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Abstract
Multimodal optimization poses a challenging problem in the field of optimization as it entails the discovery of multiple

local and global optima, unlike unimodal optimization, which seeks a single global solution. In recent years, the signif-

icance of addressing multimodal optimization challenges has grown due to the real-world complexity of many problems.

While numerous optimization methods are available for unimodal problems, multimodal optimization techniques have

garnered increased attention. However, these approaches often grapple with a common issue: the determination of the

niching parameter, necessitating prior knowledge of the problem space. This paper introduces a novel multimodal opti-

mization approach that circumvents the need for prior problem space knowledge and avoids the challenge of predefining

the niching parameter. Building upon the Battle Royal Optimization (BRO) algorithm, this extended version formulates a

multimodal solution by utilizing Coulomb’s law to identify suitable neighbors. The incorporation of Coulomb’s law serves

the dual purpose of identifying potential local and global optima based on fitness values and establishing optimal distances

from solution candidates. A comparison study was done between the MBRO and seven well-known multimodal opti-

mization algorithms using 14 benchmark problems from the CEC 2013 and CEC 2015 competitions to see how well it

worked. The experimental results underscore MBRO’s proficiency in successfully identifying most, if not all, local and

global optima, positioning it as a superior solution when compared to its competitors.

Keywords Battle Royale optimization � Multi-modal optimization � Local search

1 Introduction

Optimization involves finding the optimum solution among

a set of potential solutions in a particular optimization

problem. Most metaheuristic optimization algorithms are

designed to solve unimodal optimization problems [1].

However, many real-world problems have more than one

solution due to their nature. However, due to the fact that

they employ a strategy of escaping from local optima,

unimodal algorithms are unable to locate local optima.

Herein, multimodal algorithms provide decision-makers

with alternative solutions. Multi-modal optimization algo-

rithms are designed to find multiple optima (both global

and local) simultaneously within a given problem space.

Unimodal optimization algorithms need to preserve diver-

sity when adapted to multi-modal optimization algorithms.

Niching strategies have been widely applied to multi-

modal optimization problems to divide the population into

sub-populations [2]. Niching methods can be divided into

many categories: Fitness Sharing [3–8], Crowding [9, 10],

Clearing [11], Speciation [12] and more [13].

Crowding is one of the oldest and simplest techniques used

to solve multimodal optimization problems. By using the

distance between similar individuals in the population, De

Jong’s crowding method [14] maintains population diversity.

The algorithm compares a generated solution with some

randomsolutions from the current population. If the generated

solution is better, it will be replaced with the most similar

solution. The biggest advantage of crowding is its simplicity.

However, the replacement error is the main drawback of
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crowding. For instance,Mahfoud [10] explainshowstochastic

‘‘replacement errors’’ prevent the fundamental crowding

algorithm from keeping more than two peaks in a multimodal

fitness landscape. In order to find and keep track of multiple

peaks in the presence of a multimodal function, Mahfoud

details an enhanced crowding algorithm that is called deter-

ministic crowding. Each generation of deterministic crowding

pairs all members of the population at random, resulting in

n = 2 pairs, where n is the population size. Crossover, in

addition tomutations and other genetic operators, can produce

offspring from each such parent pair. Both children then have

to compete with their parents to join the population. The

deterministic crowdingmethod shows a strong ability to solve

some multi-peak optimization problems and preserve niches.

However, the Deterministic Crowding replacement policy

results in the loss of low availability niches. For this purpose,

[15] proposes the probability crowding technique, allowing

the offspring to be changed according to the fitness values of

similar parents.

The fitness sharing approach proposed by Holland [16]

and later developed by Goldberg and Richardson [3]

divides the different populations into subgroups by con-

sidering the similar characteristics of individuals in the

population. The advantage of sharing is that it creates a

subpopulation sustainably using niching. Increases popu-

lation diversity by increasing searches in unexplored areas

of shared space. The downside is that it needs a specific

parameter. Specifying this parameter means that it requires

prior knowledge of how far from the solution it is. How-

ever, this is not possible for real-world problems [7].

Clearing is another widely used niching method [11].

Unlikefitness sharing, clearing keeps only the best individuals

in a niching, eliminating the bad ones. The algorithmfirst sorts

in descending order by considering the fitness value in the

population. Then, after choosing a solution from the top, it

eliminates individuals with worse fit than the chosen one.

Clearing preserves diversity among selected individuals. Like

the sharing operation in clearing, it needs a user-specified

rclear parameter. The advantage of the clearing process over

the sharing process is that it is simple. It also handles the best

elements across generations.However, convergence is slow in

clearing and local solutions are not effective.

Species method is widely used in multimodal optimization

[11, 12, 17]. This method depends on the radius parameter to

the central boundary of a type measuring Euclidean distance.

All individuals within the specified radius are calculated from

the same species. In this way, the entire population is divided

into different groups based on their similarities. The main

advantage of species method is the ability to maintain high

diversity over generations. The disadvantage is that it needs

the radius parameter, like other niche-based approaches.

The majority of current niching methods necessitate the

use of predetermined niching parameters or additional

knowledge regarding the problem domain. However, there

have been efforts to develop multi-modal optimization

algorithms without niche parameters or that are more

adaptive and do not require extensive parameter tuning or

domain-specific knowledge. These algorithms aim to

automatically adjust their niching parameters and adapt to

the characteristics of the problem at hand. They use

mechanisms such as self-adaptive niching radii or dynamic

clustering methods. Some of the suggested Multimodal

optimization algorithms without the need for any niche

parameters are as follows.

Li [1] adapted a fitness distance ratio strategy to the PSO to

extend the PSO to a multimodal optimization form. The FER

determines the fitness difference between the particles and the

rest of the swarm by calculating the Euclidean distance. By

maximizing the ratio of fitness and distance, it directs the

movement of one particle to other particles not only with

respect to fitness value but also with respect to distance.

EPSO (Electrostatic PSO) is a PSO-based algorithm

based on electrostatic interaction without the need for any

additional parameters [18]. Here, the electrostatic interac-

tion between particles was computed by employing Cou-

lomb’s law. Most of the particles converged to the local

and global optima through the application of Coulomb’s

law. To achieve an appropriate distance from the particle,

particles attempted to move toward a point where the cost

function value was also appropriate. Moreover, [19]

adapted a local search to some PSO-based multimodal

algorithms to enhance a convergence.

Apart from Particle Swarm Optimization (PSO)-based

multimodal algorithms, there are various optimization

algorithms that have been extended or adapted to handle

multimodal optimization problems. These adaptations aim

to enable the exploration of multiple optima in the search

space. Here are some examples of optimization algorithms

that have been extended for multimodal optimization:

Niche Gravitational Search Algorithm (NGSA) [20],

Multimodal Firefly Algorithm [20], Multimodal Flower

Pollination Algorithm [21],Multimodal Animal Migration

Optimization Algorithm (AMO) [22], Multimodal Bacte-

rial Foraging Optimization (MBF0) [23], Multimodal

Butterfly Optimization Using Fitness-Distance Balance

[24] and etc.

2 Battle Royale optimization algorithm

Battle Royale Optimization (BRO) Algorithm was intro-

duced by Taymaz in 2020 as a game-based optimization

algorithm inspired by the last survival strategy in a chal-

lenging environment [25].

In these types of fighting games, players (soldiers) fight

against each other in the context of competition. The goal
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for each player is to first stay alive and then kill as many

other players as possible. While playing, if a player keeps

getting hurt for a certain amount of time, it will respawn in

a random part of the game field. Like in Battle Royale

games, the BRO algorithm spreads out the first possible

solutions randomly in the problem space. Afterward, each

answer would be compared to its nearest neighbor. The

solution with the higher fitness value would be named the

winner, while the other solution would be named the loser.

There is a parameter in each candidate solution that stores

the damage (lose) level of each solution. This parameter

would go up after each damage. If a solution is damaged

over and over for a certain amount of time (depending on

the problem to be solved), it will be moved around

according to Eq. (1) the damage level will be reset to zero.

If the amount of damage is below the threshold, then

Eq. (2) will be used to effect reallocation.

xdam;d ¼ r ubd � lbdð Þ þ lbd ð1Þ

xdam;d ¼ xdam;d þ r xbest;d � xdam;d
� �

ð2Þ

In these equations, r is a uniformly distributed random

number in the interval [0,1], and xdam;d and xbest;d represent

the locations of the damaged and best-known solutions in

dimension d, respectively. Lower and upper bounds on

problem space dimension d are denoted by ubd and lbd,

respectively.

The essential feature of the algorithm is that the search

space gets smaller and closer to the optimal solution at

each D iteration by D ¼ Dþ dD
2
e if iteration �D. If itera-

tion is increased to a value of D, the safety zone will

decrease in size. D has been set up by default to be
MaxCicle

roundðlog10ðMaxCicleÞÞ, where MaxCicle is the maximum

number of iterations. The idea behind this space limit is to

move all possible solutions toward the one that might be

the best. To support elitism, keep in mind that the best

solution from each round is saved. Using Eq. (3), where

SDðxdÞ is the population standard deviation in dimension d,

we can reduce the size of the problem space.

lbd ¼ xbest;d � SDðxdÞ
ubd ¼ xbest;d þ SD xdð Þ

ð3Þ

3 Multi-modal Battle Royale optimization
algorithm (MBRO)

This proposed method presents an extended version of

BRO algorithm, one that can find multiple local and global

optima. This section will describe the Multi-Modal BRO

(MBRO) algorithm. The proposed method relies solely on

the parameters of the original BRO algorithm. The

determination of the appropriate niching radius is the pri-

mary challenge that the majority of the existing methods

must overcome. However, this method gets rid of the need

for domain knowledge by not using a niching parameter.

The complexity of the proposed multi-modal algorithm is

the same as the original version as it does not necessitate

any extra parameter. Like other multimodal optimization

methods, the proposed MBRO needs to be changed in

certain ways so that it can find more than one optimal

solution.

As mentioned before, each solution is competing with

another that is close in radius. This means that a solution

with a more advantageous position has a greater chance of

success. As a result, everyone is trying to improve their

position in order to increase their chances of survival.

Among the corresponding solution and its nearest neigh-

bor, the solution which located in the better positions

therefore cause increasing the damage score to another one.

In order to find the nearest neighbor, the BRO algorithm

uses Euclidean distance. The first modification is per-

formed on Coulomb’s law (Eq. 4) which provides attrac-

tive or repulsive interaction between solutions.

Fj j ¼ K
Q1:Q2

r2
ð4Þ

where F is the magnitude of the electrostatic force, Q1 and

Q2 are magnitudes of the charges, and finally K is is the

Coulomb constantðK � 1
4pe0

Þ.Therefore, instead of the

Euclidean distance the electrostatic interactions between

the ith individual and the rest of the population are com-

puted and saved in the vectorF. By adopting this strategy,

the indices of neighbors for the ith individual can be

determined through the following equation proposed in [1]:

Fi;j ¼ a
f xið Þf xj

� �

r2
ð5Þ

Here f ðxiÞ and f ðxjÞ are the objective value of ith and jth

solutions, respectively. a is considered as Coulomb con-

stant taken to be 1.

In this case, the index of the solution to be compared

with the ith solution is calculated per argmaxðf iðjÞÞ.
Therefore, instead of comparing a solution with the nearest

neighbor, it compares with a solution that provides the

largest electrostatic force.

Figure 1 appears to be a visual aid from illustrating the

Coulomb’s law integration, this figure illustrates the con-

cept of computing an F vector in a two-dimensional search

space. It’s used to represent a set of solutions (labeled A, B,

C, D) that have been evaluated by a certain function f , and

the distances between these points are also shown. Each

point (A, B, C, D) represents a possible solution in the

search space. The potential for improving ‘‘A’’ can be
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realized by moving A towards ‘‘fittest-and-closest’’

neighbors, which can be determined by calculating the F

value for the individual particle. The function f has been

applied to each point, yielding values f Að Þ ¼ 3, f Bð Þ ¼ 2,

f Cð Þ ¼ 6, and f Dð Þ ¼ 10. The distances between points A

and the others are given by kA� Bk ¼ 3, kA� Ck ¼ 6,

and kA� Dk ¼ 8. The F values, such as FA;B, FA;C and

FA;D, are calculated using a Eq. 5, Coulomb’s law, to take

into account both the objective values and the distances

between solutions. These F values are used to determine

the ‘‘fittest-and-closest’’ neighbor for solution A. Accord-

ing to F values, the ‘‘fittest-and-closest’’ neighbor for A is

B.

When a solution’s damage level does not exceed a

predetermined threshold, the soldier will execute a standard

‘‘run-and-tumble’’ motion in order to enhance the accuracy

of the local search and improve the overall search capa-

bility. In this manner, solutions move about their envi-

ronment in order to find a better position. A combination of

forward stepping and random movement characterizes the

individual’s path to a more advantageous position. Due to

this mechanism, a solution moves randomly in a certain

direction. If the solution is in a better spot, the random

movement will continue from the new spot. If not, the

solution will try to tumble in a new, random direction. This

movement will only go on until a certain value is reached

T = 5. In each step, the position of the solution is changed

based on:

xi ¼ xi þ kD; ð6Þ

where D indicates the size of step and calculated per

D ¼ ub� lbð Þ � rand 0; 1½ � þ lb. Through trial and error, it

was found that the right values for lb (lower bound) and ub

(upper bound) are - 0.8 and 0.8, respectively. Moreover, k
is a control parameter for the step size.

On the other hand, if a solution’s damage level exceeds

a predetermined threshold, the solution will move toward

the winning solution using Eq. 7. As the algorithm gets

closer to the end of the generation, the step size should be

decreased so that the exploration and exploitation are in a

more even balance. The following formula is used to

compute w:

w ¼ wmax �
wmax � wmin

G

� �
� G ð7Þ

where G is the maximum generation value, and wmax ¼ 0:4

and wmin ¼ 0.0001 are the lower and upper bounds of w,

correspondingly. Hence,

xdam;d ¼ xdam;d þ wr xbest;d � xdam;d
� �

ð8Þ

The last thing to notice is that the shrinking step is not

performed as the aim is not to focus on a single optimum

solution.

The computational complexity of the proposed method

is contingent upon the population size and maximum

number of iterations, in addition to the problem’s dimen-

sions. In order determine the Euclidean distance between

any two solutions, it is necessary to compare each solution

with the others. Considering the population size n, the

computational complexity for calculating the aforemen-

tioned distance is Oðn2Þ. Therefore, when the number of

iterations m is considered, the computational complexity of

BRO equals Oðn3Þ.

Fig. 1 An example of

computing F vector in in a

2-dimensional search space. The

population size is three.

According to F values, the best

neighbor for A is B.

Maximization is assumed

Cluster Computing

123



4 Experimental results and performance
evaluations

The experiments were executed utilizing MATLAB R2019

on a Windows 10 system equipped with a 32 GB RAM and

a Core i7-7700HQ 2.80 GHz processor. This section con-

tains a summary of the numerical experiments that were

conducted using the algorithm that we have proposed. By

contrasting MBRO with several multi-modal techniques,

we demonstrate its efficacy in locating and sustaining both

local and global optima. We provide a description of the

optimization test functions and the performance criteria

prior to presenting the results.

4.1 Test function

MBRO and its competitors (CFA [20], EPSO [18],

FERPSO [6], LSPSO [19], NGSA [37], MFPA [39],

MAMO, and [22]) have undergone testing on a set of 14

widely employed multi-modal benchmark functions from

CEC 2013 and CEC 2015, as referenced in [26] [27]. The

different features of these functions are listed in Table 1.

Eight multi-modal functions (F1–F8) and two composition

functions (F9 and F10) are shown in Table 1. A number of

basic Grienwank, Weierstrass, and Sphere functions are

used to make F9. The F10 function is made up of Rastrigin,

Grienwank, Weierstrass, and Sphere functions. These

equations are used to figure out the composite functions:

xi ¼ exp �
PD

k¼1 xk � oikð Þ2

2Dr2i

 !

ð9Þ

xi ¼
xi xi ¼ max xið Þ

xi 1� max xið Þ10
� �

otherwise

(

ð10Þ

In the given cases F8 and F9, the value of ri is estab-

lished as 1. F9 represents a value of zero for both biasi and

f bias. Furthermore, considering i as f1; 2; :::; ng, oi and Mi

are the newly shifted optimums of the identity matrix and

each f i, respectively. Moreover, F11–F14 are the expanded

scalable functions from CEC 2015.

The performance of the algorithm was evaluated using

the following test functions.

4.2 Performance criteria

In this section, four multi-modal optimization metrics are

presented. In 25 iterations, these criteria were evaluated in

order to determine the effectiveness of the proposed

method. These criteria specify both the quantity and quality

of the obtained optima. The following criteria assessed

algorithm performance.

1. Success Rates (SR); It is the value that shows the

successful run percentage of the known optimal.

When calculating the success rate; the formula used is as

follows.

SR ¼ NSR

NR
ð11Þ

To calculate the success rate, another parameter known

as the level of accuracy must be defined. The level of

accuracy is usually chosen within the range of [0, 1].

2. Average number of optima found: This metric calcu-

lates the average number of solutions obtained over the

number of runs. When the success rate value for a

particular difficult problem reaches zero, division by

zero may take place, resulting in an undefinable

success performance.

3. Success performance (SP): this criterion evaluates the

probability of a high success rate with a lower number

of function evaluations. SP is defined as

Success Performance ¼
PNR

i¼1 NFE

NR � SR
ð12Þ

4. Maximum Peak Ratio (MPR): Inspired by the work of

Miller and Shaw [6] it aims to find the local optima in

the population to measure its optimum quality. MPR is

used to test the quality of the found optimum

calculated according to Equation.

MPR ¼ 1

NR

XNR

r¼1

PNOPr

i¼1 fi
PNAP

i¼1 Fi

 !

ð13Þ

4.3 Experiments and results

The performance of MBRO has been compared using

seven multimodal algorithms and fourteen test functions.

The compared test functions are shown in Table 4. Two

independent of the problem’s dimensions variables that

influence the computational complexity of a given algo-

rithm are the population size and the maximum number of

iterations. A comprehensive evaluation of each solution is

necessary in order to transform the original form of each

implemented algorithm into a multi-modal form. Oðn2) is
the complexity of calculating the Euclidean distance for

every solution, where n represents the size of the popula-

tion. Because each solution must be compared to every

other in order to determine its distance from them, this is

the case. Consequently, for any given number of iterations

m, the computational complexity of each method is Oðn3Þ.
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To ensure an unbiased comparison and prevent ran-

domness, each algorithm is executed 25 times. Addition-

ally, the precise value of 0.1 is consistently applied to the

level of accuracy across all experiments. As termination

criteria, the maximum number of function evaluations has

been applied. 100,000 is assigned to F1, F6, and F7, and

10,000 is assigned to F2–F4. Additionally, the upper limit

for the number of function evaluations is 50,000 for F5 and

200,000 for F8–F14.

The detailed performance criteria comparison results on

F1–F14 between MBRO and other multimodal algorithms

are shown in Table 2, 3, 4, 5, and 6. The top results and

positions are highlighted for ease of reference. When we

look at the success rate performance of the proposed

algorithm, it outperforms other algorithms, as seen in

Table 1 Test functions

Function name Equation Search range Number of

local/global

F1: Ackley
�a exp �b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Pd

i¼1

x2i

s !

� exp 1
d

Pd

i¼1

cos cxið Þ
� �

þ aþ exp 1ð Þ
�5� xi � 5 120/1

F2: Six Hump 4� 2:1x21 þ
x4
1

4

� �
x21 þ x1x2 þ �4þ 4x22

� �
x22

�1:9� xi � 1:9

�1:1� xi � 1:1

4/2

F3: Decreasing

Maxima
exp �2log 2ð Þ x�0:08

0:854

� �2� �
sin6 5p x3=4 � 0:05

� �� � 0� xi � 1 4/1

F4: Equal Maxima sin6 5pxð Þ 0� xi � 1 0/5

F5: Himmelblau 200� x2 þ y� 11ð Þ2� xþ y2 � 7ð Þ2 �6� x; y� 6 0/4

F6: Modified

Rastrigin
�
Pn

i¼1

10þ 9cos 2pkixið Þ½ � 0� xi � 1 0/12

F7: Vincent 1
D

PD
i¼1sinð10logðxiÞÞ 0:25� x� 10 0/36

F8: Shubert P5

i¼1

icos iþ 1ð Þx1 þ ið Þ
� �

P5

i¼1

icos iþ 1ð Þx2 þ ið Þ
� � �5� x1 � 5

�5� x2 � 5

742/18

F9: Composition

function 1

f1 :f2 : Grienwank’s function, f3 : f4 : Weierstrass function,

and f5 : f6 : Sphere function.k ¼ 1; 1; 8; 8; 1=5; 1=5½ �
P6

i¼1

xi fi x� oið Þ=ki:Mið Þ þ biasið Þ þ fbias

�5� x� 5 119/6

F10: Composition

function 2

f1 : f2 : Rastrigin’s function, f3 : f4 : Weierstrass function, f5 : f6 :

Griewank’s function, and f7 : f8 : Sphere

function.k ¼ 1; 1; 10; 10; 1=10; 1=10; 1=7; 1=7½ �
P8

i¼1

xi fi x� oið Þ=ki:Mið Þ þ biasið Þ þ fbias

�5� x� 5 264/8

F11: Five-Uneven-

Peak Trap

700�
PD

i¼1 ti þ 200Dti ¼

�200þ x2i ; xi\0

�80 2:5� xið Þ; 0� xi\2:5
�64 xi � 2:5ð Þ; 2:5� xi\5

�64 7:5� xið Þ; 5� xi\7:5
�28 xi � 7:5ð Þ; 7:5� xi\12:5

�28 17:5� xið Þ; 12:5� xi\17:5
�32 xi � 17:5ð Þ; 17:5� xi\22:5
�32 27:5� xið Þ; 22:5� xi\27:5
�80 xi � 27:5ð Þ; 27:5� xi � 30

�200þ xi � 30ð Þ2; xi [ 30

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

�100� x1 � � 45

30� x2 � 80

21/4

F12: Expanded

Equal Maxima
307�

PD
i¼1 ti þ Dti ¼ y2i ; yi\0oryi [ 1

�sin6 5pyið Þ0� yi � 1

	
10� y1 � 50

�40� y2 � 10

0/25

F13: Expanded

Uneven Maxima
508�

PD
i¼1 ti � Dti ¼

y2i ; yi\0oryi [ 1

�sin6 5pðyi 34 � 0:05Þ
� �

0� yi � 1

	 �40� y1 � 0

�70� y2 � � 30

0/25

F14: Modified

Vincent
805� 1

D

PD
i¼1 ti þ 1:0

ti ¼
sin 10log yið Þð Þ; 0:25� yi � 10

0:25� yið Þ2 þ sin 10log 2:5ð Þð Þ; yi\0:25
ðyi � 10Þ2 þ sin 10log 10ð Þð Þyi [ 10

8
<

:

20� y1 � 80

40� y2 � 100

0/36
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Table 2. Additionally, it is the only algorithm that can find

local/global solutions in the F11 function. The algorithms

were able to find all the optimal points in F1, F7, F8, and

F9 and F14 even once. Based on this table, it appears that

MBRO has a consistent track record of success across

multiple functions. Accordingly, Success Performance

cannot be determined in these cases. Table 4 summarizes

the average optima found for functions F1 to F14. MBROA

is the only algorithm that finds the maximum number of

optimal points in the F1, F2, F7, F8, F9, F10, and F11 test

functions. Although it doesn’t rank first in the F14 func-

tion, it successfully locates 31.6 out of 36 local/global

points.

The proposed algorithm demonstrates the best perfor-

mance in terms of MPR among 14 test functions used,

achieving the highest results in 12 of them. (Table 5)

However, in the case of functions F3, F4, F5, F7, F12, and

F13, some of the compared algorithms can achieve a

similar level of success as MBRO and can perform equally

well as the proposed method.

MBRO’s performance on functions F12, F13, and F14,

where it finds all or nearly all optima (See Table 4), suggests

it maintains good population diversity across runs, as it is not

getting stuck on a single peak or subset of peaks. However,

the true test of population diversity would be how MBRO

performs on functions with a large number of local optima;

Table 2 Experimental results in

success rate (:) on problems

F1–F14

Function/ Algorithm MBRO CFA EPSO FERPSO LSPSO NGSA MFPA MAMO

F1 0 0 0 0 0 0 0 0

F2 0.8 0 0.6 0 0 0 0 0.8

F3 1 0 0 1 1 1 0 1

F4 1 0 0 1 1 1 0 1

F5 1 1 1 0 1 0 0 1

F6 1 0 0 0 0 1 0 0,2

F7 0 0 0 0 0 0 0 0

F8 0 0 0 0 0 0 0 0

F9 0 0 0 0 0 0 0 0

F10 0 0 0 0 0 0 0 0

F11 1 0 0 0 0 0 0 0.4

F12 1 1 0.2 1 0.6 0 0 1

F13 1 1 1 0.8 1 0 0 1

F14 0 0 0 0.2 0.2 0 0 0

The best results are given in bold

Table 3 Experimental results in Success Performance (;) on problems F1–F14

Function/ Algorithm MBRO CFA EPSO FERPSO LSPSO NGSA MFPA MAMO

F1 NaN NaN NaN NaN NaN NaN NaN NaN

F2 12,500 NaN 16,666.67 NaN NaN NaN NaN 12,500

F3 10,000 NaN NaN 10,000 10,000 10,000 NaN 10,000

F4 10,000 NaN NaN 10,000 10,000 10,000 NaN 10,000

F5 50,000 50,000 50,000 NaN 50,000 NaN NaN 50,000

F6 100,000 NaN NaN NaN NaN 10,000 NaN 50,000

F7 NaN NaN NaN NaN NaN NaN NaN NaN

F8 NaN NaN NaN NaN NaN NaN NaN NaN

F9 NaN NaN NaN NaN NaN NaN NaN NaN

F10 NaN NaN NaN NaN NaN NaN NaN NaN

F11 200,000 NaN NaN NaN NaN NaN NaN 500,000

F12 200,000 200,000 1,000,000 250,000 333,333.3 NaN NaN 200,000

F13 200,000 200,000 200,000 250,000 200,000 NaN NaN 200,000

F14 NaN NaN NaN 1,000,000 1,000,000 NaN NaN NaN

NaN Not a number

The best results are given in bold
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F8might be such a case, andMBRO does exceptionally well

here. Across all listed functions, MBRO demonstrated

superior performance by identifying a greater number of

optima compared to the other algorithms. This suggests that

MBRO is likelymaintaining a diverse population, allowing it

to explore various regions of the search space effectively.

In the Table 4, MBRO seems to perform exceptionally

well on F1 and F8, which suggests that it might be scalable

to problems with a large number of optima. On F1, it found

an average of 116.4 optima, and on F8, an impressive 595.4

optima. These functions might represent larger or more

complex search spaces, although without additional context

Table 4 Experimental results in

Average Optima Found (:) on
problems F1–F14

Function/ Algorithm MBRO CFA EPSO FERPSO LSPSO NGSA MFPA MAMO

F1 116.4 56.4 49 31.8 65.6 33.4 0.4 101.2

F2 5.8 2.2 5.2 3.6 4.4 2.2 0 5.6

F3 5 1 1 5 5 5 1.6 5

F4 5 1.6 1 5 5 5 2 5

F5 4 4 4 2.8 4 0.8 0 4

F6 12 3.6 1.4 3.2 3.6 12 0.6 10.2

F7 24 13.2 13 11.8 21.4 7 0 22.2

F8 595.4 108 138.6 185 389.2 100.6 0 450

F9 76 10.2 17 24.2 49.4 26.2 0.2 56.6

F10 224 21.2 51.4 106.4 177.2 93 0 199.4

F11 25 14.4 18.8 18 22.4 0.6 0 24.2

F12 25 25 24 25 24.6 0.8 0 25

F13 25 25 25 24.8 25 1 0 25

F14 31.6 27.4 27.6 35 34 0.4 0 32.6

The best results are given in bold

Table 5 Experimental results in

Maximum Peak Ratio (:) on
problems F1–F14

Function/ Algorithm MBRO CFA EPSO FERPSO LSPSO NGSA MFPA MAMO

F1 0.98 0.59 0.48 0.68 0.66 0.72 0 0.88

F2 0.99 0.42 0.85 0.68 0.87 0.21 0 0.97

F3 0.99 0.29 0.29 0.99 0.99 0.99 0.05 0.99

F4 0.99 0.32 0.20 0.99 0.99 0.99 0.1 0.99

F5 0.99 0.99 0.99 0.57 0.99 0.23 0 0.83

F6 0.99 0.28 0.15 0.62 0.49 0.99 0.8 0.44

F7 0.89 0.32 0.36 0.23 0.38 0.15 0 0.89

F8 0.85 0.19 0.23 0.41 0.54 0.35 0 0.61

F9 0.70 0.16 0.48 0.31 0.59 0.55 0.07 0.34

F10 0.95 0.10 0.23 0.81 0.74 0.66 0.14 0.88

F11 0.66 0.67 0.87 0.78 0.82 0.08 0 0.72

F12 0.99 0.89 0.96 0.99 0.99 0.14 0 0.99

F13 0.99 0.99 0.97 0.99 0.99 0.1 0 0.99

F14 0.85 0.85 0.82 0.99 0.84 0.03 0 0.87

The best results are given in bold

Table 6 Average ranks of

algorithms
Function/algorithm MBRO CFA EPSO FERPSO LSPSO NGSA MFPA MAMO

Success rate 1 5 6 4 3 6 8 2

Success performance 1 4 6 5 3 6 8 1

Avg. optima found 1 5 6 4 3 7 8 2

Max. peak ratio 1 7 6 4 3 5 8 2

Average rank 1 5.33 6 4.33 3 6 8 1.66

Overall rank 1 5 6 4 3 6 8 2

The best results are given in bold
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on the nature of these functions, this is speculative. If F1

and F8 are indeed more complex, MBRO’s performance

here could indicate good scalability.

MBRO’s high average optima found in several functions

(like F1, F8, F10) suggest it is efficient in these instances,

especially when compared to other algorithms. However,

on some functions like F2, F3, F4, and F5, its efficiency

seems to be on par with the other algorithms, as they all

find a similar number of optima. Without data on the

resources used by MBRO to achieve these results, we can’t

fully assess its efficiency, but the high number of optima

found suggests it could be quite efficient.

As seen in Table 6, the proposed algorithm ranks first

among all performance criteria. While sharing the first

place in terms of success performance with MAMO, in the

overall performance criteria, MAMO ranks second, fol-

lowing them, FERPSO is in the fourth position, CFA is in

the fifth position, and EPSO and NGSA share the sixth

position, with MFPA placed in the last position.

In summary, the comprehensive analysis of the perfor-

mance criteria demonstrates the effectiveness of the pro-

posed MBROA. It outperforms other multimodal

algorithms in the majority of the test functions, achieving

remarkable success in terms of success rate, optimal point

findings, and maximum peak ratio (MPR). Specifically,

MBRO excels in functions F1, F2, F7, F8, F9, F10, and F11

by locating the maximum number of optimal points,

demonstrating its ability to find both local and global

solutions. Furthermore, it exhibits superior performance in

MPR, surpassing other algorithms in 12 out of the 14 test

functions.

While some compared algorithms exhibit competitive

performance in specific functions, MBRO consistently

ranks first overall. It shares the top position in success

performance with MAMO but takes the lead when con-

sidering the broader performance criteria. MAMO follows

as the second-ranking algorithm, with FERPSO, CFA,

EPSO, NGSA, and MFPA following in descending order.

These results highlight the robustness and versatility of

MBRO, positioning it as a highly effective choice for

multimodal optimization tasks. The achievements pre-

sented in this study offer promising insights into the

practical applications of MBROA in various fields,

emphasizing its potential for solving complex optimization

challenges.

MBRO has had perfect success rates (1) on some

functions, like F3, F4, F5, F6, F11, F12, and F13, which

means it can consistently find all existing optima in those

cases. However, like other algorithms (a,b), it has failed

miserably on other functions, like F1, F7, F8, F9, F10, and

F14. The success rate was 0 because it could never find all

121 optimums, even though it found an average of 116.4

out of 121 in function 1. This inconsistency could point to

limitations in handling certain types of problem landscapes

or objective functions.

To overcome challenges, MBRO’s exploration strate-

gies could be strengthened by incorporating adaptive

mutation rates, crossover strategies, or diversity preserva-

tion techniques. Hybridization with other optimization

techniques could compensate for weaknesses, such as

combining MBRO with algorithms that performed well on

functions where MBRO failed. Fine-tuning the algorithm’s

parameters, such as population size and selection pressure,

could also improve success rates. Customizing the algo-

rithm to better suit the characteristics of problems where it

currently fails could also be a way forward. This could

involve designing custom operators or heuristics for

specific landscapes.

5 Conclusion

The presented research has addressed the intricate and

pressing challenges of multimodal optimization, where the

identification of multiple local and global optima is para-

mount. The contribution of this study lies in the develop-

ment of the MBRO approach, which sets itself apart by its

ability to navigate these complex landscapes without

necessitating prior knowledge of the problem space and by

eliminating the need to predefine the niching parameter.

MBRO compares solutions based on their largest electro-

static force, rather than the nearest neighbor. If a solution’s

damage level doesn’t exceed a predetermined threshold, a

standard ‘‘run-and-tumble’’ motion is executed to improve

local search accuracy. If the damage level exceeds a

threshold, the solution moves towards the winning solution

chosen by Coulomb’s law. The results of our experiments,

which compared MBRO against seven established multi-

modal optimization algorithms across 14 diverse bench-

mark problems, are highly promising. MBRO consistently

demonstrated its capacity to locate most, if not all, local

and global optima, surpassing its competition in terms of

performance. This performance, combined with the algo-

rithm’s adaptability to diverse problem spaces, makes it a

valuable addition to the toolkit of researchers and practi-

tioners seeking efficient solutions for multimodal opti-

mization tasks. The study highlights the significant

performance and applicability of MBRO, a promising

avenue for future research and practical implementation. It

predicts that the findings will inspire further exploration

and application of MBRO in various domains, contributing

to more effective problem-solving strategies.
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