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Abstract
Managing the explosion of data from the edge to the cloud requires intelligent supervision, such as fog node deployments,

which is an essential task to assess network operability. To ensure network operability, the deployment process must be

carried out effectively regarding two main factors: connectivity and coverage. The network connectivity is based on fog

node deployment, which determines the network’s physical topology, while the coverage determines the network acces-

sibility. Both have a significant impact on network performance and guarantee the network quality of service. Determining

an optimum fog node deployment method that minimizes cost, reduces computation and communication overhead, and

provides a high degree of network connection coverage is extremely hard. Therefore, maximizing coverage and preserving

network connectivity is a non-trivial problem. In this paper, we propose a fog deployment algorithm that can effectively

connect the fog nodes and cover all edge devices. Firstly, we formulate fog deployment as an instance of multi-objective

optimization problems with a large search space. Then, we leverage Marine Predator Algorithm (MPA) to tackle the

deployment problem and prove that MPA is well-suited for fog node deployment due to its rapid convergence and low

computational complexity, compared to other population-based algorithms. Finally, we evaluate the proposed algorithm on

a different benchmark of generated instances with various fog scenario configurations. Our algorithm outperforms state-of-

the-art methods, providing promising results for optimal fog node deployment. It demonstrates a 50% performance

improvement compared to other algorithms, aligning with the No Free Lunch Theorem (NFL Theorem) Theorem’s

assertion that no algorithm has a universal advantage across all problem domains. This underscores the significance of

selecting tailored algorithms based on specific problem characteristics.

Keywords Cloud � Intelligent supervision � Fog node deployments � Network operability � Connectivity �
Coverage

1 Introduction

With the recent advancement of the Internet of Things

(IoT), we have witnessed the emergence of many new

applications in different domains, such as health care,

surveillance, and smart cities. IoT systems can be realized

using different computing and communication architec-

tures, where each architecture can provide solutions for

data processing, storing, and analyzing according to the

available resources [1]. Fog computing and edge comput-

ing are considered integral parts of the IoT systems and are

proposed to cover the cloud limitation issues arising from

the enormous IoT sensor offloaded requests, such as

latency response time, which may take a long time to
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answer users’ requests [2, 3]. Both fog computing and edge

computing are regarded as an extension of cloud comput-

ing that can provide distributed computing, storage, and

networking functions close to the IoT sensors at the edge

network to serve the IoT applications needs, which sup-

ports low latency, real-time response, location awareness,

devices mobility, scalability, heterogeneity, temporary

storage, high-speed data dissemination, decentralized

computation, and security [4]. The enormous resulting

requests from IoT sensors and edge devices could lead to a

data explosion through the network, thereby an optimal

network deployment is required. In most Ad-hoc networks,

the deployment of computing nodes is accomplished either

in a pre-planned or ad-hoc method [5]. The pre-planned

deployment method is used when the deployment field

access is limited, and the deployment cost is not expensive.

While the ad-hoc manner is used when the deployment

field is large, costly, and consists of many computing nodes

[6].

The deployment strategy is constructed on the basis of

several considerations, such as the IoT sensor and edge

device location, system functionality, and the environ-

ments. Also, it may differ from one area to another

according to its nature, whereas in an open area, the

deployment tries to cover a wider area than the closed area,

such as inside a building. There are plenty of deployment

possibilities for user coverage and connectivity needs, for

example, in critical situations such as natural disasters, oil

rigs, mines, battlefield surveillance, high-speed mobile

video gaming, or in public transport [7–9]. Finding an

optimal deployment for a wide area is a challenge that

could suffer from user density and the unregulated

deployment surface compared to small areas. Because the

entire system’s performance may be impacted by the

deployment of computing nodes which is considered a

crucial concern [10–12]. Therefore, in this work, we con-

centrate on providing an optimal fog node placement

within the edge network to serve the boundary edge devi-

ces and IoT sensors in a specific area.

In order to deploy the fog computing nodes effectively,

we need a complete understanding of the relation between

the network topology and node density, subjected to dif-

ferent factors such as location and density [13]. Hence,

some issues should be addressed to enhance the network

performance, including connectivity, coverage, reliability,

accessibility, etc. If the fog nodes are installed without

considering restricting factors of the actual region of

interest and the underlying topology, it can cause low

network coverage and connectivity. The node deployment

problem has been investigated with different networks and

in different environments. It remains a challenging problem

that has been proven to be NP-Hard [14]. In order to

address these issues, meta-heuristic techniques have been

developed, although they typically only provide optimal

local solutions [15].

Compared to other approaches, meta-heuristic methods

have experienced tremendous success and development in

addressing various real-world optimization issues. The

computing scenario considered for this work consists of

IoT sensors and edge devices located at the edge of the

network and fog nodes located within the fog layer. As the

problem showed its NP-Hard, we propose an MPO popu-

lation-based meta-heuristic algorithm to efficiently solve

the fog node deployments within the edge network devices

and evaluate the network coverage and connectivity effect

on the network’s performance. Our contributions to this

study are summarized as follows:

• To efficiently connect the fog nodes and encompass all

edge nodes, we propose a multi-objective aggregate

objective function that simultaneously maximizes the

coverage of edge devices and enhances network

connectivity. This approach ensures seamless connec-

tivity and coverage for all devices and fog nodes,

effectively improving network performance and guar-

anteeing network QoS.

• We present an MPA metaheuristic nature-inspired

optimization algorithm, where the objective function

aims to maximize network coverage and connectivity.

We analyze the impact of different parameters on the

network’s performance and identify the most effective

optimization methods.

• For seamless computation, the proposed algorithm has

been implemented and tested in various network

settings. The results demonstrate a significant improve-

ment in coverage and connectivity compared to other

methods.

The rest of the paper is organized as follows: Sect. 2

reviews existing research on fog node deployment. Sec-

tion 3 describes the system modeling and problem formu-

lation. Section 4 details the proposed meta-heuristic

algorithm for fog node deployment. Section 5 presents the

evaluation details and experiment results. We conclude the

paper and outline future research directions in Sect. 6.

2 Related work

Today’s networks require precise computing node place-

ment to ensure reliable measurements and efficient data

transmission. Node deployment procedures are vital in this

regard. For instance, authors in [16] introduce a fog com-

puting framework and an optimization model for IoT ser-

vice placement over fog resources, employing a genetic

algorithm for improved service execution and fog resource

utilization. Similarly, in [17, 18] authors tackle wireless
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mesh network deployment challenges by proposing novel

objective functions maximizing network connectivity and

coverage using meta-heuristic algorithms like Moth-Flame

Optimization (MFO) and Accelerated Particle Swarm

Optimizer (APSO), respectively, yielding promising out-

comes. Furthermore, authors in [19] propose fog node

placement techniques utilizing a multi-objective genetic

algorithm (MOGA) to minimize deployment cost and

network latency, contributing to efficient fog network

design. Despite several researchers have been conducted to

address this issue, the existing solutions must be improved

upon or replaced with new ones regularly due to their

limitations. Consequently, it is possible to employ opti-

mization algorithms to find the optimum node locations

that meet the specified criteria.

Researchers from both academia and industry have

extensively employed heuristic-based optimization algo-

rithms to tackle deployment optimization challenges. In

this research, we focus on addressing the Fog Node

Deployment Problem (FND) by leveraging heuristic and

meta-heuristic methods [20, 21]. These methods have

garnered significant attention due to their effectiveness in

optimizing various deployment parameters. Specifically,

they aim to minimize energy consumption, reduce latency

for time-sensitive applications, maximize network band-

width and throughput, and ensure comprehensive coverage

and connectivity of fog computing devices [22–25]. This

focus on heuristic and meta-heuristic methods underscores

their importance in achieving optimal fog node deployment

solutions [25–28]. Authors in [29] initially addressed the

coverage problem in WSN and demonstrated that it is NP-

hard. They concentrated on the issue of improving the

computing node’s coverage for a given number of sensors.

In [30], the authors suggested an improved Artificial Bee

Colony method for optimizing the lifetime of a two-tiered

wireless sensor network through optimal relay node

deployment. They integrated the problem dimension into

the candidate discovery formula and modified the local

search strategy based on problem fitness and the number of

iterations. These modifications assist in achieving a balance

between algorithm exploration and exploitation, enhancing

the algorithm’s capacity for solving the problem effec-

tively. In [31], the authors proposed a particle swarm

optimization (PSO) algorithm to optimize the node net-

work deployment and improve the adaptive ability of the

network; however, the algorithm has the disadvantage of

falling into the local optimum. In [32], the authors assumed

a hexagonal topology for the network and proposed an

enhanced virtual spring force algorithm (VSFA) for node

deployment within this topology. This approach aims to

reduce the vulnerability area. However, it should be noted

that the strategy has only been evaluated under perfect

circumstances and has not been tested in complex settings.

As in [32], authors in [33] performed their evaluation with

an ideal deployment environment presuming that nodes are

homogeneous, where an enhanced fish swarm algorithm

(AIFS) was adopted to optimize the node’s deployment by

targeting the coverage rate, which greatly increases the

network coverage area and reduces the energy usage, The

authors in [34, 35] focused on improving energy utiliza-

tion, energy balance, and network coverage in wireless

sensor networks. In [34], they employed a linear weighted

combination to merge the three optimization objectives

into a single objective and utilized the whale group algo-

rithm (WGA) to optimize this objective function. However,

this approach is computationally time-consuming. On the

other hand, in [35], the authors considered the deployment

of homogeneous nodes and the presence of obstacles. They

employed two versions of a multi-objective evolutionary

algorithm, one based on decomposition and the other to

jointly optimize the model.

In [36], the authors address fault tolerance and con-

nectivity challenges in wireless sensor networks (WSNs).

They specifically focus on connection restoration and

propose a simple and efficient algorithm for motion-based

k-connectivity reconstruction. The algorithm categorizes

nodes into critical and non-critical clusters based on their

failure to achieve a lower k value. When a critical node

fails, the algorithm selects and transfers non-critical nodes

to compensate for the loss. In [37] authors presented

methods for estimating connectivity in IoT-enabled wire-

less sensor networks. They introduce a simple and efficient

method (PINC) for movement-based k-connectivity

restoration that splits nodes into critical and non-critical

groups. When a crucial node fails, the PINC algorithm

transfers the non-critical nodes. This approach transfers a

non-critical node with the fewest movement costs to the

position of the failed mote.

Unlike previous works, specific authors concentrated on

placing nodes in a discrete grid area, which limits the

positions of nodes. Counterpart, our approach gives us high

flexibility to place fog nodes within a continuous region of

interest. In addition, previous approaches optimized net-

work connectivity and user coverage in two hierarchical

ways. In our work, we considered a multi-objective

aggregate function to optimize both simultaneously

because user coverage may be crucial in some valuable

services. Some experimental results will be provided to

show the advantage of simultaneous optimization. Our

approach allows us to place fog nodes within a continuous

region of interest.
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3 System assumptions and problem model
formulation

This section introduces a fog deployment model within the

IoT-fog-cloud infrastructure. The system under study

comprises IoT sensors, devices, and fog nodes, as depicted

in Fig. 1. To meet the demands of terminal IoT edge nodes

for high throughput and quality of service, while main-

taining cost-efficiency, we propose an IoT-edge-based fog

infrastructure illustrated in Fig. 1. This model encompasses

key concepts such as system architecture, coverage, net-

work connectivity, and the challenges associated with

multi-objective fog node deployment.

3.1 Network model description

Figure 1 illustrates three-tier IoT-edge-based Fog infras-

tructure. The first tier is the IoT-edge tier, encompassing

many IoT-edge terminal nodes. These nodes establish

connections with the second tier, known as the fog tier,

which consists of multiple fog server nodes. The third layer

is the cloud layer. where computing nodes can perform

intensive data analytics tasks. Let U represent the set of

computing nodes within the infrastructure, given by

U ¼ FG [ EN. The fog layer consists of n fog nodes,

denoted as FG ¼ FG1;FG2;FG3; :::;FGn, with their cor-

responding communication ranges represented by

RðFGiÞ ¼ R1;R2;R3; :::;Rn. Similarly, the IoT-edge layer

comprises m edge nodes denoted by

EN ¼ E1;E2;E3; :::;Em. To facilitate the problem defini-

tion, a list of notations and symbols used in the system

model is provided in Table 1.

3.2 System model assumptions

To respond to a real network deployment scenario in

practice, we investigate a deployment scenario where the

fog and IoT-edge nodes are considered static. Each fog

node has a different length of communications radius, and

fog nodes can communicate with each other via their radio

coverage [38]. On the other hand, edge nodes only have the

essential functions for network connectivity but do not

have the function of gateways or bridges [39]. Hence, edge

nodes must go through fog nodes to communicate with

other nodes. Moreover, since the locations of fog nodes are

determined based on edge nodes’ locations, it is necessary

to know the locations of edge nodes in advance [40].

Briefly, to ensure network connectivity and coverage, the

following assumptions have been established:

• The fog nodes and IoT-edge nodes are deployed

uniformly and randomly over the entire network and

are considered static inside the region of interest.

• Each fog node within the region of interest has access to

the cloud center through cellular networks. The place-

ments of the terminal nodes are considered fixed.

Fig. 1 IoT-edge based fog infrastructure

Table 1 mathematical notation used in model development

Symbol Meaning

n Number of fog nodes

m Number of IoT-edge clients

l Location vector of fog nodes

lðxi; yiÞ Node location

W Region of interest width

H Region of interest height

FG Fog node set

EN IoT-edge nodes set

ENi The i-th edge node client

E Set of edge links between fog nodes

Gi i-th subgraph component

jGij Size of the i-th subgraph component

h Number of subgraph components

fðGÞ Network connectivity

UðGÞ Terminal IoT-edge node coverage

ci Boolean coverage function

Xi The i-th prey

fitBEST Optimal fitness value of fog node deployment

MaxItr Maximum step movement
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• To address the heterogeneity of terminal nodes in

practical settings, we assume that each fog node fgi is

associated with a distinct communication range Rfgi .

• A fog node can only be connected to a limited number

of edge nodes.

Euclidean distance is a fundamental metric used to evaluate

network accessibility and connectivity. Therefore, in order

to ensure the desired network performance, it is necessary

to satisfy two conditions:

1. An IoT-edge node ENi is considered connected, if and

only if it is covered by at least a fog node fgi, as shown

in equation(1):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xj
� �2þ yi � yj

� �2
q

�Ri
ð1Þ

.

2. Two fog nodes, fgi and fgj, are considered connected if

and only if they are within each other’s communication

range, as demonstrated in equation (2):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xj
� �2þ yi � yj

� �2
q

� min Ri;Rj

� � ð2Þ

Figure 2 demonstrates an instance of the introduced prob-

lem; in this example, nodes consist of two types: fog and

IoT-edge nodes, which consist of 10 fog nodes n = 10 and

80 IoT-edge devices m = 80, located within the deployment

area, each fog node have a varied communication range. If

two fog nodes are in the communication range of each

other, they will be linked via a dark link (e.g., see the dark

link between fog nodes 1 and 2). If an IoT-edge node is

located within the communication range of a fog node, it

will be connected by a thin black link to the nearest fog.

Furthermore, the topology graph includes three sub-graph

components, the largest of which is 5 (i.e., fðGÞ ¼ 5), and

68 IoT-edge devices are covered (i.e., UðGÞ ¼¼ 68). If we

shift specific fog nodes toward the most congested part of

the IoT-edge device, as illustrated in Figure 2a, practically

all of the sub-graphs will be combined into a single giant

graph with size 10 (i.e., UðGÞ = 10), and 76 IoT-edge

devices will be covered (i.e., fðGÞ= 76). Therefore, edge

coverage and network connectivity can be improved by

changing the locations of some fog nodes.

3.3 Problem formulation

We focus on determining near-optimal fog node placement

by placing fog nodes in appropriate positions within the

region of interest while ensuring connectivity and maxi-

mizing coverage. The network coverage refers to the

number of covered edge nodes, while the connectivity

refers to connected fog nodes within the network. To

address this issue, it is not practical to analyze the whole

network. It is hard or even impossible to provide a con-

nected network that covers all edge nodes due to the net-

work dis-connectivity, which can be treated separately

instead. Therefore, in our study, we target the greatest sub-

network, i.e. primarily connected sub-network. By assum-

ing L is the initially given location set of fog nodes

L ¼ L x1; y1ð Þ; L x2; y2ð Þ; . . .; L xn; ynð Þf g.

We aim to update the fog nodes’ locations so that the

covered edge nodes and the size of the greatest sub-net-

work of connectivity are maximized. We observe that these

two targets are in dispute, which means that a large sub-

component network does not necessarily indicate a wide

coverage of edge nodes. We analyze our scenario problem

with a network of n fog nodes and m IoT-edge devices

deployed in a 2D area. We represent an undirected topol-

ogy graph G ¼ ðV;EÞ, where V ¼ FG [ EN. V refers to

network nodes which include a set of fog nodes denoted by

FG and a set of edge nodes denoted by EN, while E defines

the edge node’s connectivities. Two fog nodes are con-

sidered connected if an edge ðfgi; fgjÞ 2 E exists and Rf gi \
Rf gj 6¼ ;; an edge node ENj 2 E are considered covered if

and only if fog node fgi 2 F, LENj
2 Rj, and edge-fog

edgeðenj; fgiÞ 2 E exists.

As mentioned earlier, It is challenging to find a fully

connected and covered graph based on analyzing the entire

network due to network disconnectivity; therefore, target-

ing a large sub-network could be a solution to improve

network connectivity. We pointed out that the corre-

sponding graph G of the target network may not be con-

nected, i.e., G may consist of several sub-graph

components. However, note that maximizing the network

connectivity of fog nodes may not be able to cover all edge

nodes. In this situation, we aim to render the size of the

most significant sub-graph component as large as possible

to maximize the network’s connectivity.

Let us consider a graph G that comprises h subgraphs,

denoted as G1; . . .;Gh in G, such that G equals the union of

these subgraphs, i.e., G ¼ G1

S

G2

S

Gh, and It is impor-

tant to note that the intersection of any two subgraphs, Gi

and Gj, where i and j belong to the set 1, ..., h, is empty.

i.e., Gi \ Gj ¼ ;; for i; j 2 1; . . .; h. In order to analyze and

evaluate the performance of the topology graph G, the

following metrics, network coverage, and connectivity are

considered to be optimized.

Network connectivity is defined as the size of the largest

connected fog nodes subgraph. Where G is a graph and Gh

is a subset of G. The network connectivity is calculated as

follows:

fðGÞ ¼ max
i2 1;...;hf g

jGij ð3Þ

The network coverage function ci of an edge node i, rela-

tive to a fog node, is defined by a binary value as follows:
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ci ¼
1 if the edge node i is covered by at least one fog node

0 Otherwise

�

Where

UðGÞ ¼
X

m

i¼0

ci ð4Þ

3.4 Objective function

To assess the performance of the introduced topology

graph, we consider two objectives to optimize. The first is

network connectivity, achieved by maximizing the size of

the greatest subgraph component fðGÞ, defined by equ. 3.

The second objective is the node edge coverage UðGÞ,
defined by equ. 4. Therefore, we use the weighted sum

method that transforms the multi-objective problem into a

scalar problem by summing each objective pre-multiplied

by a user-provided weight. Our aggregated fitness function

f(X) is defined as follows:

f ðXÞ ¼ x:
fðGÞ
n

þ ð1 � xÞ : UðGÞ
m

ð5Þ

where x is a weighting coefficient between zero and one

that describes the ratio in which the objectives are

prioritized.

4 Marine predators approach

The Marine Predator Algorithm (MPA) has demonstrated

remarkable success in diverse research domains, repre-

senting an innovative approach introduced in 2020 by [41].

This algorithm stands out for its ability to mimic the

behavior of marine predators as they pursue their prey. The

Fig. 2 Fog connectivity and IoT-edge nodes coverage
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primary motivation for the MPA algorithm is the extensive

foraging strategy of ocean predators, namely Levy and

Brownian motions [42], and encounter optimal rate policy

in biological interactions between predator and prey. In this

method, the predator employs a strategic trade-off based on

the Brown and Levy model, utilizing the speed ratio

between the predator and prey, as illustrated in Fig. 3.

MPA adheres to the criteria that naturally regulate optimal

foraging strategy and encounter rate policy in marine

habitats [43]. According to the MPA definition, the MPA-

based optimization algorithm is presented as follow:

In the initiation phase of the optimization process, a

portion of the prey is uniformly dispersed within the search

area. The mathematical model governing this dispersion is

represented by Eq. 6:

X0 ¼ Xmin þ rand � Xmax � Xminð Þ ð6Þ

In this equation, X0 signifies the initial position of the prey,

Xmax and Xmin denote the lower and upper bounds of the

search space, respectively. The variable rand is a random

number generated between 0 and 1. Essentially, Eq. 6

outlines the process through which the initial positions of

prey within the optimization search space are determined

uniformly, ensuring a dispersed and varied starting con-

figuration for the marine predator algorithm.

During the optimization phase, each distributed solution is

evaluated using the objective function, and the solution with

the best objective value is chosen as the top predator. This

latter is used to create a matrix called Elite, also referred to as

E, which is based on the notion of the survival of the fittest.

The elite matrix is demonstrated as follows:

Elite ¼

X1
1:1 X1

1:2 . . . X1
1:d

X1
2:1 X1

2:2 . . . X1
2:d

..

. ..
. ..

. ..
.

X1
n:1 X1

n:2 . . . X1
n:d

2

6

6

6

6

4

3

7

7

7

7

5

nxd

ð7Þ

The variables X1, n, and d, respectively, represent the top

predator vector repeated N times to construct the Elite

matrix, the number of search agents within the population,

and the number of dimensions. The search agents predator

and prey both their tasks are based on space exploration to

locate food. The Elite matrix is updated at each iteration

based on the superior predator compared to the top predator

from the previous iteration. Typically, the prey matrix is

constructed during the initiation phase when the predators

change their positions. Consequently, a matrix called prey,

which has the exact dimensions as the Elite matrix, is

defined. The fittest prey from the original population is

employed to construct the Elite matrix. The formulation of

this matrix is as follows:

Prey ¼

X1:1 X1:2 . . . X1:d

X2:1 X2:2 . . . X2:d

..

. ..
. ..

. ..
.

Xn:1 Xn:2 . . . Xn:d

2

6

6

6

6

4

3

7

7

7

7

5

n�xd

ð8Þ

Xi:j denotes the jth dimension of the ith prey. The two

matrices described previously significantly affect the

overall optimization problem. According to the movement

modes of predators and prey, the optimization process of

the MPA is divided into three phases. The specific opera-

tion process is as follows:

4.1 Stages

4.1.1 High-velocity ratio (Stage 1)

During this stage, the prey moves at a higher velocity than

the predator, prioritizing exploration. This stage typically

occurs early in the iteration process and is defined as an

exploration phase. Here, the prey employs the Brownian

strategy to navigate the search space and identify potential

areas that may contain the optimal solution. Mathemati-

cally, this stage can be represented as follows:

While t\
1

3
Tmaxi ¼ 1; 2; . . .; n ð9Þ

stepsize i ¼ RB � Elite i � RB � pre ið Þð Þ
prey i ¼ prey i þ P� R� stepsize i

�

ð10Þ

where t represents the current iteration count, Tmax repre-

sents the algorithm’s maximum cycle count, stepsize rep-

resents the motion scale factor, RB represents a Brownian

walk random vector that follows the normal distribution,

Elitei represents the elite matrix formed by the top preda-

tor, preyi represents the prey matrix, � stands for ele-

mentwise multiplication, R is a random variable with a

range of [0, 1], whereas P is a fixed value set to 0.5.

Fig. 3 Examination of the Three Distinct Phases in the Marine

Predator Algorithm (MPA)
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4.1.2 Relative unit velocity (Stage 2)

This stage is based on exploration and exploitation [44]. After

completing the first third of the exploration process, predator

and prey explore the search space at the same velocity to search

for their own food. This is due to the proximity of the potential

locations that may contain the ideal solution; therefore, this

stage is considered as an intermediate optimization stage. In

summary, in this stage, the exploration process will be pro-

gressively converted into the exploitation process. Specifically,

the predators will be responsible for the exploration, while the

prey will be responsible for the exploitation. Hence, to model

this stage mathematically, the population is divided into two

parts: the first is exploited by prey using a Lévy walk. At the

same time, the second is explored by the predator using

Brownian motion. The specific mathematical formulations can

be observed in Eqs. 12 and 14.

While
1

3
Tmax\t\

2

3
Tmaxi ¼ 1; 2; . . .; n=2 ð11Þ

stepsize i ¼ RL � Elite i � RL � prey ið Þð Þ
prey i ¼ prey i þ P� R� stepsize i

�

ð12Þ

While
1

3
Tmax\t\

2

3
Tmaxi ¼ n=2; . . .; n ð13Þ

step size i ¼ RB � RB � Elite i � prey ið Þð Þ
prey i ¼ Elite i þ P� CF � step size i

�

ð14Þ

RL is the random vector facilitating Lévy’s mobility and

CF is an adaptive variable determined by equ. 15; works on

controlling the predator’s path.

CF ¼ 1 � t

Tmax

� � 2t
Tmax ð15Þ

4.1.3 Slow velocity ratio (Stage 3)

In the latter phase of the optimization process, specifically

during the final third of the maximum iteration, a signifi-

cant change takes place in the predator’s strategy. At this

stage, the predator starts employing Lévy’s motion to

progressively close in on the prey. This modeling reflects a

more accurate representation of the transitional stage as

follows:

While t[
2

3
Tmax; i ¼ 1; 2; . . .; n ð16Þ

stepsize i ¼ RL � RL � Elite i � prey ið Þð Þ
prey i ¼ Elite i þ P� CF � stepsize i

�

ð17Þ

After progressing through previous stages, the MPA algo-

rithm may encounter the risk of becoming trapped in sub-

optimal solutions [45]. Therefore, environmental factors

such as Eddy formation and fish aggregation devices (FADs)

have been identified. Eddy formations, characterized by

swirling water currents, create areas that can trap and con-

centrate prey, presenting challenges for predators. Similarly,

fish aggregation devices are structures designed to attract

fish, impacting the movement patterns of predators. In the

context of MPA, these environmental influences are repre-

sented in its mathematical model, notably within equ. 18.

preyi¼

if r�Pf

prey iþCF XminþR� XmaxþXminð Þ½ ��U

if r[Pf

prey iþ Pf ð1�rÞþr
� 	

� prey r1� prey r2ð Þ

8

>

>

>

<

>

>

>

:

ð18Þ

Here, Pf indicates the likelihood that FADs would affect

the optimization process; U denotes a binary vector con-

taining 0 and 1 value; r a distinct value falling between [0,

1]; and the values r1 and r2, produced at arbitrary from the

broad population range which stands for the random indi-

ces of the prey matrix.

In many optimization algorithms, it is common for new

solutions to replace older ones without considering their

potential value. However, the MPA offers an advantage in data

conservation by preserving the prey’s previous location. In this

approach, the algorithm evaluates both the current solution and

the previous one (or solutions) based on their fitness values. If

the current solution is deemed superior to the previous one, the

algorithm retains it and discards the previous one. Conversely,

if the previous solution is found to be better, the algorithm keeps

it and discards the current one. By employing this mechanism,

the MPA ensures that potentially valuable solutions are not

prematurely discarded. The key steps of the Marine Predator

Optimization (MPO) method are outlined in Algorithm 1.

In the fog node placement problem, the Marine Predator

Algorithm (MPA) can be conceptualized with fog nodes

acting as predators and potential positions for fog nodes as

prey. Fog nodes, serving as predators, actively seek out

optimal positions within the 2D area to maximize network

coverage and connectivity. The exploration strategy entails

searching for new promising areas within the 2D space

where fog nodes could be deployed, representing unex-

plored prey locations. Concurrently, the exploitation strat-

egy involves exploiting promising regions already

discovered by fine-tuning fog node positions iteratively to

enhance network coverage and connectivity. Through this

iterative process, fog nodes navigate the search space,

dynamically balancing exploration and exploitation to

achieve near-optimal solutions for fog node placement,

ultimately ensuring comprehensive coverage and robust

connectivity in fog computing environments. In summary,

MPA iteratively adjusts fog node positions based on prey

encounters, balancing exploration and exploitation to

improve both metrics. Termination criteria guide the
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algorithm’s convergence, ensuring the final fog node

positions represent a near-optimal placement guaranteeing

comprehensive coverage and connectivity. Through rigor-

ous analysis, we aim to evaluate MPA’s efficacy in

addressing the fog node placement problem and further

refine the optimization process.

4.1.4 Time complexity evaluation of the marine predator
algorithm

The time complexity of the Marine Predator Algorithm

(MPA) is primarily determined by two key operations within

each iteration: calculating the fitness values of individuals

and updating the prey positions. These operations scale

linearly with the size of the population (N), the dimension-

ality of the search space (d), and the maximum number of

iterations ðMax ItrÞ. As a result, the overall time complexity

of the MPA can be briefly represented as

OðN � d �Max ItrÞ. This characterization provides a clear

understanding of how the algorithm’s computational

requirements grow with changes in input parameters, facil-

itating analysis and optimization efforts for practitioners

seeking to deploy the MPA in various optimization tasks.

Algorithm 1 Pseudo code of Marine Predator Optimization algorithm

5 Experimental and results

In this section, we explore a scenario set in a smart city

environment where a static network is established to sup-

port a range of IoT applications, including traffic moni-

toring, environmental sensing, and smart lighting. The

network comprises static fog servers distributed throughout

the city, with a particular focus on enhancing public safety

through intelligent surveillance. These fog servers are

strategically located in high-traffic areas, public spaces,

and critical infrastructure points such as transportation

hubs and governmental buildings. By deploying fog nodes

in these critical locations, the network can effectively cover

and process real-time video feeds from surveillance cam-

eras, analyze data locally, and respond swiftly to potential

security threats or emergencies. This scenario underscores

the importance of leveraging fog computing to support

urban security measures and ensure the safety of residents

and visitors within the smart city ecosystem. Furthermore,

to evaluate our work, we implement the Marine Predator

Algorithm (MPA) within our proposed architecture, which

is structured as a three-tier IoT-edge fog-based system. In

this architecture, IoT-edge devices in the first tier generate

data, while the second tier is comprised of fog servers, and

the final tier integrates a resource-abundant cloud. This

hierarchical design optimizes resource deployment and

utilization by defining the responsibilities for each tier.

Subsequently, we conduct several scenarios with varying

settings and compare the results against different algo-

rithms. This comparative analysis allows us to assess the

effectiveness and efficiency of the MPA algorithm within

the given architecture.

5.1 Experimental setup

In the experimental setting, we implement a practical

application using Matlab 2019Ra. This application permits

the calculations to be conducted as fast as possible. Based

on the pseudo-code presented in algorithm 1, we conducted

our experiment in a rectangular area of 1000 m � 1000 m

with normal/uniform distribution to fog nodes using an

AMD Ryzen 7 5700U with 8 cores with a 4.3 GHz clock

speed, 8GB of memory, and a Windows 10 environment.

The experimental setup enables us to repeat the experiment

under various conditions and restrictions, allowing us to

conduct the experiment in the control environment with the

desired set of settings. Table 2 provides a list of parameters

and their corresponding values derived and established by

various initial experiments.
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5.2 Experimental results

We have conducted various trials to evaluate the connec-

tivity and coverage of the proposed algorithm compared to

the following baselines: harris hawks optimization

(HHO) [46], particle swarm optimization (PSO) [47], and

sine cosine algorithm (SCA) [48] algorithms. Since our

target function involves two competing priorities and the

network may experience inadequate connectivity and

coverage as illustrated in Figs. 2a, 2b. Therefore, the

conducted tests have been carried out under different net-

work parameters to establish the best weight x of the

defined objective function for comparing the performance

of the proposed algorithm to other methods.

5.3 Fitness function study under different x
Values

To determine an appropriate weight-coefficient x, we

analyze the user coverage and fog nodes connectivity

simultaneously with different values of x, and we employ

the convergence curves, which are considered the most

critical analysis tool to understand the algorithm’s behav-

iors while developing an optimal solution using meta-

heuristics algorithms. Therefore, several iterations were

conducted to identify the optimum weight-coefficient x
that satisfies the termination criteria outlined in equ. 5. We

execute the experiments 10 times, each of which has 1000

iterations. Furthermore, each experiment was associated

with different values of x. In each experiment, 1000

instances are employed to determine the effect of changing

the weight-coefficient x value. We observed that when

using a larger value of x, the user coverage is low, which

means fog nodes tend to crowd in a small area, leaving

many IoT-edge nodes uncovered. In contrast, when using a

smaller value, the user coverage is high, which means the

fog nodes are dispersed throughout the area and can cover

the majority of IoT-edge nodes independently but cannot

make up a larger component(i,e, High connectivity).

Therefore, we can conclude to some extent that the weight

coefficient x plays a crucial role in balancing our two

objectives, namely f and U. As a result, it becomes nec-

essary to determine an appropriate value for x that can

effectively satisfy both criteria simultaneously. Through

extensive testing, Fig. 4 demonstrates that a value of x ¼
0:5 achieves an excellent trade-off, yielding favorable

results.

5.3.1 Comparison of algorithms convergence

Fig. 5 illustrates the results obtained from the studied

systems concerning various network configuration values

specified in Table 3. As observed at the beginning of the

experiment, all algorithms, including MPA, undergo sig-

nificant changes in their fitness values as iterations pro-

gress. However, what sets MPA apart is its resilience

against premature convergence, a common issue faced by

other algorithms like HHO, PSO, and SCA. Premature

convergence can hinder the ability of algorithms to escape

local optima, ultimately limiting their effectiveness in

finding globally optimal solutions. In contrast, MPA’s

unique search strategy allows it to maintain a balance

between exploration and exploitation, preventing prema-

ture convergence and facilitating the discovery of high-

quality solutions. An essential aspect of an algorithm’s

overall performance is its convergence speed, which

directly impacts its efficiency and effectiveness in finding

optimal solutions. As depicted in Fig. 5, our experiments

demonstrate that MPA exhibits exceptional potential and

achieves faster convergence compared to other algorithms.

This faster convergence, coupled with the ability to find

optimal fitness function values, underscores the efficacy of

MPA in addressing the complexities of fog node deploy-

ment. By leveraging MPA, we can effectively optimize fog

computing environments, ensuring robust network cover-

age,connectivity and deployment costs.

5.3.2 Comparison of algorithms terms of connectivity
and coverage

To evaluate the performance of our proposed algorithm in

comparison to PSO, HHO, and SCA algorithms for the

given objective function f (as defined in equ. 5), we assess

both the network coverage and user coverage. Figure 6

illustrates how our algorithm achieves a higher coverage of

IoT-edge nodes using fewer fog nodes. In Fig. 6a, it is

evident that our algorithm achieves a connectivity rate of

40%, with more than 90% of the target population being

covered, as shown in Fig. 6b. In contrast, PSO, HHO, and

SCA algorithms only achieve connectivity rates of (45, 45,

41)% for fog servers, covering (67, 67, 79)% of terminal

IoT-edge devices, respectively. These results indicate that

Table 2 Network Parameters

Parameter Value Initial value

Fog nodes density [10, 120] 45

Edge nodes density [30, 200] 120

Communication range [90, 200] 100 m

Area width 1000 m 1000 m

Area height 1000 m 1000 m
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our proposed MPA algorithm outperforms the other

methods.

5.4 Evaluation criterion

In order to have a better understanding of the adjustments

that have been made to the optimization objectives, we

have evaluated the performance of the proposed marine

predator’s optimization algorithm against the previous

methods in terms of the following evaluation metrics,

namely; Network connectivity (U), user coverage (f), and

objective function value f, we assess our experiment by

varying the number of edge nodes, the number of fog

nodes, and the fog nodes’ communication range.

5.4.1 Scalability in terms of network size

To analyze the network coverage and connectivity, we

establish a fog network by deploying a variety of network

sizes (N), varying from 10 to 120 fog nodes as shown in

Figs. 7, 8 and 9. As can be seen in Fig. 7a, the number of

connected fog nodes increases as additional fog nodes are

added to the network, which reflects the network connec-

tivity. As predicted, increasing the number of fog nodes

increases network connectivity. Hence, this is due to the

fact that by adding additional fog nodes to the network, the

isolated network connects to the rest of the network. As a

direct consequence of this, a wider network will be formed.

While in terms of coverage, Fig. 7b displays the relation-

ship between the number of fog nodes and the total number

of covered IoT-edge nodes. The results show that our

proposed algorithm finds optimum coverage, with more

IoT-edge nodes covered as predicted. Also, It demonstrates

the scalability of the fog network architecture by showing

how adding more fog nodes improves network connectivity

and expands coverage, indicating that the system can scale

up effectively to accommodate a larger number of fog

nodes.

5.4.2 Scalability with increasing number of IoT-edge
devices

Figure 8 shows the network coverage and connectivity

results by varying the total number of IoT-edge nodes from

30 to 200. From figure 8a, it is clear that the number of

connected fog nodes is always somewhere between 70%

Fig. 4 Analysis of fitness functions across varying x Parameters

Fig. 5 Convergence behavior of the studied algorithm

Table 3 Algorithm Parameters Configurations

Algorithms Parameters Configurations

MPA FADs ¼ 0:1, P ¼ 0:5

SCA a ¼ 2

PSO VMax ¼ 6, WMax ¼ 0:9, WMin ¼ 0:2, c1 ¼ c2 ¼ 2

HHO No parameters for control
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and 90% because our algorithm tries to connect all acces-

sible fog nodes to encompass additional edge nodes. Fur-

thermore, figure 8b shows the network’s overall coverage,

which remains stable between 70% and 93%. We observed

that when the number of IoT-edge nodes increased, the

percentage of coverage and connectivity remained consis-

tent because the IoT-edge node distribution was uniform,

which implies that the likelihood of an IoT node falling

into a covered or uncovered region is the same. This

analysis illustrates that, despite fluctuations in the number

of edge nodes, the network’s coverage and connectivity

remain consistent. This highlights the scalability of the

system to handle varying densities of edge nodes while

maintaining stable performance.

5.4.3 The impact of communication range

Fig. 9, shows the impact of communication range adjust-

ments on network coverage and connectivity performance

across multiple experimental runs by adjusting the range of

the communication from 90 ms up to 200 ms, respectively.

The result in Fig. 9a shows that once the communication

range exceeds 140 ms, all fog nodes start attempting to

communicate with each other because almost isolated sub-

networks connect to the rest of the network, forming a

single sizeable giant network. Figure 9b shows the impact

of communication range changes on IoT-edge nodes cov-

erage. Results proved that the number of covered edge

nodes grows proportionally with the communication range.

According to Fig. 9b, when the communication range goes

over and above 140 ms, almost terminal nodes of the

network are covered. Hence, 140 m is considered a crucial

communication range.

5.4.4 Experimental objective function impact

This part shows the impact of user coverage and network

connectivity suggested in the objective function 5 in the

performance of the proposed algorithm. Using the same

experimental parameters as before, tables 4, 5, and 6

outline accurate numerical results of the objective function

obtained by the proposed algorithm. Results in table 4,

show that when increasing the number of fog nodes from

30 to 230, the covered IoT-edge nodes percentage and

Fig. 6 Assessing connectivity and coverage across investigated algorithms

Fig. 7 Effect of fog nodes density on coverage and connectivity
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value of objective function rise correspondingly. In addi-

tion, we obtained a connected network topology nearly all

the time. However, upon adding more fog nodes to the

network, our proposed algorithm gives more excellent IoT-

edge node coverage and the best fitness value f. According

to the statistics that are provided in table 4, when the

number of fog nodes changed from 30 to 230, both the

percentage of covered edge nodes and the value of the

objective function increased proportionally. Quite notably,

our network structure is nearly always interconnected.

However, the obtained results affirmed that the proposed

approach provides better network coverage and better

value to the fitness function whenever additional fog nodes

are added to the network.

By varying the number of terminal IoT-edge nodes from

30 to 195, results in table 5 show that the percentage of

user coverage and network connectivity, as well as the

objective function value f, almost remained practically

unchanged, and this occurs because node placement dis-

tribution is randomly affected. Since the whole network is

almost connected for all IoT-edge node values, it is

remarkable that even with the addition of terminal nodes,

the coverage value will remain stable, resulting in the same

proportion of all edge nodes. Similarly, statistics analysis

demonstrates that the proposed algorithm performs better

than others and achieves better coverage. The samples in

table 6 illustrate how the communication range of fog

nodes affects both coverage and network connectivity.

Fig. 8 Effect of IoT-edge nodes density on coverage and connectivity

Fig. 9 Investigating Coverage and Connectivity Dynamics under Different Communication Ranges

Table 4 Coverage, connectivity, and fitness value vs Fog node

density

Fog Connectivity%) Coverage (%) Function

30 90,00 64,25 77,13

50 92,60 83,50 88,05

70 94,86 94,00 94,43

90 98,67 98,00 98,33

110 99,73 99,50 99,61

130 99,85 100,00 99,92

150 100,00 100,00 100,00

170 100,00 100,00 100,00

190 100,00 100,00 100,00

210 100,00 100,00 100,00

230 100,00 100,00 100,00
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Simply put, an increase in communication range will lead

to an increase in coverage, which in turn will improve the

fitness value. Moreover, the fitness value that can be

attained using the proposed algorithm is more significant

than that which can be obtained using the other methods.

6 Conclusion

To optimize network performance and ensure seamless

user experiences at the network’s edge, it’s crucial to

strategically place data and resources, especially consid-

ering the limitations of IoT edge devices and user

requirements. In this paper, we propose a three-tier IoT

edge-fog-cloud integration architecture and leverages

metaheuristic algorithms to facilitate resource deployment.

Our approach revolves around defining an aggregated bi-

objective function with the dual aim of maximizing net-

work connectivity, as measured by the number of con-

nected fog nodes, and enhancing the coverage of IoT-edge

nodes. To tackle this challenge, we introduce the Multi-

Objective Particle Swarm Optimization (MPA) algorithm,

designed to efficiently address these objectives.

Noting the No Free Lunch Theorem (NFL Theorem),

which asserts that no single algorithm universally excels

across all problem domains, we empirically demonstrate

the superiority of the MPA algorithm over alternative

algorithms. Our findings show a notable improvement, with

the MPA algorithm outperforming other algorithms by

approximately 50%. This underscores the importance of

selecting algorithms tailored to the specific characteristics

of the problem at hand. Furthermore, our experimental

results underscore the efficacy of our proposed algorithm in

establishing network connections, consistently achieving

complete network connectivity.

While our empirical findings clearly demonstrate the

superior performance of the MPA algorithm compared to

alternative methods, we recognize the importance of fur-

ther exploration and enhancement in various areas. One

promising direction for future research involves examining

how the algorithm can adapt to dynamically changing IoT

environments, evaluating its effectiveness in maintaining

optimal performance, such as deploying UAV nodes in

affected areas to provide services for users. Additionally,

there is potential to improve the MPA algorithm to be

tailored to the emerging IoT technologies, which could

significantly enhance its capabilities and broaden its

applicability.
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