
Novel hybrid classifier based on fuzzy type-III decision maker
and ensemble deep learning model and improved chaos game
optimization

Nastaran Mehrabi Hashjin1 • Mohammad Hussein Amiri1 • Ardashir Mohammadzadeh5 • Seyedali Mirjalili2,3 •

Nima Khodadadi4

Received: 18 December 2023 / Revised: 10 February 2024 / Accepted: 26 March 2024
� The Author(s) 2024

Abstract
This paper presents a unique hybrid classifier that combines deep neural networkswith a type-III fuzzy system for decision-making.

The ensemble incorporates ResNet-18, Efficient Capsule neural network, ResNet-50, the Histogram of Oriented Gradients (HOG)

for feature extraction, neighborhood component analysis (NCA) for feature selection, and Support Vector Machine (SVM) for

classification.The innovative inputs fed into the type-III fuzzy systemcome from the outputs of thementionedneural networks.The

system’s rule parameters arefine-tunedusing the ImprovedChaosGameOptimization algorithm(ICGO).The conventionalCGO’s

simple random mutation is substituted with wavelet mutation to enhance the CGO algorithm while preserving non-parametricity

and computational complexity. The ICGOwas evaluated using 126 benchmark functions and 5 engineering problems, comparing

its performancewithwell-known algorithms. It achieved the best results across all functions except for 2 benchmark functions. The

introduced classifier is applied to sevenmalware datasets and consistently outperforms notable networks like AlexNet, ResNet-18,

GoogleNet, and Efficient Capsule neural network in 35 separate runs, achieving over 96% accuracy. Additionally, the classifier’s

performance is tested on the MNIST and Fashion-MNIST in 10 separate runs. The results show that the new classifier excels in

accuracy, precision, sensitivity, specificity, and F1-score compared to other recent classifiers. Based on the statistical analysis, it has

been concluded that the ICGO and propose method exhibit significant superiority compared to the examined algorithms and

methods. The source code for ICGO is available publicly at https://nimakhodadadi.com/algorithms-%2B-codes.

Graphical abstract

Extended author information available on the last page of the article

123

Cluster Computing
https://doi.org/10.1007/s10586-024-04475-7(0123456789().,-volV)(0123456789().,- volV)

https://nimakhodadadi.com/algorithms-%2B-codes
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04475-7&domain=pdf
https://doi.org/10.1007/s10586-024-04475-7

Keywords Type-III fuzzy system � Efficient-capsule network � Malware classification � Chaos game optimization

algorithm � Residual neural network

Abbreviations
CNN Convolutional neural network

BF Benchmark function

UM Unimodal

MM Multimodal

ResNet Residual neural network

HM High-dimensional multimodal

TBT Three bar truss

TCS Tension/compression spring

WB Welded beam

PV Pressure vessel

CSI Car side impact

F Function

CEC IEEE Congress on Evolutionary

Computation

D Dimension

C19 CEC2019

C17 CEC2017

LSHADE-EnSin Linear population size reduction in

success-history/adaptation of differen-

tial evolution with ensemble of sinu-

soidal functions

CGO Chaos game optimization

ICGO Improved chaos game optimization

TLBO Teaching–learning-based optimization

IWO Invasive weed optimization

GOA Grasshopper optimization algorithm

AOA Arithmetic optimization algorithm

PSO Particle swarm optimization

SSA Salp swarm algorithm

CD Critical difference

GWO Gray wolf optimization

SCA Sine cosine algorithm

WOA Whale optimization algorithm

Best The best result

Worst The worst result

Std. Standard deviation

Mean Average best result

EDP Engineering design problem

RWA Real world application

1 Introduction

The introduction of fuzzy systems by Lotfi A. Zadeh gave

rise to a new research field in soft computing [1]. Although

fuzzy logic was proposed for modeling uncertainties,

ambiguity, and inaccuracy, one of the known shortcomings

of type-I fuzzy systems is that while membership functions

are used to express uncertainties, the outputs of these

functions are crisp values. Lotfi A. Zadeh introduced type-

II fuzzy systems in 1975 to address the problem [2].

Nonetheless, fewer studies were published on type-II fuzzy

systems until late in the previous century [3]. Liang and

Mendel first investigated type-II non-singleton fuzzy sys-

tems [4]. After Mendel’s work on type-II fuzzy systems,

these systems drew the interest of more researchers. The

results obtained from the literature and the application of

interval type-II fuzzy systems in practical situations with

high noise levels, dynamic environments, and high com-

plexity have demonstrated the superior performance of

type-II over type-I fuzzy systems [5]. General type-II fuzzy

systems can produce better results than interval type-II

fuzzy systems due to their ability to handle higher uncer-

tainty levels [6].

Type-III fuzzy systems, introduced in [7], are the

evolved versions of the type-II fuzzy systems. They have

been recently employed in various applications, such as

robot control [8–11], time series prediction [12, 13], fault

detection in gas turbine [14], and controller gain adjust-

ment [15].The obtained results indicate that these systems

can outperform type-I and type-II fuzzy systems by dealing

with higher uncertainty levels.

Malware is among the most serious security threats on

the Internet and leads to economic consequences for gov-

ernments and businesses in addition to breaches of privacy

[16]. Microsoft Windows is the most popular operating

system, having a 74.79% share of the market [17]. This has

resulted in the annual creation of a large number of mal-

ware programs for this operating system although it does

not mean that other operating systems are safe from mal-

ware. According to reports by AVTEST, the number of

malware programs created for Microsoft Windows was

793299151 in June 2023, 730142412 in June 2022, and

644297811 in June 2021, indicating an annual increase of

8.64% and 11.75%, respectively [18].

The act of identifying and subsequently categorizing

malware is referred to as Malware Analysis. Static,

Dynamic and both analyses [19] stand out as the predom-

inant techniques employed in malware analysis. Static

analysis generally involves parsing the executable code and

Cluster Computing

123

extracting features and signatures that can aid in detection.

Dynamic analysis involves executing the executable file in

a controlled environment to observe its behavior. During

dynamic malware analysis, the executable’s interactions

with the system are monitored, including system calls,

executed instructions, and accessed registers. Dynamic

analysis has been proven to be a highly efficient method of

expediting the identification of malicious code, owing to

the multifarious dynamic behaviors that malware exhibits

during its execution [20]. Although dynamic techniques for

analyzing malware are usually more accurate than entirely

static methods, their primary limitation is that they can

only detect malicious actions when those actions occur

during the analysis process. This limitation has led to fewer

studies incorporating dynamic features in their research

[20].

Deep learning is now widely used for malware classi-

fication tasks. To use deep neural networks for malware

detection, first a raw binary malware file is converted into

an image, which can be grayscale or colored. As this

process is repeated, a dataset is created that can be used to

train the network. The network can then be utilized as a

malware classifier. It’s essential to emphasize the research

gap regarding the classification of malware, particularly in

the context of dynamic features, which have received

comparatively less attention in previous studies. The article

introduces a novel classifier that integrates a type-III fuzzy

decision maker with an ensemble of deep neural networks

and support vector machines to address this gap and offer a

fresh perspective on malware classification. Additionally,

it’s worth highlighting that the paper pioneers the utiliza-

tion of fuzzy type-III as a decision maker, aiming to better

model uncertainty and enhance classification accuracy.

This marks the first instance where fuzzy type-III has been

employed in such a capacity, underscoring the innovative

nature of the proposed approach.

The contributions of this article can be summarized as

follows:

• Introducing a unique hybrid classifier that combines

deep neural networks with a type-III fuzzy system.

• Implementing the type-III fuzzy system for decision-

making, as opposed to traditional methods like voting.

• Showcasing an enhanced CGO optimization algorithm

for training the type-III fuzzy system.

• To assess how well ICGO performs in addressing

optimization challenges, it is subjected to testing across

a spectrum of 126 BFs, encompassing different cate-

gories such as UM, MM, as well as the CEC 2019 and

CEC 2017 sets. This evaluation spans dimensions

ranging from 10 to 100, and it also includes five EDPs

to examine how the problem dimensions influence the

efficacy of the ICGO algorithm.

• Employing both balanced and imbalanced datasets and

offering an in-depth analysis to provide a clearer insight

into the performance of the proposed model.

The article is structured into five sections. Section 2

focuses on related work, while Sect. 3 covers material and

methods. Section 4 presents simulation results and com-

pares the performance of the different models. In Sect. 5,

we will explain the proposed methodology. The Sect. 6 and

final section provides conclusions based on the article’s

findings.

2 Related works

The field of operating system security extensively utilizes

machine learning techniques for various applications, par-

ticularly for effectively classifying different malware

families. In the following paragraphs, we will examine a

selection of articles published in recent years that have

employed machine learning techniques for the purposes of

detecting and/or classifying malware.

Machine learning offers two main approaches for

detecting and classifying malware: image-based and oper-

ational code (Opcode) families-based methods. The former

involves analyzing visual representations of malware,

while the latter leverages the sequence of operations,

known as opcodes, within the program to identify mali-

cious code. Parildi et al. [21] presented an alternative

method for malware detection using assembly opcode

sequences, utilizing natural language processing and deep

learning techniques for deeper behavioral features, and

achieving MCC scores of up to 0.95. In another similar

study, Santos et al. [22] proposed a method that involved

examining the frequency of opcode sequences and building

a semi-supervised machine-learning classifier using a set of

labeled and unlabeled malware and legitimate software

instances. Empirical validation was performed to demon-

strate that the labeling efforts required for this method were

lower than those of supervised learning while still main-

taining a high level of accuracy. Results indicate that by

labeling only 50% of the software, more than 83% accu-

racy rates can be achieved.

The method of visualizing images is of great interest to

many security researchers due to its ability to eliminate the

need for feature engineering. The authors of [23] first

created a feature vector by concatenating the extracted

features from AlexNet and ResNet-152 and then used three

fully connected layers and a Softmax function to classify

malware. They evaluated the proposed method using

Malimg, MBIG2015, and Malevis datasets. The classifi-

cation accuracy for the proposed classifier was reported to

be 97.78%, 94.88%, and 96.5% for the mentioned datasets,

Cluster Computing

123

respectively. A lightweight deep neural network called

IMCLNet has been introduced by [16] for classifying

malware. To evaluate the proposed network, two datasets,

Malimg and MBIG2015 (Microsoft BIG 2015), were used,

and their classification accuracy was reported as 99.785%

and 98.942%, respectively, by the proposed classifier.

A DNN-based malware classifier for Windows programs

was proposed to address vulnerabilities in adversarial

perturbation attacks [24]. A defensive mechanism uses a

generative adversary network (GAN). The GAN-based

adversarial samples achieve high-quality samples with

medium cost, and the enhanced DNN achieves satisfactory

accuracy with a 90.20% evasion ratio. GAN secures the

DNN-based malware classifier with minimal performance

degradation and minimizes evasion ratios when faced with

powerful adversarial attacks. During [25], after feature

extraction with VGG16, the features pass through two

BiLSTM layers. Finally, the outputs generated by the

BiLSTM layers and the features extracted by VGG16 are

combined for malware classification. In order to mitigate

the problem of imbalanced data, data augmentation tech-

niques such as image shifting, vertical flipping, horizontal

flipping, 45-degree clockwise rotation, and 45-degree

counterclockwise rotation were employed in this article. A

graph convolutional network malware classifier was

developed to adapt to malware characteristics, achieving

98.32% accuracy and superior performance compared to

existing methods [26].

A feature selection technique based on frequent Android

permissions is explored to reduce computational effort

[27]. The authors of [28] have introduced IMCFN, a

classifier designed to identify various types of malware and

enhance detection by implementing a deep learning

architecture based on CNN. The method converts raw

malware binaries into color images, using the fine-tuned

CNN architecture to identify malware families. The

IMCFN outperforms other CNN models, with an accuracy

of 98.82% in the Malimg malware dataset and over 97.35%

in the IoT-android mobile dataset. Hosseini et al. [29]

demonstrated the effectiveness of Deep Neural Networks in

malware classification, primarily using a combined con-

volutional neural network and RNNs. The proposed algo-

rithm achieves maximum accuracy of 98.8% using fivefold

cross-validation, surpassing CNN, Ensemble-learning, and

SVM algorithms. Improvements are needed to enhance

robustness and detect malware families for higher

accuracy.

MAPAS is a malware detection system that uses Grad-

CAM to analyze malicious applications’ behaviors and API

call graphs. Grad-CAM stands as a method that preserves

the structure of complex models while providing insight

into their decisions without sacrificing precision. It’s lau-

ded as a localization technique that delineates classes,

providing visual insights for CNN-based networks sans the

need for altering their architecture or undergoing re-train-

ing. MAPAS classifies applications 145.8% faster and uses

ten times less memory than MaMaDroid, with higher

accuracy (91.27%) for detecting unknown malware and

any type of malware with high accuracy. This innovative

approach offers a cost-effective solution for protecting

users from emerging malware [30]. Reference [31] aims to

propose a hybrid deep learning model called DeepVisDroid

for detecting Android malware samples using image-based

features. Four grayscale datasets were constructed, and a

1D-convolutional layers-based neural network model was

trained using extracted local and global features. The

model achieved classification accuracy of over 98% with

efficient run-time overhead. Current deep CNN-based

models require higher resources and heavy training oper-

ations, making them insufficient for IoT applications.

Reference [32] proposes a lightweight CNN model for

malware image classification, achieving 96.64% accuracy

and suitable for resource-constrained applications.

In the subsequent section, we discuss various researches

that have employed different machine learning techniques

for the detection and categorization of malware. An

example of this is the research carried out by Aurangzeb

and his team [33]. In this article, a combination of five

classifiers, namely Gradient Boosting, KNN, Random

Forest, XGBoost, and Multilayer Perceptron, has been

utilized to detect malware in software programs operating

on the Android platform. The proposed classifier employs a

classification method based on the voting mechanism

among the mentioned classifiers. Authors of [34] present a

hybrid approach for Android malware classification using

fuzzy C-means clustering and LightGBM. Fuzzy clustering

generates clusters of app permissions, while LightGBM

classifies apps as malware or good ware after training,

offering high learning efficiency and precise classification.

Reference [35] aimed to improve the detection perfor-

mance of Android malware using machine learning-based

malware detectors and investigate the impact of adversarial

attacks on classifiers. The framework integrates static and

dynamic features, with machine learning algorithms

achieving 97.59% accuracy and random forest at 95.64%.

When combined, deep neural network models achieve

99.28% accuracy and 99.59% accuracy. The paper also

evaluates classifiers’ robustness against evasion and poi-

soning attacks, revealing a significant drop in performance

when simulating evasion attacks using static features.

Dynamic features are also vulnerable to attack but exhibit

more resilience than static features. A machine-learning

approach was tested for detecting Android malware using a

SVM classifier and Harris Hawks Optimization algorithm

(HHO) [36].

Cluster Computing

123

Reference [37] proposed an Android malware detection

technique using supervised learning to detect malware

behavior. The supervised model achieves 97% accuracy in

detecting malware, malicious API calls, and unusual app

behavior. A simulated annealing algorithm and fuzzy logic

were used in feature selection and neighbor generation

stages to test ten feature sets, achieving 99.02% accuracy in

feature selection with the KNN classifier [38].

Table 1 provides a summary of the selected related

methods. The table indicates the use of k-fold cross-vali-

dation (CV), feature extraction (FE), classification algo-

rithms (C), optimization techniques (Opt) for parameter

tuning, introduction of new datasets (DS), reported accu-

racy (ACC), feature selection (FS), and feature processing

(FP) in each work. This allows for a concise overview of

the methodologies and contributions of previous studies

relevant to the current research. Despite the critical role

that these dynamic attributes play in identifying and ana-

lyzing malware, however, there has been a dearth of

research focused on integrating them into the malware

analysis process [39]. Moreover, a limited number of

articles concerning the classification of malware have

undertaken assessments of their classification techniques

employing another dataset, including the renowned Fash-

ion MNIST dataset and the MNIST dataset.

3 Material and methods

3.1 Dataset

This article uses the public dataset presented in [39]

comprising seven distinct datasets. In order to generate this

data, 65,536 malicious samples were extracted from the

VirusShare repository and then filtered to yield 15,872

viable executable malware files. The Cuckoo Sandbox

software by Linux Software was utilized to conduct

dynamic analysis on these files safely. This software exe-

cuted the malware in an isolated environment and logged

the behaviors and functions, outputting 15,872 report.json

files. The Cuckoo Sandbox system also integrates with the

VirusTotal scan service to identify files containing viruses

and other malware. The AVClass2 was then applied to

automatically label the malware samples into categories

based on their attributes and actions [40]. The outcome of

this process was a dataset including 3749 real malware

samples categorized into 11 distinct classes. The distribu-

tion of the Malware Family is reported in Table 2, and the

visual representation of it can be observed in Fig. 1.

From the analysis report generated in the previous stage,

we identified three dynamic features included in the report.

Subsequently, we will elaborate on each of these features,

Table 1 The summary of selected related work is reported

Ref. no. Year Analysis Method Results and dataset CV

1 Aslan et al. 2021 Static FE: ResNet-152, AlexNet

C: Fully connected layers and Softmax

function

Microsoft BIG 2015, ACC = 94.88

Malimg, ACC = 97.78

Malevis, ACC = 96.5

7

2 Mallik et al. 2022 Static FE: VGG16

FP: BiLSTM

C: Fully connected layers and Softmax

function

Malimg, ACC = 99.56

Microsoft BIG 2015, ACC = 98.36

7

3 Anupama et al. 2022 Static and

dynamic

C: Random Forest, SVM, CART Drebin, ACC = 100 4

4 Alzubi et al. 2022 Static C: SVM

Opt: HHO

CICMalAnal2017, F-Measure: 93.20 4

5 Seyfari and

Meimandi

2023 Static and

dynamic

C: SVM, KNN, DT

FS: SA-Fuzzy

DREBIN, ACC = 99.02 4

6 Taha and Malebary 2021 Static C: Light Gradient Boosting

PD: FCM

DS, ACC = 94.63 4

7 Hosseini et al. 2021 Static and

dynamic

C: CNN-LSTM DREBIN, ACC = 98.8

DS, ACC = 90.48

4

8 Vasan et al. 2020 Static C: CNN Malimg, ACC = 98.82

IoT-Android Mobile Dataset,

ACC = 97.35

7

9 Zou et al. 2022 Static C: CNN Microsoft BIG 2015, ACC = 97.976

Malimg, ACC = 99.143

4

Cluster Computing

123

namely, The Application Programming Interface (API)

calls and their frequency, Loaded Dynamic Link Libraries

(DLL) files, and Registry operations (REG), to provide a

detailed explanation of how each feature can reveal

insights into the behavior of the malware during its exe-

cution. API calls refer to the requests made by Malware to

initiate an interaction with the operating system or other

software components. By analyzing the type and frequency

of these API calls, we can deduce the malware’s behavior

and intentions such as network access, file creation, and

modification [41]. DLL files contain functions and data

used by other programs. Using DLL files helps promote

code modularization, code reuse, and efficient memory

usage [42]. Malware often loads specific DLL files to uti-

lize their functions and perform malicious activities.

Identifying the DLL files loaded by the malware can

expose the malware’s dependencies and reveal its tactics.

REG is a database that stores configurations and settings

for the operating system, hardware, and software [43].

Malware frequently manipulates the registry to achieve

persistence, disable security features, or modify system

settings [44]. Examining the operations performed on the

registry can provide insights into the malware’s objectives

and persistence mechanisms.

3.1.1 Malware visualization

In this work same as [39], the total number of API calls,

DLL files loaded and malware registry keys present were

249, 730, and 5013 respectively. To improve the extraction

of features and attain a more thorough understanding of

malware properties, the following methodology was

employed:

The aforementioned features were converted into three

distinct vectors with varying dimensions (C1, C2, C3),

specifically 249, 730, and 5013. These vectors were sub-

sequently transformed into 2D arrays, resulting in new

vectors with dimensions 16 9 16, 28 9 28, and 71 9 71,

analogous to an RGB channel image. Nonetheless, due to

the differing dimensions of the three vectors, it was nec-

essary to employ a technique known as bilinear interpola-

tion to adjust their sizes for compatibility [39]. In

particular, using C2
0 served as a reference point, with C1

0

being expanded to 28 9 28 and being reduced to C3
0 to

28 9 28. Finally, Malware visualization maps API calls,

DLLs, and registry accesses to the red, green and blue

(RGB) channels of an image, respectively, then combined

into a single RGB image, with the intensity of each color

representing the volume and specifics of the corresponding

behavior by mapping these malware behaviors to color

channels, visualization provides an intuitive representation

of the runtime actions of a malware sample [39]. Figure 2

illustrates the complete process.

3.1.2 K-fold cross validation

To mitigate the impact of partitioning the dataset on the

classifier’s performance, we employed k-fold cross-vali-

dation in our study. The entire dataset is divided into k

distinct subsets of similar sizes. Then, k � 1 subsets are

used as the training set to train a model, and the remaining

subsets are used as the test set to evaluate the model. This

process is repeated k times, and each subset is used exactly

once as the test set. The most common values for k are 5

and 10. In this article, a fivefold cross-validation method,

similar to the Fig. 3, is employed. This method signifi-

cantly reduces bias (a model with high bias pays very little

attention to the training data, resulting in an overly sim-

plistic model and high errors in both training and test data)

and variance (a model with high variance overfits the

training data and fails to generalize to unseen data), as it

ensures that each sample from the entire dataset has a

chance to appear in both the training and test sets.

Fig. 1 The distribution of the malware family

Table 2 The distribution of

Malware Family
Class name Number Label

AgentTesla 628 0

Autolt 508 1

Bladabindi 215 2

Delf 125 3

Emotet 756 4

Guloader 234 5

Playtech 187 6

Qbot 143 7

Taskun 281 8

Trickbot 517 9

Ursnif 155 10

Cluster Computing

123

3.2 Efficient capsule network

In CNN, the use of a type of pooling operation called max

pooling can result in some loss of information regarding

object location and affine transformations. The authors of

[45] solved two problems of CNN by replacing a vector

capsule with a scalar CNN feature detector, a method

known as routing. To resolve the second problem, they

encoded the location information into the low-level cap-

sule. In the first approach, the authors used a Capsule

Network (CapsNet) for their problem because of the

advantages discussed in this section, such as biomedical

image segmentation [46], breaking CAPTCHA [47], text

classification [48], classification of lung cancer [49],

drowsiness detection [50], detecting fake news [51].

In the second approach, they improved and modified the

structure of this neural network, as in RPI-CapsGAN [52],

Dual-attentional spatial-aware CapsNet [53], Multi-Col-

umn CapsNet [54], Multi-Lane CapsNet [55], CapsNet

with non-iterative cluster routing [56], Graph CapsNet

[57], Adaptive CapsNet [58], Transformer CapsNet [59].

Although CapsNets have many advantages, they have a

computational efficiency problem, which is why we used

Efficient-CapsNet in our research. Efficient-CapsNet pro-

posed in [60] by reducing parameters solves the traditional

CapsNet’s computational efficiency problem. The efficient-

CapsNet structure is represented in Fig. 4. The Efficient-

CapsNet consists of three main components: a convolu-

tional layer, a primary capsule layer, and a self-attention

mechanism for routing between capsules. To prepare for

the creation of the capsule, the input (image) passes

respectively through the convolution multi-layer, the ReLU

Fig. 2 Steps of generating malware dataset for classification

Fig. 3 Fivefold cross-validation

Fig. 4 Overall efficient-CapsNet structure

Cluster Computing

123

activation functions, and the bath normalization multi-

layer. In the Efficient-CapsNet, the main capsule layer

passes high-dimensional features from a depth-separable

convolution. A depth-separable convolution combined with

a linear activation function creates a vector representation

of the features. In this part, the output size is 128 1 9 1.

The primary capsule layer is crucial in decreasing

parameters and enhancing the efficiency of this network.

The final output of the preceding layer is reshaped

according to user-defined parameters for the primary cap-

sules, such as their number and dimensionality. The pri-

mary capsules then go through the squash function, and the

resulting values are used to determine the digits capsules

and classification through the fully connected capsules

layer based on a self-attention routing.

Our attention in this part turns to the specific details of

the Efficient-CapsNet architecture utilized in our research.

During the forward pass of the network, 28 9 28 RGB

images are fed into the input layer and then go through four

convolution layers. The first convolution layer consists of

32 convolution kernels, each with a size of 5 9 5, a stride

of 1, and valid padding, resulting in 32 feature maps of

24 9 24 dimensions. The second convolution layer has 64

kernels, each 3 9 3 in size, with a stride of 1 and valid

padding, while the third convolution layer also has 64

kernels, with the same specifications. The second and third

layers generate 62 feature maps of 22 9 22 and 20 9 20

dimensions, respectively. Lastly, the fourth convolution

layer contains 128 convolution kernels of 3 9 3 size, a

stride of 2, and valid padding, producing 128 feature maps

with 9 9 9 dimensions. In order to train deep neural net-

works, Batch Normalization (BN) standardizes each mini-

input batch to a layer. As a result, the learning process

becomes more stable, and the number of training epochs

necessary to create deep networks is greatly diminished.

This transformation keeps the average output around zero,

and the output’s standard deviation is around one [61]. A

layer with dim dimensional input x 1ð Þ � � � x ðdimÞ� �
, nor-

malize each dimension using Eq. (1):

x ðkÞ
Normalize ¼

x k � E x k
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var x k½ �

p : ð1Þ

Mazzia et al. [60] proposed a transformation recon-

struction algorithm in order to prevent the features learned

by each layer from being destroyed by normalization

Eq. (1). Through Eqs. (1) and (2), it is possible to restore

the learned distribution of features for each layer [61]:

y ðkÞ ¼ T ðkÞx ðkÞNormalize þ g ðkÞ: ð2Þ

In Eq. (2) x ðkÞ
Normalize is the input after k-layer normal-

ization, and T and g are learnable parameters. Due to the

advantages of BN, in Efficient-CapsNet, a batch normal-

ization layer is embedded between the mentioned four

convolution layers. Depth-separable convolution is a 9 9 9

convolution kernel with 128 channels. The output shape of

this convolutional layer is 128 1 9 1. We set the number

and dimension, 16 and 8, respectively, for primary cap-

sules. The multiplication of these values gives 128

(16 9 8). The construction of the primary capsules is now

complete. The self-attention routing (Fig. 5) part is similar

to the fully connected network. The upper capsule takes in

a combination of all ‘‘prediction vectors’’ from the lower

capsule, and the output capsules correspond to different

classes of Malware. Where Ul
nl;dl

shown in Fig. 5, l rep-

resents lth capsule layer, nl represent number of capsule

layers and dl represents the dimensions of each capsule

layer. We set Ul
16;8 in this article. Ulþ1

11;16, number capsule in

lþ 1 capsule layer (digit capsules) is set equal to the

number of classes (11 in this work). Wl
16;11;8;16 stands for a

weight matrix with a dimension size of (16; 11; 8; 16).

bU
l

16;8 refers to all predictions of the front capsule, while Cl

represents the coupling coefficient matrix generated by the

self-attention algorithm, as shown in Eqs. (3) and (4).

Where, nl denotes the number of capsules present in

layer l, while nlþ1 indicates the number of capsules present

in the next layer, which is lþ 1. dl refers to the dimension

of l-layer capsule, and
ffiffiffiffi
dl

p
is utilized to maintain equi-

librium between the coupling coefficient and logarithmic

priority, ensuring a stable training process. The self-atten-

tion matrix is represented by Al, and each capsule is

associated with a self-attention matrix:

Fig. 5 Self-attention routing in an efficient-CapsNet

Cluster Computing

123

Al
:;:;nlþ1ð Þ ¼

bU
l

:;nlþ1;:ð Þ � bU
Tl

:;nlþ1;:ð Þffiffiffiffi
dl

p ð3Þ

Cl
:;nlþ1ð Þ ¼

exp
P

nl A
l
:;nl;nlþ1ð Þ

� �

P
nlþ1 exp

P
nl A

l
:;nl;nlþ1ð Þ

� � : ð4Þ

The Bl matrix holds all weight discrimination informa-

tion and is predetermined. Calculating all capsules Slþ1
nlþ1;nl

in the lþ 1 layer can be accomplished using Eq. (5); this

equation compresses the length of all capsule vectors in

layer lþ 1 between zero and one using the squeeze func-

tion to obtain Ulþ1
11;16.

There is a difference between the squeeze function of

the network and that of CapsNet. A variant of the squeeze

function is proposed to prevent the network from con-

verging due to the vector length of zero, as in Eq. (6):

slþ1
n ¼ bU

Tl

:;nlþ1;:ð Þ � Cl
:;nlþ1ð Þ þ Bl

:;nlþ1ð Þ

� �
ð5Þ

squash sln
� �

¼ 1� 1

ekslnk

	

sln

k sln k
: ð6Þ

In the end, the output of digit capsules layer provides the

classification by using a final operation that reduces the

shape 11 9 16 into 11 9 1. This represents a one-hot

classification vector. The total loss function includes two

losses, the first margin loss and the second reconstruction

regularizer as Eq. (7) [62].

Lnl ¼ TnLmax 0;mþ� k uLn k
� �2

þ k 1� TnLð Þmax 0; k uLn k �m�� �2 ð7Þ

where, n represents the class. If class n exists, then Tn is

equal to one. On the other hand, if n does not exist, then Tn

is equal to zero. k is a reference to a coefficient that is used

for down weighting. During the initial learning phase, it is

possible to prevent the shrinkage of all vectors if n is not

present. Training options for the Efficient-CapsNet in our

work are reported in Table 3. The performance curve of the

Efficient-CapsNet for one of the API Dataset classification

runs is illustrated in Fig. 6.

3.3 Residual network

The Residual Network (ResNet) was proposed by Micro-

soft researchers in 2015 to address the challenge of training

very deep networks. One of the primary drivers for the

development of ResNet was to mitigate the issue of van-

ishing gradient. ResNets use shortcut connections to bypass

one or more layers (Fig. 7), which helps in solving this

problem [63].

3.3.1 ResNet-18

The ResNet-18 architecture is a variant of the ResNet

family that has been widely used in image recognition

tasks. This network is a 72-layer architecture with 18 deep

learning layers. Composed of 18 layers, ResNet-18

includes 17 convolutional layers that operate on the input

Fig. 6 Performance curve of efficient-CapNet

Fig. 7 Bypass layer in residual network

Table 3 Training options efficient-capsule

Training options efficient-capsule

Training algorithm Adam

Minimum batch size 25

Learning rate schedule 4

mþ 0.9

m� 0.1

k 0.5

Cluster Computing

123

image and extract features at various levels of abstraction.

In addition, ResNet-18 has a fully connected layer and a

Softmax function for classification. The convolutional

layers in ResNet-18 use a 3 9 3 kernel size, which has

been shown to be effective in capturing important spatial

features in images. In ResNet-18, the residual shortcut

connections skip two convolutional layers. This design has

been carefully optimized to balance the trade-off between

model complexity and performance [63]. A visual repre-

sentation of the ResNet-18 architecture can be seen in

Fig. 8.

Table 4 shows color what mean in Figs. 8 and 10.

To use ResNet-18 (architecture in Table 5), we first

must resize images dataset 28 9 28 RGB to 224 9 224

RGB. This model is trained with summation cross-entropy

loss function and L2 regularization. The cross-entropy loss

function aims to minimize the distance between predicted

and ground-truth probabilities. L2 regularization reduce the

overfitting possibility. It is defined as follows:

Loss ¼ � 1

N

XN

i¼1

tilog pið Þ þ k
2

X
kwk22

 !

: ð8Þ

In Eq. (8) k is the hyper-parameter scale of the regu-

larization term to have a gentle influence on the Loss, kwk22
is the L2-norm expression for the entire set of weights in

the model, ti is the truth label and pi is the Softmax

probability for the ith class.

To update parameters, it uses the Adam (Adaptive

Moment Estimation) optimizer. This optimization tech-

nique employs an updating process for parameters akin to

RMSProp. However, it distinguishes itself by incorporating

a momentum term into Adam [64]. The update rule of the

Adam optimizer is described as:

h‘þ1 ¼ h‘ �
gmlffiffiffiffi
vl

p þ �
ð9Þ

ml ¼
m‘

1� b‘1
ð10Þ

vl ¼
v‘

1� b‘2
ð11Þ

m‘ ¼ b1m‘�1 þ ð1� b1Þ � rEðh‘Þ ð12Þ

v‘ ¼ b2v‘�1 þ 1� b2ð Þ � ðrEðh‘ÞÞ2: ð13Þ

In this set of equations h denotes the network’s param-

eters, E is the loss function to optimize, m‘ and v‘ are

exponential average of gradients along h‘ and exponential

average of squares of gradients along h‘ and g is initial

learning rate.

The hyperparameters b‘1 and b
‘
2 are gradient decay factor

and squared gradient factor. Training options Resnet-18 in

our proposed model is reported in Table 6. Additionally,

Fig. 9 illustrates the training progress of ResNet-18 for one

of the API Dataset classification runs.

3.3.2 ResNet-50

ResNet-50 is another variant of the ResNet family. This

network is a 176-layer architecture with 50 deep learning

layers. It consists of 48 convolutional layers, 1 max pooling

layer, and 1 average pooling layer. The ResNet-50 consists

of five convolutional layers as shown in Table 7. The Input

image with 224 9224 RGB passed through a convolutional

layer (Conv1) with 64 filters, kernel size 7 9 7 and a stride

of size 2 followed by a max pooling layer with stride size

same previous layer. The second convolutional layer

(Conv2_x) consists of three convolutional layers: (1) con-

volutional layer with 64 filters, kernel size 1 �1, (2) con-

volutional layer with 64 filters, kernel size 3 �3, and (3)

convolutional layer with 256 filters, kernel size 1 �1 and

Fig. 8 ResNet-18 model architecture

Cluster Computing

123

this layer repeated 3 times. This process is the same for the

other three convolutional layers. Next, the features are

passed through five convolutional layers and an average

pooling layer. ResNet-50 is employed as the feature

extractor, with the fully connected layer and Softmax

function removed. Instead, the output from the average

pooling layer is utilized [66]. A visual representation of the

ResNet-50 architecture can be seen in Fig. 10.

3.4 Feature extraction

One common application of convolutional neural networks

is feature extraction, where each convolutional layer

extracts feature maps from an image. Features of an image,

such as edge information, gradient information, are

obtained after each convolutional layer [67]. In contrast to

deep learning, machine learning require feature extraction,

making it crucial to select a technique that not only extracts

suitable features but also maintains a desirable computa-

tional cost. CNN or HOG approaches have been employed

in most recent studies, such as [68–71]. In this article,

ResNet-50 and HOG are employed as feature extractor.

3.4.1 Histogram of oriented gradients (HOG)

The HOG method is a highly prevalent technique for fea-

ture extraction. Its favorable computational efficiency and

robustness properties have made it useful in diverse

domains, including medical applications [72], facial

recognition [73], and fault detection in wind turbines [74].

The implementation steps of the HOG feature extraction

algorithm are as follows:

(1) To utilize this method, the images must have fixed

dimensions and be in grayscale.

(2) Firstly, the images are divided into smaller sections

called cells and then the horizontal gradient (Gx) and

vertical gradient (Gy) are calculated for each cell.

Equations (14–15)

Gx ¼ I xþ 1; yð Þ � I x� 1; yð Þ ð14Þ
Gy ¼ I x; yþ 1ð Þ � I x; y� 1ð Þ: ð15Þ

Therefore, it is possible to calculate both the magnitude

and orientation of the gradient by:

m x; yð Þ ¼
ffi
Gxð Þ2 þ Gy

� �2
q

ð16Þ

h x; yð Þ ¼ tan�1 Gy

Gx

	

: ð17Þ

In this method, a histogram is generated for each cell by

binning the gradient orientations of pixels within that cell.

To normalize the histograms, adjacent cells are combined

into larger spatial regions known as blocks, and the infor-

mation obtained is used to standardize all cells within the

block. We define cell size at 24 �24, block size 4 �4 and

number of bins is 5. Figure 11 shows random image of

dataset with HOG descriptors. Finally, a feature vector

with 720 columns is extracted for the datasets using the

HOG feature extraction algorithm.

3.5 Neighborhood component analysis (NCA)

Neighborhood component analysis is a well-known method

in feature selection or dimensionality reduction. This

method can be used in both classification and regression.

The findings presented in the publications show that the

NCA method has chosen more valuable features in

reducing dimensions than methods such as PCA, GA, and

Relief, leading to improved classification accuracy com-

pared to the mentioned methods [75, 76]. The advantages

of feature selection methods include reducing computa-

tional costs and, in some cases, improving classifier per-

formance. In this article, 1720 features were extracted, with

1000 features obtained by ReNet-50 (Sect. 3.3.2) and the

rest extracted by the HOG algorithm (Sect. 3.4.1). NCA

Table 4 Legend of means color in Figs. 8 and 10

Name Layer Shape

Input Layer

Batch Normalization

Zero Padding 2D

Conv2D

Activation

Max Pooling 2D

Add

Global Average Polling 2D

Dense

Cluster Computing

123

reduces these features to 80 features with the highest fea-

ture weights. These 80 features are used as input for the

SVM classifier, discussed in the next section. Figure 12

displays the 80 features selected by NCA from 1720

extracted features of the API dataset.

3.6 Support vector machine (SVM)

Support vector machine is one of the most well-known

classification methods of machine learning. Since SVM is

inherently a binary classifier, when applied to datasets with

more than two classes, multiple binary classifiers are used

in combination to form a multiclass classifier. In this work,

we have employed the one-vs-one approach to utilize the

SVM multiclass classifier. Due to the requirement of cor-

rectly classifying all samples without any errors in the hard

margin SVM, the soft margin SVM is often employed

where a certain degree of classification error is permitted.

The soft margin SVM allows for the violation of this

constraint, albeit to a limited extent. However, the soft

margin must minimize the number of samples that violate

this constraint while maximizing the margin [77]. This

optimization problem is typically formulated according to

the Eq. (18):

min
1

2
kwk2 þ C

XM

i ¼1

ni

 !

subject to:
yi w :/ðx i Þ þ b
� �

� 1� ni
ni � 0

;

(

i

¼ 1; . . .;M ð18Þ

where C is a penalty factor, ni indicates the distance

between the margin and x i is the feature vector. The set

Eq. (18) dual to Eq. (19):

maximize L að Þ ¼
XM

i ¼1

a i

� 1

2

XM

i ;j ¼0

a i a j y i y j k ðx i ; x j Þ

subject to:
XM

i ¼1

a i y i ¼ 0; 0�a i � C; i ¼ 1; . . .;M

ð19Þ

where k ðx i ; x j Þ denotes a kernel function, and com-

monly used kernel functions in SVM include the linear

kernel, RBF kernel, and polynomial kernel. Our work uti-

lizes the RBF kernel function (Eq. (20)):

k x i ; x j
� �

¼ exp �
kx i � x j k2

2r2

 !

: ð20Þ

The decision function of the nonlinear SVM can be

described by:

f xð Þ ¼ sign
XM

i ;j ¼1

a i y
i

k x i ; x j
� �

þ b

0

@

1

A: ð21Þ

Note that the samples closest to the separating hyper-

planes are those whose coefficients a i are nonzero.

3.7 Fuzzy type-III

The bases of fuzzy type-III is presented in [7]. The general

structure of fuzzy type-III is illustrated in Fig. 13. Due to

the ability of fuzzy type-III logic to model higher levels of

uncertainty compared to fuzzy type-II, researchers have

become interested in its use for practical applications. For

example, fuzzy type-III logic has been utilized for

flowmeter fault detection [14], aggregation neural networks

for predication [12], forecasting [78] and control how

improvement over fuzzy type-II because its membership

functions have upper and lower uncertainties, unlike type-

II. The type-III membership functions (MFs) offer multi

Table 5 ResNet-18 architecture summary [65]

Layer name Output size ResNet-18

Conv1 64 112 9 112 7 9 7, 64, stride = 2

Conv2_x 64 56 9 56 3 9 3 max pool, stride = 2

3� 3; 64
3� 3; 64

� �
� 2

Conv3_x 128 28 9 28 3� 3; 128
3� 3; 128

� �
� 2

Conv4_x 256 14 9 14 3� 3; 256
3� 3; 256

� �
� 2

Conv5_x 512 7 9 7 3� 3; 512
3� 3; 512

� �
� 2

Average pool 512 1 9 1 7 9 7 average pool

Fully connected 11 512 9 11 fully connections

Softmax 11

Table 6 Training options Resnet-18 in the proposed model

Training options Resnet-18

Training algorithm Adam

Minimum batch size 62

Maximum epoch 8

Squared gradient decay factor 0.9990

Gradient decay factor 0.9

Cluster Computing

123

degree of freedom due to their uncertain secondary mem-

berships and footprint of uncertainty (FOU). Type-III MFs

can be formulated as Eq. (22):

X

X2X

X

P2J X

1
SeM

X ;Pð Þ

� �

X ;Pð Þ ;J X � 0; 1½ �: ð22Þ

In Eq. (22)
PP

represent s-norm and S eM X ;Pð Þ is a
type-II MF.

As shown in Fig. 13 inputs defined by X i; i ¼ 1; . . .; n

and for each input Qi MFs is considered. The fM
j
i denoted

j -th MF in i-th input. Subsequent to this, firing degree are

computed for fM
j
i . Four primary memberships at each

horizontal slice ak (secondary membership) resulting two

bounds for right side and two bounds for left side. Pi ;r;ak
are upper bounds of right side, P

i ;r;ak
is lower bounds of

right side, Pi ;l;ak is upper bounds of left side and P
i ;l;ak

is

lower bounds of left side (Eqs. (23–26)). Figure 14 is

illustrated MF of the type-III fuzzy system.

In Eqs. (23–26) c eM
j

i

, # eM
j

i

and #
eM
j

i

is center of j -th

MF in i -th input and are the widths of left and right side j -
th MF in i -th input, respectively. ak k ¼ 1; . . .;K represent

the value of the horizontal slice. Dr and Dl represent the

Fig. 9 Training progress of ResNet-18 (API dataset)

Table 7 ResNet-50 architecture summary [65]

Layer name Output size ResNet-50

Conv1 112 9 112 7 9 7, 64, stride = 2

Conv2_x 56 9 56 3 9 3 max pool, stride = 2

1� 1; 64
3� 3; 64
1� 1; 256

2

4

3

5� 3

Conv3_x 28 9 28 1� 1; 128
3� 3; 128
1� 1; 512

2

4

3

5� 4

Conv4_x 14 9 14 1� 1; 256
3� 3; 256
1� 1; 1024

2

4

3

5� 6

Conv5_x 7 9 7 1� 1; 512
3� 3; 512
1� 1; 2048

2

4

3

5� 3

Average pool 1 9 1 2D average pooling layer

Fully connected 1000 2048 9 1000 fully connections

Softmax 1000

Cluster Computing

123

width of the MFs. Considering the memberships of the UB

and LB of fM
j
i ,the rule firings formulated as Eqs. (27–30):

zhr;ak ¼ s eM
h1

1 jr;ak
X 1ð Þs eMh2

2 jr;ak
X 2ð Þ. . .s eMhn

n jr;ak
X nð Þ ð27Þ

zhr;ak ¼ s eM
h1

1 jr;ak
X 1ð Þs eMh2

2 jr;ak
X 2ð Þ. . .s eMhn

n jr;ak
X nð Þ ð28Þ

zhl;ak ¼ s eM
h1

1 jl;ak
X 1ð Þs eMh2

2 jl;ak
X 2ð Þ. . .s eMhn

n jl;ak
X nð Þ ð29Þ

zhl;ak ¼ s eM
h1

1 jl;ak
X 1ð Þs eMh2

2 jl;ak
X 2ð Þ. . .s eMhn

n jl;ak
X nð Þ: ð30Þ

Pi ;r;ak ¼

1�
X i � c eM

j

i

#
eM
j

i

0

BB@

1

CCA

Dr 1�akð Þþ1

; if c eM
j

i

� #
eM
j

i

\X i � c eM
j

i

1�
X i � c eM

j

i

eM
j

i

0

BB@

1

CCA

Dr 1�akð Þþ1

; if c eM
j

i

\X i � c eM
j

i

þ # eM
j

i

0; if X i [c eM
j

i

þ # eM
j

i

orX i � c eM
j

i

� #
eM
j

i

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð23Þ

P
i ;r;ak

¼

1�
X i � c eM

j

i

#
eM
j

i

0

BB@

1

CCA

1

Dr 1�akð Þþ1

; if c eM
j

i

� #
eM
j

i

\X i � c eM
j

i

1�
X i � c eM

j

i

eM
j

i

0

BB@

1

CCA

1

Dr 1�akð Þþ1

; if c eM
j

i

\X i � c eM
j

i

þ # eM
j

i

0; if X i [c eM
j

i

þ # eM
j

i

orX i � c eM
j

i

� #
eM
j

i

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð24Þ

Pi ;l;ak ¼

1�
X i � c eM

j

i

#
eM
j

i

0

BB@

1

CCA

Dl 1�akð Þþ1

; if c eM
j

i

� #
eM
j

i

\X i � c eM
j

i

1�
X i � c eM

j

i

eM
j

i

0

BB@

1

CCA

Dl 1�akð Þþ1

; if c eM
j

i

\X i � c eM
j

i

þ # eM
j

i

0; if X i [c eM
j

i

þ # eM
j

i

orX i � c eM
j

i

� #
eM
j

i

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð25Þ

P
i ;l;ak

¼

1�
X i � c eM

j

i

#
eM
j

i

0

BB@

1

CCA

1

Dl 1�akð Þþ1

; if c eM
j

i

� #
eM
j

i

\X i � c eM
j

i

1�
X i � c eM

j

i

eM
j

i

0

BB@

1

CCA

1

Dl 1�akð Þþ1

; if c eM
j

i

\X i � c eM
j

i

þ # eM
j

i

0; if X i [c eM
j

i

þ # eM
j

i

orX i � c eM
j

i

� #
eM
j

i

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð26Þ

Cluster Computing

123

In Eqs. (27–30) k ¼ 1; . . .;K fM
j
i denote the hi -th MF

for input xi . The h-th rule is given as:

Ifx1isfM
h1

1 ; . . .; and. . .xnis
fM

hn

n ; Thenyh

2 W
l;h
;W

r;h

� �
Wl;h;Wr;h

� �
� �

: ð31Þ

In Eq. (31) W
l;h
;W

r;h

� �
denote the lower bounds fuzzy

number and Wl;h;Wr;h

� �
are upper bounds fuzzy number. At

last, output’s fuzzy type-III is defined as Eq. (32):

y ¼

PK
k¼1 /k þ /

k

	

ak

PK
k¼1 ak

ð32Þ

/k and /
k

defined as Eq. (32) and Eq. (33):

/k ¼

PN
h¼1 zhr;akW

h

r;k þ zhl;akW
h

l;k

	

PN
h¼1 z

h
r;ak þ zhl;ak

ð33Þ

/
k

¼

PN
h¼1 zhr;akW

h

r;k
þ zhl;akW

h

l;k

	

PN
h¼1 z

h
r;ak

þ zhl;ak
: ð34Þ

The inputs to FIS are the outputs from three classifiers:

Efficient-Capsule, ResNet-18, and SVM. The output of the

FIS is the final decision regarding malware classification.

In other words, FIS-III makes a choice based on its inputs

to which class the data (image) belongs. This means FIS-III

decides which output of classifiers is through to output, or

when all classifiers are misclassified, it can be modified to

achieve the best accuracy. For tuning the parameters of the

FIS, meta-heuristic optimization algorithms are used

instead of derivative-based methods. The meta-heuristic

optimization algorithm utilized for tuning the rule param-

eters of the FIS-III (W
h

r;k, Wh

r;k
,W

h

l;k,W
h

l;k
) is ICGO

(Sect. 3.8.1).

Since, the outputs of the classifiers can be integer

numbers ranging from 0 to 10, the total number of rules

considered, based on the 3 classifiers used, is the

Fig. 10 ResNet-50 model architecture

Fig. 11 Random image of dataset with HOG descriptors

Fig. 12 8o features selected by NCA (API dataset)

Cluster Computing

123

combination ð 11
3
Þ or 165 rules. Now, intelligently and by

utilizing the associative memory property of fuzzy systems,

these 165 rules can be reduced to just 43 rules. The intel-

ligent selection of rules refers to first identifying the unique

combinations of train data, and then choosing the output

decisions to maximize accuracy. We present an example

implementation to provide a simplified illustration of this

intelligent rule selection approach. Suppose our fuzzy

system gets an input of 1; 9; 1½ �. In train data, we have

combination where the target is 1 for this input, and

combination where the target is 9. We will look how many

times each target occurs for this specific input pattern. If

there are more cases where the target is 9 when the input is

1; 9; 1½ �, then we will set the fuzzy system output to be 9 for

this rule. If the train data contains an equal number of

target 1 and target 9 for input 1; 9; 1½ �, then the rule con-

sequent will be randomly chosen as either 1 or 9 with equal

probability. Given the described structure for the FIS-III

with 43 rules, this result in 43 9 4 = 172 rule parameters.

The rule parameters must be tuned by ICGO. The mem-

bership all three inputs are considered similar to each other

and is reported in Table 8. The MFs of the FIS-III in

Fig. 15 it has been shown.

Remark 1 It should be noted that the proposed model

results in increased classification accuracy only if the

neural networks used as base classifiers are not overfitted.

Remark 2 Another limitation of our proposed method is

that as the number of classes increases, the number of

membership functions also increases.

3.8 Optimization

Optimization is fundamental in the realm of machine

learning. It revolves around the meticulous adjustment of

model parameters to ensure peak performance. This pro-

cess is particularly crucial because even slight parameter

changes can significantly impact a model’s overall accu-

racy and efficiency. Traditional optimization techniques

might not always be the best fit in the context of fuzzy

systems and neural networks, which are inherently com-

plex and nonlinear. Meta-heuristic interpolation algorithms

Fig. 13 The structure scheme of

the fuzzy type-III

Fig. 14 Type-III MF

Cluster Computing

123

have emerged as a preferred choice in such scenarios.

Unlike derivative-based methods, which rely on gradient

information and can sometimes get stuck in local optima,

meta-heuristic algorithms explore the solution space more

broadly, making them more adept at finding global optima.

This adaptability and flexibility make them especially

effective for the intricate landscapes of fuzzy systems and

neural networks. In intrusion detection and malware clas-

sification research, metaheuristic algorithms have also been

utilized, such as [79–85].

3.8.1 Improved chaos game optimization (ICGO)

ICGO is an enhanced version of the Chaos Game Opti-

mization (CGO) algorithm, with improvements made to the

mutation phase of the traditional CGO method. Talatahari

et al. [86] introduced this algorithm in 2020. The founda-

tional mathematics of CGO is rooted in the self-resem-

blance properties of fractals in chaos theory and the

fundamental principles of creating the Sierpinski triangle

[87]. The Sierpinski triangle is crafted by segmenting each

equilateral triangle into three smaller triangles, each having

half the edge length of the original. When the count of

initial fractal vertices rises to N, a Sierpinski triangle of

N - 1 dimensions can be established, as illustrated in

Fig. 16. The reason for choosing the CGO algorithm in this

study is that its performance has been evaluated by 228

BFs. Additionally, 11 EDPs were assessed, and three

comparative analyses were conducted to assess the out-

comes of the CGO algorithm. It is rare to find an algorithm

that has been evaluated with this number of tests, and the

evaluation results indicate that the CGO algorithm is cap-

able of solving various optimization problems. Therefore,

there is hope that it can also demonstrate good performance

for the problem addressed in this article. Both CGO and

ICGO exhibit a computational complexity of

O Nm 1þ 4Tð Þð Þ.
Firstly, an initialization procedure is configured by

determining the initial positions of the solution candidates

from the following equations:

X ¼

X 1

X 2

..

.

X i
..
.

Xn

2

66666664

3

77777775

¼

x 1
1 x 2

1 � � � x j1 � � � x d1
x 1
2 x 2

2 � � � x j2 � � � x d2
..
. ..

.
� � � ..

.
� � � ..

.

x 1i x 2
i � � � x ji � � � x di

x 1
n x 2

n � � � x jn � � � x dn

2

6666664

3

7777775

; i

¼ 1; 2; . . .;n ; j ¼ 1; 2; . . .;d
ð35Þ

x ji ð0Þ ¼ x
j
i ;min þ :ðx ji ;max � x

j
i ;minÞ ð36Þ

where d denotes the dimension of problem, n number of

the solution candidates, random number in the range [0,1],

x ji ;min and x ji ;max the lower and upper bounds, j specifies

the decision variable, and i specifies the solution number.

In this Algorithm 3 seeds and a dice are utilized for cre-

ating new seeds. Seeds can be calculated as follows:

Seed1i ¼ X i þ ai � bi � GB � ci �MGið Þ; i
¼ 1; 2; . . .;n ð37Þ

Seed2i ¼ GB þ ai � bi � X i � ci �MGið Þ; i
¼ 1; 2; . . .;n ð38Þ

Seed3i ¼ MGi þ ai � bi � X i � ci � GBð Þ; i
¼ 1; 2; . . .;n : ð39Þ

In Eqs. (37–39) GB is the global best, ai is the move-

ment limitation factor, bi and ci represents vectors ran-

domly created by numbers in range of [0, 1] and MGi is

the i th candidate’s mean group (X i Þ:
In conventional CGO algorithm, the fourth seed is

considered a dice or mutation operator. The update of

position for this seed is accomplished by making random

modifications to the decision variables that are randomly

selected. This seed formulated as Eq. (40):

Seed4i ¼ X i x ki ¼ x ki þR
� �

;k ¼ 1; 2; . . .;d ; i
¼ 1; 2; . . .;n :

ð40Þ

In Eq. (40)R is a vector with a random number in range

of [0, 1].

In this article for improve CGO algorithm replace sim-

ple mutation in convectional CGO algorithm to wavelet

mutation. The Seed4i in ICGO defined as Eq. (41):

Seed4i ¼
GBþ r X i;max � GB

� �
; if o\0:5

GBþ r GB � X i;min

� �
; if o� 0:5:

�
ð41Þ

In Eq. (41), X i;max and X i;min are the lower and upper

bounds, o is a random number and r is defined as Eq. (42):

r ¼ 1
ffiffiffi
a

p w
u
a

� �
: ð42Þ

In Eq. (42), w u
a

� �
¼ e�

u
að Þ2
2 :cos 5u

a

� �
is the Morlet wavelet

function (Fig. 17) and a ¼ s : 1
s
� � 1� T

T maxð Þs is a random

integer number, The current iteration is denoted by T , and

T max represents the maximum number of iterations. The

pseudocode is provided in Table 9.

The cost function used to adjust the rule parameters is

described in Sect. 3.7 and is given by Eq. (47):

Cluster Computing

123

Cost ¼ 1�
X‘

i ¼1

T Pi þ T N i
T Pi þ T N i þ FPi þ FN i

ð47Þ

where, T Pi is the number of samples correctly put in the

i th class, FPi is the number of samples incorrectly put in

the ith class and FN i is the number of samples that

belonged in the i th class but were put in other classes.

Moreover,‘ is the number of the total labels. In all separate

runs in order to adjust rule parameters FIS-III the popula-

tion size is 30 and the maximum iteration is 200 of repe-

titions considered. Figure 18 depicts the average

convergence and 0.5 standard division of the ICGO opti-

mization algorithm across multiple runs (5 separate runs

per dataset) for adjusting the rule parameters of the fuzzy

system.

3.8.2 Evolution of CEC 2019 BFs, CEC 2017 BFs, and EDPs

We evaluate the effectiveness of ICGO in addressing

challenges posed by CEC 2019 BFs, CEC 2017 BFs, and

five EDPs scenarios in 30 independent runs and 1000

iterations. Our study juxtaposes the performance of ICGO

against twelve established metaheuristic algorithms CGO,

LSHADE-EnSin, AOA, SSA, SCA, TLBO, GOA, PSO,

WOA to gauge its efficacy in achieving optimal outcomes.

The modification of control parameters is described

according to the specifications provided in Table 10. The

ICGO is applied to resolve these issues, with a total of

30,000 evaluations conducted. The population size for both

CGO and ICGO is kept constant at 15 members. The

TLBO’s population size is maintained at a constant of 30

members. The population size of other algorithms is

maintained at a constant of 60 members.

3.8.2.1 CEC 2017 BFs The ability of the ICGO to tackle

optimization challenges has been questioned when tested

on the latest functions from the CEC 2017 test suite. This

suite comprises thirty BFs categorized into four groups:

three UMBFs (F1 to F3), seven MMBFs (F4 to F10), ten

hybrid functions (F11 to F20), and ten composition func-

tions (F21 to F30). We exclude the use of the F2 test

function from the CEC 2017 set due to its unpre-

dictable behavior, a decision shared by other researchers in

their respective papers. Comprehensive details and infor-

mation regarding these BFs can be found in [88]. The

experiments are conducted across various dimensions of

BFs, specifically 10, 30, 50, and 100. Results from opti-

mizing BFs within the CEC 2017 set using the ICGO and

competitor algorithms are presented in Table B.1–B.4.

Furthermore, boxplots and convergence curves of algo-

rithms illustrating the performance of the ICGO and

competitor algorithms across the CEC 2017 BFs for dif-

ferent dimensionalities are depicted in Fig. B.1–B.8. The

ICGO algorithm obtained the best solution among all

algorithms for all 116 CEC 2017 BFs.

3.8.2.2 CEC 2019 BFs The CEC 2019 BFs comprise ten

intricate functions outlined in [89]. F1 and F10 functions,

part of the CEC 2019 test suite, are tailored for single-

objective real parameter optimization, targeting the dis-

covery of globally optimal solutions. These functions serve

as valuable tools for evaluating the efficacy of algorithms

in conducting comprehensive searches for optimal solu-

tions. ICGO algorithm achieved the best results in func-

tions F1–F3, F5, and F7–F10 compared to the competing

algorithms. In function F6, ICGO outperformed in all cri-

teria except the Best criterion (see Table B.5). Boxplots

and convergence curves of algorithms illustrating the per-

formance of the ICGO and competitor algorithms across

the CEC 2017 BFs are depicted in Fig. B.9 and Fig. B.10.

3.8.2.3 EDPs The statistical results obtained through dif-

ferent methodologies are presented in Tables B.6. Fur-

thermore, Fig. B.11 and Fig. B.12 display boxplots and

convergence diagrams illustrating the algorithms’ perfor-

mance. PV Design (Fig. D.1), TCS Design (Fig. D.2), WB

Design (Fig. D.3), TBT Design (Fig. D.4), CSI Design

(Fig. D.5) [90] The ICGO achieved the lowest values

compared to other algorithms.

3.8.3 Optimization algorithms’ statistical evaluation

To meticulously assess the effectiveness of the ICGO, we

perform an extensive statistical analysis, comparing it

against the examined algorithms. The Wilcoxon nonpara-

metric signed-rank test examines whether there’s a sub-

stantial contrast between pairs of data (Table C.1). It

evaluates the magnitudes of differences (disregarding their

direction) by assigning ranks and computing a statistic

based on these ranks. This figure aids in discerning whether

distinctions are probably attributable to random variation

Table 8 Specifications of type-III fuzzy system

Specifications FIS-III

Centers of MFs c eM
j

1;2;3¼j �1;j ¼1;...;11

Width of upper MFs Dr ¼ 3

Width of lower MFs Dl ¼ 2

Right distance # eM
j

1;2;3

¼ 1; j ¼ 1; . . .; 11

Left distance #
eM
j

1;2;3

¼ 1; j ¼ 1; . . .; 11

Alpha-cut ak ¼ 0:5

Cluster Computing

123

or if they carry significance. A low p-value indicates a

substantial disparity between the paired data, while a high

p-value suggests uncertainty regarding the existence of a

noteworthy difference.

The Friedman test is indeed a non-parametric statistical

test used to determine if there are statistically significant

differences among multiple related groups (Table C.2).

This research divided the BFs into five distinct groups to

ensure the test’s reliability. The first, second, third, and

fourth groups included CEC 2017 BFs in different

dimensions, respectively (Tables B.1–B.4), while the fifth

group is formed by CEC 2019 BFs illustrated in Table B.5

[91].

A post-hoc Nemenyi test was utilized to delve deeper

into the distinctions among the algorithms. If the null

hypothesis is rejected, a post-hoc test can be conducted.

The Nemenyi test is employed when conducting pairwise

comparisons among all algorithms. The performance dis-

parity between two classifiers is deemed significant if their

respective average ranks exhibit a difference equal to or

exceeding the CD (Eq. (48)) [91].

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

6N

r

ð48Þ

N represents the number of BFs in each group, k represents

the number of algorithms under comparison and in each

group, we selected the top 10 algorithms for comparison.

At a significance level of a ¼ 0:05, the critical value for 10

algorithms, the associated CD for each group has been

specified in Fig. C.1 and qa ¼ 3:164. To identify distinc-

tions among the ten algorithms, the CD derived from the

Nemenyi test was employed. The CD diagrams depicted in

Fig. C.1 offer straightforward and intuitive visualizations

of the outcomes from a Nemenyi post-hoc test. This test is

specifically designed to assess the statistical significance of

differences in average ranks among a collection of ten

algorithms, each evaluated on a set of five groups.

Following the revelation of notable variations in per-

formance among various algorithms, it becomes imperative

to identify which algorithms exhibit significantly different

Fig. 15 MFs for three inputs FIS-III mentioned a SVM, b ResNet-18, c efficient-CapsNet

Fig. 16 Sierpinski triangle and self-similarity in ICGO

Fig. 17 Morlet wavelet

Cluster Computing

123

performances compared to ICGO. ICGO is regarded as

control algorithm in this context. Figure C.1 displays the

average ranking of each method across five groups, with

significance levels of 0.05 in 30 distinct runs. ICGO

demonstrates significant superiority over algorithms whose

average ranking exceeds the threshold line indicated in the

figure.

A post-hoc analysis determines that if the disparity in

mean Friedman values between the two algorithms falls

below the CD threshold, there is no notable distinction

between them; conversely, if it surpasses the CD value, a

significant difference between the algorithms exists. In

Table C.3, a comparison has been conducted between 10

algorithms and ICGO across all five BF groups. Algorithms

that are not significantly different from the ICGO algorithm

are highlighted with a red mark. Conversely, algorithms

that are deemed significantly different from the ICGO

algorithm are highlighted with a green mark in this table. In

accordance with Table C.3, none of the examined algo-

rithms in this article can serve as a substitute for algorithm

ICGO. This observation underscores the necessity of the

existence of algorithm ICGO, which can potentially

address limitations not covered by other algorithms.

4 Proposed method

The implementation steps of our proposed model are as

follows:

(1) The Efficient-CapsNet was trained on a training set

of RGB dimensions 28 9 28, according to the

current k-fold cross-validation partitioning.

(2) The ResNet-18 was trained on the training set of

resized images with RGB dimensions of 224 9 224,

according to the current k-fold cross-validation

partitioning.

(3) Features are extracted from the resized images of the

training set using the ResNet-50 network and the

HOG algorithm, according to the current k-fold

cross-validation partitioning.

Table 9 Pseudocode improved chaos game optimization

Cluster Computing

123

(4) The NCA algorithm reduces the 1720 feature vectors

obtained from step 3 to 80 features.

(5) The 80 feature vectors obtained from the previous

step are used to train the SVM classifier.

(6) To train the type-III fuzzy system as an appropriate

decision maker, the results obtained from the three

classifiers are considered as a new dataset for the

type-III fuzzy system. Its special cases are separated,

and the rest are removed, as explained in Sect. 3.7.

Finally, we have a dataset of 43 samples with labels

that provide the highest classification accuracy (for

the original dataset under investigation).

(7) The fuzzy system is trained using the dataset created

in step 6, and its rule parameters are fine-tuned by the

ICGO algorithm (Sect. 3.8.1).

(8) The proposed model’s performance is now evaluated

using the test set.

Figure 19 presents a concise and graphical overview of

the steps involved in implementing the proposed model.

Malware’s impact on infiltrating diverse operating sys-

tems underscores the urgency of creating a precise classi-

fier for effective categorization. This article introduces a

novel hybrid classifier that combines type-III fuzzy deci-

sion-making with a deep neural network ensemble. An

enhanced version of the CGO optimization algorithm is

utilized to efficiently adjust fuzzy system parameters,

boosting accuracy. The proposed classifier consistently

achieves accuracy rates higher than 96% in datasets related

to malware classification. Furthermore, comparisons with

recently introduced classifiers on MNIST and Fashion-

MNIST datasets showcased the supremacy of the proposed

classifier in multiple performance metrics, highlighting its

superiority over well-known networks. While a minor rise

in parameters when compared to ResNet-18 could be

viewed as a minor weakness of the proposed method, it’s

important to note that the proposed approach significantly

outperforms ResNet-18 and even networks with higher

parameter counts like AlexNet in terms of accuracy. In this

context, this aspect might be seen as a strength of the

proposed method.

5 Results and discussion

In this section, the results have been thoroughly examined

to familiarize other researchers with the strengths of our

proposed classifier and facilitate easy comparison with

other classifiers. The proposed method was evaluated using

publicly available 11-class datasets from Ref. [39]. As

noted in Sect. 3.1, the mentioned dataset comprises seven

datasets. We compared the models proposed in [39] and

other classifiers employed in this paper with our proposed

method to evaluate its performance. Further, we utilized

fivefold cross-validation (Sect. 3.1.2) in all classifiers used

in this study to reduce the impact of data grouping (test and

train) on performance. Lastly, a total of 750 samples,

representing the test data, and 2999 samples, for the train

data, are used in the simulations throughout the dataset,

which are classified through fivefold cross-validation. In

the course of our analysis, the macro average metrics was

employed. However, only the basic formula of the metric is

mentioned herein for brevity and to minimize the com-

plexity of the presented equations. Metrics such as accu-

racy (Eq. 48), precision (Eq. 51), sensitivity (Eq. 50),

specificity (Eq. 49), F1-score (Eq. 52). Also, to avoid

prolixity, only the confusion matrix of the most optimal

result obtained from the proposed model was depicted in

the Sect. 5, whereas other results were detailed in Tables E

(1–7), Tables F (1–7) and Figs. E (1–14). Since deep

learning and metaheuristic optimization methods do not

generally provide mathematical proof to guarantee per-

formance, various models were carefully analyzed in the

simulation section during separate runs. The advantages or

disadvantages of the methods can only be discussed

through their statistical analysis and multiple runs [92–94]:

Accuracy ¼ T P þ T N

T P þ T N þ FP þ FN
ð49Þ

Sensitivity ¼ T N

T N þ FP
ð50Þ

Specificity ¼ T P

T P þ FN
ð51Þ

Precision ¼ T P

T P þ FP
ð52Þ

Fig. 18 The mean and 0.5 standard deviation were calculated for

seven datasets to optimize rule parameters across five folds

Cluster Computing

123

F1-score ¼ 2� Precision� Sensitivity

Precisionþ Sensitivity
: ð53Þ

5.1 API dataset

The malware made frequent API calls to the operating

system for network access and file creation, represented.

The R channel in the malware visualization is used to

represent the API dataset, which causes the main charac-

teristic of this dataset to be the presence of the R channel

and the absence of the other two channels (G and B).

Figure E (1) and Fig. 20 demonstrate the confusion

matrix of the best results in fivefold of Efficient-CapsNet,

SVM, ResNet-18 methods our proposed method for test

and train. Average accuracy: 0.9829, 0.9504, 0.9411,

0.9902, average sensitivity: 0.9810, 0.9351, 0.9231,

0.9920, average specificity: 0.9891, 0.9853, 0.9844,

0.9965, average precision: 0.9822, 0.9524, 0.9908, 0.9402,

and average F1-score: 0.9819, 0.9380, 0.9269 and 0.9911

for the train data classification of the API dataset belong to

the classifiers SVM, Efficient-CapsNet, ResNet-18, and the

proposed classifier, respectively. Table (F.1) reports the

results comparison of the classifiers for the train data of the

API dataset. Throughout this study, we have used the

abbreviation N/A to indicate Not Available information to

maintain clarity and precision in our reporting.

Average accuracy: 0.9520, 0.9190, 0.9036, 0.9713 and

N/A, average sensitivity: 0.9544, 0.9013, 0.9035, 0.9668,

average specificity: 0.9870, 0.9821,0.8863, 0.9950 and

N/A, average precision: 0.9618, 0.9237, 0.9107, 0.9770

and 0.93038, and average F1-score: 0.9530, 0.9056,

0.8891, 0.9688 and 0.90948 for the test data classification

of the API dataset belong to the classifiers SVM, Efficient-

CapsNet, ResNet-18, the proposed classifier, and DACN

proposed classifier in Article [39], respectively. As can be

observed, the most optimal average of various metrics

belongs to our proposed classifier. The variance of the

testing classification accuracy for our proposed method is

only 0.0018, whereas it stands at 0.0062 for classifier

Table 10 Control parameters of

algorithms
Algorithm Parameter Value

GWO Convergence parameter (a) Linear reduction from 2 to 0

SCA A 2

WOA Convergence parameter (a)

Parameter r

Parameter l

Linear reduction 2 to 0

A random vector between 0 and 1

A random vector between - 1 and 1

PSO Velocity limit

Cognitive and social constant

Topology

Inertia weight

10% of dimension range

(C1; C2Þ ¼ ð2; 2Þ
Fully connected

Linear reduction from 0.9 to 0.1

GOA l

f

1.5

0.5

SSA Initial speed (v0) 0

LSHADE-EpSin Pbest

Arc rate

0.1

2

TLBO Teaching factor (TF)

Rand

round 1þ randð Þ
A random number between 0 and 1

CGO Factor of pheromone concentration (a)

Factor of visibility (b)

Pheromone evaporation coefficient (q)

Pheromone intensity (Q)

1

5

0.5

10

AOA a

l

5

0.5

IWO Minimum number of seeds (Smin)

Maximum number of seeds (Smax)

Initial value of standard deviation

Final value of standard deviation

Variance reduction exponent

0

5

1

0.001

2

Cluster Computing

123

DACN which is more than three times our proposed

method, doubling the value of this performance improve-

ment. Table 11 and Table (E.1) depict the performance

comparison of the classifiers for the test data of the API

dataset.

To better depict the robustness of the proposed classifier,

the box plot of the models was also depicted in this article

(Fig. E(2)). In this chart, the test data accuracy of the

proposed classifier, and the models analyzed in this article

and the DACN were illustrated in various folds. It is

noteworthy that not only is the accuracy dispersion

obtained through variant folds classifier substantially less

than that of the other classifiers, but also the accuracy of

the proposed classifier in various folds is more than other

classifiers.

5.2 DLL dataset

The malware loaded DLLs that contained encryption

functions, represented by G channel in the malware visu-

alization. The main characteristic of these images is the

presence of the G channel and the absence of the R and B

channels.

Figure E(3) and Fig. 21 demonstrate the confusion

matrix of the best results in fivefold of Efficient-CapsNet,

SVM, ResNet-18 methods and our proposed method for

test and train.

Average accuracy: 0.9753, 0.9727, 0.9556, 0.9854,

average sensitivity: 0.9766, 0.9681, 0.9495, 0.9867, aver-

age separation: 0.9893, 0.9874, 0.9858, 0.9971, average

precision: 0.9782, 0.9710, 0.9512, 0.9881, and average F1-

score: 0.9759, 0.9701, 0.9522, 0.9860 for the train data

classification of the DLL dataset belong to the classifiers

SVM, Efficient-CapsNet, ResNet-18, and the proposed

classifier, respectively. Table (F.2) reports the results of the

classifiers for the train data of the DLL dataset.

Average accuracy: 0.9479, 0.9601, 0.9426, 0.9634 and

N/A, average sensitivity: 0.9349, 0.9598, 0.9427, 0.9524

and N/A, average specificity: 0.9867, 0.9863, 0.9953 and

N/A, average precision: 0.9544, 0.9600, 0.9431, 0.9714

and 0.96212, and average F1-score: 0.9403, 0.9597,

0.9424, 0.9572 and 0.96504 for the test data classification

of the DLL dataset belong to the classifiers SVM, Efficient-

CapsNet, ResNet-18, the proposed classifier, and DACN,

respectively. (Table 11 and Table (E.2)) Our proposed

classifier also achieved the most optimal performance in

this dataset as per different metrics. With a slight differ-

ence of 0.96% in the average classification accuracy

compared to classifier DACN, the proposed classifier ranks

1st. We must take into consideration that our proposed

classifier, with a 0.0014 standard deviation of average

classification accuracy, and classifier DACN, with a 0.0090

standard deviation of average classification accuracy, were

ranked 1st and 2nd, respectively. This shows that our

proposed classification has achieved a more proper classi-

fication in different folds.

The proposed classifier for the DLL dataset achieved the

highest accuracy compared to the models evaluated in this

article and DACN. The box plot of the classification

accuracy for different models evaluated and the DACN

model for the DLL dataset is plotted in Fig. E(4). As can be

seen, the proposed classifier in this case also achieved the

highest classification accuracy and the lowest amount of

dispersion around the best classification among all the

evaluated models, and thus is placed in the first position.

5.3 REG dataset

The malware manipulated the registry to achieve persis-

tence, represented by the B channel in the malware

visualization.

Figure E(5) and Fig. 22 demonstrate the confusion

matrix of the best results in fivefold of Efficient-CapsNet,

Fig. 19 The proposed model’s steps

Cluster Computing

123

SVM, ResNet-18 methods and our proposed method for

test and train. Average accuracy: 0.9808, 0.9352, 0.9267,

0.9914, average sensitivity: 0.9763, 0.9222, 0.9039,

0.9908, average specificity: 0.9878, 0.9864, 0.9845,

0.9899, average precision: 0.9800, 0.9561, 0.9353, 0.9956,

and average F1-score: 0.9784, 0.9221, 0.9897and 0.9911

for the train data classification of the REG dataset belong to

the classifiers SVM, Efficient-CapsNet, ResNet-18, and the

proposed classifier, respectively. Table (F.3) report the

results of the classifiers for the train data of the REG

dataset.

Average accuracy: 0.9335, 0.9260, 0.9239, 0.9451 and

N/A, average sensitivity: 0.9057, 0.9162, 0.9101, 0.9389

and N/A, average specificity: 0.9839, 0.9854, 0.9848,

0.9939 and N/A, average precision: 0.9406, 0.9457,

0.9379, 0.9626 and 0.83703, and average F1-score: 0.9102,

0.9158, 0.9047, 0.9397 and 0.72883 for the test data clas-

sification of the DLL dataset belong to the classifiers SVM,

Efficient-CapsNet, ResNet-18, the proposed classifier, and

DACN, respectively (Table 11 and Table (E.3)).

Compared to DACN, our proposed classifier has

improved by roughly 15% regarding the average classifi-

cation accuracy and 28% regarding the average F1-score.

Compared to DACN, our proposed classification has

improved the standard deviation of the average classifica-

tion accuracy by over 92%. (The standard deviation of our

proposed classifier: 0.0020, and the standard deviation of

classifier DACN: 0.0258) Compared to the other models

analyzed in this article, classifier DACN showed the

poorest performance for the test data of the REG dataset.

Aside from exhibiting the weakest classification accuracy,

this classifier had the highest classification accuracy dis-

persion in various folds. With insignificant dispersion and

the highest classification accuracy in various folds, our

proposed classifier had the best result among the other

models (Fig. E(6)).

5.4 API 1 DLL dataset

The malware visualization showed integrated R channel

and G channel representing API calls and loaded DLLs.

The R channel indicated network and file activities. The G

channel revealed encryption functions from external

libraries.

Figure E(7) and Fig. 23 demonstrate the confusion

matrix of the best results in fivefold of Efficient-CapsNet,

SVM, ResNet-18 methods and our proposed method for

test and train.

Average accuracy: 0.9854, 0.9818, 0.9608, 0.9937,

average sensitivity: 0.9819, 0.9826, 0.9478, 0.9911, aver-

age specificity: 0.9892, 0.9894, 0.9850, 0.9974, average

precision: 0.9842, 0.9816, 0.9514, 0.9924, and average F1-

score: 0.9836, 0.9821, 0.9524 and 0.9923 for the train data

classification of the API ? DLL dataset belong to the

classifiers SVM, Efficient-CapsNet, ResNet-18, and the

proposed classifier, respectively. Table (F.4) reports the

results of the classifiers for the train data of the API ?

DLL dataset.

Average accuracy: 0.9675, 0.9691, 0.9604, 0.9782 and

N/A, average sensitivity: 0.9615, 0.9664, 0.9398, 0.9667

and N/A, average specificity: 0.9872, 0.9874, 0.9838,

0.9955 and N/A, average precision: 0.9658, 0.9635,

0.9410, 0.9752 and 0.96612, and average F1-score: 0.9643,

0.9675, 0.9472, 0.9720 and 0.96572 for the test data clas-

sification of the APP ? DLL dataset belong to the classi-

fiers SVM, Efficient-CapsNet, ResNet-18, the proposed

classifier, and DACN, respectively (Table 11 and

Table (E.4)).

The proposed classifier has performed better than other

evaluated models in terms of all the classification metrics.

In the test data of the API ? DLL dataset, our proposed

classifier had the highest classification accuracy and the

lowest classifier accuracy dispersion in various folds.

ResNet-18 showed the weakest performance among the

analyzed models (Fig. E(8)). Our proposed classification

had significantly better performance, considering the

mentioned points, compared to the proposed classifier

DACN.

5.5 API 1 REG dataset

The malware visualization displayed a combination of R

channel and B channel for API calls and registry manipu-

lations. The R channel pointed to network and file behav-

iors. The B channel showed registry changes for

persistence.

Figure E(9) and Fig. 24 demonstrate the confusion

matrix of the best results in fivefold of Efficient-CapsNet,

SVM, ResNet-18 methods and our proposed method for

test and train.

Average accuracy: 0.9814, 0.9691, 0.9603, 0.9788,

average sensitivity: 0.9773, 0.9549, 0.9495, 0.9739, aver-

age specificity: 0.9880, 0.9884, 0.9880, 0.9960 average

precision: 0.9806, 0.9775, 0.9679, 0.9870, and average F1-

score: 9791, 0.9625, 0.9555, 0.9738 for the train data

classification of the API ? REG dataset belongs to the

classifiers SVM, Efficient-CapsNet, ResNet-18, and the

proposed classifier, respectively. Table (F.5) reports the

results of the classifiers for the train data of the API ?

REG dataset.

Average accuracy: 0.9013, 0.8954, 0.8889, 0.9148 and

N/A, average sensitivity: 0.9073, 0.9082, 0.9002, 0.9208

and N/A, average specificity: 0.9851, 0.9861, 0.9862,

0.9939 and N/A, average precision: 0.9528, 0.9574,

0.9514, 0.9676, and 0.95466, and average F1-score:

0.9026, 0.8933, 0.8829, 0.9161 and 0.93815 for the test

Cluster Computing

123

data classification of the API ? REG dataset belongs to the

classifiers SVM, Efficient-CapsNet, ResNet-18, the pro-

posed classifier, and DACN, respectively (Tables 11 and

Table (E.5)).

In terms of average F1-score, classifier DACN ranks 1st

and our proposed classifier ranks 2nd. However, in terms of

average classification accuracy, our proposed method ranks

1st. The standard deviation of the average classification

accuracy of our proposed classifier stands at 0.0019 while

this number is 0.0092 for classifier DACN, indicating the

proposed class is more robust. DACN classifier has the

highest dispersion of classification accuracy in different

folds for API ? REG dataset classification. The lowest

dispersion of classification accuracy and the highest clas-

sification accuracy in different folds belong to our pro-

posed classifier (Fig. E(10)). The results show the

efficiency of our proposed classifier for different datasets.

5.6 DLL 1 REG dataset

The malware visualization had integrated G channel and B

channel representing loaded DLLs and registry activities.

The G channel highlighted encryption functions. The B

channel indicated registry modifications for persistence.

Figure E(11) and Fig. 25 demonstrate the confusion

matrix of the best results in fivefold of Efficient-CapsNet,

SVM, ResNet-18 methods and our proposed method for

test and train.

Average accuracy: 0.9750, 0.9793, 0.9653, 0.9893,

average sensitivity: 0.9708, 0.9785, 0.9610, 0.9854, aver-

age specificity: 0.9877, 0.9778, 0.9660, 0.9967, average

precision: 0.9734, 0.9865, 0.9831, 0.9896, and average F1-

score: 0.9726, 0.9771, 0.9597 and 0.9872 for the train data

classification of the DLL ? REG dataset belongs to the

classifiers SVM, Efficient-CapsNet, ResNet-18, and the

proposed classifier, respectively. Table (F.6) reports the

result of the classifiers for the train data of the DLL ?

REG dataset.

Average accuracy: 0.9668, 0.9687, 0.9350, 0.9820 and

N/A, average sensitivity: 0.9570, 0.9565, 0.9386, 0.9773

and N/A, average specificity: 0.9869, 0.9877, 0.9858,

0.9964 and N/A, average precision:0.9654, 0.9733, 0.9509,

0.9868 and 0.97306 and average F1-score: 0.9611, 0.9622,

0.9339, 0.9791 and 0.97036 for the test data classification

of the DLL ? REG dataset belongs to the classifiers SVM,

Efficient-CapsNet, ResNet-18, the proposed classifier, and

DACN, respectively (Tables 11 and Table (E.6)).

Considering various metrics, our proposed classification

performed better compared to other classifiers examined.

The order of the ranking of classifiers based on the average

classification accuracy: our proposed method, Efficient-

CapsNet, DACN, SVM, and RestNet-18. The order of the

ranking of the classifiers according to the standard devia-

tion of the average classification accuracy: our proposed

method, ResNet-18, Efficient-CapsNet, SVM, and DACN.

Similar to the API ? DLL dataset, in the DLL ? REG

dataset, RestNet-18 accounts for the high classification

accuracy dispersion, as well as the lowest classification

accuracy in various folds. The highest classification accu-

racy in various folds and the lowest classification accuracy

dispersion, such as other analyzed datasets so far, belong to

our proposed classification (Fig. F(12)).

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
u t

pu
tC

la
ss

 Confusion Matrix

501
16.7%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.0%

0
0.0%

0
0.0%

99.6%

0.4%

0
0.0%

405
13.5%

0
0.0%

0
0.0%

0
0.0%

2
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

99.5%

0.5%

0
0.0%

1
0.0%

169
5.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

2
0.1%

0
0.0%

0
0.0%

98.3%

1.7%

0
0.0%

0
0.0%

0
0.0%

100
3.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

601
20.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

188
6.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

150
5.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

115
3.8%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

8
0.3%

0
0.0%

1
0.0%

0
0.0%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

215
7.2%

0
0.0%

0
0.0%

95.6%

4.4%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

2
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

412
13.7%

0
0.0%

99.5%

0.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

124
4.1%

100%

0.0%

98.4%

1.6%

99.5%

0.5%

99.4%

0.6%

100%

0.0%

99.5%

0.5%

98.9%

1.1%

100%

0.0%

100%

0.0%

98.6%

1.4%

100%

0.0%

100%

0.0%

99.4%
0.6%

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
tC

la
ss

 Confusion Matrix

124
16.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

99.2%

0.8%

0
0.0%

100
13.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

99.0%

1.0%

2
0.3%

0
0.0%

41
5.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

95.3%

4.7%

0
0.0%

1
0.1%

2
0.3%

22
2.9%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

88.0%

12.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

154
20.5%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

99.4%

0.6%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

45
6.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

97.8%

2.2%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

37
4.9%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

28
3.7%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

2
0.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

54
7.2%

0
0.0%

0
0.0%

96.4%

3.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

101
13.5%

1
0.1%

98.1%

1.9%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

29
3.9%

93.5%

6.5%

96.9%

3.1%

98.0%

2.0%

95.3%

4.7%

95.7%

4.3%

100%

0.0%

97.8%

2.2%

100%

0.0%

96.6%

3.4%

94.7%

5.3%

100%

0.0%

96.7%

3.3%

98.0%
2.0%

(a) (b)

Fig. 20 Confusion matrix of the best result in fivefold of proposed model, a train, b test

Cluster Computing

123

Table 11 The performance

comparison proposed model

using the fivefold CV procedure

(test)

Feature: API

Proposed method Precision 0.9706 0.9712 0.9708 0.9695 0.97427

Sensitivity 0.9661 0.9668 0.9663 0.965 0.9698

Specificity 0.9943 0.9949 0.9945 0.9932 0.99798

Accuracy 0.9763 0.977 0.9765 0.9752 0.98

F-1 score 0.9681 0.9688 0.9683 0.967 0.97181

Feature: DLL

Proposed method Precision 0.9635 0.9624 0.9616 0.964 0.96534

Sensitivity 0.9525 0.9514 0.9507 0.953 0.95439

Specificity 0.9954 0.9943 0.9936 0.9959 0.99728

Accuracy 0.9715 0.9704 0.9696 0.972 0.97333

F-1 score 0.9573 0.9562 0.9555 0.9578 0.95915

Feature: REG

Proposed method Precision 0.9437 0.9443 0.9431 0.94783 0.9465

Sensitivity 0.9375 0.9381 0.9369 0.94162 0.9403

Specificity 0.9925 0.9931 0.9919 0.99659 0.9953

Accuracy 0.9612 0.9618 0.9606 0.96533 0.964

F-1 score 0.9383 0.939 0.9378 0.94248 0.9411

Feature: API ? DLL

Proposed method Precision 0.9772 0.9771 0.9788 0.98031 0.9777

Sensitivity 0.9657 0.9656 0.9673 0.96875 0.9661

Specificity 0.9945 0.9944 0.9961 0.99762 0.995

Accuracy 0.9742 0.9741 0.9758 0.97733 0.9747

F-1 score 0.971 0.9709 0.9726 0.97407 0.9714

Feature: API ? REG

Proposed method Precision 0.9133 0.9139 0.91794 0.9152 0.9139

Sensitivity 0.9193 0.9199 0.92394 0.9212 0.9199

Specificity 0.9923 0.9929 0.99697 0.9942 0.9929

Accuracy 0.966 0.9666 0.97067 0.9679 0.9666

F-1 score 0.9145 0.9151 0.91919 0.9165 0.9151

Feature: DLL ? REG

Proposed method Precision 0.9824 0.98452 0.9822 0.9802 0.9809

Sensitivity 0.9777 0.97978 0.9774 0.9754 0.9762

Specificity 0.9968 0.99894 0.9966 0.9946 0.9953

Accuracy 0.9872 0.98933 0.987 0.985 0.9857

F-1 score 0.9794 0.98156 0.9792 0.9772 0.9779

Feature: API ? DLL ? REG

Proposed method Precision 0.9928 0.9927 0.9952 0.99631 0.9948

Sensitivity 0.9871 0.9869 0.9894 0.99057 0.989

Specificity 0.9958 0.9956 0.9981 0.99928 0.9977

Accuracy 0.9898 0.9897 0.9922 0.99333 0.9918

F-1 score 0.9898 0.9896 0.9921 0.99327 0.9917

Cluster Computing

123

5.7 API 1 DLL 1 REG dataset

The malware visualization showed a combination of R

channel, G channel, and B channel representing API calls,

loaded DLLs, and registry manipulations respectively. The

R channel indicated network and file activities. The G

channel pointed to encryption functions. And the B channel

revealed registry changes for persistence. Together the

RGB visualization provided an integrated profile of how

the malware leveraged the operating system, external

libraries, and registry to operate.

Figure E(13) and Fig. 26 demonstrate the confusion

matrix of the best results in fivefold of Efficient-CapsNet,

SVM, ResNet-18 methods and our proposed method for

test and train.

(a) (b)

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
tC

la
ss

 Confusion Matrix

499
16.6%

0
0.0%

7
0.2%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

3
0.1%

0
0.0%

0
0.0%

97.8%

2.2%

0
0.0%

405
13.5%

0
0.0%

1
0.0%

0
0.0%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

99.5%

0.5%

5
0.2%

3
0.1%

164
5.5%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

4
0.1%

0
0.0%

0
0.0%

92.7%

7.3%

0
0.0%

1
0.0%

0
0.0%

99
3.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

99.0%

1.0%

0
0.0%

1
0.0%

0
0.0%

0
0.0%

600
20.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

99.8%

0.2%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

187
6.2%

0
0.0%

0
0.0%

0
0.0%

1
0.0%

0
0.0%

99.5%

0.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

150
5.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

110
3.7%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

225
7.5%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

414
13.8%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.0%

0
0.0%

0
0.0%

116
3.9%

99.1%

0.9%

99.0%

1.0%

98.8%

1.2%

95.9%

4.1%

97.1%

2.9%

100%

0.0%

99.5%

0.5%

100%

0.0%

99.1%

0.9%

97.0%

3.0%

99.8%

0.2%

100%

0.0%

99.0%
1.0%

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
tC

la
ss

 Confusion Matrix

118
15.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

1
0.1%

99
13.2%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

98.0%

2.0%

6
0.8%

1
0.1%

31
4.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

81.6%

18.4%

0
0.0%

1
0.1%

2
0.3%

20
2.7%

0
0.0%

0
0.0%

0
0.0%

2
0.3%

0
0.0%

0
0.0%

0
0.0%

80.0%

20.0%

0
0.0%

2
0.3%

0
0.0%

1
0.1%

152
20.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

98.1%

1.9%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

45
6.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

97.8%

2.2%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

37
4.9%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

32
4.3%

0
0.0%

0
0.0%

0
0.0%

97.0%

3.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

56
7.5%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

103
13.7%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

37
4.9%

97.4%

2.6%

94.4%

5.6%

96.1%

3.9%

93.9%

6.1%

87.0%

13.0%

100%

0.0%

100%

0.0%

100%

0.0%

91.4%

8.6%

100%

0.0%

99.0%

1.0%

100%

0.0%

97.3%
2.7%

Fig. 21 Confusion matrix of the best result in fivefold of proposed model, a train, b test

(a) (b)

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
tC

la
ss

 Confusion Matrix

535
17.8%

0
0.0%

0
0.0%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

99.8%

0.2%

0
0.0%

406
13.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

99.8%

0.2%

11
0.4%

0
0.0%

185
6.2%

2
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

93.4%

6.6%

0
0.0%

1
0.0%

0
0.0%

94
3.1%

2
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

96.9%

3.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

584
19.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

172
5.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

130
4.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

101
3.4%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

252
8.4%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

408
13.6%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

114
3.8%

100%

0.0%

98.0%

2.0%

99.8%

0.2%

100%

0.0%

96.9%

3.1%

99.7%

0.3%

100%

0.0%

99.2%

0.8%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

99.4%
0.6%

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
tC

la
ss

 Confusion Matrix

88
11.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

4
0.5%

0
0.0%

0
0.0%

95.7%

4.3%

0
0.0%

100
13.3%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

99.0%

1.0%

2
0.3%

0
0.0%

14
1.9%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

82.4%

17.6%

0
0.0%

0
0.0%

0
0.0%

28
3.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

172
22.9%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

62
8.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

57
7.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

31
4.1%

0
0.0%

0
0.0%

11
1.5%

73.8%

26.2%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

28
3.7%

0
0.0%

0
0.0%

96.6%

3.4%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

107
14.3%

0
0.0%

98.2%

1.8%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

4
0.5%

0
0.0%

0
0.0%

37
4.9%

90.2%

9.8%

96.7%

3.3%

100%

0.0%

100%

0.0%

96.6%

3.4%

98.9%

1.1%

100%

0.0%

100%

0.0%

88.6%

11.4%

84.8%

15.2%

100%

0.0%

77.1%

22.9%

96.5%
3.5%

Fig. 22 Confusion matrix of the best result in fivefold of proposed model, a train, b test

Cluster Computing

123

Average accuracy: 0.9800, 0.9822, 0.9604, 0.9937,

average sensitivity: 0.9800, 0.9799, 0.9517, 0.9892, aver-

age specificity: 0.9884, 0.9892, 0.9859, 0.9975, average

precision: 0.9800, 0.9824, 0.9548, 0.9928, and average F1-

score: 0.9800, 0.9809, 0.9546 and 0.9913 for the train data

classification of the APP ? DLL ? REG dataset belongs

to the classifiers SVM, Efficient-CapsNet, ResNet-18, and

the proposed classifier, respectively. Table (F.7) reports the

results of the classifiers for the train data of the APP ?

DLL ? REG dataset.

Average accuracy: 0.9650, 0.9784, 0.9488, 0.9944, N/A,

N/A, N/A, N/A and N/A, average sensitivity: 0.9459,

0.9704, 0.9334, 0.9886 N/A, N/A, N/A, N/A and N/A,

average specificity: 0.9857, 0.9884, 0.9845, 0.9973, N/A,

N/A, N/A, N/A and N/A, average precision: 0.9559,

0.9753, 0.9914, 0.9414, 0.97519, 0.94319, 0.62440,

0.96079 and 0.97199 and average F1-score: 0.9545,

0.9740, 0.9383, 0.9913, 0.97396, 0.93445, 0.42215,

0.95351 and 0.97032 for the test data classification of the

APP ? DLL ? REG dataset belong to the classifiers

SVM, Efficient-CapsNet, ResNet-18, the proposed classi-

fier, and DACN, respectively (Table 11 and Table (E.7)).

Similar to the API ? DLL and DLL ? REG datasets, in

the test data of the APP ? DLL ? REG dataset, ResNet-

18 accounts for the lowest classification accuracy and

highest classification accuracy dispersion (Fig. E(14)).

5.8 Main result

Considering the seven analyzed datasets, the efficiency of

our proposed classifier for various datasets can be con-

firmed. Further, given the assessment of this class with 35

separate runs, it is possible to discuss the improvement of

classification accuracy and the robustness of the proposed

classifier in finding the proper classification with more

confidence. Hence, in addition to the k-fold cross valida-

tion, the impact of data grouping significantly decreases

due to the number of runs. The significance of this matter

lies in the fact that neural networks and optimization

algorithms often do not evaluate their performance through

a mathematical proof and mostly compare them in terms of

statistics, especially average and variance in numerous

runs. This paper analyzed all the aforementioned, and the

proposed classifier obtained the most optimal result.

Figure 27 demonstrates the best classification accuracy

for different models analyzed in this article and DACN. It

can easily be observed that all the datasets of our proposed

classifier had the most optimal performance in terms of

classification accuracy. Given the obtained results and their

comparison with various models in this article, it can be

claimed that the proposed classifier has properly and

significantly improved compared to the classifiers from

which it feeds. Further, it has performed better than highly

used classifiers such as AlexNet, ResNet-18, and

GoogleNet.

Nonetheless, increased classification accuracy has not

led to changes in the order of computational complexity

(despite the primary objective of this paper being solely the

improvement of classification accuracy). Figure 28 com-

pares the learning parameters of the three networks of

AlexNet, ResNet-18, and our proposed classification.

Compared to ResNet-18, the number of the parameters

added by our proposed classifier was only 142,956, which

can be ignored considering the performance improvement

and the number of ResNet-18 parameters (11.6 million).

The trainable parameters in AlexNet reach 60.9 million,

which substantially exceeds our proposed network.

Although designing a low-parameter network was not one

of our objectives, it can be stated that our proposed net-

work has not caused exponential growth of parameters

compared to the other networks. In the conclusion and

future work (Sect. 6), we will discuss ideas regarding the

design of this network so that it would be significantly

lightweight for other researchers to use if found useful.

In addition to the seven mentioned datasets, the per-

formance improvement of the proposed classifier was also

evaluated on two well-known datasets, MNIST [95] and

Fashion-MNIST [96] (Table (A)). The reason for choosing

these two datasets was to thoroughly investigate the pro-

posed classifier’s performance from various perspectives

by evaluating it on two large balanced datasets and one

unbalanced dataset. The MNIST and Fashion-MNIST

datasets are 10-class datasets; consequently, the output of

classifiers are integer numbers between 0 to 9. The speci-

fications of the FIS-III are similar to those reported in

Table 8, with the difference that the parameters associated

with the eleventh membership function have been removed

by eliminating it. The total number of rules for these two

datasets is 120; however, as described in Sect. 3.7, this

number decreases to 28 and 32, respectively.

Table 12 presents a comparison between the proposed

model in this article and recent models for detecting and

classifying malware. The results indicate that the proposed

classification method achieves high performance in iden-

tifying and categorizing malware when all three extracted

dynamic features are utilized (API ? DLL ? REG) and it

is ranked among the top-performing classifiers for malware

classification. Even when the proposed method uses only

one dynamic feature, such as REG, it still performs well

and achieves a classification accuracy above 0.96 in all

conditions.

Cluster Computing

123

5.8.1 Classifiers’ statistical evaluation

In this section, the Friedman test and the Nemenyi post hoc

test are employed to evaluate if the overall variances

among accuracy and F1-score measurements are statisti-

cally meaningful. The Friedman test assesses algorithms

individually for each dataset, ranking them based on their

performance (Table 13). Subsequently, the Nemenyi test

compares the average ranks of the algorithms. Then, it

computes based on the v2F distribution with k � 1 degrees

of freedom (where k represents the number of algorithms).

To identify a statistically notable variance in performance,

a post hoc examination is necessary to pinpoint the algo-

rithms responsible for these variances. The Nemenyi test is

extensively employed in this scenario. This examination

indicates notable discrepancies in their performance when

the mean ranks of the two algorithms deviate from certain

critical margins. Initially, we compute the mean rank for

each algorithm examined in our trials, setting k ¼ 5 and

n ¼ 7, as there are a total of 5 methods and 7 datasets

(a) (b)

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
tC

la
ss

 Confusion Matrix

504
16.8%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

3
0.1%

0
0.0%

0
0.0%

99.2%

0.8%

1
0.0%

406
13.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

99.8%

0.2%

7
0.2%

0
0.0%

169
5.6%

0
0.0%

0
0.0%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

95.5%

4.5%

0
0.0%

0
0.0%

1
0.0%

99
3.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

99.0%

1.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

601
20.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

188
6.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

150
5.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

110
3.7%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

2
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

238
7.9%

0
0.0%

0
0.0%

99.2%

0.8%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

413
13.8%

0
0.0%

99.8%

0.2%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

104
3.5%

100%

0.0%

98.1%

1.9%

99.8%

0.2%

99.4%

0.6%

100%

0.0%

99.8%

0.2%

99.5%

0.5%

100%

0.0%

100%

0.0%

98.8%

1.2%

100%

0.0%

100%

0.0%

99.4%
0.6%

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
tC

la
s s

 Confusion Matrix

118
15.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

2
0.3%

0
0.0%

0
0.0%

98.3%

1.7%

0
0.0%

100
13.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

99.0%

1.0%

3
0.4%

0
0.0%

35
4.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

92.1%

7.9%

0
0.0%

1
0.1%

1
0.1%

22
2.9%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

88.0%

12.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

154
20.5%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

99.4%

0.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

45
6.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

97.8%

2.2%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

37
4.9%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

32
4.3%

0
0.0%

0
0.0%

0
0.0%

97.0%

3.0%

3
0.4%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

76
10.1%

0
0.0%

0
0.0%

95.0%

5.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

102
13.6%

0
0.0%

99.0%

1.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

12
1.6%

100%

0.0%

95.2%

4.8%

99.0%

1.0%

97.2%

2.8%

100%

0.0%

98.7%

1.3%

95.7%

4.3%

100%

0.0%

97.0%

3.0%

97.4%

2.6%

98.1%

1.9%

100%

0.0%

97.7%
2.3%

Fig. 23 Confusion matrix of the best result in fivefold of proposed model, a train, b test

(a) (b)

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
tC

la
ss

 Confusion Matrix

502
16.7%

0
0.0%

0
0.0%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

99.8%

0.2%

0
0.0%

407
13.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

172
5.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

100
3.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

601
20.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

188
6.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

150
5.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

86
2.9%

0
0.0%

0
0.0%

29
1.0%

74.8%

25.2%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

225
7.5%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

414
13.8%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

124
4.1%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

99.0%

1.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

81.0%

19.0%

99.0%
1.0%

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
ut

p u
tC

la
s s

 Confusion Matrix

125
16.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

96
12.8%

1
0.1%

0
0.0%

1
0.1%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

2
0.3%

0
0.0%

95.0%

5.0%

6
0.8%

0
0.0%

70
9.3%

2
0.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

89.7%

10.3%

0
0.0%

3
0.4%

1
0.1%

42
5.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

91.3%

8.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

155
20.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

45
6.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

97.8%

2.2%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

36
4.8%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

97.3%

2.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

27
3.6%

0
0.0%

0
0.0%

1
0.1%

96.4%

3.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

56
7.5%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

75
10.0%

1
0.1%

98.7%

1.3%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

50.0%

50.0%

95.4%

4.6%

95.0%

5.0%

95.9%

4.1%

95.5%

4.5%

99.4%

0.6%

97.8%

2.2%

100%

0.0%

100%

0.0%

100%

0.0%

97.4%

2.6%

33.3%

66.7%

97.1%
2.9%

Fig. 24 Confusion matrix of the best result in fivefold of proposed model, a train, b test

Cluster Computing

123

involved. If the Friedman test statistic yields accuracy and

F1-score values of v2F ¼ 21:6 and v2F ¼ 16:8 respectively,

with 4ðk � 1Þ degrees of freedom, a ¼ 0:05 and the critical

value for the Friedman test, given for k ¼ 5 and n ¼ 7, is

9.49 at a significance level of, we can infer that the accu-

racy and F1-score values of the evaluated methods exhibit

significant differences (21:6[9:49, 16:8[9:49 respec-

tively). Since the null hypothesis has been disproved, we

can move forward with a post hoc examination. The

Nemenyi test becomes applicable when all classifiers are

assessed against one another [104]. The critical value in

our experiments with k ¼ 5 and a ¼ 0:05 is CDa ¼ 2:3056,

qa ¼ 2:728. As a result, the accuracy and F1-score of the

proposed method is significantly different from SVM,

Efficient-CapsNet, ResNet-18 and DACN. Figures 29 and

30 depicts the statistical comparison of the approaches

examined in our experiments using the Nemenyi test.

(a) (b)

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
tC

la
ss

 Confusion Matrix

531
17.7%

0
0.0%

0
0.0%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

4
0.1%

0
0.0%

0
0.0%

99.1%

0.9%

0
0.0%

407
13.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

12
0.4%

1
0.0%

185
6.2%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

93.4%

6.6%

0
0.0%

0
0.0%

4
0.1%

93
3.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

95.9%

4.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

584
19.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

172
5.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

130
4.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

101
3.4%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

252
8.4%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

408
13.6%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

2
0.1%

0
0.0%

0
0.0%

112
3.7%

98.2%

1.8%

97.8%

2.2%

99.8%

0.2%

97.9%

2.1%

98.9%

1.1%

100%

0.0%

100%

0.0%

100%

0.0%

98.1%

1.9%

98.4%

1.6%

100%

0.0%

100%

0.0%

99.2%
0.8%

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
tC

la
ss

 Confusion Matrix

89
11.9%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

98.9%

1.1%

0
0.0%

101
13.5%

0
0.0%

1
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

99.0%

1.0%

0
0.0%

0
0.0%

16
2.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

25
3.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

172
22.9%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

62
8.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

57
7.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

2
0.3%

0
0.0%

0
0.0%

0
0.0%

41
5.5%

0
0.0%

0
0.0%

0
0.0%

95.3%

4.7%

3
0.4%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

29
3.9%

0
0.0%

0
0.0%

90.6%

9.4%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

0
0.0%

109
14.5%

0
0.0%

99.1%

0.9%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

41
5.5%

100%

0.0%

96.7%

3.3%

100%

0.0%

94.1%

5.9%

89.3%

10.7%

100%

0.0%

100%

0.0%

100%

0.0%

97.6%

2.4%

100%

0.0%

100%

0.0%

100%

0.0%

98.9%
1.1%

Fig. 25 Confusion matrix of the best result in fivefold of proposed model, a train, b test

(a) (b)

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
tC

la
ss

 Confusion Matrix

503
16.8%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

407
13.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

10
0.3%

1
0.0%

159
5.3%

2
0.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

92.4%

7.6%

0
0.0%

1
0.0%

0
0.0%

99
3.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

99.0%

1.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

601
20.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

188
6.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

150
5.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

115
3.8%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

1
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

224
7.5%

0
0.0%

0
0.0%

99.6%

0.4%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

414
13.8%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.0%

123
4.1%

99.2%

0.8%

97.9%

2.1%

99.5%

0.5%

100%

0.0%

98.0%

2.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

99.8%

0.2%

100%

0.0%

99.5%
0.5%

0 1 2 3 4 5 6 7 8 9 10

Target Class

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
tC

la
ss

 Confusion Matrix

125
16.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

101
13.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

43
5.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

25
3.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

155
20.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

46
6.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

37
4.9%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

28
3.7%

0
0.0%

0
0.0%

0
0.0%

100%

0.0%

4
0.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

52
6.9%

0
0.0%

0
0.0%

92.9%

7.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

103
13.7%

0
0.0%

100%

0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
0.1%

30
4.0%

96.8%

3.2%

96.9%

3.1%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

99.0%

1.0%

100%

0.0%

99.3%
0.7%

Fig. 26 Confusion matrix of the best result in fivefold of proposed model, a train, b test

Cluster Computing

123

6 Conclusion and future work

Scholarly evidence indicates that the utilization of artificial

intelligence (AI) techniques has resulted in a significant

enhancement of productivity across various domains. As

smart devices continue to proliferate and become more

deeply integrated into daily routines, the significance of

safeguarding these devices against potential security

threats becomes increasingly paramount. Malware consti-

tutes a critical factor in the infiltration of diverse operating

systems. Consequently, the development of a classifier that

is capable of accurately categorizing malware becomes.

For this reason, this article proposes a novel hybrid clas-

sifier based on type-III fuzzy decision-making and an

ensemble of deep neural networks. To increase the speed of

adjusting fuzzy system parameters and achieve higher

accuracy, an improved version of CGO optimization

algorithm was introduced and it was evaluated on 126 BFs

and 5 EDPs, where it achieved first place in 124 BFs and

all of EDPs. To evaluate the efficiency of the proposed

classifier, we tested it on nine datasets. In 7 datasets related

to malware classification, the classification accuracy was

always over 0.96 and showed an improvement of

0.24–13.3% compared to other classifiers. Additionally, the

statistical analysis results indicate that both ICGO and the

proposed classifier exhibit superior performance compared

to their competitors.

In addition, the performance of our proposed classifier

was compared with six classifiers introduced in recent

years for the well-known MNIST and Fashion-MNIST

datasets. The proposed classifier ranked first in accuracy,

specificity, sensitivity precision, and F1-score for these two

datasets. The 45 separate runs of this classifier on nine

Fig. 27 The best classification

precision for different models

(previous work = DACN)

Fig. 28 Comparing the number of train parameters

Cluster Computing

123

datasets show that it is a suitable classifier for various

applications and has significantly higher accuracy than

well-known networks such as Efficient capsule, AlexNet,

ResNet-18, and GoogleNet. This subject becomes impor-

tant when we consider that the number of parameters in our

proposed classifier is less than classifiers such as AlexNet,

ResNet-18 and SIRE CNN [105].

Suggestions for future work include utilizing multi-ob-

jective optimization to optimize the parameters of a fuzzy

system by considering a cost function that incorporates

classification accuracy and F1-score. Another avenue for

exploration involves utilizing a non-singleton Type-III

fuzzy system as a decision-maker and employing posterior

Table 12 Comparing existing

models for malware detection

and classification

Ref. no. Model Classification type Accuracy CV type

Proposed method Multi-class 0.98 Fivefold

Multi-class 0.973 Fivefold

Multi-class 0.965 Fivefold

Multi-class 0.977 Fivefold

Multi-class 0.971 Fivefold

Multi-class 0.989 Fivefold

Multi-class 0.99333 Fivefold

[97] Inception V3 Multi-class 0.9876 Hold out

[98] AI-HydRa Binary 0.851 Tenfold

[99] MoBIPCR Binary 0.991 Hold out

[100] EII-MBS Multi-class 0.9940 Tenfold

Multi-class 0.9929 Tenfold

[101] GDroid Binary 0.9899 Hold out

Multi-class 0.9698 Hold out

[102] MaliCage Binary 0.982 Hold out

Multi-class 0.978 Hold out

[103] DTMIC Multi-class 0.9892 Hold out

[41] DMalNet Binary 0.9843 Fourfold

Multi-class 0.9142 Fourfold

Table 13 The ordinal rank of the superior outcomes achieved by five classifiers when evaluated against each other

Models Metric Feature Mean rank

API DLL REG API ? DLL API ? REG DLL ? REG API ? DLL ? REG

SVM Accuracy 2 4 3 3 4 4 4 3.4286

F-1 score 2 5 3 4 3 4 4 3.5714

Efficient-CapsNet Accuracy 4 3 2 4 2 2 2 2.7143

F-1 score 4 2 2 2 4 3 2 2.7143

ResNet-18 Accuracy 5 5 4 5 5 5 5 4.8571

F-1 score 5 4 4 5 5 5 5 4.7143

DACN Accuracy 3 2 5 2 3 3 3 3.0000

F-1 score 3 1 5 3 1 2 3 2.5714

Proposed method Accuracy 1 1 1 1 1 1 1 1.0000

F-1 score 1 3 1 1 2 1 1 1.4286

Cluster Computing

123

probabilities of classifiers instead of predicted classes by

the classifiers.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s10586-

024-04475-7.

Acknowledgements This article is dedicated to all the kind mothers

of the world, especially Shamsi, Shahnaz and Fattane, who are always

the best supporters of their children, and we would like to thank the

honorable reviewers who improved this article.

Author contributions N. M.H: Methodology, Writing – original draft

and Formal analysis, M.H.A: Methodology, Writing – original draft

and Formal analysis. A.M: Investigation and Validation, S.M:

Supervision, Writing–Review and Editing, N.K: Writing–review &

editing, Visualization and Validation.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Zedeh, L.A.: Knowledge representation in fuzzy logic. IEEE

Trans. Knowl. Data Eng. 1(1), 89–100 (1989). https://doi.org/10.
1109/69.43406

2. Zadeh, L.A.: The concept of a linguistic variable and its appli-

cation to approximate reasoning—I. Inf. Sci. (N. Y.) 8(3),
199–249 (1975). https://doi.org/10.1016/0020-0255(75)90036-5

3. Mendel, J.M.: Advances in type-2 fuzzy sets and systems. Inf.

Sci. (N. Y.) 177(1), 84–110 (2007). https://doi.org/10.1016/j.ins.

2006.05.003

4. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems:

theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550

(2000). https://doi.org/10.1109/91.873577

5. Sahab, N., Hagras, H., Sahab, N., Hagras, H.: Adaptive non-

singleton type-2 fuzzy logic systems: a way forward for han-

dling numerical uncertainties in real world applications. Int.

J. Comput. Commun. Control (2011). https://doi.org/10.15837/

ijccc.2011.3.2133

6. Wu, H., Mendel, J.M.: Uncertainty bounds and their use in the

design of interval type-2 fuzzy logic systems. IEEE Trans.

Fuzzy Syst. 10(5), 622–639 (2002). https://doi.org/10.1109/

TFUZZ.2002.803496

7. Mohammadzadeh, A., Sabzalian, M.H., Zhang, W.: An interval

type-3 fuzzy system and a new online fractional-order learning

algorithm: theory and practice. IEEE Trans. Fuzzy Syst. 28(9),
1940–1950 (2020). https://doi.org/10.1109/TFUZZ.2019.

2928509

8. Hua, G., Wang, F., Zhang, J., Alattas, K.A., Mohammadzadeh,

A., The Vu, M.: A new type-3 fuzzy predictive approach for

mobile robots. Mathematics (2022). https://doi.org/10.3390/

math10173186

9. Alkabaa, A.S., Taylan, O., Balubaid, M., Zhang, C., Moham-

madzadeh, A.: A practical type-3 fuzzy control for mobile

robots: predictive and Boltzmann-based learning. Complex

Intell. Syst. (2023). https://doi.org/10.1007/s40747-023-01086-4

10. Elhaki, O., Shojaei, K., Mohammadzadeh, A., Rathinasamy, S.:

Robust amplitude-limited interval type-3 neuro-fuzzy controller

for robot manipulators with prescribed performance by output

feedback. Neural Comput. Appl. 35(12), 9115–9130 (2023).

https://doi.org/10.1007/s00521-022-08174-5

11. Amador-Angulo, L., Castillo, O., Melin, P., Castro, J.R.: Inter-

val type-3 fuzzy adaptation of the bee colony optimization

algorithm for optimal fuzzy control of an autonomous mobile

robot. Micromachines (Basel) (2022). https://doi.org/10.3390/

mi13091490

12. Castillo, O., Castro, J.R., Pulido, M., Melin, P.: Interval type-3

fuzzy aggregators for ensembles of neural networks in COVID-

19 time series prediction. Eng. Appl. Artif. Intell. 114, 105110
(2022). https://doi.org/10.1016/j.engappai.2022.105110

13. Melin, P., Sánchez, D., Castro, J.R., Castillo, O.: Design of type-

3 fuzzy systems and ensemble neural networks for COVID-19

time series prediction using a firefly algorithm. Axioms (2022).

https://doi.org/10.3390/axioms11080410

14. Wang, J., et al.: Non-singleton type-3 fuzzy approach for

flowmeter fault detection: experimental study in a gas industry.

Sensors (2021). https://doi.org/10.3390/s21217419

15. Peraza, C., Castillo, O., Melin, P., Castro, J.R., Yoon, J.H.,

Geem, Z.W.: A type-3 fuzzy parameter adjustment in harmony

search for the parameterization of fuzzy controllers. Int. J. Fuzzy

Syst. (2023). https://doi.org/10.1007/s40815-023-01499-w

Proposed Method

DACN

Efficient-CapsNet

ResNet-18

SVM

1 2 3 4 5

CD = 2.3056

Fig. 29 The crucial charts for F1-score metric the outcomes derived

from the Nemenyi post hoc examination, alongside the mean rank

scores obtained from the Friedman test

Proposed Method

Efficient-CapsNet

DACN

ResNet-18

SVM

1 2 3 4 5

CD = 2.3056

Fig. 30 The crucial charts for Accuracy metric the outcomes derived

from the Nemenyi post hoc examination, alongside the mean rank

scores obtained from the Friedman test

Cluster Computing

123

https://doi.org/10.1007/s10586-024-04475-7
https://doi.org/10.1007/s10586-024-04475-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/69.43406
https://doi.org/10.1109/69.43406
https://doi.org/10.1016/0020-0255(75)90036-5
https://doi.org/10.1016/j.ins.2006.05.003
https://doi.org/10.1016/j.ins.2006.05.003
https://doi.org/10.1109/91.873577
https://doi.org/10.15837/ijccc.2011.3.2133
https://doi.org/10.15837/ijccc.2011.3.2133
https://doi.org/10.1109/TFUZZ.2002.803496
https://doi.org/10.1109/TFUZZ.2002.803496
https://doi.org/10.1109/TFUZZ.2019.2928509
https://doi.org/10.1109/TFUZZ.2019.2928509
https://doi.org/10.3390/math10173186
https://doi.org/10.3390/math10173186
https://doi.org/10.1007/s40747-023-01086-4
https://doi.org/10.1007/s00521-022-08174-5
https://doi.org/10.3390/mi13091490
https://doi.org/10.3390/mi13091490
https://doi.org/10.1016/j.engappai.2022.105110
https://doi.org/10.3390/axioms11080410
https://doi.org/10.3390/s21217419
https://doi.org/10.1007/s40815-023-01499-w

16. Zou, B., Cao, C., Tao, F., Wang, L.: IMCLNet: a lightweight

deep neural network for image-based malware classification.

J. Inf. Secur. Appl. 70, 103313 (2022). https://doi.org/10.1016/j.

jisa.2022.103313

17. Desktop Operating System Market Share Worldwide | Stat-

counter Global Stats. [Online]. https://gs.statcounter.com/os-

market-share/desktop/worldwide/#monthly-202204-202204-bar.

Accessed 14 July 2023

18. AV-ATLAS—Malware and PUA. [Online]. Available: https://

portal.av-atlas.org/malware. Accessed 14 July 2023

19. Gibert, D., Mateu, C., Planes, J.: The rise of machine learning

for detection and classification of malware: research develop-

ments, trends and challenges. J. Netw. Comput. Appl. (2020).

https://doi.org/10.1016/j.jnca.2019.102526

20. Wong, M.Y., Lie, D.: IntelliDroid: a targeted input generator for

the dynamic analysis of android malware. Internet Soc. (2017).

https://doi.org/10.14722/ndss.2016.23118

21. Parildi, E.S., Hatzinakos, D., Lawryshyn, Y.: Deep learning-

aided runtime opcode-based Windows malware detection.

Neural Comput. Appl. 33(18), 11963–11983 (2021). https://doi.

org/10.1007/s00521-021-05861-7

22. Santos, I., Sanz, B., Laorden, C., Brezo, F., Bringas, P.G.:

Opcode-sequence-based semi-supervised unknown malware

detection. In: Herrero, Á., Corchado, E. (eds.) Computational

intelligence in security for information systems, pp. 50–57.

Springer, Berlin (2011)

23. Aslan, Ö., Yilmaz, A.A.: A new malware classification frame-

work based on deep learning algorithms. IEEE Access 9,
87936–87951 (2021). https://doi.org/10.1109/ACCESS.2021.

3089586

24. Zhang, Y., Li, H., Zheng, Y., Yao, S., Jiang, J.: Enhanced DNNs

for malware classification with GAN-based adversarial training.

J. Comput. Virol. Hacking Tech. 17(2), 153–163 (2021). https://

doi.org/10.1007/s11416-021-00378-y

25. Mallik, A., Khetarpal, A., Kumar, S.: ConRec: malware classi-

fication using convolutional recurrence. J. Comput. Virol.

Hacking Tech. 18(4), 297–313 (2022). https://doi.org/10.1007/

s11416-022-00416-3

26. Li, S., Zhou, Q., Zhou, R., Lv, Q.: Intelligent malware detection

based on graph convolutional network. J. Supercomput. 78(3),
4182–4198 (2022). https://doi.org/10.1007/s11227-021-04020-y

27. D’Angelo, G., Palmieri, F., Robustelli, A.: A federated approach

to Android malware classification through Perm-Maps. Clust.

Comput. 25(4), 2487–2500 (2022). https://doi.org/10.1007/

s10586-021-03490-2

28. Vasan, D., Alazab, M., Wassan, S., Naeem, H., Safaei, B.,

Zheng, Q.: IMCFN: image-based malware classification using

fine-tuned convolutional neural network architecture. Comput.

Netw. 171, 107138 (2020). https://doi.org/10.1016/j.comnet.

2020.107138

29. Hosseini, S., Nezhad, A.E., Seilani, H.: Android malware clas-

sification using convolutional neural network and LSTM.

J. Comput. Virol. Hacking Tech. 17(4), 307–318 (2021). https://

doi.org/10.1007/s11416-021-00385-z

30. Kim, J., Ban, Y., Ko, E., Cho, H., Yi, J.H.: MAPAS: a practical

deep learning-based android malware detection system. Int.

J. Inf. Secur. 21(4), 725–738 (2022). https://doi.org/10.1007/

s10207-022-00579-6

31. Bakour, K., Ünver, H.M.: DeepVisDroid: android malware

detection by hybridizing image-based features with deep learn-

ing techniques. Neural Comput. Appl. 33(18), 11499–11516

(2021). https://doi.org/10.1007/s00521-021-05816-y

32. Hota, A., Panja, S., Nag, A.: Lightweight CNN-based malware

image classification for resource-constrained applications.
Innov. Syst. Softw. Eng. (2022). https://doi.org/10.1007/s11334-

022-00461-7

33. Aurangzeb, S., Aleem, M.: Evaluation and classification of

obfuscated Android malware through deep learning using

ensemble voting mechanism. Sci. Rep. 13(1), 3093 (2023).

https://doi.org/10.1038/s41598-023-30028-w

34. Taha, A.A., Malebary, S.J.: Hybrid classification of Android

malware based on fuzzy clustering and the gradient boosting

machine. Neural Comput. Appl. 33(12), 6721–6732 (2021).

https://doi.org/10.1007/s00521-020-05450-0

35. Anupama, M.L., et al.: Detection and robustness evaluation of

android malware classifiers. J. Comput. Virol. Hacking Tech.

18(3), 147–170 (2022). https://doi.org/10.1007/s11416-021-

00390-2

36. Alzubi, O.A., Alzubi, J.A., Al-Zoubi, A.M., Hassonah, M.A.,

Kose, U.: An efficient malware detection approach with feature

weighting based on Harris Hawks optimization. Clust. Comput.

25(4), 2369–2387 (2022). https://doi.org/10.1007/s10586-021-

03459-1

37. Roy, S., Bhanja, S., Das, A.: AndyWar: an intelligent android

malware detection using machine learning. Innov. Syst. Softw.

Eng. (2023). https://doi.org/10.1007/s11334-023-00530-5

38. Seyfari, Y., Meimandi, A.: A new approach to android malware

detection using fuzzy logic-based simulated annealing and fea-

ture selection. Multimed. Tools Appl. (2023). https://doi.org/10.

1007/s11042-023-16035-z

39. Zou, B., Cao, C., Wang, L., Tao, F.: DACN: malware classifi-

cation based on dynamic analysis and capsule networks. In:

Communications in Computer and Information Science,

pp. 3–13. Springer Science and Business Media Deutschland

GmbH, Berlin (2022). https://doi.org/10.1007/978-981-19-0523-

0_1

40. Sebastián, S., Caballero, J.: AVclass2: massive malware tag

extraction from AV labels. In: Annual Computer Security

Applications Conference, in ACSAC ’20, pp. 42–53. Associa-

tion for Computing Machinery, New York (2020). https://doi.

org/10.1145/3427228.3427261

41. Li, C., et al.: DMalNet: dynamic malware analysis based on API

feature engineering and graph learning. Comput. Secur. 122,
102872 (2022). https://doi.org/10.1016/j.cose.2022.102872

42. Fernández-Álvarez, P., Rodrı́guez, R.J.: Module extraction and

DLL hijacking detection via single or multiple memory dumps.

Forensic Sci. Int.: Digit. Investig. 44, 301505 (2023). https://doi.

org/10.1016/j.fsidi.2023.301505

43. Gittins, Z., Soltys, M.: Malware persistence mechanisms. Pro-

cedia Comput. Sci. 176, 88–97 (2020). https://doi.org/10.1016/j.

procs.2020.08.010

44. Carvey, H.: Chapter 5—Registry analysis. In: Carvey, H. (ed.)

Windows Forensic Analysis Toolkit, 4th edn., pp. 119–167.

Syngress, Boston (2014). https://doi.org/10.1016/B978-0-12-

417157-2.00005-9

45. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between

capsules, Oct. 2017, [Online]. http://arxiv.org/abs/1710.09829

46. LaLonde, R., Xu, Z., Irmakci, I., Jain, S., Bagci, U.: Capsules

for biomedical image segmentation. Med. Image Anal. 68,
101889 (2021). https://doi.org/10.1016/j.media.2020.101889

47. Mocanu, I.G., Yang, Z., Belle, V.: Breaking CAPTCHA with

capsule networks. Neural Netw. 154, 246–254 (2022). https://

doi.org/10.1016/j.neunet.2022.06.041

48. Kim, J., Jang, S., Park, E., Choi, S.: Text classification using

capsules. Neurocomputing 376, 214–221 (2020). https://doi.org/

10.1016/j.neucom.2019.10.033

49. Bushara, A.R., VinodKumar, R.S., Kumar, S.S.: An ensemble

method for the detection and classification of lung cancer using

Computed Tomography images utilizing a capsule network with

Visual Geometry Group. Biomed. Signal Process. Control 85,
104930 (2023). https://doi.org/10.1016/j.bspc.2023.104930

Cluster Computing

123

https://doi.org/10.1016/j.jisa.2022.103313
https://doi.org/10.1016/j.jisa.2022.103313
https://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-202204-202204-bar
https://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-202204-202204-bar
https://portal.av-atlas.org/malware
https://portal.av-atlas.org/malware
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.14722/ndss.2016.23118
https://doi.org/10.1007/s00521-021-05861-7
https://doi.org/10.1007/s00521-021-05861-7
https://doi.org/10.1109/ACCESS.2021.3089586
https://doi.org/10.1109/ACCESS.2021.3089586
https://doi.org/10.1007/s11416-021-00378-y
https://doi.org/10.1007/s11416-021-00378-y
https://doi.org/10.1007/s11416-022-00416-3
https://doi.org/10.1007/s11416-022-00416-3
https://doi.org/10.1007/s11227-021-04020-y
https://doi.org/10.1007/s10586-021-03490-2
https://doi.org/10.1007/s10586-021-03490-2
https://doi.org/10.1016/j.comnet.2020.107138
https://doi.org/10.1016/j.comnet.2020.107138
https://doi.org/10.1007/s11416-021-00385-z
https://doi.org/10.1007/s11416-021-00385-z
https://doi.org/10.1007/s10207-022-00579-6
https://doi.org/10.1007/s10207-022-00579-6
https://doi.org/10.1007/s00521-021-05816-y
https://doi.org/10.1007/s11334-022-00461-7
https://doi.org/10.1007/s11334-022-00461-7
https://doi.org/10.1038/s41598-023-30028-w
https://doi.org/10.1007/s00521-020-05450-0
https://doi.org/10.1007/s11416-021-00390-2
https://doi.org/10.1007/s11416-021-00390-2
https://doi.org/10.1007/s10586-021-03459-1
https://doi.org/10.1007/s10586-021-03459-1
https://doi.org/10.1007/s11334-023-00530-5
https://doi.org/10.1007/s11042-023-16035-z
https://doi.org/10.1007/s11042-023-16035-z
https://doi.org/10.1007/978-981-19-0523-0_1
https://doi.org/10.1007/978-981-19-0523-0_1
https://doi.org/10.1145/3427228.3427261
https://doi.org/10.1145/3427228.3427261
https://doi.org/10.1016/j.cose.2022.102872
https://doi.org/10.1016/j.fsidi.2023.301505
https://doi.org/10.1016/j.fsidi.2023.301505
https://doi.org/10.1016/j.procs.2020.08.010
https://doi.org/10.1016/j.procs.2020.08.010
https://doi.org/10.1016/B978-0-12-417157-2.00005-9
https://doi.org/10.1016/B978-0-12-417157-2.00005-9
http://arxiv.org/abs/1710.09829
https://doi.org/10.1016/j.media.2020.101889
https://doi.org/10.1016/j.neunet.2022.06.041
https://doi.org/10.1016/j.neunet.2022.06.041
https://doi.org/10.1016/j.neucom.2019.10.033
https://doi.org/10.1016/j.neucom.2019.10.033
https://doi.org/10.1016/j.bspc.2023.104930

50. Guarda, L., Tapia, J.E., Droguett, E.L., Ramos, M.: A novel

Capsule Neural Network based model for drowsiness detection

using electroencephalography signals. Expert Syst. Appl. 201,
116977 (2022). https://doi.org/10.1016/j.eswa.2022.116977

51. Goldani, M.H., Momtazi, S., Safabakhsh, R.: Detecting fake

news with capsule neural networks. Appl. Soft Comput. 101,
106991 (2021). https://doi.org/10.1016/j.asoc.2020.106991

52. Wang, Y., et al.: RPI-CapsuleGAN: predicting RNA-protein

interactions through an interpretable generative adversarial

capsule network. Pattern Recognit. 141, 109626 (2023). https://

doi.org/10.1016/j.patcog.2023.109626

53. Ma, J., Li, J., Du, B., Wu, J., Wan, J., Xiao, Y.: Robust face

alignment by dual-attentional spatial-aware capsule networks.

Pattern Recognit. 122, 108297 (2022). https://doi.org/10.1016/j.

patcog.2021.108297

54. Mandal, B., Sarkhel, R., Ghosh, S., Das, N., Nasipuri, M.: Two-

phase dynamic routing for micro and macro-level equivariance

in multi-column capsule networks. Pattern Recognit. 109,
107595 (2021). https://doi.org/10.1016/j.patcog.2020.107595

55. Sridhar, S., Sanagavarapu, S.: Multi-lane capsule network

architecture for detection of COVID-19. In: 2021 2nd Interna-

tional Conference on Intelligent Engineering and Management

(ICIEM), pp. 385–390 (2021). https://doi.org/10.1109/

ICIEM51511.2021.9445363

56. Zhao, Z., Cheng, S.: Capsule networks with non-iterative cluster

routing. Neural Netw. 143, 690–697 (2021). https://doi.org/10.

1016/j.neunet.2021.07.032

57. Zuo, X., Yuan, H., Yang, B., Wang, H., Wang, Y.: Exploring

graph capsual network and graphormer for graph classification.

Inf. Sci. (N Y) 640, 119045 (2023). https://doi.org/10.1016/j.ins.

2023.119045

58. Tao, J., Zhang, X., Luo, X., Wang, Y., Song, C., Sun, Y.:

Adaptive capsule network. Comput. Vis. Image Underst. 218,
103405 (2022). https://doi.org/10.1016/j.cviu.2022.103405

59. Wei, Y., Liu, Y., Li, C., Cheng, J., Song, R., Chen, X.: TC-Net:

a transformer capsule network for EEG-based emotion recog-

nition. Comput. Biol. Med. 152, 106463 (2023). https://doi.org/

10.1016/j.compbiomed.2022.106463

60. Mazzia, V., Salvetti, F., Chiaberge, M.: Efficient-CapsNet:

capsule network with self-attention routing. Sci. Rep. (2021).

https://doi.org/10.1038/s41598-021-93977-0

61. Raitoharju, J.: Chapter 3—Convolutional neural networks. In:

Iosifidis, A., Tefas, A. (eds.) Deep learning for robot perception

and cognition, pp. 35–69. Academic Press, Cambridge (2022).

https://doi.org/10.1016/B978-0-32-385787-1.00008-7

62. Maitre, J., Bouchard, K., Gaboury, S.: Data filtering and deep

learning for enhanced human activity recognition from UWB

radars. J. Ambient. Intell. Humaniz. Comput. 14(6), 7845–7856
(2023). https://doi.org/10.1007/s12652-023-04596-8

63. Kibriya, H., Amin, R.: A residual network-based framework for

COVID-19 detection from CXR images. Neural Comput. Appl.

35(11), 8505–8516 (2023). https://doi.org/10.1007/s00521-022-

08127-y

64. Kingma, D.P., Ba, J.: Adam: a method for stochastic opti-

mization. CoRR (2014). https://api.semanticscholar.org/Corpu

sID:662810

65. Wu, H., Xin, M., Fang, W., Hu, H.M., Hu, Z.: Multi-level fea-

ture network with multi-loss for person re-identification. IEEE

Access 7, 91052–91062 (2019). https://doi.org/10.1109/

ACCESS.2019.2927052

66. Victor Ikechukwu, A., Murali, S., Deepu, R., Shivamurthy,

R.C.: ResNet-50 vs VGG-19 vs training from scratch: a com-

parative analysis of the segmentation and classification of

Pneumonia from chest X-ray images. Glob. Transit. Proc. 2(2),
375–381 (2021). https://doi.org/10.1016/j.gltp.2021.08.027

67. Panigrahi, A., Subasi, A.: Chapter 3—Magnetic resonance

imagining-based automated brain tumor detection using deep

learning techniques. In: Subasi, A. (ed.) Applications of Artifi-

cial Intelligence in Medical Imaging, pp. 75–107. Academic

Press, Cambridge (2023). https://doi.org/10.1016/B978-0-443-

18450-5.00012-8

68. Sun, Z., Caetano, E., Pereira, S., Moutinho, C.: Employing

histogram of oriented gradient to enhance concrete crack

detection performance with classification algorithm and Baye-

sian optimization. Eng. Fail. Anal. 150, 107351 (2023). https://

doi.org/10.1016/j.engfailanal.2023.107351

69. Wang, B., Kang, Y., Huo, D., Chen, D., Song, W., Zhang, F.:

Depression signal correlation identification from different EEG

channels based on CNN feature extraction. Psychiatry Res.

Neuroimaging 328, 111582 (2023). https://doi.org/10.1016/j.

pscychresns.2022.111582

70. Dou, T., Zhang, G., Cui, W.: Efficient quantum feature extrac-

tion for CNN-based learning. J. Frankl. Inst. 360(11),
7438–7456 (2023). https://doi.org/10.1016/j.jfranklin.2023.06.

003

71. Abbaskhah, A., Sedighi, H., Marvi, H.: Infant cry classification

by MFCC feature extraction with MLP and CNN structures.

Biomed. Signal Process. Control 86, 105261 (2023). https://doi.

org/10.1016/j.bspc.2023.105261

72. Bhattarai, B., Subedi, R., Gaire, R.R., Vazquez, E., Stoyanov,

D.: Histogram of Oriented Gradients meet deep learning: a novel

multi-task deep network for 2D surgical image semantic seg-

mentation. Med. Image Anal. 85, 102747 (2023). https://doi.org/

10.1016/j.media.2023.102747

73. Déniz, O., Bueno, G., Salido, J., De la Torre, F.: Face recog-

nition using histograms of oriented gradients. Pattern Recognit.

Lett. 32(12), 1598–1603 (2011). https://doi.org/10.1016/j.patrec.

2011.01.004

74. Xiao, C., Liu, Z., Zhang, T., Zhang, L.: On fault prediction for

wind turbine pitch system using radar chart and support vector

machine approach. Energies (Basel) (2019). https://doi.org/10.

3390/en12142693

75. Malan, N.S., Sharma, S.: Feature selection using regularized

neighbourhood component analysis to enhance the classification

performance of motor imagery signals. Comput. Biol. Med. 107,
118–126 (2019). https://doi.org/10.1016/j.compbiomed.2019.02.

009

76. Jin, M., Deng, W.: Predication of different stages of Alzheimer’s

disease using neighborhood component analysis and ensemble

decision tree. J. Neurosci. Methods 302, 35–41 (2018). https://

doi.org/10.1016/j.jneumeth.2018.02.014

77. Lei, Y.: 3—Individual intelligent method-based fault diagnosis.

In: Lei, Y. (ed.) Intelligent fault diagnosis and remaining useful

life prediction of rotating machinery, pp. 67–174. Butterworth-

Heinemann, Oxford (2017). https://doi.org/10.1016/B978-0-12-

811534-3.00003-2

78. Castillo, O., Castro, J.R., Melin, P.: Interval type-3 fuzzy

aggregation of neural networks for multiple time series predic-

tion: the case of financial forecasting. Axioms (2022). https://

doi.org/10.3390/axioms11060251

79. Ghanbarzadeh, R., Hosseinalipour, A., Ghaffari, A.: A novel

network intrusion detection method based on metaheuristic

optimisation algorithms. J. Ambient. Intell. Humaniz. Comput.

14(6), 7575–7592 (2023). https://doi.org/10.1007/s12652-023-

04571-3

80. Bu, S.-J., Cho, S.-B.: Malware classification with disentangled

representation learning of evolutionary triplet network. Neuro-

computing 552, 126534 (2023). https://doi.org/10.1016/j.neu

com.2023.126534

81. Vaiyapuri, T., et al.: Metaheuristics with federated learning

enabled intrusion detection system in Internet of Things

Cluster Computing

123

https://doi.org/10.1016/j.eswa.2022.116977
https://doi.org/10.1016/j.asoc.2020.106991
https://doi.org/10.1016/j.patcog.2023.109626
https://doi.org/10.1016/j.patcog.2023.109626
https://doi.org/10.1016/j.patcog.2021.108297
https://doi.org/10.1016/j.patcog.2021.108297
https://doi.org/10.1016/j.patcog.2020.107595
https://doi.org/10.1109/ICIEM51511.2021.9445363
https://doi.org/10.1109/ICIEM51511.2021.9445363
https://doi.org/10.1016/j.neunet.2021.07.032
https://doi.org/10.1016/j.neunet.2021.07.032
https://doi.org/10.1016/j.ins.2023.119045
https://doi.org/10.1016/j.ins.2023.119045
https://doi.org/10.1016/j.cviu.2022.103405
https://doi.org/10.1016/j.compbiomed.2022.106463
https://doi.org/10.1016/j.compbiomed.2022.106463
https://doi.org/10.1038/s41598-021-93977-0
https://doi.org/10.1016/B978-0-32-385787-1.00008-7
https://doi.org/10.1007/s12652-023-04596-8
https://doi.org/10.1007/s00521-022-08127-y
https://doi.org/10.1007/s00521-022-08127-y
https://api.semanticscholar.org/CorpusID:662810
https://api.semanticscholar.org/CorpusID:662810
https://doi.org/10.1109/ACCESS.2019.2927052
https://doi.org/10.1109/ACCESS.2019.2927052
https://doi.org/10.1016/j.gltp.2021.08.027
https://doi.org/10.1016/B978-0-443-18450-5.00012-8
https://doi.org/10.1016/B978-0-443-18450-5.00012-8
https://doi.org/10.1016/j.engfailanal.2023.107351
https://doi.org/10.1016/j.engfailanal.2023.107351
https://doi.org/10.1016/j.pscychresns.2022.111582
https://doi.org/10.1016/j.pscychresns.2022.111582
https://doi.org/10.1016/j.jfranklin.2023.06.003
https://doi.org/10.1016/j.jfranklin.2023.06.003
https://doi.org/10.1016/j.bspc.2023.105261
https://doi.org/10.1016/j.bspc.2023.105261
https://doi.org/10.1016/j.media.2023.102747
https://doi.org/10.1016/j.media.2023.102747
https://doi.org/10.1016/j.patrec.2011.01.004
https://doi.org/10.1016/j.patrec.2011.01.004
https://doi.org/10.3390/en12142693
https://doi.org/10.3390/en12142693
https://doi.org/10.1016/j.compbiomed.2019.02.009
https://doi.org/10.1016/j.compbiomed.2019.02.009
https://doi.org/10.1016/j.jneumeth.2018.02.014
https://doi.org/10.1016/j.jneumeth.2018.02.014
https://doi.org/10.1016/B978-0-12-811534-3.00003-2
https://doi.org/10.1016/B978-0-12-811534-3.00003-2
https://doi.org/10.3390/axioms11060251
https://doi.org/10.3390/axioms11060251
https://doi.org/10.1007/s12652-023-04571-3
https://doi.org/10.1007/s12652-023-04571-3
https://doi.org/10.1016/j.neucom.2023.126534
https://doi.org/10.1016/j.neucom.2023.126534

environment. Expert. Syst. 40(5), e13138 (2023). https://doi.org/

10.1111/exsy.13138

82. Mora, A.M., Arenas, M.G., Romero-Horno, A., Camacho-Páez,

J., Castillo, P.A.: Optimizing an IDS (intrusion detection sys-

tem) by Means of advanced metaheuristics. In: Rojas, I., Joya,

G., Catala, A. (eds.) Advances in Computational Intelligence,

pp. 55–67. Springer Nature Switzerland, Cham (2023)

83. Bacanin, N., et al.: Addressing feature selection and extreme

learning machine tuning by diversity-oriented social network

search: an application for phishing websites detection. Complex

Intell. Syst. 9(6), 7269–7304 (2023). https://doi.org/10.1007/

s40747-023-01118-z

84. Savanović, N., et al.: Intrusion detection in healthcare 4.0

Internet of Things systems via metaheuristics optimized

machine learning. Sustainability (2023). https://doi.org/10.3390/

su151612563

85. Jovanovic, L., et al.: Improving phishing website detection using

a hybrid two-level framework for feature selection and XGBoost

tuning. J. Web Eng. 22(03), 543–574 (2023). https://doi.org/10.

13052/jwe1540-9589.2237

86. Talatahari, S., Azizi, M.: Chaos Game Optimization: a novel

metaheuristic algorithm.Artif. Intell. Rev.54(2), 917–1004 (2021).
https://doi.org/10.1007/S10462-020-09867-W/METRICS

87. Azizi, M., Aickelin, U., Khorshidi, H.A., Shishehgarkhaneh,

M.B.: Shape and size optimization of truss structures by Chaos

game optimization considering frequency constraints. J. Adv.

Res. 41, 89–100 (2022). https://doi.org/10.1016/j.jare.2022.01.

002

88. Kaveh, A., Dadras, A.: A novel meta-heuristic optimization

algorithm: thermal exchange optimization. Adv. Eng. Softw.

110, 69–84 (2017). https://doi.org/10.1016/j.advengsoft.2017.

03.014

89. Price, K.V., Awad, N.H., Ali, M.Z., Suganthan, P.N.: The

100-Digit Challenge: Problem Definitions and Evaluation Cri-

teria for the 100-Digit Challenge Special Session and Compe-

tition on Single Objective Numerical Optimization, vol. 1,

pp. 1–21. Nanyang Technological University, Singapore (2018)

90. Talatahari, S., Azizi, M.: Chaos Game Optimization: a novel

metaheuristic algorithm. Artif. Intell. Rev. 54(2), 917–1004

(2021). https://doi.org/10.1007/s10462-020-09867-w

91. Wu, L., Wu, J., Wang, T.: Enhancing grasshopper optimization

algorithm (GOA) with levy flight for engineering applications.

Sci. Rep. 13(1), 124 (2023). https://doi.org/10.1038/s41598-022-
27144-4

92. Al-Dhief, F.T., Latiff, N.M.A., Baki, M.M., Malik, N.N.N.A.,

Sabri, N., Albadr, M.A.A.: Voice pathology detection using

support vector machine based on different number of voice

signals. In: 2021 26th IEEE Asia-Pacific Conference on Com-

munications (APCC), pp. 1–6 (2021). https://doi.org/10.1109/

APCC49754.2021.9609830

93. Al-Dhief, F.T., et al.: Voice pathology detection using machine

learning technique. In: 2020 IEEE 5th International Symposium

on Telecommunication Technologies (ISTT), pp. 99–104

(2020). https://doi.org/10.1109/ISTT50966.2020.9279346

94. Al-Dhief, F.T., et al.: Voice pathology detection and classifi-

cation by adopting online sequential extreme learning machine.

IEEE Access 9, 77293–77306 (2021). https://doi.org/10.1109/

ACCESS.2021.3082565

95. LeCun, Y., Cortes, C.: The MNIST Database of Handwritten

Digits (2005). https://api.semanticscholar.org/CorpusID:

60282629

96. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: A Novel

Image Dataset for Benchmarking Machine Learning Algorithms

(2017). https://doi.org/10.48550/arXiv.1708.07747

97. Ahmed, M., Afreen, N., Ahmed, M., Sameer, M., Ahamed, J.:

An inception V3 approach for malware classification using

machine learning and transfer learning. Int. J. Intell. Netw. 4,
11–18 (2023). https://doi.org/10.1016/j.ijin.2022.11.005

98. Yoo, S., Kim, S., Kim, S., Kang, B.B.: AI-HydRa: advanced

hybrid approach using random forest and deep learning for

malware classification. Inf. Sci. (N. Y.) 546, 420–435 (2021).

https://doi.org/10.1016/j.ins.2020.08.082

99. Liu, C., Lu, J., Feng, W., Du, E., Di, L., Song, Z.: MobiPCR:

efficient, accurate, and strict ML-based mobile malware detec-

tion. Future Gener. Comput. Syst. 144, 140–150 (2023). https://

doi.org/10.1016/j.future.2023.02.014

100. Hao, J., Luo, S., Pan, L.: EII-MBS: malware family classifica-

tion via enhanced adversarial instruction behavior semantic

learning. Comput. Secur. 122, 102905 (2022). https://doi.org/10.

1016/j.cose.2022.102905

101. Gao, H., Cheng, S., Zhang, W.: GDroid: Android malware

detection and classification with graph convolutional network.

Comput. Secur. 106, 102264 (2021). https://doi.org/10.1016/j.

cose.2021.102264

102. Gao, X., Hu, C., Shan, C., Han, W.: MaliCage: a packed mal-

ware family classification framework based on DNN and GAN.

J. Inf. Secur. Appl. 68, 103267 (2022). https://doi.org/10.1016/j.

jisa.2022.103267

103. Kumar, S., Janet, B.: DTMIC: deep transfer learning for mal-

ware image classification. J. Inf. Secur. Appl. 64, 103063

(2022). https://doi.org/10.1016/j.jisa.2021.103063

104. Erkan, U.: A precise and stable machine learning algorithm:

eigenvalue classification (EigenClass). Neural Comput. Appl.

33(10), 5381–5392 (2021). https://doi.org/10.1007/s00521-020-

05343-2

105. Avola, D., Cinque, L., Fagioli, A., Foresti, G.L.: SIRe-Net-

works: convolutional neural networks architectural extension for

information preservation via skip/residual connections and

interlaced auto-encoders. Neural Netw. 153, 386–398 (2022).

https://doi.org/10.1016/j.neunet.2022.06.030

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Nastaran Mehrabi Hashjin is a

researcher who recently com-

pleted her M.Sc. in Control

Engineering at Shahid Beheshti

University. With a passion for

advancing technology, she has

devoted her research to explor-

ing the intersection of machine

learning, artificial intelligence,

mathematical optimization, sys-

tems, and control. She is com-

mitted to solving complex

problems using cutting-edge

technology. Her current work

focuses on engineering opti-

mization and designing neural networks to solve various problems in

industry and medicine. With her expertise in control engineering and

her innovative approach to research, she is poised to contribute to the

engineering and technology field.

Cluster Computing

123

https://doi.org/10.1111/exsy.13138
https://doi.org/10.1111/exsy.13138
https://doi.org/10.1007/s40747-023-01118-z
https://doi.org/10.1007/s40747-023-01118-z
https://doi.org/10.3390/su151612563
https://doi.org/10.3390/su151612563
https://doi.org/10.13052/jwe1540-9589.2237
https://doi.org/10.13052/jwe1540-9589.2237
https://doi.org/10.1007/S10462-020-09867-W/METRICS
https://doi.org/10.1016/j.jare.2022.01.002
https://doi.org/10.1016/j.jare.2022.01.002
https://doi.org/10.1016/j.advengsoft.2017.03.014
https://doi.org/10.1016/j.advengsoft.2017.03.014
https://doi.org/10.1007/s10462-020-09867-w
https://doi.org/10.1038/s41598-022-27144-4
https://doi.org/10.1038/s41598-022-27144-4
https://doi.org/10.1109/APCC49754.2021.9609830
https://doi.org/10.1109/APCC49754.2021.9609830
https://doi.org/10.1109/ISTT50966.2020.9279346
https://doi.org/10.1109/ACCESS.2021.3082565
https://doi.org/10.1109/ACCESS.2021.3082565
https://api.semanticscholar.org/CorpusID:60282629
https://api.semanticscholar.org/CorpusID:60282629
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.1016/j.ijin.2022.11.005
https://doi.org/10.1016/j.ins.2020.08.082
https://doi.org/10.1016/j.future.2023.02.014
https://doi.org/10.1016/j.future.2023.02.014
https://doi.org/10.1016/j.cose.2022.102905
https://doi.org/10.1016/j.cose.2022.102905
https://doi.org/10.1016/j.cose.2021.102264
https://doi.org/10.1016/j.cose.2021.102264
https://doi.org/10.1016/j.jisa.2022.103267
https://doi.org/10.1016/j.jisa.2022.103267
https://doi.org/10.1016/j.jisa.2021.103063
https://doi.org/10.1007/s00521-020-05343-2
https://doi.org/10.1007/s00521-020-05343-2
https://doi.org/10.1016/j.neunet.2022.06.030

Mohammad Hussein Amiri re-

ceived his B.Sc. in July 2021

from Ayatollah Borujerdi

University in electrical engi-

neering, Borujerd, Iran; His

M.Sc. in January 2024 from

Shahid Beheshti University,

Tehran, Iran, in control engi-

neering. He reviews several

journals like Applied Soft

Computing, Expert Systems

with Application, Alexandria

Engineering Journal, Knowl-

edge Based Systems, and Soft

Commuting Journal. His

research interests include Neural Networks, Machine learning, Deep

learning, Fault isolation, and Fuzzy Systems.

Ardashir Mohammadzadeh re-

ceived his B.Sc. in July 2011

from Sahand University of

Technology, Tabriz, Iran; His

M.Sc. in September 2013 from

K.N Toosi University of Tech-

nology, Tehran, Iran; and his

Ph.D. in November 2016 from

the University of Tabriz, Tabriz,

Iran. Since December 2017, he

has worked as an assistant/as-

sociate professor at the Univer-

sity of Bonab, Bonab, Iran as an

assistant/associate professor. He

joined the Shenyang University

of Technology as a professor in 2022. He has published many papers

in most reputed journals. He is an academic editor and reviewer for

several journals. His research interests include control theory, fuzzy

logic systems, machine learning, neural networks, intelligent control,

electric vehicles, power systems control, chaotic systems, and medical

systems.

Seyedali Mirjalili is currently a

Professor and the Founding

Director of the Centre for Arti-

ficial Intelligence Research and

Optimization, Torrens Univer-

sity Australia. He is interna-

tionally recognized for his

advances in optimization and

swarm intelligence, including

the first set of algorithms from a

synthetic intelligence stand-

point-a radical departure from

how natural systems are typi-

cally understood a systematic

design framework to reliably

benchmark, evaluate, and propose computationally cheap robust

optimization algorithms. He has published over 400 publications with

over 105,000 citations and an H-index of 109. As the most cited

researcher in robust optimization, he has been on the list of 1%

highly-cited researchers and named as one of the most influential

researchers in the world by Web of Science for three consecutive

years, since 2019. In 2020, he was ranked 21st across all disciplines

and 4th in artificial intelligence and image processing in the Stanford

University’s list of World’s Top Scientists. In 2021, The Australian

newspaper named him as the top researcher in Australia in three

fields: artificial intelligence, evolutionary computation, and fuzzy

systems. His research interests include optimization, swarm intelli-

gence, evolutionary algorithms, and machine learning. He is an

Associate Editor of several AI journals, including Neurocomputing,

Applied Soft Computing, Advances in Engineering Software, Com-

puters in Biology and Medicine, Healthcare Analytics, Applied

Intelligence, and IEEE ACCESS.

Nima Khodadadi is currently a

research assistant, and he is

studying for his 2nd Ph.D. at the

University of Miami (UM),

Miami, USA. He has published

over 70 publications with over

2500 citations. He graduated

with a bachelor’s degree in civil

engineering and a master’s

degree in structural, and civil

engineering from the University

of Tabriz (One of the top ten

universities in Iran). He is cur-

rently studying for his 2nd

Ph.D. at the University of

Miami (UM). He got his 1st Ph.D. at the Iran University of Science

and Technology (IUST). He worked on the subject of steel structures,

particularly in the experimental and numerical investigation of Steel

braced frames with Dr. Siamak Talatahari. In addition, he has been

actively involved in engineering optimization, especially Evolution-

ary algorithms. His main research interests lie in Artificial Intelli-

gence, Machine Learning, FRP, Concrete, and Metaheuristic

algorithms. In addition, he has been actively involved in engineering

optimization, especially evolutionary algorithms. He has been

engaged in research in single and multi-objective engineering opti-

mization, especially in solving large-scale and practical structural

design problems. Recently, he has been working on artificial Intelli-

gence techniques and applications for FRP-Integrated concrete

structures.

Cluster Computing

123

Authors and Affiliations

Nastaran Mehrabi Hashjin1 • Mohammad Hussein Amiri1 • Ardashir Mohammadzadeh5 • Seyedali Mirjalili2,3 •

Nima Khodadadi4

& Nima Khodadadi

nima.khodadadi@miami.edu

Nastaran Mehrabi Hashjin

na.mehrabi@mail.sbu.ac.ir

Mohammad Hussein Amiri

mohamm.amiri@mail.sbu.ac.ir

Ardashir Mohammadzadeh

a.mzadeh@sut.edu.cn

Seyedali Mirjalili

ali.mirjalili@gmail.com

1 Faculty of Electrical Engineering, Shahid Beheshti

University, Tehran, Iran

2 University Research and Innovation Center (EKIK), Ubuda

University, Budapest, Hungary

3 Centre for Artificial Intelligence Research and Optimisation,

Torrens University Australia, Brisbane, Australia

4 Department of Civil and Architectural Engineering,

University of Miami, Coral Gables, FL, USA

5 Department of Computational and Data Science, Astana IT

University, Astana, Kazakhstan

Cluster Computing

123

	Novel hybrid classifier based on fuzzy type-III decision maker and ensemble deep learning model and improved chaos game optimization
	Abstract
	Graphical abstract

	Introduction
	Related works
	Material and methods
	Dataset
	Malware visualization
	K-fold cross validation

	Efficient capsule network
	Residual network
	ResNet-18
	ResNet-50

	Feature extraction
	Histogram of oriented gradients (HOG)

	Neighborhood component analysis (NCA)
	Support vector machine (SVM)
	Fuzzy type-III
	Optimization
	Improved chaos game optimization (ICGO)
	Evolution of CEC 2019 BFs, CEC 2017 BFs, and EDPs
	CEC 2017 BFs
	CEC 2019 BFs
	EDPs

	Optimization algorithms’ statistical evaluation

	Proposed method
	Results and discussion
	API dataset
	DLL dataset
	REG dataset
	APIthinsp+thinspDLL dataset
	APIthinsp+thinspREG dataset
	DLLthinsp+thinspREG dataset
	APIthinsp+thinspDLLthinsp+thinspREG dataset
	Main result
	Classifiers’ statistical evaluation

	Conclusion and future work
	Acknowledgements
	Author contributions
	References

