant for tasks such as classification

and regression. Despite the presence of numerous features

in these tasks, not all contribute equally to the learning

Cluster Computing

123

process—some may be redundant or even detrimental to

model accuracy. By removing these non-contributory fea-

tures, computational efficiency is improved, and model

accuracy is enhanced. The objective of feature selection is

to find the smallest subset of features that is sufficient for

the task at hand. Within the realm of defect prediction,

feature selection methods are categorised into filtering and

classification techniques [15].

The filtering approach operates independently of the

machine learning algorithm, without incorporating a clas-

sification function. This method evaluates features based

on specific criteria, assigning a score to each feature.

Features are then ranked according to their scores, and

those with the lowest rankings, typically below a certain

threshold, are removed. The selected feature subset is then

used for classification, as illustrated in Fig. 1, which out-

lines the steps involved in the filtering process. Several

filter-based feature ranking techniques, such as Information

Gain (IG), Information Gain Rate (GR), Symmetric

Uncertainty (SU), Chi-Square Test (CS), and two variants

of Relief, have been extensively studied [16]. The CS filter

evaluates the distribution of classes and feature correla-

tions. The IG filter measures the information a particular

feature (feature Y) provides about the target class based on

the value of another feature (feature X). However, IG has a

tendency to favor features with a large number of values,

which may not always be the most informative. The GR

and SU methods overcome this bias by adjusting for the

value count of features; GR penalizes features with many

values, while SU calculates the combined entropies of

features X and Y to provide a balanced measure. The

ReliefF algorithm, an enhancement of the original Relief

method, excels in handling noisy and multiclass datasets by

effectively identifying relevant features. Figure 1 illus-

trates the procedure of the filter-based method for feature

selection.

The set of techniques that use an evaluation function

based on the error rate of the learning algorithm are

referred to as classification or wrapper methods. This

strategy involves generating new feature subsets through a

generator function, which are then evaluated using a ML

technique. The effectiveness of each subset is determined

by the number of errors in the test set or the error rate of the

learning method. Typically, the classification (wrapper)

method provides superior performance compared to the

filter method, albeit at a higher computational cost. Two

primary techniques for selecting the optimal set of features

are forward selection and backward selection. Forward

selection evaluates each feature for potential inclusion step

by step, while backward selection starts with all features

and gradually eliminates them based on a predefined

stopping criterion, efficiently determining the essential

features for software defect prediction [15]. Figure 2

demonstrates the workflow of classification methods,

including both forward and backward selection. These

selection strategies have been utilised in [17], with greedy

forward selection—a specific form of forward selection—

beginning with no features and adding them progressively

to improve performance accuracy [18].

2.4 Blended learning-based methods

Blended learning, within the context of machine learning,

emerges as a potent methodology [19]. This technique

integrates the predictions from several classifiers to bolster

overall learning precision. Blended learning is charac-

terised by two principal applications. In the first, various

classification algorithms are applied to tackle defect pre-

diction challenges. The initial step often involves identi-

fying the most effective classification algorithm. Yet, this

approach does not leverage the potential insights available

from employing multiple algorithms and struggles with the

task of pinpointing the singularly best classifier. The sec-

ond application addresses situations involving extensive

and varied features, which makes it impractical to integrate

all features within a single classifier. A crucial element in

creating an effective blended classifier is the selection of

underlying classification principles. The absence of

appropriate classifiers diminishes the potential benefits of

Raw Feature Selection

Step 1 Step 2

Feature Filtering

Feature Evaluation Step 3

Preparing Dataset with

Filtered Features

Step 4

Training and Testing

Step 5

Fig. 1 The procedure of the

filter-based method for feature

selection

Cluster Computing

123

diversity among classifiers, thereby limiting the effective-

ness of the blended approach.

3 The proposed method

3.1 Feature selection

This section outlines the proposed method for software

defect prediction, which leverages the Binary Chaos-based

Olympiad Optimisation Algorithm (BCOOA) in conjunc-

tion with ML algorithms. BCOOA is utilised to identify the

most impactful features within defect prediction datasets

for subsequent analysis using ML algorithms. The suite of

ML algorithms applied in this study comprises Artificial

Neural Networks (ANN), Decision Trees (DT), K-Nearest

Neighbors (KNN), Naive Bayes (NB), and Support Vector

Machines (SVM). Figure 3 depicts the workflow of the

proposed method. Standard datasets were used to train the

ML algorithms and evaluate the performance of the

resulting software defect predictors. Consequently,

BCOOA plays a crucial role in selecting features that

notably improve the accuracy and precision of the devel-

oped defect predictor, thereby enhancing its classification

capabilities.

3.2 Training datasets

The datasets employed in this study were sourced from the

NASA repository [20], publicly accessible since 2005. The

software metrics extracted from this dataset include

McCabe’s complexity metrics, Halstead’s metrics, branch

count, and five distinct metrics related to lines of code.

Table 1 presents the datasets used in this research, while

Table 2 details the 21 features within these datasets. The

final feature (the 22nd feature) serves as the dependent

variable, indicating the presence of defects in the program

code.

In BCOOA, each participant (referred to as a ‘‘student’’)

is modelled as a binary vector of length 21, matching the

count of features in the training dataset, labeled from F1 to

F21. Each element in this binary vector is directly associ-

ated with a corresponding feature in the training dataset, as

illustrated in Fig. 4. A bit value of zero means the related

feature is excluded from the training set, whereas a bit

value of one signifies the inclusion of that feature in the

model training phase. After executing a cycle of BCOOA

with a selected set of features, a fitness score is calculated

for each binary vector. This score evaluates the combina-

tion of the volume of training errors and the quantity of

features chosen, with the objective to reduce both the error

and the number of features simultaneously. Consequently,

through iterative refinement, the algorithm seeks to achieve

an optimal set of features that minimizes training errors.

3.3 Structure of olympiad optimization
algorithm

Following the assembly of the training dataset, the next

step introduces a binary adaptation of the Olympiad Opti-

misation Algorithm (BCOOA) for feature selection. This

adaptation is pivotal for pinpointing the most advantageous

features within the training dataset prior to developing the

desired classification model using machine learning algo-

rithms. BCOOA, drawing inspiration from swarm intelli-

gence, leverages both local and global search strategies.

This method, characterised by its population-based and

collaborative metaheuristic approach, tackles optimisation

challenges through a divide-and-conquer strategy. Within

this framework, each entity in the BCOOA population

Stop
condi�on

NO

YES

Evalua�ng the selected features
by Fitness func�on

Training and Testing by ML
Algorithm

Applying feature selec�on
Method

Fig. 2 The procedure for the classification methods for feature

selection

Cluster Computing

123

mimics the learning process of a student preparing for an

Olympiad competition, with each ‘‘student’’ represented by

a 21-element vector corresponding to the number of fea-

tures in the dataset. Initially, every element of the vector is

set to 1, indicating that all features are considered for

training. This vector undergoes evolution within a popu-

lation matrix that consists of nPOP individuals across 21

features. The population progresses through cycles of

interactive teaching and learning, continually refining the

feature selection process. As depicted in Algorithm 1,

BCOOA’s methodology is outlined, showcasing its

approach to optimisation by effectively combining local

and global search methods. In this structured process, the

population is periodically divided into smaller, equally

sized groups, facilitating a focused and efficient search for

the optimal feature set. The time complexity of the pro-

posed algorithms is O(MaxIter 9 TeamNum 9

TeamSize). The variable TeamNum indicates the number of

teams and the TeamSize indicates the number of individ-

uals in each team. All teams include same number of stu-

dents (TeamSize).

3.4 Chaos-based population

To ensure an even distribution of the population across the

search spaces, two key characteristics to consider are the

initial population’s ergodicity and diversity. In this study,

the initial populations are generated using chaotic maps,

specifically logistic maps, which can produce a solution

space with a favourable distribution. Chaotic sequences

promote diversity within the initial population, expedite

convergence, and enhance global search capabilities. Two

sets of experiments were conducted to explore the use of

chaotic-based initial populations in the defect prediction

problem. In the first experiment, the initial population was

randomly generated, while in the second, chaos theory was

utilised. A primary chaotic map used in the optimisation

problem is the logistic map, applied as a second-degree

polynomial mapping to generate the initial population in

the second set of experiments. In Eq. (1), which represents

the logistic map equation, X is the population members at

time t, and r is a positive constant indicating the growth

rate. When r is set to a very low value, the population

diminishes, whereas stable outcomes are achieved with

higher growth rates (r). For the benchmarking of the replica

placement, r is experimentally calibrated to 4. In Eq. (1),

the value of Xn falls within the range of 0 to 1.

Xnþ1 ¼ r � Xn� 1� Xnð Þ
r ¼ 4

ð1Þ

BCOOA Algorithm {
1 Initialize the first population by Chaos;
2 itr=0;
3 for i=1 to maxitr do
4 {
5 Partition population into n team
6 i=2;
7 while (i<=n)
8 {
9 Imitation of team(i) from team (i-1);
10 i = i + 1;
12 }
13 for i=1 to n do in parallel
14 {
15 imitation of team(i) members from the local best member;
16 }
17 for i=1 to n do in parallel
18 {
19 mutation of team(i)’s best student;
20 }
21 mutation of global best student;
22 merging teams into a single total population;
23 Evaluating the fitness of students by Eq. (4);
24 }
25 return the global best as the best selected features;
26 }

Algorithm 1 Pseudocode of the proposed BCOOA

Cluster Computing

123

3.5 Learning operation in OOA

Algorithm 2 presents the pseudo-code for the core segment

of the Olympiad Optimisation Algorithm (OOA), with line

9 detailing the MATLAB implementation for dividing the

population into subgroups. These subgroups utilise unique

imitation strategies to probe different areas of the extensive

solution space. A competitive learning atmosphere is cul-

tivated among the individuals, each possessing a memory

to record their progress. Within OOA, every participant,

referred to as a student, is modelled and executed as a

numerical array, together constituting the student popula-

tion that represents potential solutions. As depicted in

Algorithm 1, the process begins by dividing the student

population into n teams after sorting. Each team consists of

m students, with the foremost team acknowledged as the

global best and the final team as the global worst. Teams

embark on exploring their designated local solution spaces,

with the lead student of each team acting as its local best.

Students, organised into teams, strive to assimilate

knowledge from either the local best student of a neigh-

bouring team or from the global best team. The learning

operator introduced here integrates both local and global

search approaches within OOA, identified as the key

mechanism for identifying the optimal solution. This

operator’s goal is to augment the collective knowledge

(fitness) of the population, classifying individuals by their

knowledge (fitness function). Through the deployment of

this learning operator, OOA seeks to enhance the overall

knowledge of the population, encompassing four critical

phases. Initially, students in each team gain insights from

their peers in the neighbouring team, leading to the fore-

most team’s knowledge flowing to others, similar to a

bubble effect. This phase involves sequential knowledge

transfer from one team to another. Should the lesser-per-

forming students within a team fail to advance their

knowledge, the next step involves mutating the best student

within the team to introduce variety. This mutation acts as

a local search targeting the optimal student of the less

proficient team. In the absence of improvement from this

intervention, the third phase is initiated, where all students

in the teams with lesser proficiency teams receive

instruction from their counterparts in the globally leading

team, the first team.

Table 1 Specification of NASA datasets utilised in this study

Number Project

name

Programming

language

Number of models Percentage of defected

models (%)

Project description

1 CM1 C 498 (349 Train, 149

Test)

9.7 NASA spacecraft instrument

2 JM1 C 10,885 (7619 Train,

3266 Test)

19 A real-time predictive ground system that utilises

simulations to produce forecasts

3 KC1 C?? 2109 (1476 Train,

633 Test)

15.4 System executing storage management to receive and

process ground data

4 KC2 C ?? 522 (365 Train, 157

Test)

20 Science data processing

5 PC1 C 1109 (776 Train, 333

Test)

6.8 Flight software for Earth-orbiting satellite

Creating the initial

population includes

the binary arrays

Testing the fault

predictors created by

different ML algorithms

Step 1 Step 2

Feature Selection by

Hybrid BCOOA

Creating the fault

predictor by ANN

Creating the fault

predictor by DT

Creating the fault

predictor by SVM

Creating the fault

predictor by NB

Creating the fault

predictor by KNN

Step 4
Fault Prediction

Datasets

Step 3

Fault prediction results

by BCOOA + ML

Fig. 3 The workflow of the proposed defect prediction

Cluster Computing

123

In situations where the top-performing students are

unable to transfer knowledge to those in the least per-

forming team, a mutation strategy is applied to the student

with the highest global performance. This mutation, tar-

geting the globally best student, is designed to prevent

convergence to local optima by introducing a degree of

variability. As a result, agents from various teams come

together to form a refreshed population. This process of

renewing the population is iteratively managed by the

application of the learning operator, as detailed in Algo-

rithm 2, which outlines the pseudo-code for each iteration

within the OOA. The learning process, also referred to as

the imitation mechanism, is implemented through a

crossover technique. This process entails the substitution of

specific bits (elements) in the least performing individual

with those from the highest performing individual. The

parameter LearnCount specifies the quantity of bits to be

exchanged, with the optimal proportion identified

through empirical research to be 30% of array’s length.

3.6 Binary OOA

In this section, a novel binary strategy based on the Sig-

moid function for OOA is presented. Every solution

(student) in the population of this method contains a serial

number. Since the problem is about selecting or not

selecting a feature, the new binary answer must contain 0

and 1. A feature is chosen for the new dataset if its value is

1, and it is not selected if its value is 0. The Sigmoid

function [21] was used to shift the values of the individual

array of the OOA into the binary space. In the proposed

method, BCOOA is utilised to select effective features for

ML algorithms. OOA repositions entities within the state

space. In specific problems like feature selection, solutions

are constrained to binary values of 0 and 1, creating a

binary variant. In BCOOA, the learning algorithm (Algo-

rithm 2) updates the student array. It attracts each student

towards the first solution (student). The vector X
!d

i ðtÞ
shows the position of ith student in dimension d and iter-

ation t. Therefore, in this proposed model, the Sigmoid

function is applied in a binary form to change the solution’s

location in the OOA method, as shown in Eq. (2). The

output of the Sigmoid transfer function is a value between

zero and one. Therefore, to convert it into a binary (dis-

crete) value, a threshold needs to be provided. The Sigmoid

function incorporates the random threshold given in Eq. (3)

to choose the feature by converting it to a binary solution.

The rand is a number that has a uniform distribution and

ranges from 0 to 1. The available solutions for the BCOOA

Algorithm 2 The pseudo-code of the OOA’s learning operator

Cluster Computing

123

population are enforced to move inside a binary (discrete)

search space by using Eqs. (2) and (3). These equations are

then precisely entered into BCOOA.

SG Xd
i tð Þ

� �
¼ 1

1þ e�Xd
i tð Þ ð2Þ

Xd
i t þ 1ð Þ ¼ 0 if r and\SG Xd

i tð Þ
� �

1 if r and� SG Xd
i tð Þ

� �
�

ð3Þ

To determine the fitness of feature vectors, Eqs. (4) and

(5) are proposed. These equations assess the fitness of a

solution (the selected features) as the sum of the training

error and the normalised count of features, functioning as a

minimisation objective. In Eq. (4), the training error, which

ranges from zero to one, is calculated by subtracting the

model’s accuracy from 100 and then normalising this value

within the [0, 1] interval. Additionally, the term ‘‘number

of features’’ refers to the count of selected features for

training, which is also normalised to fall within the [0, 1]

range.

Fitness ið Þ ¼ Error Percentage Test ið Þ þ Used Features

ð4Þ
Error Percentage Test ið Þ ¼ 100�Accuracy ið Þð Þ=100 ð5Þ

4 Experiments and results

4.1 Experiments platform and datasets

This section evaluates the performance of the proposed

method for predicting software defects. Initially, results

were gathered from machine learning algorithms (ANN,

DT, K-NN, NB, and SVM) using all features available

through a conventional approach. Subsequently, we applied

Table 2 Description of features

used in NASA datasets
Number Feature Description

1 LOC ‘Line count of code (McCabe)’

2 v(g) ‘Cyclomatic complexity (McCabe)’

3 eV(g) ‘Essential complexity (McCabe)’

4 iv(g) ‘Design complexity (McCabe)’

5 N ‘Operators ? Operands (McCabe)’

6 v ‘Volume (Halstead)’

7 L ‘Program length (Halstead)’

8 D ‘Difficulty (Halstead)’

9 I ‘Intelligence (Halstead)’

10 B ‘Effort: Halstead effort to write a program’

11 E ‘Number of Delivered Bugs (Halstead)’

12 T ‘Time to write program (Halstead)’

13 LOCode ‘Line count (Halstead)’

14 LOComment ‘Count of lines of comments (Halstead)’

15 LOBlank ‘Count of blank lines (Halstead)’

16 LOCodeAndComment ‘Count of lines which contain both code and comments (Halstead)’

17 uniq_Op ‘unique operators (Halstead)’

18 uniq_Opnd ‘unique operands (Halstead)’

19 total_Op ‘Total operators (Halstead)’

20 total_Opnd ‘Total operands (Halstead)’

21 branchCount ‘Number of branches in flow graph (Halstead)’

22 defects ‘Number of defects’

Fig. 4 The structure of a

student in the BCOOA, as a

binary vector to specify features

Cluster Computing

123

the proposed method using BCOOA, which is specifically

tailored for effective feature selection. A comparative

analysis of the outcomes from both methodologies is pre-

sented. The implementation of the proposed method, inte-

grated with the Ant Colony Optimiser (ACO), was

executed on MATLAB version 2022 on a Windows 10 PC,

equipped with a Core i7 Intel processor operating at 2 GHz

and 4 GB RAM. Table 3 details the calibration parameters

used in both the BCOOA and ACO methods for effective

feature selection in software defect prediction. The binary

version of ACO was introduced as a feature selection tool

in [22].

The training and testing phases were conducted using

five datasets as detailed in Table 1. Initially, 70% of the

data were randomly allocated for training the ANN, DT,

K-NN, NB, and SVM models. The testing phase then uti-

lised the remaining 30% of the data, which was not

involved in the training phase, to evaluate the performance

of the learning models. Table 4 presents the characteristics

of both the training and testing data. The Confusion Matrix,

provided in Table 5, offers the essential metrics required to

calculate sensitivity, specificity, and accuracy.

4.2 Evaluation criteria

In this study, ‘accuracy’, ‘precision’, ‘recall’, and ‘F1’ are

used as evaluation criteria in software modules classifica-

tion problems; Eqs. (6), (7), (8) and (9) were used to cal-

culate these criteria.

Accuracy ¼ True Positiveþ True Negative

All test samples
ð6Þ

Precision ¼ True Positive

True Positiveþ False Positive
ð7Þ

Recall ¼ True Positive

True Positiveþ False Negative
ð8Þ

F1 ¼
2 � Precision � Recallð Þ
Precisionþ Recall

ð9Þ

Generally, the confusion matrix serves as a tool to assess

the accuracy and effectiveness of classification models. Its

analysis in classification and prediction involves delineat-

ing four outcomes: True Positives (TP), where the model

correctly predicts the positive class; False Positives (FP),

where the model incorrectly predicts the positive class;

True Negatives (TN), where the model correctly predicts

Table 3 The BCOOA parameters’ value to select the effective features

Algorithms Parameter name Value

Olympiad Optimisation Algorithm (OOA) Quantity of students 40

Quantity of teams 10

Size of teams 4

Rate of Learning Random values between [0.2–0.8]

Imitation count 1

Number of iterations 100

Ant Colony Optimisation algorithm (ACO) Quantity of nests 30

Lavy distribution parameter 1.5

Step length 0.01

Quantity of iterations 100

Table 4 Features of the used

training and test data
Dataset Total quantity of samples Quantity of test samples Quantity of test samples

CM1 496 347 149

JM1 10,885 7619 3266

KC1 2109 1476 633

KC2 522 365 157

PC1 1109 776 333

Table 5 Confusion matrix

Model prediction

Yes No

TP FN Real Yes (A)

FP TN Real No (B)

Cluster Computing

123

the negative class; and False Negatives (FN), where the

model incorrectly predicts the negative class. The confu-

sion matrix provides three critical metrics—precision,

accuracy, and recall—used to assess the performance of

software module classification models. A comprehensive

series of experiments was conducted on classifiers devel-

oped using various ML algorithms, including ANN, DT,

K-NN, NB, and SVM. These experiments aimed to answer

specific Research Questions (RQs) related to each dataset.

• RQ1: Does the proposed method increase the accuracy,

precision, recall, and F1 of ML algorithms in the

software defect prediction problem?

• RQ2: Does the proposed method identify and eliminate

the ineffective features of the training datasets?

• RQ3: Is the convergence speed and success rate of the

proposed BCOOA higher than the other methods?

4.3 Discussion of the results from the first
experiment (CM1 dataset)

The initial experiment utilised the CM1 dataset for both

training and testing to address RQ1. Table 6 shows the

results obtained from applying the ML algorithm to the

CM1 dataset, evaluating the performance metrics for ANN,

DT, K-NN, NB, and SVM without using BCOOA for

feature selection. This table compares the classifiers

developed using the aforementioned ML algorithms in

terms of accuracy, precision, recall, and F1 score. These

experiments were first conducted on the raw training set,

which included all available features.

Redundant and irrelevant features within the training

dataset can lead to overfitting in machine learning (ML)

algorithms. The primary objective of feature selection is to

identify a concise set of features that are sufficient for

accurate prediction of the target label. Redundant features

have the potential to mislead ML algorithms, while feature

selection methods aid in reducing costs by eliminating

unnecessary information. Subsequent experiments were

conducted on each dataset using BCOOA in conjunction

with ML algorithms. BCOOA was employed to identify the

optimal features within the training sets. Table 7 demon-

strates the outcomes of applying ML algorithms to the

CM1 dataset, utilising BCOOA for feature selection. A

comparative analysis of the results presented in Tables 6

and 7 reveals that the efficiency of predicting software

defects, based on the features selected by BCOOA, sur-

passes that of the previous method. Specifically, the

accuracy and precision of the classifier created by ANN

without using BCOOA were 88.15% and 88.46%, respec-

tively; these figures increased to 92.03% and 98.02% when

BCOOA was applied for feature selection. The experi-

mental results show that the integration of BCOOA

enhances the performance of ML algorithms in predicting

software defects.

Figure 5 displays the average performance of classifiers

generated by ML algorithms, both with and without feature

selection. The average accuracy of classifiers created

without the feature selection method is 87.02%, which

significantly improves to 93.75% when applying the pro-

posed feature selection method across the same ML algo-

rithms (ANN, DT, K-NN, NB, and SVM). Similar

improvements are observed in other performance metrics.

For example, the average precision for classifiers devel-

oped without and with the proposed feature selection

algorithm is approximately 92.63% and 95.38%, respec-

tively. Moreover, the average recall metric for classifiers

developed using the proposed method markedly exceeds

that of classifiers generated solely by ML algorithms. Thus,

Table 6 Performance criteria of ML algorithms on the CM1 dataset

without feature selection

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

ANN 88.15 88.46 99.07 93.47

DT 83.89 93.23 89.20 91.17

KNN 89.93 95.58 93.52 94.54

NB 88.59 95.52 92.08 93.77

SVM 84.56 90.37 92.42 91.38

Table 7 Performance of ML algorithms on the CM1 dataset using the

selected effective features by BCOOA

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

ANN 92.03 98.02 98.14 97.26

DT 94.18 91.38 99.00 96.8

KNN 98.20 99.00 97.8.0 94.1

NB 93.45 96.14 99.87 98.00

SVM 90.91 92.39 99.83 97.08

80

82

84

86

88

90

92

94

96

98

100

Accuracy Precision Recall F1

ML BCOOA + ML

Fig. 5 The average values of the performance criteria of ML

algorithms (ANN, DT, KNN, SVM and NB) with and without

BCOOA as the feature selection method in the CM1 dataset

Cluster Computing

123

the proposed method exhibits greater effectiveness in

comparison to the use of ML algorithms without feature

selection.

Figure 6 illustrates a comparison between the perfor-

mance metrics of traditional ML algorithms and those

optimised by BCOOA (a feature selection method) on the

CM1 dataset. The simulation results reveal that ML

algorithms, when applied to a training dataset with selec-

tively chosen features, outperform those using a conven-

tional ML approach. The incorporation of selected

effective features through BCOOA leads to the ML ?

BCOOA method, showcasing superior performance com-

pared to standalone ML algorithms. Overall, the proposed

BCOOA method for selecting effective features

80

85

90

95

100

Accuracy Precision Recall F1

ANN vs ANN+BCOOA

ANN ANN+BCOOA

75

80

85

90

95

100

Accuracy Precision Recall F1

DT vs DT+BCOOA

DT DT+BCOOA

85

90

95

100

Accuracy Precision Recall F1

KNN vs KNN +BCOOA

KNN KNN+BCOOA

80

85

90

95

100

Accuracy Precision Recall F1

NB vs NB+BCOOA

NB NB+BCOOA

75

80

85

90

95

100

Accuracy Precision Recall F1

SVM vs SVM+BCOOA

SVM SVM+BCOOA

Fig. 6 The impact of BCOOA on the performance of ML algorithms in the CM1 dataset

Cluster Computing

123

demonstrates notable performance improvements when

applied to ML algorithms using the CM1 dataset.

Another critical aspect of feature selection-based defect

prediction methods is the number of features selected by

the BCOOA algorithm. Ineffective features can undermine

a model’s ability to generalise, potentially diminishing

overall classifier accuracy. Moreover, as the quantity of

variables increases, so does the model’s complexity. The

proposed feature selection algorithm identifies effective

features, thereby improving defect prediction accuracy.

Table 8 displays the number of effective features identified

by BCOOA across various ML algorithms. For the CM1

dataset—a real-world defect prediction dataset consisting

Table 8 The average quantity of selected features by BCOOA in

different ML algorithms in CM1 dataset in ten times executions

ANN DT KNN NB SVM

Brute force ML 21 21 21 21 21

BCOOA ? ML 9 6 9 8 9

ACO ? ML 8 7 15 4 11

Table 9 The selected features

by BCOOA and ACO in

different ML algorithms in CM1

in the best result from 10

executions

SVM NB KNN DT ANN

ACO BCOOA ACO BCOOA ACO BCOOA ACO BCOOA ACO BCOOA

0 1 1 0 1 0 0 1 1 1 1

1 1 0 0 0 0 0 1 1 0 2

1 1 0 0 1 1 0 0 1 1 3

1 0 1 1 0 1 1 0 1 0 4

0 0 0 0 1 1 0 0 0 1 5

0 1 0 0 1 1 0 0 1 1 6

0 1 1 0 1 1 1 1 0 0 7

1 1 0 1 1 1 0 1 0 1 8

0 0 0 0 0 1 0 0 0 1 9

1 1 1 0 1 0 0 0 0 1 10

0 0 0 1 0 1 0 1 0 1 11

0 1 0 1 0 1 1 1 1 1 12

1 1 0 0 1 0 1 0 1 0 13

1 1 0 0 0 1 0 0 0 0 14

1 1 0 0 1 0 0 0 0 0 15

1 1 0 1 1 0 1 0 0 0 16

1 1 0 1 1 1 1 1 0 1 17

1 1 0 0 1 1 0 1 0 0 18

0 0 0 1 0 0 0 0 0 0 19

1 1 0 1 1 0 1 1 1 0 20

0 1 1 1 0 1 0 1 0 1 21

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

hcae
f

o
etar

n
oitceles

e
gare

g
v

A fe
at

u
re

 b
y

 B
C

O
O

A
 d

u
ri

n
g

 t
en

ex
ec

u
ti

o
n
s

in
 C

M
1
(%

)
Fig. 7 The selection rate of the

21 features by the BCOOA in

the CM1 dataset during ten

executions

Cluster Computing

123

of 21 independent and one dependent feature—BCOOA

selects a concise subset of the most effective features.

The proposed method’s average performance, calculated

over ten runs, showed consistent effectiveness in detection.

Table 8 compares the average number of features selected

by BCOOA and binary ACO across ten runs. For the ANN

classification, both BCOOA and ACO selected 9 and 8

features respectively. However, for the DT classification

algorithm, BCOOA chose seven features, while ACO

picked eight. Similarly, for the KNN classification algo-

rithm, BCOOA identified nine features, in contrast to

ACO’s 15. The number of features selected by BCOOA

consistently remained lower than that of other algorithms,

highlighting BCOOA’s superior efficiency in pinpointing

the most effective features compared to ACO. Figure 7

shows how often various features in the CM1 dataset were

selected by BCOOA across ten runs.

Table 9 lists the features selected by BCOOA for dif-

ferent ML algorithms in the CM1 dataset, showcasing the

optimal results from 10 runs. Each ML algorithm, along-

side the feature selectors, was executed ten times, and the

features chosen during the most successful runs (based on

the highest evaluation criteria) were deemed the most

effective. This table shows the unique features identified by

different algorithms, revealing variations in feature selec-

tion. The proposed method’s application on the CM1

dataset was repeated ten times to verify its reliability, and

the findings were documented. These results demonstrate

significant improvements in accuracy and precision. With a

total of 21 features, the algorithm leverages these effective

features for both training and testing, thus shortening the

execution time of the learning algorithm and boosting its

efficiency. Some features were consistently selected during

the training by BCOOA, indicating their higher effective-

ness. Figure 7 illustrates the comparative importance of

each feature in the CM1 dataset predictions. Table 9

specifies the features BCOOA selected in the most suc-

cessful run on the CM1 dataset.

4.4 Discussion of the results from the second
experiment (KC1 dataset)

The second series of experiments was conducted using the

KC1 dataset to address specific research questions. The

experiment employed the KC1 dataset for both training and

testing purposes, representing features from a real-world

software application. KC1 comprises 2107 records and 21

features, with 1475 records allocated for training and 633

records for testing. Table 10 shows the performance met-

rics of classifiers generated by various ML algorithms

without BCOOA. The defect predictors (classifiers) created

by ANN, DT, KNN, NB, and SVM, utilising the raw

training set encompassing 21 features, are depicted. These

classifiers have been assessed based on accuracy, precision,

recall, and F1 metrics. In the initial trials using the raw

training set with all features considered, KNN’s classifier,

trained on the filtered dataset by BCOOA, demonstrated

the highest accuracy and precision. Conversely, the defect

predictor generated by ANN outperformed other models

concerning recall and F1 metrics.

The presence of unnecessary features in the training

dataset can lead to overfitting in ML algorithms, potentially

misguiding the models. To evaluate the impact on ML

algorithm performance, we utilised the KC1 dataset as

another benchmark. In the second round of tests conducted

on the KC1 dataset, we employed BCOOA alongside ML

algorithms. Table 11 presents the outcomes derived from

applying the ML method to the KC1 dataset to ascertain the

most effective features. For instance, the classifier built

using ANN without BCOOA exhibited an accuracy and

Table 10 Performance criteria of ML algorithms on the KC1 dataset

without feature selection

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

ANN 84.67 85.01 97.05 91.49

DT 83.57 88.47 91.65 90.56

KNN 89.63 89.06 90.19 81.83

NB 80.41 88.16 91.01 89.91

SVM 84.67 84.67 100.00 91.49

Table 11 Performance criteria of ML algorithms on the KC1 dataset

with BCOOA feature selection

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

ANN 89.41 91.20 99.70 92.20

DT 87.20 89.90 96.00 92.51

KNN 96.08 95.88 97.89 93.28

NB 87.08 90.18 97.00 93.00

SVM 88.40 89.21 99.80 94.93

75

80

85

90

95

100

Accuracy Precision Recall F1

ML BCOOA + ML

Fig. 8 The average values of the performance criteria of ML (ANN,

DT, KNN, NB, and SVM) algorithms with and without BCOOA as

the feature selection in the KC1 dataset

Cluster Computing

123

precision of 84.67% and 85.01%, respectively. However,

upon employing BCOOA as a feature selection method,

these metrics notably increased to 89.41% and 91.20%.

These results indicate that the utilisation of BCOOA sig-

nificantly enhances the performance of ML algorithms in

the software defect prediction domain when applied to the

KC1 dataset. Comparing Tables 10 and 11, it is evident that

the efficiency criteria for predicting software defects via

the selection of effective features using BCOOA surpass

the prior method.

Figure 8 illustrates the average performance of classi-

fiers generated by ML algorithms, both with and without

feature selection, applied to the KC1 dataset. Upon

employing the suggested feature selection strategy with

75

80

85

90

95

100

105

Accuracy Precision Recall F1

ANN vs ANN+BCOOA

ANN ANN+BCOOA

75

80

85

90

95

100

Accuracy Precision Recall F1

DT vs DT+BCOOA

DT DT+BCOOA

70

75

80

85

90

95

100

Accuracy Precision Recall F1

KNN vs KNN+BCOOA

KNN KNN+BCOOA

0

20

40

60

80

100

Accuracy Precision Recall F1

NB vs NB+BCOOA

NB NB+BCOOA

75

80

85

90

95

100

Accuracy Precision Recall F1

SVM vs SVM+BCOOA

SVM SVM+BCOOA

Fig. 9 The impact of BCOOA on the performance of the ML algorithms in the KC1 dataset

Cluster Computing

123

ML algorithms (ANN, DT, KNN, NB, and SVM), the

average accuracy of classifiers created by ML and stan-

dalone ML ? BCOOA algorithms stands at 84.59% and

89.63%, respectively. Comparable trends are observed

across other performance criteria. Specifically, classifiers

generated by ML algorithms without (ML) and with the

suggested feature selector (ML ? BCOOA) exhibit an

average precision of approximately 87.05% and 91.27%,

respectively. Notably, the classifiers developed using the

proposed technique show significantly higher average

recall metrics compared to standalone ML algorithms. In

summary, classifiers derived through the suggested tech-

nique outperform those produced by ML algorithms lack-

ing feature selection. BCOOA enhances defect prediction

model accuracy by identifying and eliminating ineffective

features. Following ten executions, the suggested approa-

ch’s average performance on the KC1 dataset shows

commendable detection capabilities.

Figure 9 presents a comparison between the perfor-

mance metrics of enhanced ML algorithms, utilising

BCOOA as a feature selection technique, and traditional

ML methods on the KC1 dataset. Notably, the ML algo-

rithms operating on the training dataset with selected fea-

tures outperform the traditional ML approach. This

figure provides a comprehensive comparison of

performance measures between the conventional and

optimised ML models applied to the KC1 dataset. The

ML ? BCOOA approach exhibits superior performance,

capitalising on the chosen effective features. Using

BCOOA for feature selection demonstrates satisfactory

performance when applied to ML algorithms using the

KC1 dataset. Notably, the accuracy, precision, recall, and

F1 metrics of the optimised ML algorithms employing the

BCOOA method surpass all other models. In summary,

BCOOA for selecting effective features results in com-

mendable performance on the KC1 dataset.

Table 12 illustrates the average quantity of features

selected by binary ACO and BCOOA across ten executions

within the KC1 dataset. Observing Table 12, when ANN

was employed as the classification algorithm, BCOOA

selected 9 features while ACO selected 16. In the case of

the DT classification algorithm, BCOOA and ACO selec-

ted 9 and 12 features, respectively. For the KNN classifi-

cation algorithm, BCOOA and ACO selected 11 and 9

features, respectively. Moreover, in the NB classification

algorithm, BCOOA selected 8 features, whereas ACO

selected 3. In summary, the average quantity of features

selected by the proposed BCOOA consistently remains

lower compared to brute force ML algorithms.

Figure 10 illustrates the selection frequency of features

in the KC1 dataset across ten executions by BCOOA.

Table 13 presents the features selected by BCOOA across

various ML algorithms, yielding the most optimal out-

comes after ten executions. Each ML method underwent

ten iterations, and the most effective features were those

selected in the best-performing implementations, marked

by the highest evaluation criteria. This table shows the

most efficient features obtained from diverse techniques in

their most successful executions.

Table 12 The average quantity of selected features by BCOOA and

ACO in different ML algorithms in the KC1 dataset in ten times

executions

ANN DT KNN NB SVM

Brute force ML 21 21 21 21 21

BCOOA ? ML 9 9 11 8 9

ACO ? ML 16 12 9 3 9

40

45

50

55

60

65

70

75

80

85

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
v

er
ag

e
S

el
ec

ti
o
n
 R

at
e

 b
y
 B

C
O

O
A

 i
n

1
0

 e
x

ec
u

ti
o

n
s

in
 K

C
1

 (
%

)

Features

Fig. 10 The selection rate of the

21 features by the BCOOA in

the KC1 dataset during ten

executions

Cluster Computing

123

The proposed approach was executed ten times on the

KC1 dataset to establish its stability, exhibiting noticeable

enhancements in precision and accuracy metrics. This

method considers 21 features and selectively utilises the

most effective features to train the classifier. During

BCOOA’s training, a consistent selection of specific fea-

tures occurred repeatedly, highlighting their significant

impact on the accuracy and precision of the generated

classifier. Table 13 indicates the selected features by

BCOOA in the best-case scenario in the KC1 dataset.

4.5 Discussion of the results from the third
experiment (JM1 dataset)

The third series of experiments, targeting specific research

inquiries, employed the JM1 dataset for both training and

testing purposes. The JM1 dataset consists of 21 features

and 10,885 records, with the training set comprising 7619

records and the test dataset containing 3266 records.

Table 14 shows the performance metrics of classifiers

developed using various ML algorithms without BCOOA.

These classifiers were built using the raw training set,

which includes 21 features and 7619 records, utilising

algorithms such as ANN, DT, KNN, NB, and SVM. All 21

features were considered in this raw training set. Notably,

the KNN classifier emerged as the most accurate and

Table 13 The selected features

by BCOOA and ACO in

different ML algorithms in KC1

in the best result from 10

executions

SVM NB KNN DT ANN #

ACO BCOOA ACO BCOOA ACO BCOOA ACO BCOOA ACO BCOOA

1 0 0 1 1 1 1 1 1 1 1

1 1 0 0 1 0 1 1 1 0 2

0 0 1 1 0 1 1 0 1 1 3

0 1 1 0 1 0 0 1 1 1 4

0 0 0 1 0 1 1 1 1 1 5

1 0 0 1 1 1 0 0 1 1 6

1 1 1 0 1 0 0 1 1 1 7

1 1 0 1 1 1 1 1 0 1 8

0 1 0 1 0 1 0 0 0 1 9

0 1 1 1 0 0 1 1 1 1 10

0 1 1 1 0 1 1 1 1 0 11

1 1 0 0 0 1 1 0 1 0 12

0 0 0 0 0 0 0 1 0 0 13

0 0 0 1 1 1 0 0 0 1 14

0 0 0 1 0 0 1 0 1 0 15

1 1 1 1 1 0 1 0 1 0 16

0 0 0 0 0 1 1 0 1 1 17

1 0 0 0 1 1 0 0 0 1 18

1 1 0 1 1 0 1 1 0 0 19

1 1 1 1 1 1 0 0 0 0 20

0 1 0 1 0 1 0 0 0 1 21

Table 14 Performance criteria of ML algorithms on the JM1 dataset

without feature selection

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

ANN 75.44 81.97 85.82 84.89

DT 75.44 81.67 85.82 84.89

KNN 86.16 87.70 90.01 81.19

NB 80.94 84.52 93.94 88.98

SVM 79.87 79.87 100.00 88.81

Table 15 Performance criteria of ML algorithms on the JM1 dataset

with the BCOOA feature selection

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

ANN 83.01 84.17 98.92 91.07

DT 80.73 83.27 96.35 89.49

KNN 93.00 93.43 93.81 90.00

NB 82.00 83.76 96.80 90.18

SVM 92.08 91.00 93.08 90.08

Cluster Computing

123

precise among the prediction models, outperforming others

in terms of accuracy and precision.

Ineffective features within the training dataset can often

lead to overfitting in ML algorithms. In the second phase of

the third experiment, the JM1 dataset underwent evaluation

using BCOOA in conjunction with ML algorithms.

Table 15 presents the test results of classifiers developed by

ML algorithms leveraging BCOOA to determine the most

effective features for the JM1 dataset. Classifiers developed

using KNN and SVM, integrated with BCOOA, achieved

accuracies of 93.00% and 92.08%, respectively. Notably,

employing BCOOA in ML algorithms enhanced the

accuracy and precision of the generated classifiers.

For example, the recall and F1 metrics of the defect

predictor built by ANN escalated from 85.82% and

84.89%, respectively, to 98.92% and 91.07% when

BCOOA was employed as the feature selection method.

Consistent with other datasets, these experiments under-

score that ML algorithms perform significantly better when

BCOOA is utilised as a feature selector within the JM1

dataset. Comparing Tables 14 and 15, it is evident that the

efficiency of software defect predictors leveraging BCOOA

0

20

40

60

80

100

Accuracy Precision Recall F1

ANN vs ANN+BCOOA

ANN ANN+BCOOA

0

20

40

60

80

100

Accuracy Precision Recall F1

DT vs DT+BCOOA

DT DT+BCOOA

70

75

80

85

90

95

Accuracy Precision Recall F1

KNN vs KNN+BCOOA

KNN KNN+BCOOA

70

75

80

85

90

95

100

Accuracy Precision Recall F1

NB vs NB+BCOOA

NB NB+BCOOA

0

20

40

60

80

100

Accuracy Precision Recall F1

SVM vs SVM+BCOOA

SVM SVM+BCOOA

Fig. 11 The impact of BCOOA on the ML algorithms’ performance in the JM1 dataset

Cluster Computing

123

as a feature selector surpasses the previous approach. The

proposed feature selector significantly enhances the effi-

cacy of defect predictors developed by various ML algo-

rithms. Figure 11 provides a comparison of performance

metrics between ML techniques with and without the fea-

ture selector algorithm on the JM1 dataset.

The ML algorithms utilising selected features on the

JM1 dataset outperform typical ML techniques across

accuracy, precision, recall, and F1 metrics. Specifically,

these algorithms demonstrate superior performance when

equipped with selected features. Additionally, Fig. 11

contrasts the performance metrics of defect predictors

generated by optimised (ML ? BCOOA) and standard ML

algorithms on the KC1 dataset. Notably, ML ? BCOOA

achieves superior results by leveraging the chosen effective

features. The BCOOA method for selecting valuable fea-

tures demonstrates effective performance across ML

algorithms employed within the JM1 dataset. The defect

predictors developed by the optimised ML (ML ?

BCOOA) exhibit higher accuracy, precision, recall, and F1

metrics compared to any other model. In summary, the

outcomes from the experiments conducted on the JM1

dataset highlight the efficacy of BCOOA for efficient fea-

ture selection, showing its significant impact on enhancing

the performance of ML algorithms.

Figure 12 presents the average performance of defect

predictors generated by ML algorithms on the JM1 dataset,

both with and without feature selection. The average

accuracy of defect predictors produced by standalone ML

and ML ? BCOOA algorithms stands at 79.57% and

86.16%, respectively. Comparable trends were observed

across other performance criteria. Specifically, the average

precision of classifiers generated by ML algorithms with

and without the suggested feature selector (ML ?

BCOOA) hovers around 83.14% and 87.12%, respectively.

Notably, classifiers developed using the recommended

method (ML ? BCOOA) exhibit a markedly higher aver-

age recall metric in comparison with standalone ML

techniques. Ultimately, classifiers generated by the pro-

posed method surpass those produced by ML algorithms

that do not involve feature selection. BCOOA efficiently

identifies and eliminates ineffective features, enhancing the

accuracy of the generated defect predictor. Moreover,

Table 16 shows the average quantity of effective features

identified by BCOOA across different ML techniques,

selectively choosing the most impactful features from the

21 available in the JM1 dataset.

The average performance of the new approach was

assessed over ten executions on the JM1 dataset, demon-

strating commendable detection performance. Table 16

illustrates the average quantity of features selected by

binary ACO and BCOOA across ten runs in the JM1

dataset. When using the ANN as the ML algorithm,

BCOOA and ACO each selected 12 features. For the DT

ML algorithm, BCOOA and ACO opted for 8 and 9 fea-

tures, respectively. In the KNN classification process,

BCOOA and ACO selected 9 and 8 features, respectively.

Similarly, for the NB classification, BCOOA and ACO

selected 8 and 6 features, respectively. Overall, when

compared to brute force ML, BCOOA notably selects a

significantly smaller average quantity of features.

Figure 13 illustrates the feature selection rate of

BCOOA across ten executions in the JM1 dataset, show-

casing the method’s consistency in feature selection.

Table 17 outlines the features from the JM1 dataset that

were selected and refined by BCOOA using various ML

algorithms, resulting in optimal outcomes after ten itera-

tions. Each ML approach underwent ten runs, with features

meeting the highest assessment criteria being identified as

the most effective.

To assess the reliability of the proposed technique, it

underwent ten iterations on the JM1 dataset. The outcomes

revealed enhancements in metrics including accuracy,

precision, recall, and F1 scores. Employing all 21 features,

the method trained the ML algorithm using selectively

identified features by BCOOA. A distinct subset of features

consistently surfaced in BCOOA’s output, shaping the

defect predictor and significantly influencing the resulting

classifier’s accuracy and precision. The most effective

features selected by BCOOA across different ML algo-

rithms are presented in Table 17.

Table 16 The average quantity of the selected features by ACO and

BCOOA in different ML algorithms in the JM1 dataset

ANN DT KNN NB SVM

Brute force ML 21 21 21 21 21

BCOOA ? ML 12 8 9 8 8

ACO ? ML 12 9 8 6 8

0

10

20

30

40

50

60

70

80

90

100

Accuracy Precision Recall F1

ML BCOOA + ML

Fig. 12 The average values of the performance criteria of ML (ANN,

DT, KNN, NB and SVM) algorithms with and without BCOOA as the

feature selection in the JM1 dataset

Cluster Computing

123

Table 17 The selected features

by BCOOA and ACO in

different ML algorithms in JM1

in the best result from 10

executions

SVM NB KNN DT ANN #

ACO BCOOA ACO BCOOA ACO BCOOA ACO BCOOA ACO BCOOA

0 1 1 1 0 1 1 1 1 1 1

1 0 1 0 1 0 0 1 0 0 2

1 0 0 1 1 0 1 1 0 1 3

0 1 1 1 0 1 1 0 1 1 4

0 1 1 1 1 1 1 1 0 1 5

0 0 0 0 1 1 0 0 1 1 6

1 1 0 1 0 0 0 1 1 1 7

1 1 0 1 1 0 0 0 0 1 8

1 0 0 1 0 0 1 1 1 1 9

0 1 1 1 0 1 1 1 0 1 10

0 1 0 1 0 1 1 1 1 1 11

0 0 1 0 1 1 1 0 1 1 12

1 0 0 1 1 0 0 0 1 0 13

0 1 1 0 1 0 0 0 0 1 14

1 0 0 1 1 0 1 0 1 0 15

0 0 0 1 0 0 1 0 1 1 16

1 1 1 1 0 0 0 1 1 1 17

1 0 0 0 1 0 1 0 0 1 18

1 1 0 1 1 1 1 1 1 1 19

1 1 0 1 0 1 0 0 0 1 20

1 1 0 1 1 1 0 1 0 1 21

Table 18 Performance criteria of ML algorithms on the KC2 dataset

without feature selection

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

ANN 77.70 82.70 90.16 86.27

DT 84.07 92.00 88.46 90.19

KNN 90.90 93.49 88.46 85.35

NB 80.25 80.85 96.61 88.03

SVM 80.89 91.66 82.50 86.84

Table 19 Performance criteria of ML algorithms on the KC2 dataset

with BCOOA feature selection

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

ANN 88.00 89.49 98.91 94.28

DT 86.84 92.18 93.00 92.07

KNN 94.20 93.91 96.80 91.15

NB 90.80 91.94 98.88 96.02

SVM 87.51 93.49 92.80 93.00

40

45

50

55

60

65

70

75

80

85

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
v

er
ag

e
S

el
ec

ti
o

n
 R

at
e

 b
y

 B
C

O
O

A
 i

n

1
0

 e
x

ec
u

ti
o

n
s

ın
 J

M
1

Features

Fig. 13 The selection rate of the

21 features by the BCOOA in

the JM1 dataset during ten times

executions

Cluster Computing

123

4.6 Discussion of the results from the fourth
experiment (KC2 dataset)

The fourth series of experiments focused on the KC2

dataset to address specific research inquiries. This dataset

was utilised for both training and test sets, featuring 522

records and 21 distinct features. Within the KC2 dataset,

the training set consists of 365 records, while the test set

comprises 157 records. Table 18 presents the performance

metrics of defect predictors (classifiers) generated by ANN,

DT, KNN, NB, and SVM using the raw training set, which

includes all 21 features and 522 records. This

table provides insights into the defect predictors’ perfor-

mance derived from various ML algorithms without the

involvement of BCOOA. Notably, the KNN-based classi-

fier exhibits the highest accuracy and precision among the

prediction models.

As discussed earlier, the ineffective features within the

KC2 training dataset may contribute to overfitting in ML

algorithms. To address this concern, the KC2 dataset

underwent a second phase of experimentation, utilising

BCOOA in conjunction with ML algorithms. Table 19

presents the test results of defect predictors developed by

ML algorithms using BCOOA to identify the most

0

20

40

60

80

100

Accuracy Precision Recall F1

ANN vs ANN+BCOOA

ANN ANN+BCOOA

75

80

85

90

95

Accuracy Precision Recall F1

DT vs DT+BCOOA

DT DT+BCOOA

75

80

85

90

95

100

Accuracy Precision Recall F1

KNN vs KNN+BCOOA

KNN KNN+BCOOA

0

20

40

60

80

100

Accuracy Precision Recall F1

NB vs NB+BCOOA

NB NB+BCOOA

70

75

80

85

90

95

Accuracy Precision Recall F1

SVM vs SVM+BCOOA

SVM SVM+BCOOA

Fig. 14 The impact of BCOOA on the ML algorithms’ performance in the KC2 dataset

Cluster Computing

123

beneficial features within the KC2 dataset. With the

implementation of BCOOA, classifiers constructed through

KNN and SVM exhibit accuracies of 94.20% and 87.51%,

respectively. Incorporating BCOOA into ML algorithms

significantly enhances the precision and accuracy of the

resulting classifiers. For example, the recall and F1 scores

of the defect predictor generated by ANN without BCOOA

stand at 90.16% and 86.27%, respectively. However, with

the utilisation of BCOOA for feature selection, these

metrics notably increase to 98.91% and 94.28%. Consistent

with other datasets, the studies demonstrate improved

performance in the KC2 dataset when employing BCOOA

as the feature selector within ML algorithms. A comparison

between Tables 15 and 16 suggests that software defect

predictors leveraging BCOOA as the feature selector dis-

play superior efficiency compared to the previous method.

Overall, the introduced feature selection method signifi-

cantly enhances the effectiveness of defect predictors

produced by various ML algorithms.

Figure 14 provides a comparative analysis of the per-

formance metrics of ML algorithms with and without

feature selection on the KC2 dataset. The ML ? BCOOA

methods outperform traditional ML algorithms across

accuracy, precision, recall, and F1 measures, owing to the

selected features from the KC2 dataset. This figure illus-

trates the contrast between defect predictors generated by

ML ? BCOOA and conventional ML techniques. ML ?

BCOOA demonstrates superior performance by leveraging

the selected effective features. The BCOOA method, aimed

at optimal feature selection, demonstrates effectiveness

when applied to ML algorithms using the KC2 dataset. The

defect predictors derived from the enhanced ML (ML ?

BCOOA) exhibit the highest F1, recall, accuracy, and

precision in comparison with previous models. Overall, the

results obtained from experiments on the KC2 dataset

underscore the effectiveness of BCOOA for efficient fea-

ture selection.

Figure 15 presents the average performance of defect

predictors generated by ML methods on the KC2 dataset,

both with and without feature selection. The defect pre-

dictors generated by standalone ML and ML ? BCOOA

exhibit average accuracies of 82.76% and 89.47%,

respectively. Comparable outcomes were achieved for the

remaining performance criteria. The classifiers produced

by ML techniques, both without and with the suggested

feature selection (ML ? BCOOA), had average precisions

of around 88.14% and 92.20%, respectively. In terms of

outcomes, the classifiers developed using the proposed

approach (ML ? BCOOA) demonstrate an average recall

metric value that is notably higher than those generated by

standalone ML methods. Ultimately, the defect predictor

produced by the suggested technique (ML ? BCOOA)

outperforms those generated by ML algorithms without

feature selection. By identifying and removing ineffective

features, BCOOA enhances the defect predictor’s accuracy.

The quantity of useful features discovered by BCOOA

using various ML methods is displayed in Table 20. Out of

the 21 features in the KC2 dataset, BCOOA effectively

selects the most valuable ones.

After ten executions, the average performance of the

suggested method was evaluated on the KC2 dataset. Fig-

ure 20 illustrates the average number of features chosen

during ten runs in the KC2 dataset by the binary ACO and

BCOOA. When ANN was employed as the ML method,

BCOOA and ACO selected 10 and 7 features, respectively.

For the KNN method, BCOOA and ACO selected 10 and 9

features, respectively, while for the SVM classification

algorithm, these numbers were 8 and 7, respectively.

Overall, the average number of features selected by

BCOOA is substantially fewer than that of the brute force

ML algorithms. The feature selection rate of BCOOA is

depicted in Fig. 16 after ten iterations of the proposed

method on the KC2 dataset. Table 21 enumerates the fea-

tures of the KC2 dataset selected and enhanced by BCOOA

using various ML algorithms, yielding the best results after

ten iterations. Ten runs were conducted for each machine

learning strategy, aiming to identify the most beneficial

aspects that met the highest evaluation standards.

Table 20 The average quantity of selected features by ACO and

BCOOA in different ML algorithms in the KC2 dataset in ten times

executions

ANN DT KNN NB SVM

Brute force ML 21 21 21 21 21

BCOOA ? ML 10 9 10 8 8

ACO ? ML 7 5 9 8 7

75

80

85

90

95

100

Accuracy Precision Recall F1

ML BCOOA + ML

Fig. 15 The average values of the performance criteria of ML

algorithms (ANN, DT, KNN, NB and SVM) with and without

BCOOA as the feature selector in the KC2 dataset in ten times

executions

Cluster Computing

123

The suggested strategy was applied ten times on the

KC2 dataset to demonstrate its stability. The outcomes

reveal improved accuracy, precision, recall, and F1 mea-

sures. It considers 21 features and uses BCOOA’s selected

features to train the ML algorithm. A subset of features

chosen from BCOOA’s output has been selected to gen-

erate the defect predictor. These selected features pre-

dominantly influence the accuracy and precision of the

resulting defect predictor. The relative contribution of each

Table 21 The selected features

by BCOOA and ACO in

different ML algorithms in KC2

in the best result from ten

executions

SVM NB KNN DT ANN #

ACO BCOOA ACO BCOOA ACO BCOOA ACO BCOOA ACO BCOOA

0 1 0 1 1 0 0 1 1 1 1

0 1 1 0 1 0 1 0 1 1 2

1 1 1 1 0 0 1 1 1 0 3

0 1 1 1 0 1 0 0 0 0 4

0 0 0 1 1 1 0 0 0 0 5

0 0 0 1 1 1 0 1 1 1 6

0 1 1 0 1 0 1 1 1 1 7

1 1 1 0 1 1 1 1 0 1 8

0 1 0 0 1 0 1 1 0 1 9

0 1 1 1 0 0 0 1 1 1 10

0 1 0 1 0 0 0 1 1 1 11

1 0 1 0 1 1 1 0 1 0 12

0 0 0 0 0 0 1 1 0 1 13

1 0 1 1 0 0 0 1 0 0 14

1 1 0 0 0 0 0 1 1 1 15

0 0 0 0 1 1 1 0 0 1 16

1 1 1 1 0 0 1 0 1 0 17

0 1 0 1 0 0 0 1 1 1 18

0 0 0 1 0 1 0 1 0 1 19

1 0 1 0 1 0 1 1 1 0 20

0 0 1 1 1 1 0 1 0 1 21

Table 22 Performance criteria of ML algorithms on the PC1 dataset

without feature selection

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

ANN 91.59 91.74 99.66 95.54

DT 90.99 92.79 97.68 95.17

KNN 96.02 98.05 94.08 92.49

NB 80.25 80.85 96.61 88.03

SVM 85.28 94.49 87.57 91.81

40

45

50

55

60

65

70

75

80

85

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
1

ni
A

O
O

C
B

y
b

eta
R

n
oit cele

S
e

gare
v

A

ex
ec

u
ti

o
n

s
in

 K
C

2
 (

%
)

Features

Fig. 16 The selection rate of the

21 features by the BCOOA in

the KC2 dataset during ten

times executions

Cluster Computing

123

feature to the defect predictor in the KC2 dataset is

depicted in Fig. 16.

4.7 Discussion of the results from the fifth
experiment (PC1 dataset)

Using the PC1 dataset, the final series of experiments has

been conducted in response to the study’s research ques-

tion. The training and test datasets for the final experiment

were created using the PC1 dataset, which comprises 21

features and 1109 entries. The test dataset contains 333

entries, while the training set consists of 776 entries.

Table 22 displays the performance of defect predictors

generated by various ML algorithms in the absence of

BCOOA. In terms of accuracy and precision, the defect

Table 23 Performance criteria of ML algorithms on the PC1 dataset

with BCOOA feature selection

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

ANN 96.00 97.07 100.00 98.19

DT 95.17 97.16 98.26 99.00

KNN 98.80 99.08 98.00 97.00

NB 95.90 97.01 100.00 97.26

SVM 97.53 98.27 99.81 98.90

85

90

95

100

Accuracy Precision Recall F1

ANN vs ANN+BCOOA

ANN ANN+BCOOA

85

90

95

100

Accuracy Precision Recall F1

DT vs DT+BCOOA

DT DT+BCOOA

85

90

95

100

Accuracy Precision Recall F1

KNN vs KNN+BCOOA

KNN KNN+BCOOA

0

20

40

60

80

100

Accuracy Precision Recall F1

NB vs NB+BCOOA

NB NB+BCOOA

75

80

85

90

95

100

Accuracy Precision Recall F1

SVM vs SVM+BCOOA

SVM SVM+BCOOA

Fig. 17 The impact of BCOOA on the ML algorithms’ performance in the PC1 dataset

Cluster Computing

123

predictor produced by KNN outperforms other prediction

models.

The second phase of the fifth (final) experiment was

conducted on the PC1 dataset, employing BCOOA in

conjunction with ML algorithms. The defect predictors

developed using ML algorithms with BCOOA were tested,

and the outcomes are depicted in Table 23. When BCOOA

was integrated, the classifiers produced by ANN and KNN

showed accuracy rates of 96% and 98.80%, respectively.

For instance, the defect predictor generated solely by ANN

exhibited a recall and F1 score of 99.66% and 95.54%,

respectively; however, with BCOOA as the feature selec-

tor, these metrics escalated to 100.00% and 98.19%. The

findings highlight BCOOA’s efficacy as a superior feature

selector for ML algorithms within the PC1 dataset, mir-

roring its performance in other datasets. A comparison

between Tables 22 and 23 underscores that software defect

predictors leveraging BCOOA are markedly more effective

than the previous methodology.

Figure 17 presents a comparison of performance metrics

between ML algorithms with and without feature selectors.

Leveraging features selected from the PC1 dataset, the

ML ? BCOOA approaches surpass conventional ML

algorithms across accuracy, precision, recall, and F1

measures. Additionally, Fig. 17 illustrates the contrast

between defect predictors generated by ML ? BCOOA

and standard ML methods. ML ? BCOOA’s superiority

stems from adeptly utilising selected effective features,

leading to enhanced outcomes. BCOOA, when applied to

ML algorithms for optimal feature selection, demonstrates

commendable performance on the PC1 dataset. Notably,

the defect predictors produced by the improved ML

(ML ? BCOOA) exhibit the highest F1, recall, accuracy,

and precision compared to previous models. BCOOA sig-

nificantly elevates defect predictor performance by dis-

cerning and eliminating ineffective features.

Figure 18 illustrates the average performance of defect

predictors generated by ML techniques on the PC1 dataset,

both with and without feature selection. The defect pre-

dictors produced by ML ? BCOOA exhibit an average

accuracy of 96.68%, while those from standalone ML

methods show 88.82%. Comparable trends were observed

across other performance metrics. The results highlight a

substantially higher average recall metric for defect pre-

dictors developed with the suggested technique compared

to those from standalone ML approaches. In summary, the

defect predictor derived from the proposed method

(ML ? BCOOA) outperforms those from ML methods

without feature selection.

The average performance of the new method on the PC1

dataset was assessed after ten executions. Table 24 illus-

trates the average number of features selected over ten runs

in the PC1 dataset by binary ACO and BCOOA. In the case

of using ANN as the ML technique, BCOOA and ACO

selected 9 and 9 features, respectively. For DT ? BCOOA,

8 features were selected, while DT ? ACO selected 11

features; similarly, in the KNN classification algorithm, 10

features were selected for both BCOOA and ACO. NB ?

BCOOA selected 10 optimal features, while NB ? ACO

selected 8 features. Overall, the average quantity of fea-

tures selected by BCOOA was lower than that by brute

force ML techniques.

Figure 19 illustrates BCOOA’s feature selection rate in

PC1. The features from the PC1 dataset selected and

refined by BCOOA across ten rounds using various ML

algorithms are detailed in Table 25. Each ML technique

underwent ten iterations, and the most beneficial features

meeting stringent evaluation criteria were identified. To

demonstrate the stability of the new technique, it was

applied ten times to the PC1 dataset. The results consis-

tently showcased improved F1 scores, recall, accuracy, and

precision. Employing BCOOA, the method selects and

incorporates features to train the machine learning algo-

rithm while considering all 21 features. The defect pre-

dictor is then constructed using a selected subset of features

derived from BCOOA’s output, greatly influencing the

accuracy and precision of the defect predictor.

Figure 20a demonstrates the convergence pattern of the

proposed BCOOA in identifying the most effective features

Table 24 The quantity of selected features by ACO and BCOOA in

different ML algorithms in the PC1 dataset

ANN DT KNN NB SVM

Brute force ML 21 21 21 21 21

BCOOA ? ML 9 8 10 10 11

ACO ? ML 9 11 10 8 12

82

84

86

88

90

92

94

96

98

100

Accuracy Precision Recall F1

ML BCOOA + ML

Fig. 18 The average values of the performance criteria of ML

algorithms (ANN, DT, KNN, NB and SVM) with and without

BCOOA as the feature selection in the PC1 dataset

Cluster Computing

123

in the CM1 dataset. BCOOA exhibits varying perfor-

mances across different ML algorithms; in the CM1 data-

set, BCOOA ? ANN achieves the maximum fitness value

and demonstrates superior performance compared to other

algorithms in software defect prediction. In summary,

BCOOA, functioning as a feature selector, significantly

enhances the performance of ML algorithms in addressing

software defect prediction problems. Figure 20b depicts

the convergence pattern of the suggested BCOOA, illus-

trating its progression towards optimal results in the KC1

dataset. BCOOA demonstrates varied performance across

diverse ML techniques, achieving optimal performance

characterised by minimal fitness values and maximum

convergence speed, particularly evident in Fig. 20b.

Notably, ANN and KNN exhibit superior performance

within software defect prediction techniques compared to

other algorithms. Additionally, Fig. 20c illustrates how

BCOOA converges toward optimal feature selection in the

JM1 dataset. BCOOA’s performance varies across different

ML algorithms, demonstrating optimal performance with

NB ? BCOOA and SVM ? BCOOA setups. Notably, NB

and SVM outperform other algorithms regarding defect

prediction accuracy.

Table 25 The selected features

by BCOOA and ACO in

different ML algorithms in PC1

in the best result from 10

executions

SVM NB KNN DT ANN #

ACO BCOOA ACO BCOOA ACO BCOOA ACO BCOOA ACO BCOOA

1 1 0 1 1 0 1 1 1 1 1

0 0 1 1 0 0 0 0 0 0 2

1 1 1 0 0 1 0 1 1 1 3

1 1 1 0 1 1 1 1 1 1 4

1 0 1 1 1 1 0 1 0 1 5

1 1 0 1 1 1 1 1 1 1 6

0 1 1 0 0 1 1 0 0 0 7

0 1 1 1 1 1 0 1 0 1 8

1 1 0 1 0 1 0 0 1 1 9

0 1 1 1 1 1 0 0 0 1 10

1 1 0 1 0 1 0 1 0 1 11

0 0 1 0 0 0 1 1 1 1 12

1 0 0 0 0 1 1 1 1 0 13

1 0 0 1 1 0 1 1 0 1 14

1 1 1 0 1 1 1 0 1 0 15

0 1 0 1 0 0 0 0 1 0 16

1 0 1 1 0 0 1 1 0 1 17

0 0 1 0 1 0 1 1 1 0 18

1 0 0 1 0 1 1 1 0 1 19

1 0 0 0 1 1 0 1 0 0 20

1 1 0 1 1 1 0 0 1 1 21

40

45

50

55

60

65

70

75

80

85

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
A

v
er

ag
e

S
el

ec
ti

o
n

 R
at

e
 b

y

B
C

O
O

A
 i

n
 1

0
 e

x
ec

u
ti

o
n

s
in

 K
C

2

(%
)

Features

Fig. 19 The selection rate of the

21 features by BCOOA in the

PC1 dataset during ten times

executions

Cluster Computing

123

Figure 20d depicts the convergence of BCOOA to the

optimal features in the KC2 dataset. BCOOA’s perfor-

mance varies with different ML techniques. The results

show that the ANN ? BCOOA and NB ? BCOOA setups

operate at their best in terms of convergence speed.

Compared to other algorithms, ANN, NB, and SVM per-

form better in accurate defect prediction. Finally, Fig. 20.e

illustrates how BCOOA converges towards the optimal

features in the PC1 dataset. BCOOA’s performance varies

with different ML methods, demonstrating optimal con-

vergence speed with KNN ? BCOOA and ANN ?

BCOOA compared to other methods. Notably, in precise

defect prediction, ANN and KNN outperform other meth-

ods. Overall, BCOOA, serving as the feature selector,

significantly enhances the performance of ML algorithms

in software defect prediction tasks.

Figure 21 displays the accuracy of defect predictors

created by various ML algorithms using different datasets.

a). Convergence of BCOOA in CM1 dataset b). Convergence of BCOOA in KC1 dataset

c). Convergence of BCOOA in JM1 dataset d). Convergence of BCOOA in KC2 dataset

e). Convergence of BCOOA in PC1 dataset

Fig. 20 Convergence of the BCOOA for finding effective features with different ML algorithms in different datasets

Cluster Computing

123

The defect predictor generated by the proposed method in

the PC1 dataset achieves 96% accuracy, surpassing the

accuracy of defect predictors created by other methods. In

the KC2 dataset, the defect predictor by the proposed

method achieves 89.50% accuracy, while in the JM1 and

CM1 datasets, these figures are about 94% and 91.50%,

respectively. Overall, the proposed method demonstrates

superiority over other methods in terms of accuracy and

performance. This improvement is attributed to the devel-

oped BCOOA, which identifies the most effective features

of the training dataset. The elimination of ineffective

attributes enhances the performance and accuracy of the

created software defect predictor.

Table 26 illustrates the training time of the proposed

method. The training time includes the time required for

features selection by BCOOA and the creating fault pre-

dictor by the ML algorithm. In the proposed method, the

ML algorithms train by the optimal dataset with the opti-

mal features.

5 Conclusion

Developing a software defect predictor significantly

impacts software development and quality. A

notable drawback in machine learning-based defect pre-

dictors lies in their inability to discern the impact of each

independent variable on the dependent one, often resulting

in incorrect training. This paper introduces a binary variant

of the Olympiad optimisation algorithm (BCOOA),

specifically designed for selecting the most impactful fea-

tures from defect prediction datasets. By utilising this

algorithm, an effective and efficient classifier was created

using a refined training set containing the most optimal

features. This method enhanced the efficiency of the defect

predictor by identifying the smallest yet most effective

feature subset from standard defect prediction datasets,

exemplified here using the PROMISE Software Engineer-

ing Repository dataset [20]. The approach selects features

using BCOOA and employs them in training the machine

learning algorithm, accounting for all 21 features.

Table 26 The training time of

different algorithm in different

datasets

PC1 KC2 JM1 KC1 CM1

BCOOA ? SVM 140.808 76.798 1014.802 307.288 72.466

SVM 0.144 0.051 5.038 0.143 0.043

BCOOA ? DT 30.628 24.086 381.260 119.031 44.738

DT 0.170 0.0278 0.354 0.056 0.024

BCOOA ? NB 9.812 7.484 17.186 9.747 8.514

NB 0.028 0.006 0.0233 0.008 0.038

BCOOA ? KNN 87.031 71.208 490.618 283.624 91.025

KNN 0.803 1.201 5.801 1.108 0.920

BCOOA ? ANN 1082.873 941.028 3730.135 1327.065 1108.035

ANN 1.940 3.254 10.864 2.683 1.621

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

PC1 KC2 JM1 CM1 AVG

Accuracy

BCOOA + ML ANN-PCA [31] 3WD[32] TS3WD [32] 2WD[32] SSA-BPNN[33]

Fig. 21 Comparison of defect

predictors created by different

methods in terms of accuracy

Cluster Computing

123

Experimental results demonstrate the effectiveness of

BCOOA as a feature selector for creating machine learn-

ing-based defect predictors. Key features identified by

BCOOA include McCabe design complexity, total number

of operators ? operands in the code, Halstead program

length and difficulty, number of branches in the source

code, lines of code and comments, and number of unique

operators and operands. It is essential to note that the

removal of a feature by BCOOA does not discount its

potential impact on prediction; rather, it signifies the dis-

covery of more effective features that learning algorithms

can utilise with greater generalisation power. In this

research, the defect predictor, formed by combining

BCOOA and ML algorithms, achieved an average accuracy

of 91.13%, precision of 92.74%, recall of 97.61%, and F1

of 94.26%.

Acknowledging the limitations of the proposed

BCOOA, one notable constraint is its application solely on

a single dataset. Future studies will focus on assessing its

performance using various real-world defect-prediction

datasets. Moreover, this study utilised a dataset with

homogeneous features; future research could explore the

effectiveness of the proposed feature selector on raw

datasets. Additionally, the study did not delve into the

performance of the proposed feature selector with deep

learning algorithms, which could be a subject for future

investigation. Furthermore, the study did not evaluate the

performance of the proposed defect predictor alongside test

generation and test prioritisation methods, as outlined in

references [23, 24]. Incorporating the proposed BCOOA

into other learning problems prior to the training stage is

another avenue for future studies. This may include

applying the method to different software datasets and

components. Moreover, there is potential in combining

novel binary metaheuristic algorithms with ML techniques

for software defect prediction. Additionally, integrating

reinforcement learning methods and chaotic maps holds

promise for enhancing ML-based defect predictors. The

binary versions of recent metaheuristic algorithms, such as

those referenced in [25–28], could serve as feature selec-

tors in software defect prediction methods. Lastly, lever-

aging hybrid ML algorithms, as discussed in [17, 29] and

hybrid heuristic algorithms [30], to enhance the accuracy of

software predictors represents another potential avenue for

future research.

Author contributions Research problem, method design, implemen-

tation, and experiments have been performed by B. Arasteh and K.

Arasteh. Data analysis has been performed by B. Arasteh, A. Ghaffari

and R. Ghanbarzadeh. B. Arasteh, and R. Ghanbarzadeh proofread

and approved the final manuscript.

Funding Open access funding provided by the Scientific and Tech-

nological Research Council of Türkiye (TÜBİTAK). The authors

declare that no funds were received during the preparation of this

manuscript.

Data availability The datasets used in this study can be accessed

freely via the following link:https://drive.google.com/drive/folders/

1zi66Fy978-GtFNJLXGUmZrgkieLI_ZhB?usp=drive_link

Declarations

Conflict of interest All authors state that there is no conflict of

interest.

Ethical approval The authors confirm that this study represents their

unique and unpublished work. It hasn’t been submitted for consid-

eration or published elsewhere. The paper authentically presents the

authors’ research and analysis truthfully and completely.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Arasteh, B.: Software fault-prediction using combination of

neural network and Naive Bayes algorithm. J. Netw. Technol.

9(3), 94–101 (2018). https://doi.org/10.6025/jnt/2018/9/3/94-101

2. Khanna, M., Toofani, A., Bansal, S., Asif, M.: Performance

comparison of various algorithms during software fault predic-

tion. Int. J. Grid High-Perform. Comput. (2021). https://doi.org/

10.4018/IJGHPC.2021040105

3. Song, Q., Jia, Z., Shepperd, M., Ying, S., Liu, J.: A general

software defect-proneness prediction framework. IEEE Trans.

Softw. Eng. 37(3), 356–370 (2011)

4. Papa, P.J., Rosa, G.H., André, N., Afonso, C.S.L.: Feature

selection through binary brain storm optimization. Comput.

Electr. Eng. 72, 468–481 (2018). https://doi.org/10.1016/j.comp

eleceng.2018.10.013

5. Ghaemi, A., Arasteh, B.: SFLA-based heuristic method to gen-

erate software structural test data. J. Softw. Evol. Proc. 32, e2228
(2020). https://doi.org/10.1002/smr.2228

6. Shomali, N., Arasteh, B.: Mutation reduction in software muta-

tion testing using firefly optimisation algorithm. Data Technol.

Appl. 54(4), 461–480 (2020). https://doi.org/10.1108/DTA-08-

2019-0140

7. Hosseini, M.J., Arasteh, B., Isazadeh, A., Mohsenzadeh, M.,

Mirzarezaee, M.: An error-propagation aware method to reduce

the software mutation cost using genetic algorithm. Data Tech-

nol. Appl. 55(1), 118–148 (2021). https://doi.org/10.1108/DTA-

03-2020-0073

8. Arasteh, B., Najafi, J.: Programming guidelines for improving

software resiliency against soft-errors without performance

Cluster Computing

123

https://drive.google.com/drive/folders/1zi66Fy978-GtFNJLXGUmZrgkieLI_ZhB?usp=drive_link
https://drive.google.com/drive/folders/1zi66Fy978-GtFNJLXGUmZrgkieLI_ZhB?usp=drive_link
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6025/jnt/2018/9/3/94-101
https://doi.org/10.4018/IJGHPC.2021040105
https://doi.org/10.4018/IJGHPC.2021040105
https://doi.org/10.1016/j.compeleceng.2018.10.013
https://doi.org/10.1016/j.compeleceng.2018.10.013
https://doi.org/10.1002/smr.2228
https://doi.org/10.1108/DTA-08-2019-0140
https://doi.org/10.1108/DTA-08-2019-0140
https://doi.org/10.1108/DTA-03-2020-0073
https://doi.org/10.1108/DTA-03-2020-0073

overhead. Computing 100, 971–1003 (2018). https://doi.org/10.

1007/s00607-018-0592-y

9. Arasteh, B., Miremadi, S.G., Rahmani, A.M.: Developing

inherently resilient software against soft-errors based on algo-

rithm level inherent features. J. Electron. Test. 30, 193–212

(2014). https://doi.org/10.1007/s10836-014-5438-8

10. Batool, B.I., Khan, A.K.T.A.: Software fault prediction using data

mining, machine learning and deep learning techniques: a sys-

tematic literature review. Comput. Electr. Eng. 100, 107886

(2022). https://doi.org/10.1016/j.compeleceng.2022.107886

11. Jiang, Y., Li, M., Zhou, Z., Member, S.: Software defect detec-

tion with ROCUS. J. Comput. Sci. Technol. 26(2), 328–342

(2011)

12. Wang, S.S., Yao, X.X.: Using class imbalance learning for

software defect prediction. IEEE Trans. Reliab. 62(2), 434–443
(2013)

13. Galar, M., Fern, A., Barrenechea, E., Bustince, H.: A review on

ensembles for the class imbalance problem: bagging-, boosting-,

and hybrid-based approaches Mikel. IEEE Trans. Syst. Man

Cybern. 42(4), 1–22 (2011)

14. Anbu, M., Anandha, G.S.: Feature selection using firefly algo-

rithm in software defect prediction. Cluster Comput. 22,
10925–10934 (2019). https://doi.org/10.1007/s10586-017-1235-3

15. Mafarja, M., Thaher, T., Al-Betar, M.A., et al.: Classification

framework for faulty-software using enhanced exploratory whale

optimiser-based feature selection scheme and random forest

ensemble learning. Appl. Intell. 53, 18715–18757 (2023). https://

doi.org/10.1007/s10489-022-04427-x

16. Yousef, A.H.: Extracting software static defect models using data

mining. Ain Shams Eng. J. 6(1), 133–144 (2014)

17. Jayanthi, R., Florence, L.: Software defect prediction techniques

using metrics based on neural network classifier. Cluster Comput.

22(Suppl 1), 77–88 (2019). https://doi.org/10.1007/s10586-018-

1730-1

18. Laradji, I.H., Alshayeb, M., Ghouti, L.: Software defect predic-

tion using ensemble learning on selected features. Inf. Softw.

Technol. 58, 388–402 (2015)

19. Yucalar, F., Ozcift, A., Borandag, E., Kilinc, D.: Multiple-clas-

sifiers in software quality engineering: combining predictors to

improve software fault prediction ability. Int. J. Eng. Sci. Tech-

nol. 23(4), 938–950 (2020). https://doi.org/10.1016/j.jestch.2019.

10.005

20. Promise software engineering repository. http://promise.site.uot

tawa.ca/SERepository/datasets-page.html

21. Shao, X., Wang, H.: Nonlinear tracking differentiator based on

improved sigmoid function. Control Theory Appl. 31, 1116–1122
(2014)

22. Kanan, H.R., Faez, K., Taheri, S.M.: Feature selection using ant

colony optimization (ACO): a new method and comparative

study in the application of face recognition system. In: Advances

in Data Mining. Theoretical Aspects and Applications: 7th

Industrial Conference, ICDM 2007, Leipzig, Germany, July

14–18, 2007. Proceedings 7, vol. 4597, pp. 63–76. Springer,

Berlin (2007)

23. Sikandar, A., Ali, S., Bin, M.H., et al.: Multi objective test case

prioritization using test case effectiveness: multicriteria scoring

method. Sci. Program. (2021). https://doi.org/10.1155/2021/

9988987

24. Khanna, M., Chauhan, N., Sharma, D., et al.: Search for priori-

tized test cases in multi-objective environment during web

application testing. Arab. J. Sci. Eng. 43, 4179–4201 (2018).

https://doi.org/10.1007/s13369-017-2830-6

25. Arasteh, B., Sadegi, R., Arasteh, K.: Bölen: software module

clustering method using the combination of shuffled frog leaping

and genetic algorithm. Data Technol. Appl. 55(2), 251–279

(2021). https://doi.org/10.1108/DTA-08-2019-0138

26. Gharehchopogh, F.S., Abdollahzadeh, B., Arasteh, B.: An

improved farmland fertility algorithm with hyper-heuristic
approach for solving travelling salesman problem. Comput.

Model. Eng. Sci. 135(3), 1981–2006 (2023). https://doi.org/10.

32604/cmes.2023.024172

27. Arasteh, B., Abdi, M., Bouyer, A.: Program source code com-

prehension by module clustering using combination of discretized

gray wolf and genetic algorithms. Adv. Eng. Softw. 173, 103252
(2022). https://doi.org/10.1016/j.advengsoft.2022.103252

28. Soleimanian, F., Abdollahzadeh, B., Barshandeh, S., Arasteh, B.:

A multi-objective mutation-based dynamic Harris Hawks opti-

mization for botnet detection in IoT. Internet Things 24, 100952
(2023). https://doi.org/10.1016/j.iot.2023.100952

29. Singh, L.K., Khanna, M., Singh, R.: A novel enhanced hybrid

clinical decision support system for accurate breast cancer pre-

diction. Measurement 221, 113525 (2023). https://doi.org/10.

1016/j.measurement.2023.113525

30. Arasteh, B.: Clustered design-model generation from a program

source code using chaos-based metaheuristic algorithms. Neural

Comput. Appl. 35, 3283–3305 (2023). https://doi.org/10.1007/

s00521-022-07781-6

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Bahman Arasteh was born in

Tabriz. He received the master

degree in software engineering

from IAU, and the Ph.D degree

in software engineering from

IAU, Tehran Science and

Research Branch, respectively.

Currently, he is an associate

professor at Istinye University,

Istanbul, Turkiye. He has pub-

lished more than 60 papers in

refereed international journals

and conferences. He is the

coordinating editor in the

springer journal of electronic

test and Journal of Assurance Engineering and Management. His

research interests include AI-based software engineering, software

testing, software security, artificial intelligence, and software fault

tolerance.

Cluster Computing

123

https://doi.org/10.1007/s00607-018-0592-y
https://doi.org/10.1007/s00607-018-0592-y
https://doi.org/10.1007/s10836-014-5438-8
https://doi.org/10.1016/j.compeleceng.2022.107886
https://doi.org/10.1007/s10586-017-1235-3
https://doi.org/10.1007/s10489-022-04427-x
https://doi.org/10.1007/s10489-022-04427-x
https://doi.org/10.1007/s10586-018-1730-1
https://doi.org/10.1007/s10586-018-1730-1
https://doi.org/10.1016/j.jestch.2019.10.005
https://doi.org/10.1016/j.jestch.2019.10.005
http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html
https://doi.org/10.1155/2021/9988987
https://doi.org/10.1155/2021/9988987
https://doi.org/10.1007/s13369-017-2830-6
https://doi.org/10.1108/DTA-08-2019-0138
https://doi.org/10.32604/cmes.2023.024172
https://doi.org/10.32604/cmes.2023.024172
https://doi.org/10.1016/j.advengsoft.2022.103252
https://doi.org/10.1016/j.iot.2023.100952
https://doi.org/10.1016/j.measurement.2023.113525
https://doi.org/10.1016/j.measurement.2023.113525
https://doi.org/10.1007/s00521-022-07781-6
https://doi.org/10.1007/s00521-022-07781-6

Keyvan Arasteh is a researcher

at istinye University in Turkiye.

His research interests include

software testing, evolutionary

algorithms and software

security.

Ali Ghaffari is an associate pro-

fessor in Istinye university in

Turkiye. His research interests

include evolutionary algorithms

and networ security.

Reza Ghanbarzadeh is an asso-

ciate professor in Southern

Cross University university in

Turkiye. His research interests

include heuristic algorithms and

elearning systems.

Cluster Computing

123

	A new binary chaos-based metaheuristic algorithm for software defect prediction
	Abstract
	Introduction
	Related works
	Normalisation learning methods
	Unbalanced learning-based methods
	Feature selection-based methods
	Blended learning-based methods

	The proposed method
	Feature selection
	Training datasets
	Structure of olympiad optimization algorithm
	Chaos-based population
	Learning operation in OOA
	Binary OOA

	Experiments and results
	Experiments platform and datasets
	Evaluation criteria
	Discussion of the results from the first experiment (CM1 dataset)
	Discussion of the results from the second experiment (KC1 dataset)
	Discussion of the results from the third experiment (JM1 dataset)
	Discussion of the results from the fourth experiment (KC2 dataset)
	Discussion of the results from the fifth experiment (PC1 dataset)

	Conclusion
	Author contributions
	Open Access
	References

