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Abstract
This study introduces the Multi-objective Generalized Normal Distribution Optimization (MOGNDO) algorithm, an

advancement of the Generalized Normal Distribution Optimization (GNDO) algorithm, now adapted for multi-objective

optimization tasks. The GNDO algorithm, previously known for its effectiveness in single-objective optimization, has been

enhanced with two key features for multi-objective optimization. The first is the addition of an archival mechanism to store

non-dominated Pareto optimal solutions, ensuring a detailed record of the best outcomes. The second enhancement is a new

leader selection mechanism, designed to strategically identify and select the best solutions from the archive to guide the

optimization process. This enhancement positions MOGNDO as a cutting-edge solution in multi-objective optimization,

setting a new benchmark for evaluating its performance against leading algorithms in the field. The algorithm’s effec-

tiveness is rigorously tested across 35 varied case studies, encompassing both mathematical and engineering challenges,

and benchmarked against prominent algorithms like MOPSO, MOGWO, MOHHO, MSSA, MOALO, MOMVO, and

MOAOS. Utilizing metrics such as Generational Distance (GD), Inverted Generational Distance (IGD), and Maximum

Spread (MS), the study underscores MOGNDO’s ability to produce Pareto fronts of high quality, marked by exceptional

precision and diversity. The results affirm MOGNDO’s superior performance and versatility, not only in theoretical tests

but also in addressing complex real-world engineering problems, showcasing its high convergence and coverage capa-

bilities. The source codes of the MOGNDO algorithm are publicly available at https://nimakhodadadi.com/algorithms-%

2B-codes.

Keywords Generalized normal distribution optimization � Multi-objective GNDO � Engineering problems

1 Introduction

Computers have recently become a primary tool in various

areas for tackling challenging problems. Computer-helped

design is an area that stresses using computers in deter-

mining problems as well as making systems. A system’s

design process would have necessitated direct human

involvement in the past. For example, if a developer

intended to locate an optimum form for a high-rise build-

ing, s/he would need to initially develop a model and then

utilize a wind tunnel to examine it.

Clearly, this design method was expensive and required

significant time, with both these elements escalating shar-

ply each year in line with human advancement.

The creation of computers accelerated the design pro-

cedure substantially several years back. This indicates that

we can utilize computers to make a system without also the

demand for a solitary model. Consequently, the design

procedure’s price and time are considerably less than

before. Despite the reality that the device is a fantastic

help, making a system still needs straight human partici-

pation. This causes a collection of experimentation where

the developer attempts to develop an effective strategy. It is

indisputable that a developer is prone to errors, which

makes the design procedure undependable. The primary

duty of a designer entails establishing the framework and

utilizing computer software to discover optimal designs.

Optimization methods are widely regarded as practical

approaches for determining the best computer designs.

Most of the approximate techniques are global search
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methods, which are called metaheuristics. These methods

are developed to alleviate the weaknesses of classical

approaches. Metaheuristic algorithms can discover nearly

global or global solutions through informed decision-

making. Over the past several decades, a wide array of

metaheuristic algorithms inspired by natural phenomena,

collective behavior, and scientific principles have been

proposed, such as Differential Evolution (DE) [1], Ant

Colony Optimization (ACO) [2], Particle Swarm Opti-

mization (PSO) [3], Hippopotamus Optimization (HO) [4]

algorithm, Mountain Gazelle Optimizer (MGO) [5], Al-

Biruni Earth Radius (BER) [6], Puma Optimization (PO)

[7] and Stochastic Paint Optimizer (SPO) [8]. Algorithms

such as Advanced Charged System Search (ACSS) [9],

Chaos Game Optimization (CGO) [10], and Dynamic

Arithmetic Optimization Algorithm (DAOA) [11] are

called physics- or mathematics-based algorithms, which

obey the rules in physics or mathematics. Many researchers

utilized these algorithms to solve structural optimization

problems such as trusses [12–15], frames [16–18], real

structural engineering applications [19–24] and applica-

tions of medicine [25–27]. The research indicates that

when applied to complex optimization issues, metaheuris-

tic algorithms have the capability to provide highly accu-

rate solutions within a practical timeframe. Ease of

implementation, simple framework, good accuracy, and

reasonable execution time are advantages of metaheuristic

algorithms compared with the analytical techniques.

Addressing real-world problems presents several chal-

lenges that necessitate the use of specific tools. Multi-ob-

jectivity is one of the essential characteristics of real-world

challenges that makes them difficult to solve. When mul-

tiple objectives need to be improved, a challenge is referred

to as a multi-objective problem. Obviously, numerous

objective optimizers need to be utilized to resolve such

issues.

David Schaffer suggested an advanced concept in 1985

[28]. He explained how to use stochastic optimization

techniques to solve multi-objective problems. Ever since,

remarkably, a considerable variety of investigations have

been committed to establishing multi-objective evolution-

ary/heuristic formulas. The application of stochastic opti-

mization techniques to real-world scenarios has been made

more accessible through the utilization of gradient-free

methods and strategies that prevent getting trapped in local

optima. Multi-objective optimization approaches are being

used in various fields these days. Strength–Pareto Evolu-

tionary Algorithm (SPEA) [29], Multi-objective Particle

Swarm Optimization (MOPSO) [30], Multi-objective

Artificial Vultures Optimization Algorithm (MOAVOA)

[31], Multi-objective Evolutionary Algorithm based on

Decomposition (MOEA/D) [32], Multi-objective Flower

Algorithm (MOFA), Multi-objective Thermal Exchange

Optimization (MOTEO) [33], Multi-objective Seagull

Optimization Algorithm (MOSOA) [34], Multi-objective

Stochastic Paint Optimizer (MOSPO) [35], Pareto–frontier

Differential Evolution (PDE) [36], Multi-objective Moth-

Flame Optimization (MMFA) [37], Multi-objective Salp

Swarm Algorithm (MSSA) [38] and Multi-objective Arti-

ficial Hummingbird Algorithm (MOAHA) [39] are multi-

objective optimization methods. Many of the single-ob-

jective methods that have been developed may also be used

to address multi-objective optimization problems. Several

of the most current ones are the Multi-objective Ant Lion

Optimizer (MOALO) [40], Multi-objective Arithmetic

Optimization Algorithm (MAOA) [41], Multi-objective

Grey Wolf Optimizer [42], Multi-objective Material Gen-

eration Algorithm (MOMGA) [43], Multi-objective Multi-

Verse Optimization (MOMVO) [44] and Multi-objective

Harris Hawks Optimization (MOHHO) [45].

The generalized normal distribution optimization

(GNDO), proposed recently by Zhang et al. [46], is rec-

ognized for its proficiency in globally searching optimal

solutions to single-objective optimization problems. An

initial glance at pertinent research demonstrates that

GNDO has successfully resolved complex optimization

challenges across numerous fields. The introduction of a

novel multi-objective algorithm can be driven by various

factors, including:

I. This multi-objective algorithm provides superior

performance compared to existing algorithms. This

can be due to the incorporation of new techniques,

optimization strategies, and design methodologies.

The improved performance can make the algorithm

more suitable for real-world applications.

II. Presenting a new algorithm that has not been

explored before can bring new insights into multi-

objective optimization. By introducing a novel

approach, one can contribute to the advancement of

the field and potentially lead to breakthroughs in

solving challenging problems.

III. Multi-objective optimization problems can be

diverse, and some may require specialized algo-

rithms that are tailored to their specific requirements.

IV. By presenting a new algorithm for the first time, one

can compare it with state-of-the-art algorithms and

demonstrate its superiority. This can help establish
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the new algorithm’s effectiveness and provide a

benchmark for future comparisons.

The main motivation for presenting MOGNDO is to

create a multi-objective (MO) variant of GNDO, equipping

it to tackle multi-objective optimization (MOO) algorithm

issues. The authors have leveraged the CEC’20 test suite to

gauge MOGNDO’s performance. The concept proposed in

the No Free Lunch (NFL) theory [47] influenced the

development of a multi-objective variant of the existing

single-objective GNDO method. To sum up, this paper

offers the following contributions:

• The MOGNDO algorithm was formulated as a multi-

objective adaptation of the GNDO algorithm, leverag-

ing its benefits. The effectiveness of MOGNDO was

measured against seven cutting-edge multi-objective

optimization (MOO) algorithms using 35 mathematical

benchmarks, encompassing CEC09, ZDT, DTLZ, and

CEC2020.

• Five indicators were used to demonstrate MOGNDO’s

strength and robustness.

• In order to differentiate the proposed MOGNDO

algorithm from other selected algorithms, a statistical

test was conducted.

• The application of MOGNDO to optimize engineering

problems further illustrated its credibility in solving

real-world problems.

• Visual representations of the Pareto sets and Pareto

fronts obtained by MOGNDO were also provided.

• The proposed MOGNDO algorithm was found to be

superior in both qualitative and quantitative analyses.

• The MOGNDO algorithm was evaluated against other

cutting-edge algorithms across multiple optimization

problems, using diverse performance indicators.

According to the NFL [47] theorem, no optimization

algorithm can solve all optimization issues, allowing sci-

entists to propose new or improve existing algorithms to

solve optimization challenges. This assertion holds valid

for both single and multi-objective optimization method-

ologies. This theorem establishes that excellent results

achieved by an optimizer on one set of problems do not

assure equivalent outcomes on a different set of problems.

This principle underlies numerous studies in the field,

enabling researchers to modify existing methods for novel

problem classes or develop new optimization algorithms. It

also serves as both the basis and the inspiration for this

study. This research introduces a multi-objective version of

the recently suggested GNDO [46], capable of addressing

optimization issues for diverse applications. As per the

NFL theorem, current algorithms documented can address

a wide range of problems, but they are only universal

solutions to some optimization challenges. This research

promotes the use of multi-objective GNDO to tackle

emerging complexities. The processes utilized resemble

those employed by MOGWO [42], yet the exploration and

exploitation stages of MOGNDO are inherited from the

GNDO algorithm.

The paper’s remainder is prepared as follows: Sect. 2

explains the terminologies of MOO problems and their

standard interpretations. Section 3 provides the standard

version of GNDO as well as suggests the MOGNDO

algorithm. Section 4 describes the outcomes, discussions,

and evaluation of the test and the engineering problems

utilized. As the last point, Sect. 5 gives the final thoughts

on the work and also the future.

The methodologies employed bear similarity to those

used by MOGWO [42], but the discovery and utilization

phases of MOGNDO are taken from the GNDO algorithm.

Here are some of the advantages that come with adopting

this approach:

• The GNDO algorithm has been modified to include an

archive to ensure that non-dominated solutions are

recovered.

• It has been decided to include a grid mechanism in the

GNDO to improve the non-dominated solutions cur-

rently in the archive.

• It has really been advised that a leader selection method

be implemented based on the current best position of

the population.

2 A study of the literature

Addressing single-objective optimization problems typi-

cally presents a more straightforward endeavor as com-

pared to multi-objective optimization problems, owing

primarily to the existence of a singular, unique solution

governed by one objective function. This singularity in

objective paves the way for a more facile process of

comparing solutions and ascertaining the absolute optimal

solution in single-objective contexts. Conversely, multi-

objective optimization problems are characterized by a

plurality of solutions, adding layers of complexity to the

solution evaluation process [48, 49]. The following is an

illustration of a MOO that can be formulated as a problem

of minimization [50]:
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Maximization : Fðx~Þ ¼ f1 x~ð Þ; f2 x~ð Þ; . . .; fz x~ð Þf g ð1Þ
Subject to : gi x~ð Þ� 0 i ¼ 1; 2; . . .;Q ð2Þ

hi x~ð Þ ¼ 0 i ¼ 1; 2; . . .;P ð3Þ
Li � xi �Ui i ¼ 1; 2; . . .;D ð4Þ

Here, the number of inequality constraints, equality

constraints, variables, and objective functions are denoted

by Q;P;D, and Z, respectively. The lower and upper limits

of the ith variable are represented by Li and Ui.

First Definition: Pareto dominance.x~ and y~ are two solu-

tions with cost functions as:

x~¼ ðx1; x2; . . .; xkÞ and y~¼ ðy1; y2; . . .; ykÞ:

Referring to Fig. 1 and considering a minimization

problem, it is stated that solution x~ dominates solution y~

(notedasx~� y~) only if none of y!’s cost components are

less than the equivalent cost components of x~, and at least

one component of x~must be smaller than that of y~. This can

be formally represented as follows:

8i 2 1; 2; . . .; kf g : fi x~ð Þ� fiðy~Þ ^ 9i 2 1; 2; . . .; kf g :
fi x~ð Þ� fiðy~Þ

ð5Þ

The concept of Pareto optimality is based on the defi-

nition of Pareto dominance [51]:

Second Definition: Pareto optimality. A solution x~2 X is

called Pareto-optimal if and only if:

9= y~2 Xjy~� x~ ð6Þ

The following description is provided for the Pareto

optimal set, which comprises all non-dominated solutions

to a specified problem [52]:

Third Definition: Pareto optimal set. The computation of

the Pareto optimal set ðPsÞ for a specific MOO is outlined

as per Eq. (7). No feasible solution within this set can be

dominated by any other feasible solution in the same set.

The ensemble of Pareto optimal solutions is illustrated in

Fig. 2.

Ps :¼ fx~; y~2 Xj9= y~� x~g ð7Þ

Here is the formulation for the Pareto optimal front:

Fourth Definition: Pareto optimal front. As depicted in

Fig. 2, a Pareto front (Pf ) represents the Pareto optimal set

in the objective space. Based on the preceding definitions,

the equation can be articulated as Eq. (8).

Pf ¼ fFðx~Þ; x~2 Psg ð8Þ

The comprehensive process of multi-objective opti-

mization is illustrated in Fig. 3. This represents an inter-

mediate or current front of non-dominated solutions found

by the optimization process. It is an approximation of the

True Pareto Front.

Fig. 1 Pareto dominance

Fig. 2 Pareto optimal solutions
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One of the most often used multi-objective GAs is

NSGA II [53]. In this version, Pareto sets are labeled

starting with the first non-dominated Front by a non-

dominated sorting mechanism. A crowded-comparison

operator assigns a crowding distance metric to each solu-

tion, subsequently steering the selection process based on

this metric. In alignment with the concept of elitism, the

algorithm opts for solutions with lower domination ranks

for survival, and prefers solutions positioned in less con-

gested locations, thereby maintaining solution diversity. In

order to achieve a population that is the same size as the

initial population, the technique for selecting non-domi-

nated individuals must be performed several times. Finally,

these steps are taken before an end condition is achieved.

Particle swarm optimization (PSO) [3] is another known

technique that draws inspiration from the collective

behavior of various species such as birds and fish. In every

iteration, the particles (solutions) are inclined to align with

the best personal and global solutions experienced by all

particles until the iteration concludes. Coello and Lechuga

[54] establishes a repository with a specific capacity to

gather non-dominated solutions, which can be deployed in

further process steps. In order to pinpoint areas of the

objective function’s search space that have been less

explored, the search space is divided into equal-sized

hypercubes. This feature allows the algorithm to preserve

solution diversity and distribute them across the entire

Pareto space, offering designers a broad range of options

instead of concentrating on specific zones. MOPSO

incorporates a mutation method known as disturbance to

enhance solution randomness and variability [55, 56].

3 Multi-objective generalized normal
distribution optimization

In the subsequent section, the GNDO algorithm is initially

introduced. Following this, a multi-objective GNDO,

aimed at resolving multi-objective optimization issues, is

formulated and put forth in the scholarly work. Lastly, the

computational complexity of MOGNDO is suggested.

3.1 Generalized normal distribution
optimization (GNDO)

The GNDO algorithm was introduced by Zhang et al. [46].

Both exploration and exploitation are balanced via several

strategies in the proposed method. Typically, the procedure

of searching in methods that use a group of solutions

involves three key phases. Initially, every starting solution

is spread out. Next, these solutions begin moving towards

the best solution, guided by specific searching and refining

strategies. Eventually, they all converge near the best-

found solution. This process can be explained using mul-

tiple normal distributions, where the location of each

solution is considered as a variable that follows a normal

distribution. At the beginning, the average location and the

best location are far apart, and the variation in all solutions’

locations is quite large. As the search progresses, the gap

between the average location and the best location narrows,

and the variation in locations decreases. In the final phase,

both the distance from the average to the best location and

the variation in solutions’ locations are minimized.

GNDO features a straightforward framework, with its

information sharing mechanisms comprising local

exploitation and global exploration. Exploitation leverages

a generalized normal distribution model, steered by the

present average and optimal positions. Meanwhile, explo-

ration involves the selection of three individuals at random.

As outlined below, the procedure started with the creation

of a random population:

xti;j ¼ lj þ uj � lj
� �

� k5 ð9Þ

where: i ¼ 1; 2; 3; . . .;N; j ¼ 1; 2; 3; . . .;D:

where the number of design variables is defined by D,

the number of population size is defined by N the lower and

upper boundary of the jth design variable is described by lj

Fig. 3 Multi-objective optimization process
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and uj, respectively.k5 is a random number in the interval

of [0, 1].

3.1.1 Exploration

All created populations are evaluated via objective func-

tion. The following steps will be continued until satisfying

the end criterion. Exploration and exploitation are switched

with a generated random number for every solution in the

population. Global exploration involves scanning the entire

speech space to identify areas with potential. In GNDO,

this exploration is conducted using three individuals cho-

sen at random. The proposed method used an equation for

exploration as follows:

vti ¼ xti þ b� k3j j � v1ð Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Local learning term

þ 1� bð Þ � k4j j � v2ð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Global learning term

ð10Þ

where two random distributions were created k3 and k4
from the normal distribution. The parameter b is a random

number between 0 and 1. The following are the two trail

vectors v1 and v2:

v1 ¼
xti � xtp1; if f ðxtiÞ\f ðxtp1Þ
xtp1 � xti; otherwise

�
ð11Þ

v2 ¼
xtp2 � xtp3; if f ðxtp2Þ\f ðxtp3Þ
xtp3 � xtp2; otherwise

�
ð12Þ

where three random integers number (p1, p2; and p3) must

satisfy p1 6¼ p2 6¼ p3 6¼ i are chosen from 1 to N. Based on

Eqs. (11) and (12), the second term on the right side of

Eq. (10) is referred to as the local learning term. This

denotes that solution p1 exchanges information with solu-

tion i. The third term on the right of Eq. (10) is termed

global information sharing, signifying that individual i

receives information from individuals p2 and p3. The

adjustment parameter b is utilized to strike a balance

between these two strategies for sharing information.

Additionally, k3 and k4 are random variables following a

standard normal distribution, enhancing GNDO’s capabil-

ity to explore a broader search space during global search

activities. The inclusion of the absolute value symbol in

Eq. (10) ensures alignment with the screening mechanism

outlined in Eqs. (11) and (12).

3.1.2 Exploitation

Local exploitation involves the pursuit of improved solu-

tions within the vicinity of the existing positions of all

individuals in the search space. This approach is grounded

in the correlation between the population’s distribution of

individuals and the normal distribution, enabling the con-

struction of a generalized normal distribution model for

optimization.

The proposed method used an equation for exploitation

as follows:

vti ¼ li þ di � g; i ¼ 1; 2; 3; . . .;N ð13Þ

M ¼
XN

i¼1

xti ð14Þ

l ¼ 1

3
xti þ xtBest þM
� �

ð15Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
xti � lð Þ2þ xtBest � lð Þ2þ M � lð Þ2

h ir

ð16Þ

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� logðk1Þ

p
� cosð2pk2Þ; if a\ ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� logðk1Þ
p

� cosð2pk2 þ pÞ; otherwise

�
ð17Þ

where vti represents the trial vector for the ith individual at

time t, li denotes the generalized mean position of the ith

individual, di signifies the generalized standard variance,

and g is the penalty factor. In addition, three random

numbers (a,b,k1 and k2) are generated between 0 and 1,

xtBest is the best position and the mean position of the

current population is defined as xtBest and M, respectively.

It’s important to recognize that the ith individual might

not always identify a superior solution through either local

exploitation or global exploration strategies. To ensure that

improved solutions are carried forward into the subsequent

generation’s population, a selection mechanism has been

devised, which can be described as follows:

xtþ1
i ¼ vti; iff ðvtiÞ\f ðxtiÞ

xti; otherwise

�
ð18Þ

The subsequent section will introduce the multi-objec-

tive variant of GNDO.

3.2 Multi-objective generalized normal
distribution optimization (MOGNDO)

To carry out multi-objective optimization, two new com-

ponents have been incorporated into the GNDO. These

components resemble those used in MOPSO [30]. The

initial element is an archive, which serves the purpose of

preserving non-dominated Pareto optimal solutions that

have been attained thus far. The subsequent element

comprises a leader selection strategy that facilitates the

identification of the most appropriate existing position

solutions from the archive to serve as leaders for the search

operation.
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3.2.1 Archive mechanism (AM)

The designed external archive aims to preserve the solu-

tions that are not dominated, as obtained up until now. It

consists of two key elements: an archive controller and a

grid. The archive controller determines whether or not a

solution is to be included in the archive. Solutions that are

dominated by those already in the archive are immediately

excluded. Conversely, solutions not dominated are added

to the archive. Should a current archive member be dom-

inated by a new solution, the new solution replaces the

older one. It is important to note that the archive has a limit

on the number of its members.

When the archive reaches its capacity, an adaptive grid

mechanism is activated. The grid’s role is to maintain the

diversity of solutions within the archive as much as pos-

sible. The objective space is segmented into multiple areas.

If a new solution falls outside the existing grid boundaries,

the grid is adjusted to encompass this new solution. If the

solution is already within the grid, it is allocated to the area

with the fewest solutions. There are four distinct scenarios

that could occur:

I. If a new member is outclassed by any existing

archive solution, it is denied entry.

II. A new solution that outclasses one or more archived

solutions leads to the removal of those solutions,

allowing the new solution to be included.

III. New solutions that neither dominate nor are domi-

nated by existing solutions are added to the archive.

IV. When the archive is full, the grid mechanism

reorganizes the objective space, removing a solution

from the most crowded segment and adding the new

solution to the least crowded segment to enhance

diversity.

The likelihood of removing a solution rises in relation to

the quantity of solutions within a given hypercube (seg-

ment). To free up space for new entries when the archive is

at capacity, solutions are first targeted for removal from the

most densely populated segments, with a solution being

randomly selected for elimination. A unique situation

arises when a solution is added outside the existing

hypercubes; in such instances, all segments are expanded to

encompass the new solution, potentially altering the seg-

mentation of other solutions as well.

3.2.2 Leader selection mechanism (LSM)

The second element involves the mechanism for selecting a

leader. the best solutions obtained so far are used as the

current best position. This leading position then steers other

search agents towards the most promising areas within the

search space, with the objective of uncovering a solution

that approximates the global optimum as closely as possi-

ble. However, in a search space with multiple objectives,

comparing solutions directly becomes complex due to the

principles of Pareto optimality outlined in the previous

section. To navigate this complexity, a leader selection

strategy is implemented. This strategy utilizes an archive

that records the best non-dominated solutions identified up

to the present. It selects leader from the less dense areas of

the search space, offering one of these non-dominated

solutions as the new optimal position. This selection pro-

cess employs a roulette-wheel method, where the likeli-

hood of each hypercube proposing a new leader is detailed

in Eq. (19), highlighting that sparsely populated hyper-

cubes are more likely to influence the selection of a new

leader.

Pi ¼
C

Ki
ð19Þ

In the equation, C is a constant number greater than one,

and K represents the number of acquired Pareto optimal

solutions in the ith section.

The chance of a hypercube being chosen for leader

selection is boosted as the count of solutions within it

diminishes, acknowledging that certain exceptional sce-

narios may necessitate specific leader selections. As a

result, the search consistently gravitates towards areas of

the search space that have not been thoroughly explored or

exposed, since the leader selection framework prioritizes

hypercubes with minimal crowding and suggests leaders

from various segments.

To improve the performance of MOGNDO for multi-

objective problems, Eq. (14) needs to be adjusted as

follows:

M ¼
PN

i¼1 x
leader
i

N
ð20Þ

In Eq. (20), M stands for the average position of the

leader population. With regards to computational com-

plexity, where n stands for the total population count and m

indicates the overall number of objectives, the computa-

tional complexity of MOGNDO is expressed as Oðmn2Þ.
This computational complexity is more efficient than

methods such as NSGAII [53], which have a complexity of

Oðmn3Þ: The pseudo-code of MOGNDO is ultimately

provided as follows:
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To grasp the theoretical efficiency of the proposed

MOGNDO algorithm for multi-objective problems, a few

points can be highlighted as follows:

• The external archive efficiently stores the top non-

dominated solutions discovered up to now.

• The GNDO mechanism ensures both exploration and

exploitation within the search for MOGNDO.

• The grid mechanism, alongside the leader selection

component, preserves the archive’s diversity throughout

the optimization process.

• The roulette-wheel method used in selecting leader

assigns a lower probability for choosing leader from the

most populated hypercubes.

• The MOGNDO algorithm retains all the features of

GNDO, indicating that the search agents explore and

exploit the search space in an identical way.

The convergence of the MOGNDO algorithm undoubt-

edly derives from the GNDO algorithm since it employs

the same mathematical framework to seek out optimal

solutions. Search particles adjust their positions rapidly at

the beginning of the optimization process and more slowly

towards the end. This pattern ensures the algorithm’s

convergence within the search space. Selecting a single

solution from the archive allows the MOGNDO algorithm

to enhance its effectiveness. However, identifying a set of

Pareto optimal solutions that also exhibits significant

diversity poses a considerable challenge. To address this

issue, we have drawn inspiration from the MOPSO algo-

rithm, adopting its leader selection mechanism. We

employed a roulette wheel approach and Eq. (19) to select

a non-dominated solution from the archive and archive

management strategies. It is evident that the archive must

have a capacity limit, and the selection of solutions from

the archive must aim to enhance overall distribution. In

addition, if one solution from the archive is selected, the

quality can be improved by the GNDO algorithm. How-

ever, it remains challenging to discover the set of Pareto

optimal solutions with a wide range. This challenge has

been surmounted through the integration of leader feature

selection and archive maintenance.

In the MOGNDO algorithm, the initial step involves

estimating the true Pareto optimal front for a given multi-

objective optimization problem, starting with a randomly

chosen collection of solutions. Each solution is evaluated

based on multiple objectives. In single-objective opti-

mization, comparing solutions is straightforward because
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there is only one objective function. For problems where

the goal is to maximize, solution X is considered superior

to solution Y ifX[ Y . However, in the context of multi-

objective optimization, solutions cannot be directly com-

pared using simple relational operators due to the presence

of multiple criteria for comparison. Here, one solution is

deemed better than (or dominates) another if it has equal or

superior performance across all objectives and excels in at

least one objective function. The algorithm identifies and

stores all non-dominated solutions in an archive. After the

first iteration, it continually adjusts the solutions’ positions

using Eq. (9). This equation allows for the exchange of

variables with either an archived solution or a non-domi-

nated solution in the current set. The first method focuses

on utilizing the best Pareto optimal solutions obtained so

far, while the second method aids in exploring the search

space more thoroughly. This process of refining the solu-

tions continues until a predetermined stopping criterion is

fulfilled. The algorithm also improves the distribution of

solutions across all objectives by selecting solutions from

less crowded areas of the archive.

All features of the MOGNDO are inherited by the

GNDO algorithm, which suggests that search agents

explore and exploit the search space in a similar fashion.

The key difference is that MOGNDO employs an external

archive to store the non-dominated services and conducts a

search surrounding a set of archive members. Moreover,

the proposed MOGNDO comes with a few constraints,

which are as follows:

• The algorithm can only be used to optimize multi-

objective problems with no more than three or four

objectives. As the number of objectives increases, the

effectiveness of MOGNDO decreases, which is a

common issue with algorithms based on the Pareto

principle. This is because the archive fills up quickly

with non-dominated solutions, making it challenging to

find optimal solutions for problems with more than four

objectives.

• The algorithm is designed to solve optimization prob-

lems involving continuous variables, limiting its appli-

cability to other types of problems, such as discrete or

mixed-integer optimization problems.

4 Results and discussion

The effectiveness of the proposed approach is assessed in

this section using performance metrics and 35 distinct case

studies. These encompass unconstrained and constrained

bi-objective and tri-objective mathematical problems, as

well as practical engineering design problems. These tests

and mathematical functions are used to ascertain the

capability of multi-objective optimizers in addressing non-

convex and non-linear challenges. The algorithm has been

implemented in MATLAB 2022a, the details of which are

described below. The computer specifications used to carry

out this project are as follows: a Macintosh computer with

OS X, powered by an Intel Core i9 platform, equipped with

16GB 2400MHz DDR4 RAM and a 2.3 GHz CPU (macOS

Ventura).

4.1 Performance metrics

In order to evaluate the results of the algorithms, we

employed five metrics in the following manner [58, 59]:

Table 1 Parameters setting of all algorithms

Parameters MOPSO MOGWO MOHHO MSSA MOALO MOMVO MOAOS MOGNDO

Mutation probability (Pw; or pro) 0.5 – 0.5 – – – – –

Population size (Npop) 100 100 100 100 100 100 100 100

Archive size (Nrep; or TM) 100 100 100 100 100 100 100 100

Number of adaptive grid (Ngrid) 30 30 30 30 30 30 30 30

Personal learning coefficient (C1) 1 – 1 – – – – –

Global learning coefficient (C2) 2 – 2 – – – – –

Inertia weight (w) 0.4 – 0.4 – – – – –

Beta 4 4 4 4 4 4 4 4

Gamma 2 2 2 2 2 2 2 2
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Generational distance (GD): The aggregate distance

between potential solutions generated through various

methods provides a smart metric for evaluating the con-

vergence traits of multi-objective meta-heuristic

algorithms.

GD ¼ 1

npf

Xnpf

i¼1

dis2i

 !1
2

ð21Þ

Spacing (S): A metric to demonstrate the degree of

divergence among solution candidates when contrasted

against various result sets obtained by multiple algorithms.

S ¼ 1

npf

Xnpf

i¼1

ðdi � dÞ2
 !1

2

where d ¼ 1

npf

Xnpf

i¼1

di ð22Þ

Maximum spread (MS): This illustrates the dispersion

of potential solutions amongst other achieved sets, taking

into account the diverse optimal choices.

MS ¼ 1

m

Xm

i¼1

min f maxi ;Fmax
i

� �
�maxðf mini ;Fmin

i Þ
Fmax
i � Fmin

i

� �2" #1
2

ð23Þ

Inverted generational distance (IGD): This measure

enables precise performance assessment of Pareto front

approximations using multi-objective optimization meth-

ods [60].

IGD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 d
2
i

p

n
ð24Þ

Wilcoxon rank-sum Test (WRT): The Wilcoxon rank-

sum test, a non-parametric statistical technique, is

employed to determine whether two or more datasets

originate from an identical distribution. This test employs a

significance level of 5%. This examination is utilized to

conduct a comprehensive evaluation of the efficacy of the

algorithm. As per the null hypothesis, if the mean metrics

attained by the two algorithms under comparison are the

same, there is no discernible difference in their perfor-

mance. Conversely, the alternative hypothesis proposes

that a difference exists in the mean metrics generated by

the algorithms under comparison. The paper presents a

comparative analysis of the algorithms, highlighting their

differences with mathematical symbols such as subtraction,

addition, and equality operators. These indicators denote

whether the algorithm exhibits inferior performance, sig-

nificantly superior performance, or no distinguishable dif-

ference, correspondingly.

The evaluation of the algorithms’ performance in

approximating Pareto optimal solutions is determined by

Table 2 Mathematic ZDT and DTLZ problems

Function Mathematical formulation D Range

ZDT1
F1 ¼ x1;F2 ¼ g 1�

ffiffiffiffiffiffiffiffiffi
F1=g

q	 

; g ¼ 1þ 9

d�1

Pd

i¼2

xi
30 xi 2 ½0; 1�

ZDT2
F1 ¼ x1;F2 ¼ g 1� F1=g

	 
2� �
; g ¼ 1þ 9

d�1

Pd

i¼2

xi
30 xi 2 ½0; 1�

ZDT3
F1 ¼ x1;F2 ¼ g 1�

ffiffiffiffiffiffiffiffiffi
F1=g

q
� F1=gsinð10pF1Þ

	 

; g ¼ 1þ 9

d�1

Pd

i¼2

xi
30 xi 2 ½0; 1�

ZDT4
F1 ¼ x1;F2 ¼ g 1�

ffiffiffiffiffiffiffiffiffi
F1=g

q	 

; g ¼ 1þ 10 d � 1ð Þ þ

Pd

i¼2

ðx2i � 10cosð4pxiÞÞ
10 x1 2 ½0; 1�

xi 2 ½�5; 5�
i ¼ 1; . . .;D

ZDT6
F1 ¼ 1� exp �4x1ð Þsin6ð6px1Þ;F2 ¼ g 1� F1=g

	 
2� �
; g ¼ 1þ 9

Pd

i¼2
xi

d�1

� �0:25 10 xi 2 ½0; 1�

DTLZ2 F1 ¼ 1þ gð Þ cos x1
p
2

� �� �
cos x2

p
2

� �� �
; F2 ¼ 1þ gð Þ cos x1

p
2

� �� �
sin x2

p
2

� �� �
;

F3 ¼ 1þ gð Þ sin x1
p
2

� �� �
; g ¼

Pd

i¼3

ðxi � 0:5Þ2

12 xi 2 ½0; 1�

DTLZ4 F1 ¼ 1þ gð Þ cos xp1
p
2

� �� �
cos xp2

p
2

� �� �
; F2 ¼ 1þ gð Þ cos xp1

p
2

� �� �
sin xp2

p
2

� �� �
;

F3 ¼ 1þ gð Þ sin xp1
p
2

� �� �
; g ¼

Pd

i¼3

ðxi � 0:5Þ2

12 xi 2 ½0; 1�
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Table 3 CEC-09 problems with two objectives

Function Mathematical formulation D Range

UF1

f1 ¼ x1 þ
2

jJ1j
X

j2J1
xj � sin ð6px1 þ

jp
n

� �� �2
;

J1 ¼ j j j is odd and 2� j� nf g;

30 x1 2 ½0; 1�
xi 2 ½�1; 1�]
i ¼ 1; . . .;D

f2 ¼ 1�
ffiffiffi
x

p
þ 2

jJ2j
X

j2J2
xj � sin 6px1 þ

jp
n

� �� �2

J2 ¼ j j j is even and 2� j� nf g;

UF2

f1 ¼ x1 þ
2

jJ1j
X

j2J1
y2j ;

J1 ¼ fjjj is odd and 2� j� ng;

30 x1 2 ½0; 1�
xi 2 ½�1; 1�
i ¼ 1; . . .;D

f2 ¼ 1�
ffiffiffi
x

p
þ 2

jJ2j
X

j2J2
y2j

J2 ¼ fjjj is even and 2� j� ng

yj ¼
xj � 0:3x21 cos 24px1 þ

4jp
n

� �
þ 0:6x1

� �
cos 6px1 þ

jp
n

� �
if j 2 J1

xj � 0:3x21 cos 24px1 þ
4jp
n

� �
þ 0:6x1

� �
cos 6px1 þ

jp
n

� �
if j 2 J2

8
>><

>>:

UF3

f1 ¼ x1 þ
2

J1j j 4
X

j2J1
y2j � 2

Y

j2J1
cos

20yjpffiffi
j

p
� �

þ 2

 !
30 xi 2 ½0; 1�]

f2 ¼
ffiffiffiffiffi
x1

p þ 2

J2j j 4
X

j2J2
y2j � 2

Y

j2J2
cos

20yjpffiffi
j

p
� �

þ 2

 !

J1 and J2 are the same as those of UF1,yj ¼ xj � x
0:5 1:0þ3 j�2ð Þ

p�2ð Þ
1 ; j ¼ 2; 3; :::; n

UF4

f1 ¼ x1 þ
2

jJ1j
X

j2J1
hðyjÞ; f2 ¼ 1� x2 þ

2

jJ2j
X

j2J2
hðyjÞ

30 x1 2 ½0; 1�
xi 2 ½�2; 2�
i ¼ 1; . . .;D

J1 and J2 are the same as those of UF1, yj ¼ xj � sin 6px1 þ jp
n

� �
; j ¼ 2; 3; . . .; n

hðtÞ ¼ jtj
1þe2jtj
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the S and MS metrics, while the measurement of their

convergence is based on the IGD and GD performance

metrics. After conducting mean-based assessments to

evaluate the performance of the algorithm and comparing it

using the Wilcoxon rank-sum test, it was determined that

the algorithm exhibited a high level of competitiveness and

effectiveness.

4.1.1 Numerical setup

This section presents a comparison among MOPSO,

MOGWO, MOHHO, MSSA, MOALO, MOMVO,

MOAOS, and MOGNDO. The best figure from a set of

Pareto optimal figures is emphasized. To ensure a fair

comparison, all experiments are performed on the same

device. Table 1 displays all initial parameters for the

aforementioned algorithms. The parameters for the algo-

rithm are set to their default values, minimizing the chance

of superior parametrization bias, as advocated by Arcuri

and Fraser [61]. Furthermore, the control parameters for

the algorithms under comparison were derived from their

respective references. The optimal parameter for each

algorithm, as outlined in their references, is utilized in this

context. It is important to note that all experiments incor-

porated 100 populations and a maximum of 1000 iterations.

The efficiency of the proposed algorithm is evaluated in

this section on 35 cases, including 7 unconstrained and

constrained functions, ten traditional multi-objective CEC-

09, eight engineering design problems, and 10 CEC-2020

problems.

The death penalty was used in multi-objective problems.

However, the death penalty’s role is to be used to discard

solutions that are not feasible, and the knowledge of those

solutions that are useful in solving the problem of con-

trolled inviolable regions is not utilized [54]. Due to its

simplicity and low computational cost, the MOGNDO

algorithm has been equipped with a death penalty feature to

deal with multiple constraints. The benchmark problems

are offered in Tables 2, 3 and 4. Engineering design

problems are considered one of the most challenging

examination problems in literary works that give various

multi-objective search spaces with different Pareto optimal

Table 3 (continued)

Function Mathematical formulation D Range

UF5 f1 ¼ x1 þ 1
2N þ e
� �

j sinð2Npx1Þj þ 2
jJ1 j
P

j2J1
hðyjÞ 30 x1 2 ½0; 1�

xi 2 ½�1; 1�
i ¼ 1; . . .;D

f1 ¼ 1� x1 þ
1

2N
þ e

� �
j sinð2Npx1Þj þ

2

jJ2j
X

j2J2
hðyjÞ

J1 and J2 are identical to those of UF1,e[ 0; yj ¼ xj � sin 6px1 þ jp
n

� �
; j ¼ 2; 3; . . .; n

hðtÞ ¼ 2t2 � cosð4ptÞ þ 1

UF6

f1 ¼ x1 þmax 0; 2
1

2N
þ e

� �
j sinð2Npx1Þ

� 

þ 2

jJ1j
4
X

j2J1
y2j � 2

Y

j2J1
cos

20yjpffiffi
j

p
� �

þ 1

 !
30 x1 2 ½0; 1�

xi 2 ½�1; 1�
i ¼ 1; . . .;D

f2 ¼ 1� x1 þmax 0; 2
1

2N
þ e

� �
j sinð2Npx1Þ

� 

2

jJ1j
4
X

j2J2
y2j � 2

Y

j2J2
cos

20yjpffiffi
j

p
� �

þ 1

 !

J1 and J2 are identical to those of UF1,e[ 0; yj ¼ xj � sin 6px1 þ jp
n

� �
; j ¼ 2; 3; . . .; n

UF7

f1 ¼
ffiffiffiffiffi
x15

p þ 2

jJ2j
X

j2J1
y2j ; f2 ¼ 1� ffiffiffiffiffi

x15
p þ 2

jJ2j
X

j2J2
y2j

30 x1 2 ½0; 1�
xi 2 ½�1; 1�
i ¼ 1; . . .;D

J1 and J2 are identical to those of UF1, e[ 0; yj ¼ xj � sin 6px1 þ jp
n

� �
; j ¼ 2; 3; . . .; n
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Table 4 CEC-09 problems with three objectives

Function Mathematical formulation D Range

UF8

f1 ¼ cosð0:5x1pÞ cosð0:5x2pÞ þ
2

jJ1j
X

j2J1
xj � 2x2 sin 2px1 þ

jp
n

� �2
 !

30 x1 2 ½0; 1�
x2 2 ½0; 1�
xi 2 ½�2; 2�
i ¼ 1; . . .;D

f2 ¼ cosð0:5x1pÞ sinð0:5x2pÞ þ
2

jJ2j
X

j2J2
xj � 2x2 sin 2px1 þ

jp
n

� �2
 !

f3 ¼ sinð0:5x1pÞ þ
2

jJ3j
X

j2J3
xj � 2x2 sin 2px1 þ

jp
n

� �2
 !

J1 ¼ fjj3� j� n; and j� 1 is a multiplication of 3g

J2 ¼ fjj3� j� n; and j� 2 is a multiplication of 3g

J3 ¼ fjj3� j� n; and j is a multiplication of 3g

UF9

f1 ¼ 0:5½maxf0; ð1þ eÞð1� 4ð2x1 � 1Þ2Þg� þ 2

jJ1j
X

j2J1
xj � 2x2 sin 2px1 þ

jp
n

� �2
 !

30 x1 2 ½0; 1�
x2 2 ½0; 1�
xi 2 ½�2; 2�
i ¼ 1; . . .;D

f2 ¼ 0:5½maxf0; ð1þ eÞð1� 4ð2x1 � 1Þ2Þg þ 2x1�x2 þ
2

jJ2j
X

j2J2
xj � 2x2 sin 2px1 þ

jp
n

� �2
 !

f3 ¼ 1� x2 þ 2
jJ3 j
P

j2J3
xj � 2x2 sin 2px1 þ jp

n

� �2	 


J1 ¼ fjj3� j� n; and j� 1 is a multiplication of 3g

J2 ¼ fjj3� j� n; and j� 2 is a multiplication of 3g

J3 ¼ jj3� j� n; and j is a multiplication of 3f g; e ¼ 0:1
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fronts: convex, non-convex, discontinuous, and also mul-

timodal. It might be observed that examination functions

with varied features are picked to evaluate the efficiency of

MOGNDO from various points of view. Although exami-

nation functions can help analyze an algorithm, solving

real problems is constantly much more difficult. Tables 5,

6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 provide the results

of 30 independent runs on the 100,000 function evaluations

for all algorithms in this study.

4.2 Numerical discussion of the ZDT and DTLZ
test function

The initial set of problems consist of mathematical prob-

lems. The mean and standard deviation results for all

performance metrics for ZDT and DTLZ problems are

displayed in Tables 5, 6, 7 and 8. The results for the GD

performance metric are indicated in Table 5. As per this

table, the Pareto optimal solutions garnered by MOGNDO

exhibit greater convergence than MOPSO, MOGWO, and

MOHHO on ZDT1, ZDT2, and ZDT3.

The results when using the IGD metric are provided in

Table 6. It can be seen that MOGNDO is slightly better

than MOPSO in this metric. These outcomes reveal the

efficiency of the MOGNDO algorithm is much steadier

than MOPSO. Considering that IGD is an excellent mea-

surement to benchmark an algorithm’s convergence, these

outcomes show that the proposed algorithm has a much

better quantitative efficiency, both considering conver-

gence and distribution convergence on this benchmark

function.

The value of the outcomes for the IGD metric is

depicted in Fig. 4. The worst outcomes come from

MOHHO handling these benchmark problems. The box-

plots depicted in Fig. 4 reveal that this algorithm yields

highly unfavorable results, while MOGNDO’s outcomes

are more competitive in comparison. In addition, the box-

plot of the MOGNDO is narrower than MOPSO, MOGWO

and also MOHHO in most problems, revealing the strength

Table 4 (continued)

Function Mathematical formulation D Range

UF10

f2 ¼ cosð0:5x1pÞ sinð0:5x2pÞ þ
2

jJ2j
X

j2J1
½4y2j � cosð8pyjÞ þ 1�

30 x1 2 ½0; 1�]
x2 2 ½0; 1�
xi 2 ½�2; 2�
i ¼ 1; . . .;D

f1 ¼ cosð0:5x1pÞ cosð0:5x2pÞ þ
2

jJ1j
X

j2J1
½4y2j � cosð8pyjÞ þ 1�

f3 ¼ sinð0:5x1pÞ þ 2
jJ3 j
P

j2J3
½4y2j � cosð8pyjÞ þ 1�

J1 ¼ fjj3� j� n; and j� 1 is a multiplication of 3g

J2 ¼ fjj3� j� n; and j� 2 is a multiplication of 3g

J3 ¼ fjj3� j� n; and j is a multiplication of 3g
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of the MOGNDO algorithm is converging towards the true

Pareto optimal front.

Table 7 shows the MS performance metric of all algo-

rithms. The coverage of Pareto optimal solutions for

algorithms is calculated by the maximum spread metric. It

is evident that the results of MOGNDO are better than

MOPSO, MOHHO and MOGWO for all test problems.

Thanks to this, the proposed method has competitive

coverage in comparison with the other mentioned methods.

MOGNDO obtains the best results in ZDT1, ZDT2, ZDT6,

DTLZ2 and DTLZ4 problems.

Based on the analysis of the true Pareto optimal front

and the best-obtained Pareto optimal fronts for the ZDT

and DTLZ problems, it is evident from Fig. 5 that

MOGNDO’s Pareto optimal front consistently outperforms

those of MOPSO, MOGWO, and MOHHO in the majority

of scenarios. This is further substantiated by the Pareto

optimal fronts for ZDT1, ZDT2, and ZDT3 shown in

Fig. 5, where all Pareto optimal solutions estimated by

MOGNDO align with the true Pareto Front. This confirms

that the suggested MOGNDO algorithm has the potential to

offer remarkable outcomes on multi-objective problems.

Table 5 Mathematic problem statistics results for the GD metric

Functions Algorithm

MOPSO MOGWO MOHHO MOGNDO

ZDT1

Ave 0.00179 0.00206 0.00214 0.00161

SD 0.00505 0.00124 0.00106 0.00022

WRT ? ? ?

ZDT2

Ave 0.14749 0.00201 0.00453 0.00158

SD 0.06521 0.00062 0.00077 0.00032

WRT ? ? ?

ZDT3

Ave 0.00020 0.00026 0.00022 0.00017

SD 0.00003 0.00009 0.00017 0.00015

WRT ? ? ?

ZDT4

Ave 4.12985 6.87465 0.00072 0.94821

SD 3.95190 7.46401 0.00132 1.71557

WRT ? ? 2

ZDT6

Ave 0.02580 0.02583 0.03702 0.10548

SD 0.05801 0.05801 0.03179 0.06141

WRT 2 ? ?

DTLZ2

Ave 0.00686 0.00126 0.00499 0.00688

SD 0.00091 0.00052 0.00258 0.00040

WRT ? 2 ?

DTLZ4

Ave 0.01010 0.00187 0.02706 0.01406

SD 0.00246 0.00039 0.00755 0.01922

WRT ? 2 ?

Wþ=W� 12/2 10/4 12/2

?/-/= 6/1/0 5/2/0 6/1/0

Table 6 Mathematic problem statistics results for the IGD metric

Functions Algorithm

MOPSO MOGWO MOHHO MOGNDO

ZDT1

Ave 0.00081 0.00122 0.00126 0.00050

SD 0.00148 0.00035 0.00013 0.00006

WRT ? ? ?

ZDT2

Ave 0.05202 0.01819 0.02311 0.00051

SD 0.00950 0.00974 0.00300 0.00009

WRT ? ? ?

ZDT3

Ave 0.00026 0.00049 0.00064 0.00035

SD 0.00004 0.00007 0.00018 0.00003

WRT 2 ? ?

ZDT4

Ave 0.70747 0.36983 0.00695 0.05723

SD 0.31784 0.33799 0.00997 0.07820

WRT ? ? 2

ZDT6

Ave 0.00823 0.00359 0.00088 0.00633

SD 0.02486 0.00856 0.00024 0.00826

WRT ? ? 2

DTLZ2

Ave 0.00047 0.00301 0.00058 0.00098

SD 0.00003 0.00040 0.00004 0.00002

WRT 2 ? ?

DTLZ6

Ave 0.00168 0.00740 0.00228 0.00434

SD 0.00009 0.00037 0.00024 0.00267

WRT 2 ? ?

Wþ=W� 8/6 14/0 12/2

?/-/= 4/3/0 7/0/0 6/1/0
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The statistical results for tri-objective benchmarks (DTLZ2

and DTLZ4) are more challenging benchmarks, showing

that this method is competitive for solving more than two

objective problems. Figure 6 presents the true and the

achieved Pareto Front for tri-objective issues from two

viewing angles.

To compare the diversity of MOGNDO with MOPSO,

MOGWO and MOHHO algorithms concerning the spacing

metric, the statistical results are obtained from 30 indi-

vidual runs for ZDT and DTLZ benchmarks. Table 8 shows

the results for the spacing performance metric. MOGNOD,

MOHHO and MOGWO obtained the best results in terms

of this metric simultaneously. It is clear that the MOGNDO

presented here will provide a reasonably reliable estimate

of true Pareto optimal solutions. Evidence of the MOGN-

DO’s superiority over alternative approaches is presented

in Tables 5, 6, 7, and 8 via the Wilcoxon’s rank sum test.

Table 7 Mathematic problem statistics results for the MS metric

Functions Algorithm

MOPSO MOGWO MOHHO MOGNDO

ZDT1

Ave 0.99892 0.82895 0.97339 0.99961

SD 0.02378 0.07455 0.01906 0.00318

WRT ? ? ?

ZDT2

Ave 0.07431 0.22038 0.00002 0.99501

SD 0.23499 0.40821 0.00532 0.00489

WRT ? ? ?

ZDT3

Ave 0.99865 0.97302 0.99105 0.99116

SD 0.00179 0.02115 0.00914 0.00128

WRT 2 ? ?

ZDT4

Ave 0.46863 6.21295 0.75264 1.86344

SD 1.48194 6.92916 0.37945 3.27514

WRT ? 2 ?

ZDT6

Ave 1.11704 2.16386 1.74734 3.31874

SD 0.53983 1.60103 0.45030 1.30800

WRT ? ? ?

DTLZ2

Ave 1.09765 0.08909 1.05236 2.21711

SD 0.03087 0.03033 0.06055 0.40584

WRT ? ? ?

DTLZ4

Ave 1.24373 0.21199 1.57037 2.32417

SD 0.14187 0.06520 0.15206 0.37802

WRT ? ? ?

Wþ=W� 12/2 12/2 14/0

?/-/= 6/1/0 6/1/0 7/0/0

Table 8 Mathematic problem statistics results for the S metric

Functions Algorithm

MOPSO MOGWO MOHHO MOGNDO

ZDT1

Ave 0.01132 0.01489 0.00811 0.00909

SD 0.00108 0.00619 0.00278 0.00094

WRT ? ? ?

ZDT2

Ave 0.00073 0.00500 0.00001 0.01043

SD 0.00232 0.01031 0.00210 0.00151

WRT ? ? 2

ZDT3

Ave 0.01327 0.01512 0.01180 0.01028

SD 0.00236 0.00652 0.00278 0.00209

WRT ? ? ?

ZDT4

Ave 0.00438 1.34460 0.00833 0.10730

SD 0.01385 1.67668 0.00458 0.17431

WRT 2 ? ?

ZDT6

Ave 0.01811 0.05767 0.01105 0.09873

SD 0.03007 0.09388 0.00399 0.07624

WRT ? ? 2

DTLZ2

Ave 0.05774 0.00471 0.04096 0.18045

SD 0.00495 0.00128 0.01724 0.04137

WRT ? 2 ?

DTLZ4

Ave 0.06132 0.01174 0.05573 0.16177

SD 0.00533 0.00332 0.01273 0.03750

WRT ? 2 ?

Wþ=W� 12/2 10/4 10/4

?/-/= 6/1/0 7/2/0 7/2/0
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Table 9 CEC problem statistics results for the IGD metric

Functions Algorithm

MOPSO MOGWO MOHHO MOGNDO

UF1

Ave 0.00533 0.00627 0.00751 0.00389

SD 0.00296 0.00236 0.00073 0.00049

WRT ? ? ?

UF2

Ave 0.00416 0.00312 0.00386 0.00243

SD 0.00048 0.00014 0.00031 0.00011

WRT ? ? ?

UF3

Ave 0.01723 0.01176 0.01282 0.01470

SD 0.00108 0.00109 0.00032 0.00529

WRT ? 2 ?

UF4

Ave 0.00283 0.00277 0.00222 0.00218

SD 0.00026 0.00043 0.00009 0.00028

WRT ? ? ?

UF5

Ave 0.34235 0.31605 0.50037 0.61373

SD 0.15317 0.10235 0.08916 0.08465

WRT ? 2 ?

UF6

Ave 0.02925 0.01638 0.04112 0.04917

SD 0.00914 0.00145 0.00233 0.01154

WRT ? 2 ?

UF7

Ave 0.00434 0.00427 0.00773 0.00763

SD 0.00242 0.00205 0.00560 0.00533

WRT ? 2 ?

UF8

Ave 0.00928 0.00450 0.00344 0.00491

SD 0.00161 0.00100 0.00065 0.00063

WRT ? ? 2

UF9

Ave 0.01230 0.00411 0.00471 0.00387

SD 0.00295 0.00095 0.00073 0.00054

WRT ? ? ?

UF10

Ave 0.06330 0.03439 0.04096 0.01288

SD 0.01376 0.00908 0.00001 0.00497

WRT ? ? ?

Wþ=W� 20/0 12/8 20/0

?/-/= 10/0/0 6/4/0 10/0/0

Table 10 CEC problem statistics results for the GD metric

Functions Algorithm

MOPSO MOGWO MOHHO MOGNDO

UF1

Ave 0.02743 0.03497 0.02261 0.01148

SD 0.02539 0.03199 0.00320 0.00905

WRT ? ? ?

UF2

Ave 0.02066 0.01122 0.02675 0.00386

SD 0.00468 0.00212 0.00807 0.00075

WRT ? ? ?

UF3

Ave 0.09601 0.07206 0.04656 0.01776

SD 0.02348 0.01027 0.00213 0.01237

WRT ? ? ?

UF4

Ave 0.00930 0.01017 0.00960 0.00906

SD 0.00093 0.00348 0.00024 0.00091

WRT ? ? ?

UF5

Ave 0.42733 0.28272 0.23459 0.84808

SD 0.29837 0.15805 0.03298 0.16888

WRT ? ? 2

UF6

Ave 0.20278 0.11532 0.12362 0.52201

SD 0.16569 0.05047 0.00917 0.16704

WRT ? 2 ?

UF7

Ave 0.01794 0.00913 0.02365 0.04279

SD 0.01381 0.01232 0.00297 0.04476

WRT ? 2 ?

UF8

Ave 0.26587 0.03391 0.05737 0.00142

SD 0.08220 0.01331 0.03652 0.00074

WRT

UF9

Ave 0.40311 0.05196 0.11025 0.07831

SD 0.07992 0.02176 0.07425 0.08931

WRT ? 2 ?

UF10

Ave 1.38278 0.69388 0.30025 0.17344

SD 0.21017 0.20777 0.18031 0.17751

WRT ? ? ?

Wþ=W� 20/0 14/6 18/2

?/-/= 10/0/0 7/3/0 9/1/0
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Table 11 CEC problem statistics results for the MS metric

Functions Algorithm

MOPSO MOGWO MOHHO MOGNDO

UF1

Ave 0.97019 0.96206 0.97885 0.99976

SD 0.38257 0.11721 0.06003 0.24170

WRT ? ? ?

UF2

Ave 1.20372 1.20071 1.15449 1.21871

SD 0.15132 0.05715 0.15595 0.03751

WRT ? ? ?

UF3

Ave 1.30353 1.09227 1.00000 0.70004

SD 0.71625 0.09263 0.00320 0.48298

WRT ? ? 2

UF4

Ave 1.02946 1.00491 0.97920 1.03597

SD 0.01980 0.00867 0.01456 0.02154

WRT ? ? ?

UF5

Ave 0.63155 1.20349 0.99002 3.42353

SD 0.72675 0.86410 0.43264 1.12945

WRT ? ? ?

UF6

Ave 0.87827 1.02984 0.68589 2.64456

SD 1.20854 0.03734 0.51371 0.70124

WRT ? ? ?

UF7

Ave 1.08922 1.02022 0.99098 1.29359

SD 0.25804 0.04926 0.13153 0.31392

WRT ? ? ?

UF8

Ave 5.50407 0.93689 1.43347 0.85455

SD 1.46549 0.21879 0.30954 0.03824

WRT 2 ? ?

UF9

Ave 7.61837 1.42589 1.79948 2.31543

SD 1.60882 0.48994 1.13938 1.70518

WRT 2 ? ?

UF10

Ave 15.76728 6.34414 0.00301 1.27560

SD 2.35969 1.47038 0.03404 1.70290

WRT 2 ? ?

Wþ=W� 14/6 20/0 18/2

?/-/= 7/3/0 10/0/0 9/1/0

Table 12 CEC problem statistics results for the S metric

Functions Algorithm

MOPSO MOGWO MOHHO MOGNDO

UF1

Ave 0.03565 0.05871 0.03584 0.02627

SD 0.00999 0.04308 0.02451 0.00742

WRT ? ? ?

UF2

Ave 0.01857 0.01443 0.01283 0.01101

SD 0.00314 0.00409 0.00281 0.00510

WRT ? ? ?

UF3

Ave 0.02696 0.07400 0.03743 0.01001

SD 0.01571 0.02562 0.01381 0.00707

WRT ? ? ?

UF4

Ave 0.01018 0.02014 0.00620 0.01025

SD 0.00176 0.01079 0.00257 0.00139

WRT ? ? 2

UF5

Ave 0.02576 0.08949 0.01185 0.22659

SD 0.03309 0.07070 0.00377 0.10846

WRT ? ? 2

UF6

Ave 0.04377 0.13105 0.00569 0.19548

SD 0.07466 0.18372 0.00525 0.07518

WRT ? ? 2

UF7

Ave 0.01688 0.02665 0.04893 0.04361

SD 0.00830 0.04571 0.05361 0.02058

WRT 2 ? ?

UF8

Ave 0.27757 0.04431 0.03625 0.03090

SD 0.07907 0.01164 0.02026 0.01788

WRT ? ? ?

UF9

Ave 0.37998 0.06695 0.23247 0.05123

SD 0.08938 0.02289 0.02539 0.09431

WRT ? ? ?

UF10

Ave 1.09983 0.41590 0.50043 0.16842

SD 0.19502 0.13872 0.33063 0.21597

WRT ? ? ?

Wþ=W� 18/2 20/0 14/6

?/-/= 9/1/0 10/0/0 7/3/0
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4.3 Discussion of the CEC-09 test function

This section focuses on the results obtained from the

evaluations of the CEC-09 test functions. Tables 9 and 10

present the statistical outcomes for the IGD and GD met-

rics, respectively. Table 9 highlights explicitly that the

recommended MOGNDO algorithm demonstrates superior

performance in terms of IGD metrics for UF1, UF2, UF4,

UF9, and UF10. The statistical analysis of the IGD metric

for the CEC-09 test functions is visualized in boxplot

Fig. 7. It is worth discussing here that MOGNDO is really

efficient for solving more challenging than two-objective

Table 13 Engineering problem statistics results for the IGD metric

Functions Algorithm

MOPSO MOGWO MOHHO MOGNDO

BNH

Ave 0.00107 0.00338 0.00369 0.00095

SD 0.00057 0.00115 0.00030 0.00333

WRT ? ? ?

CONSTR

Ave 0.00052 0.00074 0.00117 0.00075

SD 0.00036 0.00028 0.00023 0.00020

WRT 2 ? ?

DISK BREAKE

Ave 0.00059 0.00072 0.00167 0.00326

SD 0.00006 0.00011 0.00024 0.00036

WRT 2 ? ?

4-BAR TRUSS

Ave 0.02011 0.02141 0.02020 0.02003

SD 0.00004 0.00015 0.00008 0.00002

WRT ? ? ?

WELDED BEAM

Ave 0.00060 0.00134 0.00167 0.00142

SD 0.00005 0.00039 0.00047 0.00054

WRT 2 ? ?

OSY

Ave 0.01466 0.00762 0.01336 0.00687

SD 0.00869 0.00064 0.00556 0.00258

WRT ? ? ?

SPEED REDUCER

Ave 0.06653 0.01424 0.03930 0.00985

SD 0.03131 0.00320 0.01257 0.00231

WRT ? ? ?

SRN

Ave 0.00045 0.00248 0.00140 0.00024

SD 0.00012 0.00106 0.00024 0.00002

WRT ? ? ?

Wþ=W� 10/6 16/0 16/0

?/-/= 5/3/0 8/0/0 8/0/0

Table 14 Engineering problem statistics results for the GD metric

Functions Algorithm

MOPSO MOGWO MOHHO MOGNDO

BNH

Ave 0.03389 0.06247 0.03159 0.03024

SD 0.00214 0.01565 0.00195 0.00147

WRT ? ? ?

CONSTR

Ave 0.00083 0.00089 0.00085 0.00061

SD 0.00003 0.00015 0.00015 0.00012

WRT ? ? ?

DISK BREAKE

Ave 0.00230 0.00433 0.00919 0.04542

SD 0.00056 0.00181 0.01395 0.04185

WRT 2 ? ?

4-BAR TRUSS

Ave 14.09479 11.69562 13.45197 15.03955

SD 0.51580 2.33396 0.73413 1.37877

WRT ? 2 ?

WELDED BEAM

Ave 0.01085 0.03921 0.02821 0.00539

SD 0.00200 0.03810 0.02939 0.00096

WRT ? ? ?

OSY

Ave 3.57651 1.27359 3.34079 6.07962

SD 2.52498 0.40179 2.55480 4.46173

WRT ? 2 ?

SPEED REDUCER

Ave 18.39390 8.28890 15.34775 5.92256

SD 5.31010 1.61293 4.10279 1.10406

WRT ? ? ?

SRN

Ave 0.03162 0.01674 0.02839 0.07264

SD 0.01069 0.00399 0.01362 0.01051

WRT ? 2 ?

Wþ=W� 14/2 10/6 16/0

?/-/= 7/1/0 5/3/0 8/0/0
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problems since UF9 and UF10 are tri-objective function

benchmarks. The outcomes and analyses prove that the

MOGNDO algorithm can offer really more competitive

and appealing outcomes on the multi-objective examina-

tion functions concerning the obtained Pareto Front, as

seen in Fig. 8. The Pareto optimal front for the UF5 test

problem differs from the first four tests in that it has dis-

continuities, making it a challenge to find the Pareto opti-

mal set. This is evident in Fig. 8, where the numerous

discontinuous areas pose a problem for all algorithms. The

Pareto front for the UF6 test problem has three distinct

regions and is quite similar to UF1. As shown in Fig. 8,

MOGNDO has results that are closest to the Pareto front.

True and obtained Preto fronts of UF8, UF9, and UF10

are seen in Fig. 9 from different perspectives. According to

Fig. 9, MOGNDO has generated one of the best Pareto sets

for the three objective test problems. The figure demon-

strates that MOGNDO has a good coverage and conver-

gence, whereas the other algorithms have low convergence

rates. In addition, the Pareto optimal set shown in Fig. 9

confirms that MOGNDO has better coverage than the other

algorithms. As depicted in Table 10, 60% (UF1, UF2, UF3,

Table 15 Engineering problem statistics results for the MS metric

Functions Algorithm

MOPSO MOGWO MOHHO MOGNDO

BNH

Ave 1.00000 0.87156 0.98678 1.00000

S D 0.09000 0.06696 0.01173 0.08778

WRT = ? ?

CONSTR

Ave 0.99384 0.97790 0.95021 0.99922

SD 0.00686 0.02011 0.02024 0.03270

WRT ? ? ?

DISK BREAKE

Ave 0.99928 0.99582 1.00021 1.06589

SD 0.00114 0.01281 0.01393 0.20205

WRT ? ? ?

4-BAR TRUSS

Ave 1.48748 1.37874 1.45302 1.48753

SD 0.00055 0.04612 0.02948 0.00001

WRT ? ? ?

WELDED BEAM

Ave 1.00725 1.11069 1.10316 0.93094

SD 0.06105 0.10194 0.10980 0.06025

WRT ? 2 ?

OSY

Ave 0.32390 0.66490 0.59830 0.71947

SD 0.34284 0.02512 0.41630 0.14521

WRT ? ? ?

SPEED REDUCER

Ave 0.00001 0.76707 0.38107 0.77661

SD 0.00020 0.02418 0.21697 0.03764

WRT ? ? ?

SRN

Ave 0.90900 0.70014 0.87800 0.97434

SD 0.04546 0.08018 0.03172 0.01792

WRT ? ? ?

Wþ=W� 14/0 14/2 16/0

?/-/= 7/0/1 7/1/0 8/0/0

Table 16 Engineering problem statistics results for the S metric

Functions Algorithm

MOPSO MOGWO MOHHO MOGNDO

BNH

Ave 1.09006 1.74769 0.79799 0.94528

SD 0.13631 0.47352 0.40572 0.22767

WRT ? ? ?

CONSTR

Ave 0.05874 0.05489 0.04275 0.10070

SD 0.00589 0.00831 0.02570 0.03944

WRT ? ? 2

DISK BREAKE

Ave 0.11452 0.13331 0.10633 0.58348

SD 0.01302 0.01932 0.02281 0.57396

WRT ? ? 2

4-BAR TRUSS

Ave 5.36052 5.90453 5.99245 5.26845

SD 0.26169 1.74617 1.78906 0.66605

WRT ? ? ?

WELDED BEAM

Ave 0.23432 0.44716 0.23361 0.29580

SD 0.02570 0.21585 0.07086 0.06496

WRT ? ? 2

OSY

Ave 1.12775 1.62745 0.91658 0.90137

SD 1.46753 0.47312 0.66900 0.05630

WRT ? ? ?

SPEED REDUCER

Ave 31.0450 20.62414 9.15388 7.01506

SD 3.00438 3.18605 3.54455 5.74217

WRT ? ? ?

SRN

Ave 0.00142 2.64908 1.56020 2.98903

SD 0.00074 1.25584 0.55377 0.38569

WRT ? ? ?

Wþ=W� 16/0 16/0 10/6

?/-/= 8/0/0 8/0/0 5/3/0
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UF4, UF8, and UF10) of all CEC-09 test functions for all

algorithms in MOGNDO obtained the best results, which

show that the distance between true and obtained Pareto

Front is low in these examples.

By running 30 times on CEC-09 optimization problems

independently, the MS metric for MOPSO, MOGWO,

MOHHO, and the proposed method is listed in Table 11. It

is evident that MOGNDO shows good results compared

with the other mentioned methods. These outcomes indi-

cate the MOGNDO gains the best results of 5 CEC-09

benchmarks out of 10. The average and standard deviation

of the S performance metric are listed in Table 12. UF1,

UF2, UF3, UF8, UF9, and UF10 have the best results in

terms of average. Inspecting the results on UF8, UF9, and

UF10, which have three objective functions, the

MOGNDO algorithm obtained the first rank. It proves the

proposed method will also be a good choice for more than

two objective function problems. The results of the Wil-

coxon rank sum test, presented in Tables 9, 10, 11 and 12,

provide strong evidence that MOGNDO surpasses the other

evaluated methods significantly.

4.4 Discussion of the engineering problem results.

The last collection of examination functions is one of

the most difficult ones and also consists of eight real

engineering design problems. Equations (25) to (75) reveal

that these problems have varied features. As a result, the

very fit benchmarking the efficiency of the recommended

MOGNDO algorithm. The different behavior of the best

Pareto optimal fronts and the obtained Pareto fronts are

shown compared to the true ones in Fig. 10. MOGNDO has

superior coverage and convergence among all the algo-

rithms. Based on the four superior metrics, as well as its

acceptable coverage and convergence factors, MOGNDO

is better equipped to provide better solutions for the BNH,

CONSTR, WELDED BEAM, and SRN design problems

than the other algorithms.

The convergence of the MOGNDO algorithm in the

mentioned design problems is nearly 100% similar to the

true Pareto Front, as shown in this figure. Convergence is

reasonable due to this, and coverage is exceptionally high

and nearly uniform.

Constraint multi-objective test problem:

4.3.1 CONSTR

There are two constraints and two design variables in this

problem, which has a convex Pareto front.

Minimize : f1 xð Þ ¼ x1 ð25Þ
Minimize : f2 xð Þ ¼ ð1þ x2Þ=x1 ð26Þ
where : g1 xð Þ ¼ 6� ðx2 þ 9x1Þ ð27Þ

g2 xð Þ ¼ 1þ ðx2 � 9x1Þ
0:1� x1 � 1; 0� x2 � 5

ð28Þ

4.3.2 SRN

Srinivas and Deb [63] suggested a continuous Pareto

optimal front for the next problem as follows:

Fig. 4 Boxplot of the statistical results (IGD) for ZDT and DTLZ problems
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Fig. 5 True and obtained Pareto front for ZDT benchmarks
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Minimize : f1 xð Þ ¼ 2þ x1 ��2ð Þ2þ x2 ��1ð Þ2 ð29Þ

Minimize : f2ðxÞ ¼ 9x1 ��ðx2 ��1Þ2 ð30Þ

where : g1ðxÞ ¼ x21 þ x22 � 255 ð31Þ

g2 xð Þ ¼ x1 � 3x2 þ 10

� 20� x1 � 20;�20� x2 � 20
ð32Þ

4.3.3 BNH

Binh and Korn [64] were the first to propose this problem

as follows:

Minimize : f1ðxÞ ¼ 4x21 þ 4x22 ð33Þ

Minimize : f2ðxÞ ¼ ðx1 � 5Þ2 þ ðx2 � 5Þ2 ð34Þ

where : g1ðxÞ ¼ ðx1 � 5Þ2 þ x22 � 25 ð35Þ

Fig. 6 True and obtained Pareto front for DTLZ2 and DTLZ4
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g2ðxÞ ¼ 7:7� ðx1 � 8Þ2 � ðx2 þ 3Þ2

0� x1 � 5; 0� x2 � 3
ð36Þ

4.3.4 OSY

Osyczka and Kundu [65] proposed five distinct regions for

the OSY test issue. There are also six constraints and six

design variables to consider as bellow:

Minimize : f1ðxÞ ¼ x21 þ x22 þ x23 þ x24 þ x25 þ x26 ð37Þ

Minimize :

f2 xð Þ ¼ ½25ðx1 � 2Þ2 þ ðx2 � 1Þ2 þ ðx3 � 1Þ2ðx4 � 4Þ2

þ ðx5 � 1Þ2�
ð38Þ

Where : g1 xð Þ ¼ 2� x1 � x2 ð39Þ
g3ðxÞ ¼ �2� x1 þ x2 ð40Þ
g4ðxÞ ¼ �2þ x1 � 3x2 ð41Þ

g5ðxÞ ¼ �4þ x4 þ ðx3 � 3Þ2 ð42Þ

g6ðxÞ ¼ 4� x6 � ðx5 � 3Þ3

0� x1 � 10; 0� x2 � 10; 1� x3 � 5

0� x4 � 6; 1� x5 � 5; 0� x6 � 10

ð43Þ

Constraint multi-objective engineering problems:

4.3.5 Four-bar truss design problem

The 4-bar truss design problem [66], in which the structural

volume (f1) and displacement (f2) of a 4-bar truss should be

minimized, is a well-known problem in the structural

optimization field. There are four design variables (x1-x4)

connected to the cross-sectional area of members 1, 2, 3,

and 4, as shown in the equations below:

Minimize :

f1 xð Þ ¼ 200

� 2� x 1ð Þ þ sqrt 2� x 2ð Þð Þ þ sqrt x 3ð Þð Þ þ x 4ð Þð Þ
ð44Þ

Minimize :

f2ðxÞ ¼ 0:01� 2

xð1Þ

� �
þ 2� sqrtð2Þ

xð2Þ

� �
� ðð2

� sqrtð2ÞÞ=xð3ÞÞ þ ð2=xð1ÞÞÞ

ð45Þ

Where : 1� x1 � 3; 1:4142� x2 � 3

1:4142� x3 � 3; 1� x4 � 3

4.3.6 Welded beam design problem

Ray and Liew [67] suggested four constraints for the

welded beam design issue. In this issue, the fabrication cost

(f1) and beam deflection (f2) of a welded beam should be

Fig. 7 Boxplot of the statistical results (IGD) for CEC-09 problems
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Fig. 8 True and obtained Pareto front for CEC-09 benchmarks (UF1-7)
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minimized. The thickness of the weld (x1), the length of the

clamped bar (x2), the height of the bar (x3) and the thick-

ness of the bar (x4) are the four design variables.

Minimize :

f1 xð Þ ¼ 1:10471� xð1Þ2 � x 2ð Þ þ 0:04811� xð3Þ
� xð4Þ � ð14þ xð2ÞÞ

ð46Þ

Minimize :

f2 xð Þ ¼ 65856000=ð30� 106 � xð4Þ � xð3Þ3Þ ð47Þ

Where : g1 xð Þ ¼ s� 13600 ð48Þ
g2ðxÞ ¼ r� 30000 ð49Þ
g3 xð Þ ¼ x 1ð Þ � xð4Þ ð50Þ

g4 xð Þ ¼ 6000� P

0:125� x1 � 5; 0:1� x2 � 10

0:1� x3 � 10; 0:125� x4 � 5

ð51Þ

q ¼ 6000 	 14þ xð2Þ
2

� �
; D

¼ sqrt
xð2Þ2

4
þ xð1Þ þ xð3ÞÞ2

4

 !

ð52Þ

J ¼ 2

	 xð1Þ 	 xð2Þ 	 sqrtð2Þ 	 xð2Þ2

12
þ ðxð1Þ þ xð3ÞÞ2

4

 ! !

ð53Þ

a ¼ 6000

sqrtð2Þ 	 xð1Þ 	 xð2Þ ð54Þ

b ¼ Q 	 D
J

ð55Þ

4.3.7 Disk brake design problem [67]

Ray and Liew [67] proposed the disc brake design issue,

which has multiple constraints. Stopping time (f1) and

brake mass (f2) for a disc brake are the two objectives to be

minimized. The inner radius of the disc (x1), the outer

radius of the disc (x2), the engaging force (x3), and the

number of friction surfaces (x4) as well as four constraints,

are shown in the following equations.

Minimize :

f1 xð Þ ¼ 4:9� ð10Þð�5Þ � ðxð2Þð2Þ � xð1Þ 2ð ÞÞ � ðxð4Þ
� 1Þ

ð56Þ

Minimize :

f2 xð Þ ¼ ð9:82� ð10Þ
ð6Þ
ÞÞ � ðxð2ÞÞ 2ð Þ

� x 1ð Þ 2ð ÞÞÞ= ðxð2ÞÞ 3ð Þ � xð1Þ 3ð ÞÞ � x 4ð Þ � x 3ð Þ
	 


ð57Þ
g1 xð Þ ¼ 20þ x 1ð Þ � xð2Þ ð58Þ
g2 xð Þ ¼ 2:5þ x 4ð Þ þ 1ð Þ � 30 ð59Þ

g3 xð Þ ¼ ðx 3ð ÞÞ=ð3:14� x 2ð Þ2�x 1ð Þ2
	 
2

Þ � 0:4 ð60Þ

g4 xð Þ ¼ 2:22� 10ð Þ �3ð Þ�x 3ð Þ � x 2ð Þ3�x 1ð Þ3
	 
	 


=

x 2ð Þ2�x 1ð Þ2
	 
2� �

� 1

ð61Þ

g5 xð Þ ¼ 900� 2:66� 10ð Þ �2ð Þ�x 3ð Þ � x 4ð Þ
	

� x 2ð Þ3�x 1ð Þ3
	 



= x 2ð Þ2�x 1ð Þ2
	 
2� � ð62Þ

Where : 55� x1 � 80; 75� x2 � 110

1000� x3 � 3000; 2� x4 � 20

4.3.8 Speed reducer design problem

The weight (f1) and stress (f2) of a speed reducer should be

minimized in the speed reducer design issue, which is well-

known in the field of mechanical engineering [66, 68].

There are seven design variables: gear face width (x1),

teeth module (x2), number of teeth of pinion (x3 integer

variable), distance between bearings 1 (x4), distance

between bearings 2 (x5), diameter of shaft 1 (x6), and

diameter of shaft 2 (x7) as well as eleven constraints.

Minimize : f1 xð Þ ¼ 0:7854� x 1ð Þ � xð2Þ2 � ð3:3333� x ð3Þ2 þ 14:9334� x 3ð Þ
	 


. . .

� 43:0934Þ � 1:508� xð1Þ � ðxð6Þ2 þ xð7Þ2

ð63Þ

Minimize :

f2ðxÞ ¼ ððsqrtððð745 	 xð4ÞÞ=xð2Þ 	 xð3ÞÞÞ2

þ 19:9e6Þ=ð0:1 	 xð6Þ3ÞÞ
ð64Þ

bFig. 9 True and obtained Pareto front for CEC-09 benchmarks (UF8-

10)
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where : g1 xð Þ ¼ 27=ðx 1ð Þ � x 2Þ2 � x 3ð Þ
	 


� 1 ð65Þ

g2 xð Þ ¼ 397:5=ðx 1ð Þ � xð2Þ2 � x 3Þ2
	 


� 1 ð66Þ

g3 xð Þ ¼ ð1:93� ðxð4Þ3Þ=ðxð2Þ � xð3Þ � ðxð6Þ4Þ � 1

ð67Þ

g4 xð Þ ¼ ð1:93� ðxð5Þ3Þ=ðxð2Þ � xð3Þ � ðxð7Þ4Þ � 1

ð68Þ

Fig. 10 True and obtained Pareto front for the engineering design problem
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g5 xð Þ ¼ ððsqrtðð745� x 4ð ÞÞ=xð2Þ
� x 3ÞÞÞ2 þ 16:9e6
	 


Þ=ð110� x 6Þ3
	 


Þ � 1

ð69Þ

g6 xð Þ ¼ ððsqrtðð745� x 4ð ÞÞ=xð2Þ
� x 3ÞÞÞ2 þ 157:5e6
	 


Þ=ð85� x 7Þ3
	 


Þ � 1

ð70Þ

Fig. 10 continued
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g7 xð Þ ¼ ððxð2Þ � xð3ÞÞ=40Þ � �1 ð71Þ

s ¼ sqrt a2 þ 2� a� b� xð2Þ
2� D

þ b2
� �

ð72Þ

r ¼ 504000

xð4Þ � xð3Þ2
ð73Þ

tmpf ¼ 4:013� 30� 106

196
ð74Þ

P ¼ tmpf � sqrt xð3Þ2 � xð4Þ6

36

 !

� 1� xð3Þ �
sqrt 30

48

� �

28

� �
ð75Þ

The performance of MOGNDO, in comparison with

MOPSO, MOGWO, and MOHHO, shows a high degree of

competitiveness, particularly in the best Pareto front-of-rest

problems. The outcomes of these algorithms are quantita-

tively compared using a similar set of efficiency metrics,

and the corresponding results are displayed in Tables 13,

14, 15 and 16.

Most of the constrained test function results, as depicted

in Tables 13 and 14, highlight the superior performance of

MOGNDO over the other three algorithms. This domi-

nance is further evident in the Generational Distance (GD)

and Inverted Generational Distance (IGD) metrics, sug-

gesting outstanding convergence. Table 14 GD perfor-

mance measurement results distinctly indicate the

superiority of the newly proposed algorithm over MOPSO,

MOGWO, and MOHHO. Additionally, the boxplot of the

IGD metric for engineering problems, displayed in Fig. 11,

verifies that MOGNDO outperformed the others in 75% of

the engineering problems based on the IGD metric.

According to Tables 15 and 16, the statistical results for

the MS and S metrics show that the proposed MOGNDO

algorithm competes well with other algorithms. These

tables list the average and standard deviation results for the

MS and S performance metrics. The MOGNDO algorithm

excels in terms of the MS performance metric. Further-

more, in some problems, the coverage of the proposed

method on engineering test functions surpasses that of

other algorithms. As evidenced by the results in these

tables, MOGNDO can surpass other methods in identifying

Pareto optimal fronts with distinct regions.

The results of examinations show that the MOGNDO

algorithm has high convergence and coverage. The high

convergence of this algorithm is inherited by its standard

version and leader selection mechanism. The results

showed that this method’s merit is high coverage and is

guaranteed by archive maintenance and leader feature

selection function. Tables 13, 14, 15, and 16 present the

results of a Wilcoxon rank sum test, demonstrating without

a shadow of a doubt that the MOGNDO is the most

effective of the other tested methods.

Fig. 11 Boxplot of the statistical results (IGD) for engineering problems
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Fig. 12 True and obtained Pareto front for CEC-2020 problems
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Figure 12.  (continued) True and obtained Pareto Front for CEC-2020 problems
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4.4 Discussion of the CEC20 problem results

This section assesses MOGNDO, the proposed multi-ob-

jective approach, and its ability to address various issues at

CEC-2020. A comparison is made between MOPSO,

MOGWO, MOHHO, MSSA, MOALO, MOMVO, and

MOAOS. Information about the MMO evaluation func-

tions is provided in [62]. The MMO evaluation process

encompasses linear, non-linear, convex, and concave

problems.

Figure 12 compares the ideal Pareto fronts against those

achieved for the CEC-2020 benchmark problems labeled

M1 through M10. The graphical representation clearly

shows the disparity between the theoretical optimal Pareto

fronts and those derived through our algorithm is remark-

ably small. For each of the ten benchmark problems pre-

sented, the results obtained from our algorithm align

closely with the true Pareto fronts, showcasing a consis-

tency not observed in the results from alternative algo-

rithms, which exhibit notable variations for each problem

scenario.

Table 17 elaborates on the statistical evaluation of the

performance based on the GD metric. Here, the MOGNDO

method stands out by achieving the best average GD values

for a majority of the problems, precisely seven out of ten.

The MOAOS follows as the second-best method, leading in

mean values for three problems, while other evaluated

methods did not produce notable results in this comparison.

Furthermore, when examining the standard deviation of the

GD performance, our method demonstrates a superior

capability in pinpointing eight out of ten optimal solutions,

outperforming MOAOS and MOHHO. The latter methods

only manage to secure a commendable position in one

instance for MOAOS, based on SD, underlining the

robustness of our current approach in identifying solutions

that closely adhere to the ideal outcomes.

Table 18 provides an overview of the IGD metric’s

statistical results, indicating the MOGNDO method’s

dominance in obtaining the best average IGD values across

eight of the ten problems. When considering the standard

deviation of these results, MOGNDO again excels by

securing the best outcomes in six instances. MOAOS is

recognized for its performance according to the standard

deviation of IGD, securing the second rank, whereas other

methods lag behind in average and standard deviation

measures.

The assessment continues with Table 19, which details

the statistics for the S metric, highlighting that our method

identifies the optimal average values in eight instances and

excels in standard deviation measures for six instances.

This demonstrates the method’s effectiveness in ensuring

diverse yet accurate solution sets. Other methods like

MOPSO and MOHHO are noted for finding a couple and

one optimal standard deviation value, respectively, but they

do not match the overall efficacy of our approach.

Finally, Table 20 summarizes the performance evalua-

tion based on the MS metric, where MOGNDO again leads

by achieving the highest number of optimal average and

standard deviation values across the benchmarks. This

superiority is affirmed by results from the Wilcoxon rank

sum test across Tables 17, 18, 19 and 20, solidifying

MOGNDO’s position as significantly more efficient in

navigating and solving the CEC-2020 benchmark problems

compared to the competing methods.

Following is a summary of the experiment’s findings:

• As shown in Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19 and 20, the experimental results show

that the MOGNDO algorithm has excellent coverage

and convergence capabilities. Both the archive and non-
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Table 17 Mathematic problem

statistics results for the GD

metric

Functions Algorithm

MOPSO MOGWO MOHHO MSSA MOALO MOMVO MOAOS MOGNDO

M1:MMF1

Ave 0.00432 0.00277 0.01197 0.00471 0.00341 0.01026 0.00670 0.00249

SD 0.00341 0.00296 0.00971 0.00391 0.00220 0.01943 0.00662 0.00106

WRT ? ? ? ? ? ? ?

M2:MMF2

Ave 0.00092 0.00042 0.00120 0.04935 0.04536 0.01476 0.00031 0.00078

SD 0.00040 0.00006 0.00135 0.06612 0.05900 0.03383 0.00007 0.00002

WRT ? ? ? ? ? ? 2

M3:MMF4

Ave 0.00505 0.00549 0.00589 0.01193 0.01232 0.00253 0.00712 0.00225

SD 0.00357 0.00565 0.00332 0.01345 0.01954 0.00567 0.00819 0.01002

WRT ? ? ? ? ? ? ?

M4:MMF5

Ave 0.00358 0.00702 0.02826 0.02656 0.00713 0.00273 0.00816 0.00259

SD 0.00707 0.00684 0.01704 0.02810 0.01194 0.00314 0.00721 0.00276

WRT ? ? ? ? ? ? ?

M5:MMF7

Ave 0.00217 0.00182 0.00988 0.00184 0.00153 0.00126 0.00284 0.00115

SD 0.00279 0.00048 0.00507 0.00065 0.00077 0.00069 0.00024 0.00469

WRT ? ? ? ? ? ? ?

M6:MMF8

Ave 0.00061 0.02742 0.01084 0.03746 0.08258 0.01600 0.00055 0.00043

SD 0.00006 0.11960 0.02304 0.08765 0.17631 0.04433 0.00007 0.00005

WRT ? ? ? ? ? ? ?

M7:MMF10

Ave 0.00377 0.01595 0.04521 0.00571 0.01912 0.19716 0.00260 0.00253

SD 0.00031 0.05592 0.09149 0.01403 0.04955 0.09511 0.00037 0.00027

WRT ? ? ? ? ? ? ?

M8:MMF11

Ave 0.00540 0.00363 0.00568 0.00269 0.00275 0.02926 0.00126 0.00338

SD 0.00064 0.00093 0.00075 0.00185 0.00121 0.05908 0.00070 0.00044

WRT ? ? ? ? ? ? 2

M9:MMF12

Ave 0.00053 0.00047 0.00051 0.00070 0.00118 0.00389 0.00054 0.00043

SD 0.00007 0.00008 0.00006 0.00099 0.00329 0.00416 0.00005 0.00004

WRT ? ? ? ? ? ? ?

M10:MMF13

Ave 0.00234 0.00175 0.00237 0.00138 0.00143 0.03714 0.00107 0.00183

SD 0.00025 0.00066 0.00019 0.00091 0.00053 0.04818 0.00025 0.00015

WRT ? ? ? ? ? ? 2

Wþ=W� 20/0 20/0 20/0 20/0 20/0 20/0 14/6

?/-/= 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 7/3/0
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Table 18 Mathematic problem statistics results for the IGD metric

Functions Algorithm

MOPSO MOGWO MOHHO MSSA MOALO MOMVO MOAOS MOGNDO

M1:MMF1

Ave 0.00095 0.00260 0.00276 0.00448 0.00355 0.00304 0.00061 0.00057

SD 0.00016 0.00030 0.00026 0.00177 0.00064 0.00109 0.00006 0.00004

WRT ? ? ? ? ? ? ?

M2:MMF2

Ave 0.00171 0.00094 0.00269 0.00379 0.00222 0.00188 0.00102 0.00227

SD 0.00053 0.00026 0.00049 0.00105 0.00061 0.00021 0.00023 0.00098

WRT ? 2 ? ? ? ? ?

M3:MMF4

Ave 0.00088 0.00203 0.00259 0.00465 0.00431 0.00415 0.00069 0.00061

SD 0.00013 0.00086 0.00081 0.00240 0.00231 0.00149 0.00015 0.00010

WRT ? ? ? ? ? ? ?

M4:MMF5

Ave 0.00063 0.00158 0.00227 0.00283 0.00223 0.00198 0.00042 0.00040

SD 0.00014 0.00030 0.00063 0.00061 0.00037 0.00029 0.00003 0.00002

WRT ? ? ? ? ? ? ?

M5:MMF7

Ave 0.00060 0.00185 0.00173 0.00477 0.00416 0.00229 0.00042 0.00041

SD 0.00009 0.00025 0.00040 0.00218 0.00228 0.00042 0.00003 0.00004

WRT ? ? ? ? ? ? ?

M6:MMF8

Ave 0.00049 0.00076 0.00146 0.00229 0.00279 0.00231 0.00048 0.00042

SD 0.00005 0.00021 0.00014 0.00064 0.00143 0.00032 0.00010 0.00004

WRT ? ? ? ? ? ? ?

M7:MMF10

Ave 0.00087 0.00180 0.00308 0.00663 0.01050 0.00985 0.00084 0.00071

SD 0.00012 0.00087 0.00040 0.00287 0.00467 0.00233 0.00006 0.00015

WRT ? ? ? ? ? ? ?

M8:MMF11

Ave 0.00084 0.00380 0.00269 0.00892 0.01328 0.00414 0.00074 0.00068

SD 0.00013 0.00202 0.00065 0.00428 0.00717 0.00130 0.00019 0.00013

WRT ? ? ? ? ? ? ?

M9:MMF12

Ave 0.00057 0.00170 0.00105 0.00960 0.00798 0.00320 0.00053 0.00047

SD 0.00007 0.00074 0.00023 0.00747 0.00474 0.00084 0.00003 0.00005

WRT ? ? ? ? ? ? ?

M10:MMF13

Ave 0.00048 0.00160 0.00188 0.00439 0.00851 0.00277 0.00034 0.00044

SD 0.00007 0.00077 0.00043 0.00319 0.00239 0.00086 0.00009 0.00008

WRT ? ? ? ? ? ? 2

Wþ=W� 20/0 18/2 20/0 20/0 20/0 20/0 18/2

?/-/= 10/0/0 9/1/0 10/0/0 10/0/0 10/0/0 10/0/0 9/1/0
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Table 19 Mathematic problem statistics results for the S metric

Functions Algorithm

MOPSO MOGWO MOHHO MSSA MOALO MOMVO MOAOS MOGNDO

M1:MMF1

Ave 0.01283 0.02015 0.01202 0.01742 0.01135 0.02695 0.05310 0.01027

SD 0.00192 0.01828 0.00724 0.01203 0.00630 0.03799 0.05246 0.03360

WRT ? ? ? ? ? ? ?

M2:MMF2

Ave 0.01704 0.01138 0.01163 0.01693 0.06958 0.09397 0.01618 0.01051

SD 0.00331 0.00214 0.00401 0.01170 0.10175 0.28142 0.00123 0.00110

WRT ? ? ? ? ? ? ?

M3:MMF4

Ave 0.01408 0.02913 0.00964 0.01607 0.01888 0.01111 0.04611 0.05561

SD 0.00665 0.02644 0.00319 0.01021 0.01161 0.01997 0.05149 0.05422

WRT ? ? 2 ? ? ? ?

M4:MMF5

Ave 0.01627 0.03014 0.01259 0.02066 0.01751 0.02427 0.06485 0.01120

SD 0.01788 0.01702 0.00250 0.02796 0.01549 0.03187 0.05158 0.00196

WRT ? ? ? ? ? ? ?

M5:MMF7

Ave 0.01170 0.01906 0.01273 0.01136 0.01228 0.03100 0.02713 0.01016

SD 0.00205 0.00587 0.00649 0.00698 0.00627 0.00478 0.02212 0.00191

WRT ? ? ? ? ? ? ?

M6:MMF8

Ave 0.01018 0.01622 0.00849 0.01218 0.03591 0.16707 0.00951 0.00757

SD 0.00088 0.01993 0.00336 0.00673 0.07048 0.44251 0.00208 0.00187

WRT ? ? ? ? ? ? ?

M7:MMF10

Ave 0.06569 0.08182 0.04964 0.05304 0.07248 0.13529 0.05963 0.04584

SD 0.00587 0.01858 0.01902 0.02913 0.04273 0.17111 0.01051 0.00093

WRT ? ? ? ? ? ? ?

M8:MMF11

Ave 0.06776 0.10962 0.08428 0.07500 0.06044 0.16776 0.07602 0.07445

SD 0.05818 0.03815 0.01711 0.06970 0.03524 0.29591 0.01087 0.01003

WRT ? ? ? ? ? ? ?

M9:MMF12

Ave 0.01104 0.01359 0.01097 0.01055 0.00720 0.02963 0.00869 0.00829

SD 0.00141 0.00507 0.00121 0.00762 0.01027 0.03453 0.00095 0.00091

WRT ? ? ? ? ? ? ?

M10:MMF13

Ave 0.08452 0.14062 0.05877 0.08827 0.08249 0.27118 0.09202 0.11004

SD 0.01080 0.03907 0.02099 0.07310 0.03804 0.28914 0.01045 0.03168

WRT ? ? 2 ? ? ? ?

Wþ=W� 20/0 20/0 16/4 20/0 20/0 20/0 20/0

?/-/= 10/0/0 10/0/0 8/2/0 10/0/0 10/0/0 10/0/0 10/0/0
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Table 20 Mathematic problem statistics results for the MS metric

Functions Algorithm

MOPSO MOGWO MOHHO MSSA MOALO MOMVO MOAOS MOGNDO

M1:MMF1

Ave 1.10102 1.08055 1.18416 0.99793 0.98744 1.16757 1.36164 1.38216

SD 0.07762 0.15887 0.20901 0.08508 0.05765 0.37172 0.39062 0.06629

WRT ? ? ? ? ? ? ?

M2:MMF2

Ave 1.00000 1.00000 1.00000 1.76484 2.31815 1.68734 1.00000 0.99479

SD 0.00000 0.00000 0.00000 1.03604 1.62026 1.95090 0.00000 0.00000

WRT = = = ? 2 ? =

M3:MMF4

Ave 1.13708 1.17601 1.09484 1.09506 1.16260 1.01655 1.36134 1.51770

SD 0.12218 0.21583 0.04344 0.25945 0.49183 0.14625 0.42309 0.48666

WRT ? ? ? ? ? ? ?

M4:MMF5

Ave 1.11008 1.24573 1.53080 1.37191 1.10965 1.04177 1.45189 1.59036

SD 0.26860 0.24312 0.35816 0.43900 0.29093 0.22198 0.42076 0.19200

WRT ? ? ? ? ? ? ?

M5:MMF7

Ave 1.04370 0.94314 1.17927 0.77612 0.77803 0.95502 1.14042 1.33231

SD 0.06681 0.03254 0.09733 0.15152 0.12102 0.03177 0.15302 0.23171

WRT ? ? ? ? ? ? ?

M6:MMF8

Ave 0.99484 1.60437 1.18288 1.79952 3.12249 2.01156 0.99522 0.99902

SD 0.00379 2.81011 0.42595 2.17966 4.79795 3.03677 0.00535 0.00196

WRT ? ? ? ? 2 ? ?

M7:MMF10

Ave 0.99962 1.00572 1.09775 0.82084 0.77244 1.45234 0.99786 1.50009

SD 0.00143 0.14770 0.27115 0.12721 0.21374 0.26215 0.00579 0.00121

WRT ? ? ? ? ? ? ?

M8:MMF11

Ave 0.99978 0.88170 0.97312 0.70722 0.55842 1.06549 0.99804 1.08277

SD 0.00055 0.06674 0.00856 0.10053 0.13715 0.21975 0.00366 0.03497

WRT ? ? ? ? ? ? ?

M9:MMF12

Ave 1.01428 0.96975 0.99646 0.80791 0.81452 1.08214 1.01521 1.11335

SD 0.00274 0.02686 0.01460 0.11526 0.11459 0.17556 0.00136 0.00119

WRT ? ? ? ? ? ? ?

M10:MMF13

Ave 0.99879 0.91838 0.97968 0.70201 0.54678 0.99125 0.99652 0.99547

SD 0.00162 0.04679 0.01101 0.12979 0.09708 0.14647 0.00754 0.00154

WRT ? ? ? ? ? ? 2

Wþ=W� 18/0 18/0 18/0 20/0 16/4 20/0 16/2

?/-/= 9/0/1 9/0/1 9/0/1 10/0/0 8/2/0 10/0/0 8/1/1
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dominated sorting maintenance methods contribute to

MOGNDO’s high coverage, but high convergence is a

privilege from the GNDO algorithm.

• In the same way that other archive-based MO algo-

rithms do, the MOGNDO makes use of the archive

memory in order to store the non-dominated solutions

discovered through the optimization process.

• Compared to other MO-like algorithms, the MOGN-

DO’s superior performance can be attributed to its use

of the original GNDO update mechanism, allowing it to

investigate a greater number of non-dominated solu-

tions while maintaining a high convergence and cov-

erage rate.

5 Conclusion and future works

This research developed an early multi-objective variant of

MOGNDO, which incorporated an archive to store non-

dominated solutions and a selection mechanism to identify

the ‘‘best’’ solutions for the GNDO algorithm. The archive

had a crucial role in preserving and updating the solutions,

while the recommended leader selection feature allowed

the MOGNDO algorithm to demonstrate excellent cover-

age and convergence simultaneously. The algorithm was

evaluated using 25 diverse mathematical and engineering

design problems, highlighting its effectiveness in achieving

a balance between the exploration and exploitation stages.

Metrics such as GD, IGD, S, and MS were employed to

assess the dominance and performance of the proposed

method.

Qualitative outcomes documenting the most effective

Pareto optimal front identified in 30 runs were also docu-

mented to validate these results. The proposed algorithm

was compared with highly esteemed algorithms such as

MOPSO, MOGWO, and MOHHO to validate these results.

This comparison demonstrated that our algorithm offered a

highly competitive performance relative to the mentioned

algorithms. The results and findings thus suggested that

advantages are held by the proposed algorithm over

existing multi-objective algorithms, positioning it as an

appealing solution for multi-objective optimization

problems.

Future research will involve the development of a binary

variant of the MOGNDO algorithm to address a broader

spectrum of complex, real-world problems. Another

prospective contribution lies in the creation of a version of

the proposed algorithm that considers multiple objectives

simultaneously. Moreover, future work is encouraged to

utilize MOGNDO for a range of other engineering design

problems, such as truss structures, real-time applications,

and the development of structural health assessment.
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