
A systematic mapping on software testing for blockchains

Anıl Elakaş1 • Hasan Sözer2 • Ilgın Şafak1 • Kübra Kalkan2

Received: 15 November 2023 / Revised: 3 March 2024 / Accepted: 5 March 2024
� The Author(s) 2024

Abstract
The purpose of this study is to identify and classify studies published on software testing techniques applied to blockchain

systems. Previously published reviews in related areas have a narrow focus and/or do not follow a systematic review

protocol. We conducted a systematic mapping based on an initial selection of 1025 studies. A rigorous selection process

resulted in a final pool of 17 primary studies. These studies are categorized with respect to the employed testing methods,

considered quality attributes, and functionality. We observe that most of the publications focus on testing functional

correctness or security, whereas the testing of runtime performance attracts less attention. Existing approaches mostly

employ fuzz testing or mutation testing. Search-based testing is usually combined with these techniques. The application of

model-based testing is rare. The adaptability of fuzz testing and model-based testing techniques to changing blockchain

platforms and languages remains a concern. On the other hand, performance and scalability issues are noted for search-

based techniques and mutation testing. The use and integration of multiple testing techniques also stand out as a viable

research direction.

Keywords Software testing � Blockchain � Testing techniques � Systematic literature review � Survey

1 Introduction

Blockchain stores information digitally as distributed

databases shared by nodes on peer-to-peer networks, such

as those used by cryptocurrency systems. Blockchain

removes the necessity of a central authority, provides

immunity to counterfeits, and delivers robust protection

through strong and complex algorithms [1]. Its utilization

enables users to manage their online secure transactions

without the need for an external intermediary or control

mechanism, within a peer-to-peer network of computers

(nodes) distributed around the world [1]. A blockchain is

immutable, which means that the data written on a block

cannot be reversed [1]. All these features increase the

complexity of such systems, which can be mission-critical

and subject to high levels of reliability requirements. As a

result of the immutability of the blockchain, a bug that gets

into the production system may require a complete rewrite

of the code. Due to the decentralized nature of the system

and the anonymity of the nodes, ensuring reliability and

other quality attributes is difficult.

Effective testing techniques are essential for improving

user experience, reducing failure risks, pinpointing vul-

nerabilities, uncovering performance bottlenecks, and pre-

venting potential financial losses and reputation damage

caused by faulty software. There are a variety of testing

techniques that can be applied in different contexts. The

application of a particular technique may be affected by the

quality attribute of interest, the type of fault to be detected,

and the type of software system. Software testing is the

most commonly applied approach ensuring that required

functionality and quality attributes are provisioned by a

software system [2]. For blockchain systems to be reliable,

the right blend of software testing techniques is necessary.

& Anıl Elakaş
anil.elakas@fibabanka.com.tr

Hasan Sözer

hasan.sozer@ozyegin.edu.tr

Ilgın Şafak

ilgin.safak@fibabanka.com.tr

Kübra Kalkan

kubra.kalkan@ozyegin.edu.tr

1 R&D and Innovation, Fibabanka, Istanbul, Türkiye

2 Department of Computer Science, Ozyegin University,

Istanbul, Türkiye

123

Cluster Computing
https://doi.org/10.1007/s10586-024-04421-7(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04421-7&domain=pdf
https://doi.org/10.1007/s10586-024-04421-7

This need has attracted researchers’ attention in recent

years.

As a result of the increasing number of publications in

the field of blockchain and software testing, practitioners

and researchers might find it increasingly difficult to

review and understand current state-of-the-art practices in

this area. The purpose of this paper is to report the results

of a Systematic Mapping (SM) study that we conducted to

systematically gain an overview of existing studies related

to blockchain system testing and to categorize them.

Although there exist several secondary studies (summa-

rized in Sect. 3) that focus on smart contracts’ security and

reliability, they do not follow a systematic approach in

general. A single study [3] applies a Systematic Literature

Review (SLR) [4]; however, the scope of the study is

limited to only two databases, and the categorization of

primary studies is conducted along a single dimension that

focuses on quality attributes such as performance. Like-

wise, other existing surveys focus only on a single quality

attribute like security [5] or a single testing technique like

mutation testing [6]. They do not provide a comprehensive

overview of quality attributes considered and alternative

testing techniques employed. In addition, in contrast with

this SM, they do not categorize existing primary studies

based on both of these aspects.

Our review protocol involves four databases resulting in

1025 primary studies. A rigorous selection process narrows

the list to a final pool of 17 primary studies. These studies

are categorized based on both the testing methods used and

the quality attributes they focus on. We observe that most

of the publications focus on testing functional correctness

and mutation testing, as well as security and fuzz testing.

There are several techniques and tools in this scope that are

mature enough for adoption. The testing of runtime per-

formance attracts less attention. Aside from mutation

testing and fuzz testing, 11.76% of the studies employ

search-based testing, although this technique is usually

combined with the other two techniques to improve their

efficiency. Only 17.64% of primary studies focus on

model-based testing. Hence, there is room for further

research to explore the potential applications of search-

based and model-based testing in evaluating blockchain

systems. There are certain limitations of the existing

techniques that are emphasized in primary studies. Low

recall and lack of adaptability to changing blockchain

platforms and languages are noted for model-based testing

techniques. On the other hand, performance and scalability

issues stand out for search-based techniques, fuzz testing,

and mutation testing. The use and integration of multiple

testing techniques also stand out as a viable research

direction.

The rest of this paper is organized as follows. Section 2

provides background information about blockchain and

testing approaches. Other secondary studies related to

blockchain testing are summarized in Sect. 3. Section 4

outlines the research goal and the review protocol, which

includes information about databases, keywords, and

inclusion/exclusion criteria. Section 5 discusses and clas-

sifies these studies. Section 6 further elaborates on the

state-of-the-art, limitations, research gaps and potential

future trends. Section 7 provides a discussion of validity

threats to our results. Finally, Sect. 8 concludes the paper.

2 Blockchain and testing approaches

We first provide background information on blockchains

and Smart Contracts (SCs) in Subsect. 2.1. Then, we dis-

cuss software testing in Subsect. 2.2. Finally, we summa-

rize the testing techniques used for blockchain in

Subsect. 2.3. The set of these techniques will be used as

one of the dimensions for categorizing primary studies.

2.1 Blockchains

Blockchains record transactions in a block with a hash

known as an unchangeable cryptographic signature.

Timestamped blocks group transactions and each block

contains a timestamp, a hash of the previous block, and the

number of transactions. Trust is decentralized, i.e., there is

no central authority that validates transactions. Each node

in a blockchain network stores its own blockchain copy

locally. Transaction validity is determined by consensus

among the nodes.

Permissionless and permissioned blockchains are two

different types of blockchain networks that operate with

varying levels of access control and decentralization. Per-

missionless blockchains, also known as public blockchains,

are decentralized networks that allow unfettered partici-

pation, eliminating the need for prior approval. They offer

open access, rely on a decentralized consensus mechanism,

and are characterized by their transparency. These make

them suitable for applications that require open participa-

tion and public validation of transactions. Prominent

examples of permissionless blockchains include Bitcoin

and Ethereum.

In contrast, permissioned blockchains, often referred to

as private or consortium blockchains, feature restricted

access and are primarily utilized by organizations or con-

sortiums of trusted entities. These networks hinge on cen-

tralized governance, necessitate permission for

participation, and often prioritize data privacy and confi-

dentiality. They are commonly applied in enterprise con-

texts where controlled access and privacy are paramount,

and governance can be overseen by a central authority or a

consortium. The preference between permissionless and

Cluster Computing

123

permissioned blockchains would depend on the specific

requirements of the intended use case and the desired

degree of decentralization and access control.

2.2 Software testing

Software testing serves a critical role in the Software

Development Life Cycle (SDLC) by systematically eval-

uating whether the developed software adheres to its

intended functionality and quality criteria. It reveals

potential discrepancies between requirements/specifica-

tions and actual functionality, ultimately aiding in the

identification of bugs and missing requirements.

Software testing can be divided into two upper-level

categories as functional testing and non-functional testing

as shown in Fig. 1. Functional testing examines whether a

software system aligns with its predetermined functional

requirements and specifications. It involves providing

suitable test inputs, anticipating the expected outputs, and

conducting a thorough comparison with the actual system

outputs

Functional testing branches out into diverse types such

as unit testing, integration testing, and system testing that

are applied at various phases of the SDLC. Unit testing

examines the smallest testable units of a software system,

often referred to as modules or components. These units

typically encompass individual functions or procedures.

This methodical approach aims to ensure the functional

correctness and suitability of each independent unit before

their integration. It is typically applied by the developers

themselves during the development phase, serving as the

initial testing stage within the SDLC, preceding integration

testing.

Integration testing examines the interplay and data

exchange between distinct components or modules within a

software application to identify integration-related issues.

Its primary objective is to uncover any issues or defects

that might surface when individual elements are combined

and begin interacting. It is typically applied after unit

testing and before system testing.

System testing stands as a comprehensive evaluation

point in software development, carefully examining the

entire functionality and quality of a fully integrated system.

Its primary focus lies in verifying alignment with estab-

lished requirements and assessing the system’s readiness

for delivery to end users.

Non-functional testing complements functional testing

by evaluating the software’s adherence to non-functional

requirements. These requirements do not specify a partic-

ular functionality and as such, they fall out of the scope of

functional testing. Non-functional requirements specify

constraints regarding the specified functionalities and their

quality attributes. Non-functional testing can be catego-

rized into sub-types depending on the quality attribute

being considered. We highlight performance testing and

security testing in particular, as the most relevant types of

non-functional testing within the scope of our study.

The purpose of security testing is to discover vulnera-

bilities in the system and determine whether its data and

resources are protected from outside intrusions. It ensures

that the software system is free from any threats or risks

that can cause a loss of information or repute of the

organization. Performance testing is crucial for assessing a

system’s ability to deal with (un)expected workloads. A

rigorous approach goes beyond functional correctness to

examine speed, responsiveness, and stability under varying

pressures. In essence, performance testing acts as a bridge

between theoretical capabilities and real-world scenarios,

guaranteeing a system’s ability to gracefully handle its

intended workload and deliver optimal performance in the

hands of its users.

A variety of testing techniques are employed to facilitate

both functional and non-functional testing. In the follow-

ing, we review search-based testing, fuzz testing, mutation

testing, and model-based testing, which turn out to be

predominant for testing blockchain systems.

Metaheuristic algorithms are used in search-based test-

ing [2] to generate test inputs and optimize test cases

automatically. In particular, genetic algorithms or simu-

lated annealing can be used to improve test coverage by

treating testing as a search problem and aiming at the

maximization of coverage as the objective. Our study

revealed that search-based testing is mainly used for

functional testing (See Fig. 5). It is also combined with

other testing techniques to improve their effectiveness. The

other three techniques explained below are used for both

functional and non-functional testing, where security is the

most considered quality attribute.

Fuzz testing [7], also known as fuzzing, involves pro-

viding invalid, unexpected, or random inputs to a program

to identify vulnerabilities and potential software crashes. It

is particularly useful for uncovering security vulnerabili-

ties, such as buffer overflows or input validation errors.

Therefore, it is mainly used for improving software sys-

tems’ security and robustness.Fig. 1 Types of software testing

Cluster Computing

123

Mutation testing [6] involves the injection of intentional

faults, known as mutations, into the source code to evaluate

the test suite’s ability to detect these changes and assess its

robustness. It pinpoints areas where tests may be inade-

quate or need improvement, thereby enhancing the overall

quality and effectiveness of the testing process.

Model-based testing [8] uses models of the system

under test as a basis for generating and executing test cases.

Expected system behavior is abstracted with (semi-)formal

models like finite state machines and Unified Modeling

Language (UML) diagrams. These models are used for

systematically generating test cases, ensuring comprehen-

sive coverage and adherence to system requirements. This

approach enhances the effectiveness of the testing process

and reduces the amount of manual effort involved in cre-

ating and maintaining tests.

2.3 Software testing for blockchain systems

With blockchain technology, the concept of SC emerged to

enable decentralized and automated agreement execution.

SCs are programs stored on a blockchain that run when

predetermined conditions are met. They can be utilized for

distributed test case creation and certification purposes.

The integration of SCs in software testing introduces a

novel approach where the decentralized and automated

execution capabilities of smart contracts can be harnessed

to streamline and enhance verification and validation pro-

cesses, thus enabling more efficient and effective software

system testing. One can also employ other advanced soft-

ware testing techniques in assuring the quality of block-

chain systems. In the following, we elaborate on the use of

various software testing techniques for testing blockchain

systems.

Search-based techniques are well suited to addressing

the complexity and scalability issues associated with

blockchain technology. These techniques can find near-

optimal solutions efficiently in large and complex search

spaces, which are common in blockchain environments.

However, effective fitness functions and search spaces

have to be defined in line with the blockchain’s unique

requirements and characteristics.

Fuzz testing is mainly applied to identifying security

vulnerabilities. However, it has some challenges in testing

blockchains, including adapting to the decentralized nature

of the blockchain and the complexity of SCs. In order to

effectively test both the blockchain platform and its asso-

ciated applications, such as SCs, more blockchain-specific

fuzzing tools and techniques are necessary. Although fuzz

testing provides insights into the security aspects of

blockchain systems, it still needs to evolve to meet the

unique requirements of blockchain technologies and keep

pace with their rapid development.

Mutation testing for blockchain systems modifies

aspects of the blockchain software in order to determine the

effectiveness of the test cases. This method helps ensure

that complex code, such as SCs, is correct. In order to

ensure the high level of security that blockchain requires, it

provides a rigorous evaluation of the test suite’s ability to

detect faults. However, mutation testing for the blockchain

can be time-consuming and resource-intensive. It requires

considerable programming expertise, making it less

accessible to general testing teams. Further research and

development are necessary to improve mutation testing so

as to effectively handle the unique characteristics of

blockchain architectures and smart contracts.

Model-based testing can be used for generating test

cases based on models describing the functional features of

the blockchain system. As blockchain applications are

characterized by intricate interactions and complex busi-

ness logic, this approach is especially beneficial. However,

it is challenging due to the need for highly accurate models,

and by the difficulty of setting up and maintaining these

models. Continuous refinement of models is necessary to

keep up with the rapid development of blockchain tech-

nology, especially in modeling blockchain architectures

and SC interactions accurately.

As blockchain technologies have become more complex

and diversified over the past few years, industrial trends in

blockchain testing have evolved significantly. We observed

the development of specialized testing frameworks and

tools tailored to the blockchain. There has also been an

increase in security testing required by the immutable and

extremely secure nature of blockchain and a shift toward

performance testing in order to evaluate the scalability and

efficiency of blockchain networks. In addition, SC testing

has become a critical area, with a focus on ensuring that the

code that executes contracts automatically is correct and

secure [9].

In the following, we summarize literature surveys on

testing techniques applied to blockchain systems and SCs.

3 Related work

A number of secondary studies have already been pub-

lished in the literature on blockchain system verification.

The majority of these studies [10–15] provides a survey of

formal verification methods rather than testing techniques.

There are also surveys [3, 5, 6, 16] that focus on testing.

However, some of these [5, 6] do not follow a systematic

protocol, and as such they do not present an SM. It appears

that there is only one SLR [3] that focuses on the testing of

blockchain systems. That review is conducted to identify

primary studies on testing of performance, privacy, and SC

issues (i.e., functionality) specifically. The search string

Cluster Computing

123

adopted in SLR is also aligned with this particular focus,

which leads to an initial pool of 82 studies as a result of

their search performed on two databases. These studies are

categorized based on a single dimension that represents the

considered quality attribute for testing, i.e., performance,

privacy, and functionality. We perform a categorization

along a second (orthogonal) dimension that identifies the

types of testing techniques employed.

One of the other existing surveys [5] analyzes and cat-

egorizes existing studies with respect to the target block-

chain, SC languages, and considered vulnerabilities.

Authors identify that existing tools mostly focus on the SC

code and do not consider a global view of the blockchain

system. A recent SM [16] focuses on SC testing only and

performs a categorization along mostly the same aspects,

i.e., research method, type of testing, target blockchain, and

SC languages. Authors point out the monopolization of

research/industry by an attribute or technology in various

areas, e.g., Ethereum as a blockchain network. They also

point out the lack of extensive evaluations compared to a

vast amount of solution proposals. Finally, the survey

performed by Sujeetha and Preetha [6] also focuses on SC

testing only. Moreover, their study focuses on mutation

testing in particular, rather than providing an overview of

alternative techniques.

Despite the growing volume of research track records in

the area of blockchain-based systems, there are only a few

secondary studies. These studies mainly focus on SC test-

ing and they either focus on a particular testing technique

or quality attributes considered for testing. They do not

provide a comprehensive overview of alternative attributes

and techniques, and they do not categorize existing studies

based on both of these aspects. Therefore, to address this

gap and provide a thorough review, we conducted this

study by employing the research goal and protocol pro-

vided in the following section.

4 Research goal and the review protocol

The goal of our SM is to provide an overview of the body

of knowledge and the state-of-the-art in the intersection of

software testing and blockchain technologies. We aim to

perform this mapping from two perspectives. First, we

want to identify software testing techniques that are applied

to testing blockchain systems. Second, we want to identify

which quality attributes are verified with these techniques.

We formulated the following two research questions (RQs)

aligned with these two perspectives:

• RQ1:Which testing techniques are employed for testing

blockchain systems?

• RQ2: Which quality attributes are considered when

testing blockchain systems?

In order to conduct an SM, searching for and selecting

papers is a crucial step. This process involves searching

multiple databases, using specific search terms and inclu-

sion criteria to identify relevant papers, and then carefully

screening and selecting them based on their relevance and

quality. We followed the steps below to search for and

select primary studies:

• Online database source selection

• Defining search keywords

• Application of inclusion and exclusion criteria

This section is organized as follows: Subsect. 4.1 provides

information about databases, chosen keywords, and search

strings prepared for online databases’ search engines.

Subsection 4.2 provides detailed information about the

inclusion and exclusion criteria, the review process, and the

selection phases.

4.1 Online databases and search keywords

In this study, we used online databases by reputable pub-

lishers, namely IEEE Xplore, ACM Digital Library, and

Science Direct, which are commonly referred to in sec-

ondary studies [3]. In addition, we used a generic and

inclusive indexing platform, namely Google Scholar,

which is known to be the most comprehensive source [17]

among the other alternatives like Microsoft Academic,

Scopus, and Web of Science.

We composed two keyword sets: Set 1 comprises

blockchain, and smart contract, while Set 2 consists of the

keywords testing, verification, and validation. Then, we

created search strings by combining these sets with logical

expressions, AND and OR. As a result, we used search

strings listed in Table 1 to find the primary studies. We had

to adapt these strings according to the online database

website search specification formats since each of them has

various search query formulation options and search fields.

Therefore, we had to use various key combinations. For

instance, we had to use two different search strings and

combine the results for these to employ ScienceDirect and

Google Scholar.

4.2 The review process

Figure 2 depicts the review process, which was executed

between March and April 2023. The review protocol and

the selection criteria were discussed among all the authors

of this paper. The primary study selection was made by the

first author and it was reviewed by the second author.

Cluster Computing

123

In this study, we determined seven main phases as listed

in the following.

• Phase 0. Full List: Four different searches were

executed in the online databases with relevant search

strings listed in Table 1. The search was conducted to

cover all the publications between the years 2012 and

2022. A total of 1025 papers were found in the search. 5

publishers that are associated with the highest number

of primary studies found in online databases are shown

in Table 2.

• Phase 1. Duplicate Elimination: Since Google Scholar

online database returns results from different publishers

such as IEEE, ACM, Springer, ScienceDirect, Elsevier,

etc., there were duplicates in 1025 papers collected

from four different online databases in Phase 0. In this

phase, we eliminated 284 duplicate papers from the full

list. As a result, 741 papers remained after Phase 1 (See

Fig. 2).

• Phase 2. Irrelevant Venue Elimination: The papers were

evaluated according to the conferences in which they

were presented. We eliminated 235 papers published in

non-refereed conferences or those with a lack of

publisher information. Following this phase, only 506

papers remained.

• Phase 3. Irrelevant Title Elimination: We evaluated the

papers by reading their titles. A paper whose title

indicates that it is on a different subject than our focus

area has been eliminated. After eliminating papers with

irrelevant titles, 127 papers remained.

Fig. 2 The review process

Table 1 Search strings defined

for each online database
Database Search string

IEEE Xplore (‘‘Document Title‘‘:blockchain AND ‘‘Document Title’’:test*) OR

‘‘Document Title‘‘:blockchain AND ‘‘Document Title’’:verification) OR

(‘‘Document Title‘‘:blockchain AND ‘‘Document Title’’:validation) OR

(‘‘Document Title‘‘:smart contract AND ‘‘Document Title’’:test*) OR

(‘‘Document Title‘‘:smart contract AND ‘‘Document Title’’:verification) OR

(‘‘Document Title‘‘:smart contract AND ‘‘Document Title’’:validation)

ACM Digital Library (blockchain AND test) OR (blockchain AND verification) OR

(blockchain AND validation) OR (smart contract AND test) OR

(smart contract AND verification) OR (smart contract AND validation)

ScienceDirect String 1: (blockchain AND test) OR (blockchain AND verification)

OR (blockchain AND validation) OR (smart contract AND test)

String 2: (smart contract AND verification) OR

(smart contract AND validation)

Google Scholar String 1: allintitle: Test OR Validation OR Verification ‘‘smart contract‘‘

String 2: allintitle: Blockchain Test OR Validation OR Verification

Cluster Computing

123

• Phase 4. Accessibility elimination: We eliminated

papers that are not in English and whose full text is

not available online. 10 papers were eliminated in this

phase.

• Phase 5. Content & Quality Assessment (QA): We

evaluated the papers based on the relevance of their

content and quality. The use of a checklist is common

for QA; however, there is no commonly agreed list of

criteria and checklist items or any commonly accepted

standard for conducting QA [18]. The relevant criteria

depend on the type and the characteristics of the studies

being reviewed. We compiled and applied the checklist

shared in Table 3, which is based on a recent tertiary

study [18] that systematically reviews commonly used

QA instruments. We incorporated the most commonly

used checklist items to be as inclusive as possible. We

included only those papers that satisfy all the items in

this list (See Section 8). 15 papers left after this phase.

• Phase 6. Snowballing: We performed snowballing [19]

on the papers already included in our list after Phase 5.

Hereby, we first applied backward snowballing, where

we examined the references cited within the selected

papers to discover additional relevant studies. Then, we

applied forward snowballing, where we examined

papers that cite the selected papers to ensure that

relevant studies were not missed in our search. We used

Google Scholar to keep track of the citations. The final

pool, extended by two primary studies after this phase,

consisted of 17 papers (See Table 4).

We present and discuss the results regarding the final

pool of primary studies in the following section. We also

categorize these studies to identify current trends and

research gaps.

5 Results and categorization

After the completion of all 6 phases, we finalized the pool

with 17 papers as shown in Table 5. The list of all the

primary studies and the list of selected and categorized

papers throughout the successive phases of the review

protocol is available online (See Sect. 8).

After a comprehensive review of 17 research papers, we

identified distinct features and organized them into a

structured table (see Table 6). In cases where the papers

under review shared a particular feature such as permis-

sionless blockchain, we omitted the inclusion of that fea-

ture in our table to avoid redundancy.

We observe that ten of the listed studies support test

case generation, and eight of them are introduced for

evaluating the effectiveness of a given test suite. Four of

the studies support both test case generation and test

evaluation. [27] also provides a Web-based interface

together with four other studies. All the tools and tech-

niques introduced by primary studies work on permis-

sionless blockchains by default. As an exception, P6

supports both permissioned and permissionless

blockchains.

In the following, we first categorize the final pool of

primary studies according to the testing method used.

Then, we categorize them with respect to the quality

attributes being tested. The categorization of papers was

performed by the first author in several iterations and

results were reviewed by all the authors after each iteration.

Table 2 The number of primary studies found in online databases and

5 publishers that correspond to the highest number of publications

found

Database The number of papers

IEEE Xplore 252

ACM Digital Library 120

ScienceDirect 40

Google Scholar 613

Total 1025

Publisher

IEEE 423

ACM 121

Springer 82

ScienceDirect 37

Elsevier 36

Table 3 Content and quality checklist

No. Question

1. Is there a statement of the aims of the research?

2. Is the context of the study clearly described?

3. Does the study focus on testing blockchain systems?

4. Are the methods, tools, and techniques appropriate

to address the aims of the research?

5. Do the researchers discuss any limitations of

their study?

6. Does the study provide an experimental evaluation

of the proposed technique?

7. Is the experimental setup fully described?

8. Is there a clear description of the results?

9. Does the empirical evidence support the findings?

10. Does the study introduce a new method, technique

and tool?

Cluster Computing

123

5.1 Categorization according to the testing
method

This SM’s initial findings shed light on the prevalence of

different testing methods in blockchain and software

testing. The final pool of 17 papers uses four testing

methods as shown in Fig. 3.

In particular, mutation testing emerged as one of the

most prominent methods, with six papers focusing on its

application in the evaluation and verification of blockchain

Table 4 The selection process

through multiple phases
Phase no. Phase name The number of remaining papers

0. Full list 1025

1. Duplicate Elimination 741

2. Venue Elimination 506

3. Irrelevant Title Elimination 127

4. English & Full-Text Elimination 117

5. Content & Quality Assessment 15

6. Snowballing 17

Table 5 The final list of primary

studies
References ID Title Publisher Year

[7] p1 A Fuzz Testing Service for Assuring IEEE 2019

Smart Contracts

[20] p2 ADF-GA: Data Flow Criterion Based Test Case ACM 2020

Generation for Ethereum Smart Contracts

[21] p3 Automated Generation of Test Cases for Smart IEEE 2020

Contract Security Analyzers

[22] p4 Data Flow Reduction Based Test Case IEEE 2022

Generation for Smart Contracts

[2] p5 Deviant: A Mutation Testing Tool for Solidity IEEE 2019

Smart Contracts

[8] p6 ModCon: a model-based testing platform ACM 2020

For smart contracts

[23] p7 MuSC: A Tool for Mutation Testing of IEEE 2019

Ethereum Smart Contract

[24] p8 RegularMutator: A Mutation Testing Tool ScienceDirect 2020

For Solidity Smart Contracts

[25] p9 SolAnalyser: A Framework for Analysing and IEEE 2019

Testing Smart Contracts

[26] p10 SuMo: A mutation testing approach and tool for ScienceDirect 2022

The Ethereum blockchain

[27] p11 SynTest-Solidity: Automated Test Case IEEE 2022

Generation and Fuzzing for Smart Contracts

[28] p12 Testing Smart Contracts Gets Smarter IEEE 2020

[29] p13 TestSmart: A Tool for Automated Generation IEEE 2021

Of Effective Test Cases for Smart Contracts

[30] p14 SMARTGIFT: Learning to Generate Practical IEEE 2021

Inputs for Testing Smart Contracts

[31] p15 PlaTIBART: a Platform for Transactive IoT ACM 2017

Blockchain Applications with Repeatable Testing

[32] p16 GasFuzzer: Fuzzing Ethereum Smart Contract Binaries to IEEE 2020

Expose Gas-Oriented Exception Security Vulnerabilities

[33] p17 sFuzz: an efficient adaptive fuzzer for solidity ACM 2020

Smart contracts

Cluster Computing

123

systems and software. This illustrates the importance of

mutation testing for assessing the fault-resilience and

robustness of blockchain systems and aligning them with

the decentralized and immutable nature of blockchain

transactions. Fuzz testing has also garnered the same

attention, with six papers emphasizing its effectiveness in

detecting vulnerabilities and ensuring the security of

blockchain-based applications. There are three papers

dedicated to model-based testing and the other two show-

cases search-based testing.

The distribution of the studies across testing methods in

the final pool suggests varying levels of focus and interest

in different aspects of blockchain and software testing. The

findings showed that 35.29% of the studies used mutation

testing, 17.64% employed model-based testing, 11.76%

employed search-based testing, and 35.29% applied fuzz

testing. There is a growing concern about security vul-

nerabilities in blockchain applications, and a dominance of

mutation testing and fuzz testing as a means for detecting

these vulnerabilities. Additionally, the inclusion of search-

based testing and model-based testing papers demonstrates

the exploration of new approaches to enhance the testing

process in this domain. However, the relative scarcity of

papers on search-based and model-based testing compared

to mutation and fuzz testing may suggest potential areas for

further research. Future studies could delve deeper into the

applicability and effectiveness of these less-explored

methods in blockchain-based systems and software. Hybrid

approaches can also be effective. Indeed, although the

number of studies based on search-based testing seems to

be low, this technique is actually employed together with

fuzz testing and mutation testing in a few studies to

improve their effectiveness as discussed further in Sect. 6.

Genetic algorithms in search-based testing have been

considered in two approaches, namely ADF-GA [20] and

TCG-Re [22]. Both approaches perform control flow and

data flow analysis on SCs. The values of input parameters

used for tests are encoded on chromosomes. ADF-GA

locates require statements (i.e., assertions) within the code

and aims at covering the execution of these statements.

TCG-Re aims at minimizing the number of generated test

cases while improving the coverage of these test cases for

def-use pairs.

In the final pool, several notable studies employ fuzz

testing for vulnerability discovery, using random test

generation as the core technique. As part of SynTest-

Solidity [27], a genetic algorithm is used to evolve a set of

initially randomly generated test cases, ensuring that they

meet predefined criteria, such as function, line, and branch

coverage. This process involves extracting objectives from

the SC, feeding these into the search algorithm, and eval-

uating the generated test cases using Truffle [34] and

Fig. 3 Testing methods employed by primary studies

Table 6 The features of primary

studies
References ID Test case generation Test evaluation Web based Permissioned blockchain

[7] p1 U U

[20] p2 U

[21] p3 U

[22] p4 U

[2] p5 U

[8] p6 U U U

[23] p7

[24] p8

[25] p9 U

[26] p10 U U

[27] p11 U U U

[28] p12

[29] p13 U U

[30] p14 U

[31] p15 U U

[32] p16

[33] p17 U U

Cluster Computing

123

Ganache [35]. SMARTGIFT [30] focuses on improving the

generation of suitable inputs for uncovering vulnerabilities.

The proposed tool generates practical inputs for testing SCs

by learning from the transaction records of real-world SCs.

Other studies that employ fuzz testing [7, 25] demonstrate

the effectiveness of using random inputs to uncover soft-

ware weaknesses, showcasing the value of fuzz testing as

an effective approach to security analysis. Indeed, this

approach has gained significant recognition in the field due

to its ability to identify vulnerabilities that may otherwise

have remained undetected. GasFuzzer [32] is a tool that

helps find security vulnerabilities in SCs by manipulating

gas allowance. It works by first creating a pool of seed

transactions and then mutating them with two strategies:

gas-greedy and gas-leveling. The gas-greedy strategy

favors transactions with higher gas consumption, while the

gas-leveling strategy tries to level out the gas consumption

of all transactions. GasFuzzer has been deployed in FUSE,

an online fuzz testing service for Ethereum smart contracts.

In [33], sFuzz is an adaptive fuzzer for SCs on the Ether-

eum platform. sFuzz works by configuring a blockchain

network, deploying the smart contract, and generating

transactions to call its functions. It monitors the execution

of these transactions to collect feedback, such as branch

coverage and potential vulnerabilities. Based on this

feedback, sFuzz selects test cases for mutation and gener-

ation of the next round of test cases. This process repeats

until a timeout occurs. It is significantly faster and more

efficient than existing fuzzers like ContractFuzzer and

Echidna. It is also more effective in achieving high code

coverage and discovering vulnerabilities. Unlike symbolic

execution engines, sFuzz is a fuzzer and can be combined

with them for hybrid fuzzing.

Mutation testing has been conducted in several stud-

ies [2, 23, 24, 26, 28, 29]. These studies focus on mutation

generation, involving the creation of artificial faults. They

have concentrated on test suite execution and evaluation,

wherein a collection of test cases is executed against both

the original and the mutated code. The test suite’s effec-

tiveness is determined by its ability to identify the intro-

duced mutations.

In [2], the proposed tool automatically generates

mutants for a given Solidity project and runs all mutants

against the given tests to evaluate their effectiveness. In

[23], for each SC Under Test (SCUT), the proposed tool

first transforms its source files to an Abstract Syntax Tree

(AST) model and then performs mutant generation on

them. In [24], the authors identified the most prevalent

errors. From this set, they specifically chose errors that

could be expressed using mutation operators in regular

expressions. These selected errors were then considered for

replacement in the source code. In the SuMo tool [26],

novel mutation operators are introduced with a specific

focus on the overloading mechanism, an aspect that pre-

vious related studies did not address. Furthermore, SuMo

brings forth a set of additional mutation operators designed

for various aspects of Solidity SCs. These operators

encompass the contract constructor, function modifiers,

cryptographic global functions, the SafeMath library, glo-

bal blockchain variables, enums, return values, and explicit

conversions. In [28], a comprehensive list of known bugs in

Solidity SCs was analyzed, and ten classes of mutation

operators were proposed. The authors report that these

operators reproduced actual faults in 10 out of 15 famous

buggy SCs. TestSmart [29] incorporates three key mod-

ules: one for generating test suites, another for creating

mutants, and a third for selecting test cases based on these

mutants. Manticore, a robust tool, is employed for test suite

generation. An extended version of Universal Mutator,

encompassing mutation operators designed for Solidity

SCs, is utilized for mutant generation. Additionally, they

leverage the Manticore API to analyze test cases compared

to mutants.

Three approaches in the model-based testing domain

have emerged as promising strategies. The first approach

[21], introduces an automated method to evaluate contract

analyzers of SCs by generating a diverse set of test cases.

The TestBreeder tool comprises two main phases: test set

generation and analysis assessment. Initially, it creates test

templates for each vulnerability trigger, incorporating code

seeds to populate empty slots. This generates test cases

covering various complexity levels for a vulnerability

trigger. In the second phase, the dispatcher evaluates con-

tract analyzers by sequentially selecting test cases of

increasing complexity levels and analyzing test cases one

by one within the same vulnerability category. The second

approach to model-based testing [8], revolves around the

utilization of user-specified models to define test oracles,

guide test generation, and measure test adequacy. Incor-

porating user expertise and domain knowledge enables

targeted and reliable test cases. The third approach [31],

PlaTIBART is a platform that helps developers build,

deploy, and test transactive IoT blockchain applications

(ITBAs) reliably and repeatably. It provides tools and

techniques for the entire lifecycle of ITBAs, including

development, deployment, execution, management, and

testing. This ensures consistent and reliable testing through

controlled environments, handles increasing numbers of

clients with predictable performance, and encourages the

adoption of ITBAs by demonstrating their reliable testing

and deployment.

The categorization of the 17 papers in the final pool

based on testing method and year, as shown in Fig. 4

provides an insight into the temporal progression of

research in the field of blockchain and software testing. In

2017, there was a single study which is focused on model-

Cluster Computing

123

based testing. In 2019, the focus was on fuzz testing and

mutation testing, with two papers dedicated to each

method. This indicates an early exploration of these testing

approaches in blockchain applications. The research land-

scape changed as we moved into 2020. Mutation testing

and fuzz testing continued to receive attention with two

papers each, demonstrating their ongoing relevance to

evaluating blockchain systems. Additionally, model-based

testing emerged with two papers and search-based testing

emerged with one paper, signifying a growing interest in

innovative techniques for testing blockchain applications.

Following the developments in previous years, in the

year 2021 the focus was on fuzz testing and mutation

testing, with one paper dedicated to each method. The other

testing methods were not considered by any other publi-

cation during this year, indicating a potential research gap.

In 2022, the publications on various testing methods were

more balanced. Fuzz testing, mutation testing, and search-

based testing are each studied in one paper, highlighting

ongoing interest in these methods. However, model-based

testing has not attracted researchers’ attention for the last

couple of years, suggesting a potential area for further

exploration or an acknowledgment of limited applicability.

5.2 Categorization according to the quality
factor being tested

Figure 5 shows a bubble plot that visually depicts the

concentration of testing methods and quality factors under

consideration. The categorization of the 17 papers in Fig. 5

provides an insight into the testing methods employed and

the quality factors being tested in the context of blockchain

and software systems. Regarding functionality, search-

based testing, and fuzz testing highlight the applicability to

assessing the functional aspects of these systems, with two

papers each. Mutation testing emerges as a prominent

method, representing the biggest bubble, with four papers

dedicated to exploring its effectiveness in evaluating

functionality. Model-based testing also contributes to

assessing functional correctness, with one paper.

Shifting the focus to security, fuzz testing stands out as a

prominent method. Four papers examine its effectiveness

in detecting security vulnerabilities and ensuring the

robustness of blockchain and software systems. Two papers

examined the impact of mutation testing and one paper

examined the impact of model-based testing on security

evaluation. There are, however, no papers specifically

addressing security in the final pool in search-based testing,

indicating an unexplored area in state-of-the-art research.

These findings highlight the importance of fuzz testing, and

mutation testing in security assessment. This also suggests

potential opportunities for exploring the applicability of

search-based testing in enhancing the security of these

systems.

Model-based testing is discussed in a paper that explores

its impact on performance evaluation. Interestingly, no

papers in the final pool specifically address performance in

relation to search-based, fuzz, and mutation testing. Hence,

there is a research gap on the application of search-based,

fuzz, and mutation testing in assessing the performance of

blockchain systems as well. Overall, the results provide

valuable insights into the testing methods employed and

the gaps in research concerning the functionality, security,

and performance aspects of these systems.

We further elaborate on existing techniques, research

gaps, and potential future trends in the following.

6 Discussion

In this section, we elaborate on each type of testing tech-

nique, representative studies that stand out, their advan-

tages and limitations, hybrid approaches, and opportunities

for further exploration considering the research gaps. We

first discuss the main findings for each testing type. Then,

we compare various techniques and discuss (potential)

synergies among them.

Fig. 4 The distribution of

primary studies and the

corresponding testing methods

studied over the years

Cluster Computing

123

Fuzz Testing (FT): FT techniques and tools like

sFuzz [33] are efficient in general and applicable for cases

where symbolic execution cannot scale due to the limita-

tions of the underlying constraint solvers. On the downside,

recall can be low, and important vulnerabilities can be

missed. Empirical results show that the number of true

positives can be reduced up to 50% in comparison with

symbolic execution tools like Oyente [36]. Feedback-gui-

ded fuzzing is used to increase test coverage as much as

possible. Another issue is the lack of standardized bench-

mark datasets [33] and realistic test environments for

evaluating FT. Simulation of a real-world blockchain

environment can replicate the conditions found in live

blockchain networks, such as network delays, consensus

mechanisms, and transaction ordering.

The use of large language models is shown to be

promising for fuzzers. SMARTGIFT [30] relies on such a

model that is trained with real-world transaction records. In

comparison with baseline fuzzing, SMARTGIFT effec-

tively generates test inputs for approximately 77% of SC

functions. Future efforts in this line of research could focus

on expanding datasets, addressing decoding challenges,

and retraining models concerning the adaptability to a

variety of SC languages and resilience to emerging security

threats [30].

Search-Based Testing (SBT): These testing approaches

mainly utilize genetic algorithms for dynamic test case

generation for SCs. In SBT, there is a need for refining

selection and mutation operations, exploring enhanced fit-

ness functions, and addressing execution environment

constraints to improve its performance. These

considerations relate to broader challenges in the field of

SBT for SCs, where the optimization of improved mutation

operations and the evaluation of fitness are among the most

pressing issues.

Model-Based Testing (MBT): As a result of the dynamic

nature of SC development, test suites must be constantly

updated along with contract analyzers. In order to keep

pace with the evolving complexity of SCs and to identify

and address vulnerabilities efficiently, MBT approaches

with automated tools become increasingly important. As an

example, TestBreeder [21] employs templates to automat-

ically build a test suite by exploiting various code elements

of vulnerabilities, structures, and bugs. PlaTIBART [31]

uses the specification of a distributed system that is based

on the actor model to set up the corresponding system, and

get it up and running. The system is simulated while the

expected set of operations like the creation and integration

of clients, and the execution of pre-defined scenarios are

verified.

The effort and error-proneness related to the manual

specification of models are the most forthcoming limita-

tions for this approach and for MBT in general. The use of

formal verification to check the consistency of models and

tool support for model construction is proposed as future

work directions to address these limitations [8, 31].

Mutation Testing (MT): MT tools like Deviant [2],

MuSC [23], and SuMo [26] offer novel mutation operators

that can be used for simulating various types of Solidity

faults. Empirical evaluations show that achieving high

mutation scores is challenging even when test suites meet

the statement and branch coverage criteria [2, 24, 26]. The

Fig. 5 The categorization of

primary studies in two

dimensions: the employed

testing technique and the

evaluated quality attribute

Cluster Computing

123

majority of faults can be left undetected despite high

coverage rates. Tests generally fail to detect mutants gen-

erated by mutation operators that affect the visibility of

functions, state variables, modifiers, and exception han-

dling [2, 26]. These mutants can mimic issues related to

reentrancy, delegated calls, arithmetic errors, and time

stamp-dependent faults [28].

Scalability and efficiency are the major concerns for

MT. Mutants should be evaluated for their ability to expose

faults in SCs to ensure that the costs of MT are paid off.

The average time to generate mutants is short (e.g., a few

seconds), but the execution time can be very long [23]. It

can take up to 50 h to test 871 mutants, where 736 of them

did not even compile [24]. Moreover, not all surviving

mutants contribute to quality improvement or turn out to be

useful. One needs to manually analyze surviving mutants

and this manual analysis effort further increases the cost.

Synergies: There are also a number of hybrid approa-

ches, where a type of technique is used to support and

improve the other. SynTest-Solidity [27] is an example of

the use of FT and SBT together. It is an FT tool that

automates the generation of Solidity test cases by using

genetic algorithms. Experimental results suggest that the

use of SBT significantly increases the coverage of FT.

Another example of a hybrid approach is TCG-Re [22]

which brings MBT and SBT together. It employs data flow

models for test case generation. However, it also uses a

genetic algorithm, which helps to increase the coverage of

definition-use pairs in the data flow. An interesting obser-

vation is that search-based techniques are central in all

these hybrid approaches as depicted in Fig. 6.

The only intersection, for which we could not find a

primary study for testing blockchain systems is the inter-

section of MT and SBT. There is an interesting research

gap for exploiting promising synergies in this intersec-

tion. Search-based mutation testing is well-explored in

other domains, where search-based techniques are utilized

for optimizing test data generation, operator selection, and

mutant generation [37]. Therefore it can be used for

improving MT in several aspects.

Our literature review is subject to a number of validity

threats, which are discussed in the following.

7 Threats to validity

Some of the relevant studies might have been missed as an

external validity threat due to the time period when the

search was performed as well as the employed search

strings. We had to adapt the search string for each database,

each of which has various search query formulation options

and search fields. Hence, we might have missed a related

study as a result of inevitable changes made to the search

query. We discussed the query design among the authors

and employed multiple databases to mitigate this threat. In

particular, we used Google Scholar to attain an extensive

coverage of the search space.

A major contribution of our review is the categorization

of primary studies along two dimensions. However, this

categorization is subject to an internal validity threat that is

related to the reliability and sufficiency of the considered

categories for analyzing and classifying all the primary

studies. To mitigate this threat, we analyzed the primary

study in several iterations and reviewed the results with all

the authors after each iteration. Newly emerged categories

in each iteration were introduced to the taxonomy and the

necessary adaptations were made respectively.

There exists a construct validity threat regarding the

selection of primary studies, which might be subject to

bias. We tried to mitigate this threat by applying a QA. The

selection criteria were discussed among all the authors to

ensure their quality. The selection was made by the first

author and reviewed by the second author.

We applied a systematic review protocol and shared a

replication package to facilitate reproducibility. Selection

of primary studies were performed by the first two authors,

whereas the review process as well as the categorization of

these studies were discussed among all the authors to

mitigate conclusion validity threats.

8 Conclusion

This systematic mapping study provides a comprehensive

review of software testing methods for blockchain systems.

Our analysis focused on two aspects in that respect:

employed state-of-the-art testing techniques and quality

factors addressed in the existing literature. We reduced a

large pool of primary studies to a final selection of 17

papers. The majority of these papers focus on ensuring

functional correctness and detection of security vulnera-

bilities. Mostly either fuzz testing or mutation testing is

employed to this aim. The adoption of model-based testing

is rare. It has been used for performance testing, which

have not attracted much attention in general. The adoption

of search-based testing on its own is not very commonFig. 6 The common use of search-based techniques, intersecting with

other techniques in hybrid approaches

Cluster Computing

123

either. However, it is usually employed together with fuzz

testing and mutation testing to improve their efficiency.

Generally, the use and integration of multiple testing

techniques stand out as a viable research direction.

There are certain limitations of the existing techniques

that are emphasized in primary studies. Low recall and lack

of adaptability to changing blockchain platforms and lan-

guages are noted for model-based testing techniques. On

the other hand, performance and scalability issues stand out

for search-based techniques, fuzz testing, and mutation

testing. Finally, there is a need for larger datasets to support

empirical evaluations.

Author Contributions All authors contributed to the study’s concep-

tion and design. Material preparation, data collection, and analysis

were performed by Anıl Elakaş. The review protocol and the selection

criteria were discussed among all the authors. The primary study

selection is made by Anıl Elakaş and it was reviewed by Hasan Sözer.

The categorization of papers is performed in several iterations and

results are reviewed by all the authors after each iteration. The dis-

cussion section was written by Ilgın Şafak. The first draft of the

manuscript was written by Anıl Elakaş and all authors commented on

previous versions of the manuscript. All authors read and approved

the final manuscript.

Funding Open access funding provided by the Scientific and Tech-

nological Research Council of Türkiye (TÜBİTAK). The work is

supported by the Scientific and Research Council of Turkey under

Grant No. 119C111.

Data Availability The list of all the primary studies and the list of

selected and categorized papers throughout the successive phases of

the review protocol are available as part of our replication package,

which is shared at https://github.com/anilelakas/blockchain-

softwareTesting.

Declarations

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Guo, H., Yu, X.: A survey on blockchain technology and its

security. Blockchain: Res. Appl. 3, 544–545 (2022). https://doi.

org/10.1016/j.bcra.2022.100067

2. Chapman, P., Xu, D., Deng, L., Xiong, Y.: Deviant: A mutation

testing tool for solidity smart contracts. IEEE Int. Conf. Block-

chain (2019). https://doi.org/10.1109/Blockchain.2019.00050

3. Arsat, N., Bakar, N.S.A.A., Yahya, N.: Testing in blockchain-

based systems: a systematic review. Int. Conf. Cyber IT Serv.

Manag. (CITSM) (2022). https://doi.org/10.1109/CITSM56380.

2022.9935846

4. Kitchenham, B., Charters, S.: Guidelines for Performing Sys-

tematic Literature Reviews in Software Engineering. University

and Durham University, Keele (2007)

5. Benabbou, C., Gurcan, O.: A survey of verification, validation

and testing solutions for smart contracts. In: 2021 Third Inter-

national Conference on Blockchain Computing and Applications

(BCCA), pp. 57–64 (2021). https://doi.org/10.1109/BCCA53669.

2021.9657040

6. Sujeetha, R., Deiva Preetha, C.A.S.: A literature survey on smart

contract testing and analysis for smart contract based blockchain

application development. In: 2021 2nd International Conference

on Smart Electronics and Communication (ICOSEC),

pp. 378–385 (2021). https://doi.org/10.1109/ICOSEC51865.2021.

9591750

7. Mei, X., Ashraf, I., Jiang, B., Chan, W.K.: A fuzz testing service

for assuring smart contracts. In: 2019 IEEE 19th International

Conference on Software Quality, Reliability and Security,

pp. 544–545 (2019). https://doi.org/10.1109/QRS-C.2019.00116

8. Liu, Y., Li, Y., Lin, S.-W., Yan, Q.: Modcon: A model-based

testing platform for smart contracts. In: Proceedings of the 28th

ACM Joint Meeting on European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineer-

ing. ESEC/FSE 2020, pp. 1601–1605. Association for Computing

Machinery, New York, NY, USA (2020). https://doi.org/10.1145/

3368089.3417939

9. Smetanin, S., Ometov, A., Komarov, M., Masek, P., Kouch-

eryavy, Y.: Blockchain evaluation approaches: state-of-the-art

and future perspective. Sensors 20(12), 3358 (2020)

10. Tolmach, P., Li, Y., Lin, S.-W., Liu, Y., Li, Z.: A survey of smart

contract formal specification and verification. ACM Comput.

Surv. (2021). https://doi.org/10.1145/3464421

11. Garfatta, I., Klai, K., Gaaloul, W., Graiet, M.: A survey on formal

verification for solidity smart contracts. In: Proceedings of the

2021 Australasian Computer Science Week Multiconference.

ACSW ’21. Association for Computing Machinery, New York,

NY, USA (2021). https://doi.org/10.1145/3437378.3437879

12. Liu, J., Liu, Z.: A survey on security verification of blockchain

smart contracts. IEEE Access 7, 77894–77904 (2019). https://doi.

org/10.1109/ACCESS.2019.2921624

13. Krichen, M., Lahami, M., Al-Haija, Q.A.: Formal methods for the

verification of smart contracts: a review. In: 2022 15th Interna-

tional Conference on Security of Information and Networks

(SIN), pp. 01–08 (2022). https://doi.org/10.1109/SIN56466.2022.

9970534

14. Ilgi, G.S., Kayali, D., Olawale, P., Demir Erdem, B., Dimililer,

K., Kirsal-Ever, Y.: Formal verification for security technologies

in the blockchain with artificial intelligence: A survey. In: 2022

Innovations in Intelligent Systems and Applications Conference

(ASYU), pp. 1–6 (2022). https://doi.org/10.1109/ASYU56188.

2022.9925532

15. Murray, Y., Anisi, D.A.: Survey of formal verification methods

for smart contracts on blockchain. In: 2019 10th IFIP Interna-

tional Conference on New Technologies, Mobility and Security

Cluster Computing

123

https://github.com/anilelakas/blockchain-softwareTesting
https://github.com/anilelakas/blockchain-softwareTesting
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bcra.2022.100067
https://doi.org/10.1016/j.bcra.2022.100067
https://doi.org/10.1109/Blockchain.2019.00050
https://doi.org/10.1109/CITSM56380.2022.9935846
https://doi.org/10.1109/CITSM56380.2022.9935846
https://doi.org/10.1109/BCCA53669.2021.9657040
https://doi.org/10.1109/BCCA53669.2021.9657040
https://doi.org/10.1109/ICOSEC51865.2021.9591750
https://doi.org/10.1109/ICOSEC51865.2021.9591750
https://doi.org/10.1109/QRS-C.2019.00116
https://doi.org/10.1145/3368089.3417939
https://doi.org/10.1145/3368089.3417939
https://doi.org/10.1145/3464421
https://doi.org/10.1145/3437378.3437879
https://doi.org/10.1109/ACCESS.2019.2921624
https://doi.org/10.1109/ACCESS.2019.2921624
https://doi.org/10.1109/SIN56466.2022.9970534
https://doi.org/10.1109/SIN56466.2022.9970534
https://doi.org/10.1109/ASYU56188.2022.9925532
https://doi.org/10.1109/ASYU56188.2022.9925532

(NTMS), pp. 1–6 (2019). https://doi.org/10.1109/NTMS.2019.

8763832

16. Imperius, N.P., Alahmar, A.D.: Systematic mapping of testing

smart contracts for blockchain applications. IEEE Access 10,
112845–112857 (2022)

17. Martı́n-Martı́n, A., Thelwall, M., Orduna-Malea, E., López-

Cózar, E.D.: Google scholar, microsoft academic, scopus,

dimensions, web of science, and OpenCitations’ COCI: a multi-

disciplinary comparison of coverage via citations. Scientometrics

126, 871–906 (2021)

18. Yang, L., Zhang, H., Shen, H., Huang, X., Zhou, X., Rong, G.,

Shao, D.: Quality assessment in systematic literature reviews: a

software engineering perspective. Inform. Softw. Technol. 130,
106397 (2021)

19. Wohlin, C.: Guidelines for snowballing in systematic literature

studies and a replication in software engineering. In: Proceedings

of the 18th International Conference on Evaluation and Assess-

ment in Software Engineering, pp. 1–10 (2014)

20. Zhang, P., Yu, J., Ji, S.: Adf-ga: Data flow criterion based test

case generation for ethereum smart contracts. In: Proceedings of

the IEEE/ACM 42nd International Conference on Software

Engineering Workshops. ICSEW’20, pp. 754–761. Association

for Computing Machinery, New York, NY, USA (2020). https://

doi.org/10.1145/3387940.3391499

21. Kim, K.B., Lee, J.: Automated generation of test cases for smart

contract security analyzers. IEEE Access 8, 209377–209392

(2020). https://doi.org/10.1109/ACCESS.2020.3039990

22. Ji, S., Zhu, S., Zhang, P., Dong, H.: Data flow reduction based

test case generation for smart contracts. In: 2022 29th Asia-

Pacific Software Engineering Conference (APSEC), pp. 149–158

(2022). https://doi.org/10.1109/APSEC57359.2022.00027

23. Li, Z., Wu, H., Xu, J., Wang, X., Zhang, L., Chen, Z.: Musc: A

tool for mutation testing of ethereum smart contract. In: 2019

34th IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE), pp. 1198–1201 (2019). https://doi.org/

10.1109/ASE.2019.00136

24. Ivanova, Y., Khritankov, A.: Regularmutator: a mutation testing

tool for solidity smart contracts. Procedia Comput. Sci. 178,
75–83 (2020).

25. Akca, S., Rajan, A., Peng, C.: Solanalyser: A framework for

analysing and testing smart contracts. In: 2019 26th Asia-Pacific

Software Engineering Conference (APSEC), pp. 482–489 (2019).

https://doi.org/10.1109/APSEC48747.2019.00071

26. Barboni, M., Morichetta, A., Polini, A.: Sumo: a mutation testing

approach and tool for the ethereum blockchain. J. Syst. Softw.

193, 111445 (2022). https://doi.org/10.1016/j.jss.2022.111445

27. Olsthoorn, M., Stallenberg, D., Van Deursen, A., Panichella, A.:

Syntest-solidity: Automated test case generation and fuzzing for

smart contracts. In: 2022 IEEE/ACM 44th International Confer-

ence on Software Engineering: Companion Proceedings (ICSE-

Companion), pp. 202–206 (2022). https://doi.org/10.1145/

3510454.3516869

28. Andesta, E., Faghih, F., Fooladgar, M.: Testing smart contracts

gets smarter. In: 2020 10th International Conference on Com-

puter and Knowledge Engineering (ICCKE), pp. 405–412 (2020).

https://doi.org/10.1109/ICCKE50421.2020.9303670

29. Fooladgar, M., Arefzadeh, A., Faghih, F.: Testsmart: A tool for

automated generation of effective test cases for smart contracts.

In: 2021 11th International Conference on Computer Engineering

and Knowledge (ICCKE), pp. 476–481 (2021). https://doi.org/10.

1109/ICCKE54056.2021.9721448

30. Zhou, T., Liu, K., Li, L., Liu, Z., Klein, J., Bissyandé, T.F.:

Smartgift: Learning to generate practical inputs for testing smart

contracts. In: 2021 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pp. 23–34 (2021). https://

doi.org/10.1109/ICSME52107.2021.00009

31. Walker, M., Dubey, A., Laszka, A., Schmidt, D.: Platibart: a

platform for transactive iot blockchain applications with repeat-

able testing, pp. 17–22 (2017). https://doi.org/10.1145/3152141.

3152392

32. Ashraf, I., Ma, X., Jiang, B., Chan, W.K.: Gasfuzzer: fuzzing

ethereum smart contract binaries to expose gas-oriented excep-

tion security vulnerabilities. IEEE Access 8, 99552–99564

(2020). https://doi.org/10.1109/ACCESS.2020.2995183

33. Nguyen, T.D., Pham, L.H., Sun, J., Lin, Y., Minh, Q.T.: sFuzz: an

efficient adaptive fuzzer for solidity smart contracts. In: Pro-

ceedings of the ACM/IEEE 42nd International Conference on

Software Engineering, pp. 778–788 (2020)

34. Truffle Suite. https://trufflesuite.com/. Accessed 31 Oct 2023

35. Ganache. https://trufflesuite.com/ganache/. Accessed 31 Oct 2023

36. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making

smart contracts smarter. In: Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security,

pp. 254–269 (2016)

37. Silva, R.A., Senger de Souza, S.R., Lopes de Souza, P.S.: A

systematic review on search based mutation testing. Inform.

Softw. Technol. 81, 19–35 (2017)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Anıl Elakaş is a Senior Software

Engineer at Fibabanka’s R&D

Center in Istanbul, Turkey. He

received his MSc in 2020 in

Computer Science from Sabancı
University. He is currently a

PhD student in Computer Sci-

ence department in Ozyegin

University. His current research

interests include Software Test-

ing, Blockchain, Machine

Learning.

Hasan Sözer received his B.Sc.

and M.Sc. degrees in computer

engineering from Bilkent

University, Turkey, in 2002 and

2004, respectively. He received

his Ph.D. degree in 2009 from

the University of Twente, The

Netherlands. From 2002 until

2005, he worked as a software

engineer at Aselsan Inc. in

Turkey. From 2009 until 2011,

he worked as a post-doctoral

researcher at the University of

Twente. In 2011, he joined the

department of computer science

at Ozyegin University, where he is currently working as a full

professor.

Cluster Computing

123

https://doi.org/10.1109/NTMS.2019.8763832
https://doi.org/10.1109/NTMS.2019.8763832
https://doi.org/10.1145/3387940.3391499
https://doi.org/10.1145/3387940.3391499
https://doi.org/10.1109/ACCESS.2020.3039990
https://doi.org/10.1109/APSEC57359.2022.00027
https://doi.org/10.1109/ASE.2019.00136
https://doi.org/10.1109/ASE.2019.00136
https://doi.org/10.1109/APSEC48747.2019.00071
https://doi.org/10.1016/j.jss.2022.111445
https://doi.org/10.1145/3510454.3516869
https://doi.org/10.1145/3510454.3516869
https://doi.org/10.1109/ICCKE50421.2020.9303670
https://doi.org/10.1109/ICCKE54056.2021.9721448
https://doi.org/10.1109/ICCKE54056.2021.9721448
https://doi.org/10.1109/ICSME52107.2021.00009
https://doi.org/10.1109/ICSME52107.2021.00009
https://doi.org/10.1145/3152141.3152392
https://doi.org/10.1145/3152141.3152392
https://doi.org/10.1109/ACCESS.2020.2995183
https://trufflesuite.com/
https://trufflesuite.com/ganache/

Ilgın Şafak is an Expert

Researcher at Fibabanka’s R&D

Center in Istanbul, Turkey. She

received her MSc and PhD

degrees in 2006 and 2013

respectively, in Electrical and

Electronics Engineering from

Hacettepe University in Turkey.

She worked as a Product Man-

ager in Product Development

and Innovation at Mastercard

Payment Transaction Services

Turkey in Istanbul, Turkey

between 2013 and 2016. She

worked as a Manager in Product

Development and Innovation at Mastercard in Purchase, NY from

2016 until 2018. She worked as a Solution Engineer from 2019 until

2020 at HAVELSAN, Turkey. She has been working at Fibabanka

since 2020. She published 23 articles and has filed 11 patent appli-

cations. Her research interests are in Distributed Ledger Technology,

Artificial Intelligence/Machine Learning, the Internet of Things, and

Cybersecurity.

Kübra Kalkan is a faculty mem-

ber in the Computer Science

Department of Özyeğin

University in Turkey. She

received B.Sc. and M.Sc.

degrees from Sabancı Univer-

sity in 2009 and 2011 respec-

tively and Ph.D. degree from

Boğaziçi University in 2016.

She was a researcher with vari-

ous institutions, such as EPFL,

Microsoft Redmond, and

Northeastern University. She

worked as Post-Doctoral

Researcher in the University of

Oxford after the PhD. Her current research interests include Block-

chain, IoT, and P2P networks.

Cluster Computing

123

	A systematic mapping on software testing for blockchains
	Abstract
	Introduction
	Blockchain and testing approaches
	Blockchains
	Software testing
	Software testing for blockchain systems

	Related work
	Research goal and the review protocol
	Online databases and search keywords
	The review process

	Results and categorization
	Categorization according to the testing method
	Categorization according to the quality factor being tested

	Discussion
	Threats to validity
	Conclusion
	Author Contributions
	Open Access
	References

