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Abstract
The energy consumption of Cloud–Edge systems is becoming a critical concern economically, environmentally, and

societally; some studies suggest data centers and networks will collectively consume 18% of global electrical power by

2030. New methods are needed to mitigate this consumption, e.g. energy-aware workload scheduling, improved usage of

renewable energy sources, etc. These schemes need to understand the interaction between energy considerations and

Cloud–Edge components. Model-based approaches are an effective way to do this; however, current theoretical Cloud–

Edge models are limited, and few consider energy factors. This paper analyses all relevant models proposed between 2016

and 2023, discovers key omissions, and identifies the major energy considerations that need to be addressed for Green

Cloud–Edge systems (including interaction with energy providers). We investigate how these can be integrated into

existing and aggregated models, and conclude with the high-level architecture of our proposed solution to integrate energy

and Cloud–Edge models together.
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1 Introduction

Cloud-centric infrastructures have become dominant in

modern distributed systems, and have more recently been

augmented by the emergence of tiers such as Edge, Fog,

and Mist computing, offering valuable benefits to appli-

cations such as ultra-low latency, better scalability,

enhanced privacy, etc. These tiers allow applications to

operate concurrently and seamlessly across geographically

distributed federations of resources, including at the net-

work edge, on intermediate fog nodes, and in distant cloud

data centres. These infrastructural federations, often refer-

red to as the Cloud–Edge Continuum, are seen as the

critical computing fabric for modern digital society—in-

deed, the Europe Commission views the Continuum as a

key strategic technology to drive the region’s digital

transformation [1].

The size of Continuum systems is expanding at an

enormous rate, as is the volume of data that they need to

handle; some studies estimate that over 50 billion IoT

devices will be deployed in the Continuum by 2025, with

orders of magnitude more endpoints brought about by 5G/

6G systems [2]. Importantly—this results in Continuum

systems consuming huge amounts of energy; whilst a single

hyper-scale Cloud data center may consume over 100MW

of power (equivalent to over 80,000 European homes) [3],

data centers as a whole are predicted to consume as much

as 8% of global electrical supply by 2030 [4]. In total, data

centers and networks are projected to collectively consume
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approximately 18% of the global electrical power by 2030

[5].

This places serious strain on both local and national

power grids [6]. Additionally, it carries the potential for

significant environmental impact—especially as nearly

80% of world’s energy is still generated by brown (non-

renewable) energy sources such as fossil fuels, which leave

a very high carbon footprint [7]. Carbon footprint is con-

sidered to be the total amount of greenhouse gases, pri-

marily carbon dioxide (CO2), emitted into the atmosphere

during the operations associated with running and main-

taining the data center infrastructure. This includes emis-

sions from several sources such as electricity used to power

IT equipment, cooling systems, lighting, and other opera-

tions. In Continuum systems, carbon footprint can be

estimated by considering the electricity consumption and

its carbon intensity, which varies significantly based on

temporal and spatial factors [8]. For example, on January

31, 2024, the daytime carbon intensity in Germany sur-

passed that of Sweden by over twenty times. Futhermore,

in Germany, the carbon intensity at midnight was 33%

lower than that of noon on the same day [9]. These fluc-

tuations are caused by the availability of different power

sources across different locations and time periods. The

impact of Cloud–Edge systems is thus becoming a major

issue as society’s energy demands continue to grow, and is

an increasingly critical problem for power grids which

must balance the needs of Continuum systems against other

energy consumers [6]. It is therefore imperative to develop

approaches for mitigating, optimizing, and, whenever

possible, reduce energy consumption in the Continuum

systems.

A promising strategy is the intelligent placement of

software tasks within the Cloud–Edge Continuum.

Through close monitoring of large federated systems,

software tasks can be assigned to the most energy-efficient

resources available, considering multiple factors including

service demand, availability of resources, QoS (Quality of

Service) constraints, pricing, etc. For example, tasks can be

intentionally assigned to nodes currently powered by suf-

ficient green (renewable) energy sources like solar (gen-

erated using the solar panels), wind (generated using wind

turbines), biofuels (produced from plants, biowaste, agri-

cultural waste and woods), geothermal (utilizing heat from

the Earth’s core) and hydro (using the kinetic energy of

flowing water) etc. or using mix of energy sources

depending on the factors such as time of day, season and

climate etc. As a further example, Microsoft is collabo-

rating with a Swedish energy company (Vattenfall) to

establish a large-scale 24/7 green energy matching system

at their new data center. This system ensures that each

megawatt hour (MWh) of energy consumed at the data

center aligns with an equivalent MWh of green energy

produced during the same hour of consumption [10].

Conversely, tasks can be relocated from nodes in geo-

graphical regions with high energy demand to improve

local power grid availability for other users and businesses,

thereby achieving a more balanced load on regional and

national power grids. These scheduling decisions can also

incorporate energy pricing alongside user and software

service-level objectives (SLOs). For example, tasks

demanding ultra-low latency may be placed to nearby edge

devices or a local data center for processing, even if they

rely on non-renewable energy sources, while less latency-

sensitive tasks may be scheduled in more sustainable

locations.

An example of this is shown in Fig. 1, where the

Continuum comprises of four distinct regions (R1;R2;R3,

and R4) and energy providers (EP1;EP2;EP3, and EP4)

which are geographically distributed in different areas.

Each region contains Cloud and Edge data centers denoted

by DC and E respectively, users, an energy provider, and

IoT devices represented by blue dots. Initially, certain user

tasks T1; T2; T3, and T4 are assigned to region R1. However,

as the availability of green energy in R1 reduces to 10%, a

decision is made to relocate tasks T2 and T3 to another

region R2, where the green energy availability is close to

80%. This strategic shift allows us to optimize the uti-

lization of renewable energy and also balance resource

loadings across federated regions of the Continuum.

Energy-aware task migration may initially appear to be

a straightforward process, but in production environments

it can become extremely complex; effective placement

requires intelligent decision-making while taking into

account multiple factors including energy providers,

energy policies, energy pricing, resource availability, SLO

arbitration, etc. This is further exacerbated by the dynamic

nature of Cloud–Edge environments, which are highly

dynamic, mobile and complex, and above all seen as crit-

ical infrastructure that should not suffer from serious

disruption.

It is therefore vital that new algorithms, mechanisms and

methods to improve energy utilisation in the Cloud Con-

tinuum are grounded on formal scientific models that

identify and support the huge range of providers, hetero-

geneous components, interactions, stochastic properties,

(potentially contradictory) service-level agreements, pric-

ings, and contractual requirements present in both energy

and Cloud–Edge systems. The use of formal models not

only encourages researchers to take into account all nec-

essary components in a highly complex system, but also

facilitates validation through mathematical proofs and

simulation.

In the literature, conceptual models have been presented

utilising techniques such as mathematical models (e.g.,

mixed integer programming, heuristics, game theory, etc.),
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artificial intelligence models (e.g., machine learning, deep

learning, reinforcement learning, etc.), and system and

control theory-based models (e.g., Lyapunov-based opti-

mization, Markov decision, fuzzy theory, etc.).

However, few formal models of federated Cloud–Edge

systems exist—and none adequately represent and inte-

grate energy considerations (e.g. multiple providers,

renewable energy sources, pricing, and the need to balance

consumption over large areas with other non-Cloud con-

sumers, etc.). This lack of models is a particular concern

when developing autonomous management systems; man-

ual approaches are no longer feasible [11], but existing

management mechanisms do not consider energy con-

straints, policies, and optima across large federations.

In earlier work [12], we discuss a number of formal

modeling techniques for Cloud–Edge systems, and present

several initial challenges to designing energy-aware

Cloud–Edge systems. This paper conducts a much more

detailed systematic analysis of current scientific models for

Cloud–Edge systems, and—crucially—identifies the

research gaps that need to be addressed to integrate

energy considerations into such models. We describe the

key energy-considerations for long-term viability in the

rapidly evolving landscape of Cloud–Edge driven systems,

and conclude by proposing a high-level architecture and

research approach for improving the energy-efficiency and

sustainability of federated Cloud–Edge Continuum sys-

tems, alongside plans for future work. The key contribu-

tions of this work are as follows:

• Presentation of the most relevant scientific models for

Cloud, Cloud–Edge, and federated Continuum systems.

• Identification of significant gaps in existing literature in

the context of energy-aware Cloud–Edge system

models.

• Identification of the key research challenges to inte-

grating energy considerations into models of multi-

provider Cloud–Edge infrastructures.

• Introduction of a high-level architecture and research

approach for modeling energy-aware Cloud–Edge

systems.

The rest of this article is organized as follows. Section 2

presents an overview of modeling Cloud, Cloud–Edge, Fog

computing, Mist computing and federated Continuum

systems. Then, Sect. 3 provides the current research status

of relevant energy-aware Cloud–Edge models. Section 4

discusses research challenges in the development of formal

models. Section 5 focuses towards the key energy-consid-

erations for modeling the green Cloud–Edge Continuum

and Sect. 6 presents a high-level model to resolve key

omissions. Section 7 concludes with future research

opportunities in the context of energy-aware Cloud–Edge

Continuum modeling and simulation.

2 Background: modeling cloud systems

The architectural landscape of Cloud and Edge systems has

evolved rapidly over time, transitioning from ‘‘traditional’’

non-federated Cloud systems to Cloud–Edge architectures,

and eventually advancing to federated Continuum systems.

It is beneficial to first explore the conceptual nature of these

approaches before investigating the modeling behind them.

2.1 Traditional cloud systems

In a non-federated ’’traditional’’ cloud system, a single

cloud service provider typically manages one or more

geographically dispersed data center sites. A typical geo-

Fig. 1 Migrating tasks in a

Continuum system
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distributed cloud data center environment [13] integrating a

single cloud service provider, multiple end-users, and

several energy sources is shown in Fig. 2.

Here, the cloud service provider manages several geo-

graphically distributed data center sites (DCs). To offer

services and resources to cloud consumers, each DC is

linked to a backbone network and makes use of a variety of

energy sources such as the commercial grid (brown energy)

and green energy sources, networking and power equip-

ment, and other devices. DCs can also control how much

energy they use; reducing this lowers their energy costs and

carbon footprint. For instance, a data center may use either

traditional resources, such as the electricity grid, single or

combination of green energy sources, such as solar panels

and wind turbines. Additionally, data centers may also

have installed diesel generators to address power outages

and anomalies. Another important component within this

environment is the cloud user, who submits service

requests in the form of several parameters such as instance

type, storage, reservation time, start-time, end-time, etc.

[14, 15]. The core of cloud computing lies in the principle

of on-demand resource provisioning. This involves lever-

aging virtualization for on-demand application deployment

and employing resource provisioning to effectively manage

software and hardware in data centers [16].

In traditional cloud systems, it is crucial to minimize

energy usage, carbon emissions and capital costs while

ensuring safe and reliable data center operations. To do

this, diverse metrics need to be collected—including met-

rics for IT equipment, cooling systems, temperature con-

trol, site selection, building structure, power supply and

distribution systems, etc. [17].

2.2 Energy metrics for cloud systems

A wide variety of energy metrics are available to provide

insights into potential inefficiencies, focusing on the key

performance indicators of Cloud systems. These metrics

enable operators and architects to measure the performance

and impact of changes injected in subsystems. Reddy et al.

[18] present a detailed study of available metrics for data

centers, covering aspects from the power grid to service

delivery. From this study, we identify the following key

areas alongside examples of useful metrics:

• Energy-efficiency metrics: These metrics are applied

for quantitatively evaluating the energy efficiency of a

data center and its components; some assess how

effectively a data center transfers power from the

source to the IT equipment, whilst other metrics

identify IT load versus overhead. For example, Power

Usage Effectiveness (PUE - the ratio of the total energy

consumption of the data center to the energy consumed

by the computing hardware within a data center) and

Data Center Performance Per Energy (DPPE).

• Greenness metrics: These metrics quantifies the carbon

footprint of IT equipment and data centers. They also

help to assess the green energy usage, the amount of

energy transferred for reuse, and the efficiency of water

usage in data centers. For example, Carbon Usage

Effectiveness (CUE) and Energy Reuse Factor (ERF).

• Cooling metrics: These metrics measures the efficiency

of HVAC systems and their effectiveness in serving

cooling demands. For example, Data Center Cooling

System Efficiency (DCCSE) and HVAC System Effec-

tiveness (HSE).

• Thermal and Air management metrics: These metrics

ensure the temperature issues, effective air flow and

aisle pressure management. For example, Relative

Humidity and Air flow efficiency.

• Performance metrics: These metrics evaluate the pro-

ductivity of data centers, their effectiveness in deliver-

ing services, and their agility in adapting changes. For

example, Data Center Productivity (DCP) and CPU

usage.

• Storage metrics: These metrics monitor storage opera-

tions and performance and help gain better insight into

how effectively storage capacity is utilized. For exam-

ple, Low-cost Storage Percentage (LSP) and Overall

Storage Efficiency (OSE).

Fig. 2 Non-federated cloud systems
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• Network metrics: These metrics provide insights into

the data center network energy efficiency, traffic

demands and utilization. For example, Communication

Network Energy Efficiency (CNEE), and Network

Power Usage Effectiveness (NPUE).

• Financial impact metrics: These metrics quantify

financial implications including data center outages,

total cost of ownership, and return on investments in

management technologies and tools for sustainable data

centers. For example, Carbon Credit (CCr) and Oper-

ational Expenditure (OpEx).

• Security metrics: These metrics provide continuous

monitoring of virtual physical servers and clouds to

protect against attacks. Additionally, they include

elementary measurements of firewall performance. For

example, Vulnerability Exposure (T) and Firewall

Complexity (FC).

2.3 Edge and fog systems

The traditional cloud system architecture has numerous

drawbacks, including latency issues arising from a data

center’s distance from end users, and the need for a single

data center to handle potentially massive numbers of users

and network connections. Certain applications with strict

communication latency restrictions, such as Ultra-Reliable

Low Latency Communications (URLLC) and Enhanced

Mobile Broadband (eMBB) services, which have a unit

millisecond delay requirement, are not suited for the tra-

ditional cloud approach. To deliver comparable services

with lower latency, edge and fog computing models play a

crucial role [19, 20].

Figure 3 illustrates a basic form of a non-federated

Cloud–Edge system, where processing of client tasks is

performed at the data source rather than on a centralized

server or in the cloud layer [21]. The centralized cloud

layer can be leveraged for long-term storage and process-

ing of tasks that are generally less time-critical. Software-

Defined Networking (SDN) and Network Functions Vir-

tualization (NFV) are emerging as innovative techniques to

design, build, and operate networks. These two technolo-

gies facilitate the agility, network management capabilities

and seamless transfer of data between edge nodes and

cloud data centers. At the edge layer, edge nodes serve as

gateways and perform data capturing services with the

capability to process raw data, such as performing real-time

tasks like aggregation, filtering, encryption, and encoding

of local data streams [22]. This layer serves as the distri-

bution point for cloud resources, where processing of client

tasks is performed at the data source rather than on a

centralized server or in the cloud layer. In the edge layer,

computing resources such as processors, storage, and

networking capabilities are located at the edge of the net-

work to move the burden of processing and storing service

and device requests closer to the proximity of the original

data source.

As devices have evolved to become computationally

powerful and smaller in size, a new paradigm of Cloud

computing has been proposed - Fog Computing. Fog

computing is a decentralized computing framework that

brings computation closer to the users, typically located

between data generation source and cloud data centers [23]

and hence constitutes a layer between traditional cloud and

the network edge.

As shown in Fig. 4, the lowest layer represents users,

also known as data generation sources. The middle layer

represents the fog layer, which is in close proximity to

users and hence offers less communication delay while

communicating within the layer. The fog layer may be used

for processing real-time applications, caching, and han-

dling data nearer to the source [24]. The top-most layer

represents the cloud layer, consisting of hyperscale data

centers used for big data analytics, data warehousing,

application hosting, etc. Clouds within this layer are usu-

ally far from users, typically resulting in higher network

latency [25]. The Fog computing paradigm provides

computation, storage and data processing to the users, and

is intended to offer a wide range of services; this includes

supporting applications with real-time constraints, saving

network bandwidth through pre-processing of data at the

fog layer, and segregating applications or tasks based on

Fig. 3 Non-federated Cloud–Edge systems
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their requirements and distributing them among cloud and

fog nodes to provide users with a better QoS level. Fog

computing thus brings forth low latency (critical for real-

time applications), mobility support, heterogeneity, edge

location awareness, etc. The fog layer also assists in aug-

menting the edge and cloud layers; the fog nodes situated

in-between edge nodes and clouds can coordinate with both

of them to help provide better user experience.

2.4 Mist computing

The Fog and Edge computing paradigms bring computa-

tion closer to users and assist in the reuse of edge resources.

A further evolution (and decentralisation) of these concepts

has been proposed as Mist Computing [26]. As stated by

NIST [27], Mist computing is situated at the extreme edge

of the network and can be considered as a light-weight

category of Fog Computing. Mist computing aims to utilise

computation and storage at the edge device level [28]. The

Mist layer consists of low powered computing nodes

equipped with sensors and actuators; these nodes can be

exploited for computation and storage to maintain QoS

constraints in time-centric applications.

As shown in Fig. 5, the Mist layer is at the bottom of

computing technology architecture. This layer consists of

IoT nodes and is responsible for time-centric data pro-

cessing. Response time is very critical in real-time appli-

cations and Mist layer performs rule-based pre-processing

on data generated by sensors so that data processing can be

accelerated, further helping in faster response time. Rule-

based pre-processing includes data fusion, aggregation and

filtering. Mist layer also aid in reducing the network traffic

by eradicating most of the data at the source. The Mist

layer mostly consists of sensors, actuators and very light

computing resources. Various methods have been devel-

oped to enhance messaging at this level; for example, the

MQTT (Message Queuing Telemetry Transport) [29] bro-

ker in the mist layer is an extremely simple and lightweight

messaging protocol which can be very effective in low

bandwidth and unreliable networks. The fog layer has more

powerful computing resources (micro data centers) than the

mist layer, and works as an intermediary between mist and

cloud layers.

2.5 Continuum systems

Non-federated paradigms (Cloud–Edge, Fog & Mist) are

an effective method to manage device latency; however,

this approach is still relatively inefficient if resources are

‘‘siloed’’ - for example, if a fog node is saturated with

tasks, there is no obvious mechanism for offloading to

other local fog nodes etc. Continuum systems aim to

Fig. 4 Fog computing

Fig. 5 Mist computing
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address this issue, creating a federated and loosely-coupled

architecture whereby tasks can be scheduled, monitored,

and offloaded as necessary, potentially across different

providers [30]. Continuum is a logical progression of the

previous paradigms, and brings together a system with

central clouds, intermediate fog nodes, and far edge nodes

capable of mist computation. It differs from earlier feder-

ated approaches (such as [31]), due to a much heavier focus

on spatial location and heterogeneous physical resources.

As shown earlier in Fig. 1, it extends the conventional

large-scale facilities, transforming into heterogeneous, and

distributed federations of edge devices and cloud data

centers [32], frequently positioned at the network’s edge.

According to Townend et al. [33], Cloud–Edge Continuum

systems possess several distinguishing features that dif-

ferentiate them from conventional Cloud–Edge architec-

tures. These include: (i) multiple disparate infrastructure

providers, (ii) resource constrained devices, (iii) platform

heterogeneity, (iv) infrastructural dynamicity, and (v) se-

cure orchestration over public networks. These features

significantly increase the complexity of managing Cloud–

Edge Continuum infrastructures and the devices and

applications utilizing them.

2.6 Autonomous resource management
and the need for formal models

To handle the massive complexity of Cloud–Edge Con-

tinuum infrastructures, we need autonomous resource

management, which can ensure the efficiency, perfor-

mance, and stability of Cloud–Edge Continuum systems.

Autonomous resource management plays a crucial role in

the effective functioning of Cloud–Edge systems, espe-

cially to deal with intrusions (abnormal activity, potential

security threat), faults (hardware failures, software bugs, or

network issues), performance (application requirements,

user demand, and system health), scalability and elasticity

(scale resources up or down based on demand), monitoring/

audit (tracking changes, investigating incidents, and

ensuring compliance with security & regulatory require-

ments), and other operational challenges.

One particularly important need of automatic resource

management is to manage energy in such systems. It not

only contributes to cost savings but also facilitates the

integration of green energy sources, reduces environmental

impact, and enhances overall resilience to power outages

and unpredictable energy demands. Autonomous arbitra-

tion and multi-objective optimization are well-established

fields within computer science, but the concept has not

been applied before at the interface between energy sys-

tems (with temporal properties) and federated Cloud–Edge

resource management systems. The solutions need to be

grounded in formal models that can be used to ensure every

component is considered. This involves validating

approaches through formal proofs and simulations, ensur-

ing the reliability and robustness of the proposed solutions.

In the context of the data center, fog, and edge, several

formal models have been proposed for applications that

need computation in different layers. These modeling

solutions assist in understanding the behavior, perfor-

mance, stochastic properties, scientific workflows and

resource management in such complex systems. Therefore,

it is crucial to explore the current modeling solutions

before identifying the energy considerations for Green

Cloud–Edge Continuum.

3 Current research status of Cloud–Edge
Continuum modeling

In recent years, several new approaches have been intro-

duced to model resource distribution across the Cloud–

Edge Continuum. This section discusses an overview of the

most relevant works available in the literature, and inves-

tigates models (workload models, non-federated Cloud–

Edge models, federated Cloud–Edge models, and energy-

aware Cloud–Edge models) from both technological and

architectural perspectives.

Our research performs a systematic review of diverse

articles aimed at understanding the current state of the

energy-aware Cloud–Edge Continuum. This analysis

comprises references from the articles published between

the year 2016 and 2023. The framework and methodology

adopted in our study draw inspiration from the systematic

literature review (SLR) procedure as outlined by Kitchen-

ham [34]. The content within this paper has been aggre-

gated from several sources, including Springer Link, IEEE

Xplore, Elsevier, ACM Digital Library, and some addi-

tional resources such as Scopus, Google Scholar, and

electronic scientific research databases. Specifically, in this

section, we report some very relevant works on these types

of systems and analyse the research gaps in terms of

research focus, Continuum coverage, formal model, energy

model, optimization objectives, type of technique, evalua-

tion mode, and type of application.

3.1 Cloud–Edge workload models

In the context of distributed applications, workload is

interpreted as the overall count of incoming requests dis-

patched by clients to an application [21]. Influenced by

distinct attributes and diverse perspectives, workload can

be classified into: (i) random workloads/non-sequential or

sequential, (ii) non-transactional or transactional work-

loads, (iii) data-intensive, memory-sensitive, or computa-

tion-intensive workloads [35, 36]. Serving each workload
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necessitates the utilisation of a distinct set of resources, in

terms of volume and type of resource. Understanding the

behavior of workloads is therefore very advantageous when

aiming to enhance the reliability and performance of

applications and the overall performance, sustainability and

efficiency of data centers. For this purpose, significant

efforts and advancements have recently been made in

workload modeling, especially for modeling real work-

loads in large-scale systems such as Netflix [37], Facebook

[38], Google [39, 40], and Wikimedia [41].

Additionally, there has been a recent surge in demand

for forecasting workload behavior [40, 42]. Due to the

large number of IoT devices and mobile users, Cloud–Edge

applications may encounter unpredictable variations in

their workloads; by acquiring advance knowledge of the

temporal and spatial distribution of future workloads, sys-

tems can proactively adjust resources to promptly address

the real-time resource demands of applications and ser-

vices. From a research perspective, workload modeling and

forecasting is therefore crucial for dynamically reallocating

available resources to meet SLAs while optimizing energy

consumption and reducing costs [14].

Considering the wide spectrum of workload interpreta-

tions and objectives, Calzarossa et al. [43] investigate the

characteristics of workloads linked to mobile devices,

social networks, web, video streaming services and cloud

infrastructures. Their work studies distinct workload fea-

tures and introduces modeling techniques for their char-

acterization, with workload models applied to scenarios

including capacity planning, content distribution, provi-

sioning tasks, and performance evaluation. Another recent

survey by Duc et al. [21] explores machine learning-based

schemes for workload modeling. This survey discusses

different methods of workload analysis and prediction,

including classical approaches such as Q-learning, rein-

forcement learning, Markov models, and Bayesian methods

as well as recent approaches of complex graph analysis and

deep neural networks.

This ongoing work into workload characterization and

modeling highlights the importance of integrating work-

load models into any proposed solution for energy-aware

Cloud–Edge systems. For this reason, our proposed solu-

tion later in this work integrates workload identification,

characterisation, and quantification (based on resource

consumption, duration, network, and energy characteris-

tics) into the the ‘Application Manager’ component (shown

in Fig. 13).

3.2 Non-federated Cloud–Edge models

For non-federated Cloud–Edge systems, several models are

presented for offloading applications and managing

resources between the constrained edge and distant cloud

data center. Rahmanian et al. [44] attempt to develop a tool

named as ‘MicroSplit’ for efficient splitting of microser-

vices. Initially, this tool analyses the possible dependencies

between the microservices, and applies the Louvain

method to split the microservices between the two layers of

Cloud–Edge. The authors test its performance in multiple

Cloud–Edge settings and improve latency with a reduction

in mean response time. To address real-time performance

and security issues of tasks, Singh et al. [45] design a

scheduling algorithm ‘RT-SANE’. Through extensive

experiments, they show that the algorithm attains a higher

’’success ratio’’ in comparison with existing approaches.

To manage the dynamic allocation of resources and

services in the Cloud-to-Edge Continuum, Tusa et al. [46]

provide a unified resource management approach com-

prising both cloud data center and network resources. Their

goal is to reduce the ‘silo-effect’ (isolation of functionali-

ties, resources and services) and provide ‘end-to-end slices’

(comprising compute, storage and network slices) to per-

form orchestration of heterogeneous resources and user

specific on-demand services ensuring security, isolation

and optimized performance. To maintain the trade-off

between QoS levels and required computational resources

of microservices, Fu et al. [47] design a run-time system

called ‘Nautilus’. The system is composed of a commu-

nication-aware microservice mapper, a load-aware sched-

uler, and a resource manager. Through experimental

results, it is shown that compared to traditional cloud

systems, Nautilus minimizes computational resource and

network bandwidth usage significantly while ensuring the

necessary 99 percentile latency. To deploy latency-critical

services in a private Cloud–Edge environment, Ascigil

et al. [48] develop uncoordinated resource allocation

schemes. Specifically, the authors propose a centralized

algorithm to model the QoS requirements of latency-criti-

cal services considering user response deadlines.

Pop et al. [49] present a fog computing platform-enabled

reference framework for Industrial IoT applications,

offering both service and resource management. This is

based on deterministic networking and virtualization to

promise interoperability along with security. Etemadi et al.

[50] design a centralized approach to resource orchestra-

tion in a simulated environment which enables deep

learning to perform resource auto-scaling at run-time.

Ullah et al. [51] design a mechanism named ‘MiCADO’ for

the orchestration of applications in Cloud–Edge environ-

ments. They implement a real solution with case studies in

the areas of video processing and healthcare.

3.3 Federated Cloud–Edge models

In the direction of federated Cloud–Edge models, Kar et al.

[52] present a survey of offloading techniques in federated
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(Continuum) systems. Their study also provides an analysis

of recent research into applying traditional optimization

and machine learning approaches to federated Cloud–Edge

systems. Soumplis et al. [30] identify critical resource

allocation challenges in the integration of edge, fog, and

cloud systems, presenting a heuristic and ILP-based tech-

nique for workload placement in the Continuum. Through

simulation, they postulate that the resulting mechanisms

effectively meet administrator-set objectives, utilising the

processing power of the resources at various resource

layers (edge, fog, and cloud), and reducing latency at the

expense of higher cost. Silva et al. [53] review the appli-

cability of incorporating context awareness to enhance IoT

data sharing across Edge and Cloud. The article provides a

general overview of the needs of various IoT contexts and

updates solutions that take context-awareness indicators

into account to deliver operational gains, such as reducing

latency and energy usage. To establish directions for future

study, the authors demonstrate that although context

awareness is important in IoT contexts, its integration to

enable more dynamic IoT environments is still limited.

With an emphasis on container-based orchestration and

fog-enabled architectures, Svorobej et al. [54] evaluate

different orchestration methods throughout the cloud-to-

thing Continuum. Kampars et al. [55] investigate applica-

tion layer protocols that can be applied for communication

between the cloud, edge, and IoT levels. To create and

manage the mobile-Cloud–Edge computing Continuum,

Baresi et al. [56] suggest the A3-E prototype architecture,

which supplements functionality offered by FaaS plat-

forms. Their results indicate that A3-E is capable of

deploying microservices and significantly reducing latency

and battery consumption. Son et al. [57] suggest dynamic

resource provisioning strategies for latency-aware Virtual

Network Function placement in distributed Cloud–Edge

systems. Their work assigns latency-sensitive services

between cloud and edge to ensure desired QoS levels.

A number of federated frameworks have also been

developed in the industry, such as Zadara, BEACON, and

Kubefed etc. Zadara’s federated program [58] enables

service providers to manage edge computing and admin-

ister distributed clouds and supply computing resources

close to users with minimal propagation latency. BEACON

[59] manages the automatic deployment of applications

and services across federated cloud infrastructures.

Through a centralized API, Kubefed [60] enables the

management of multiple Kubernetes clusters. The objective

is to make multi-geo application deployment easier. An

extremely popular open-source framework for managing,

deploying, and scaling containers (Kubernetes) can also be

used to build clouds, edges, and fog.

3.4 Energy-aware Cloud–Edge Continuum

To produce an energy-efficient data forwarding scheme for

Cloud–Edge Continuum, Saraswat et al. [61] design a

deadline-driven ubiquitous system. At each layer, they

estimate fractions of the task to be computed for mini-

mizing energy consumption. Overall performance is anal-

ysed using variable factors such as data size, deadline,

delay, accuracy, network topologies, and energy con-

sumption etc. To enable sustainable edge computing with

distributed renewable energy resources, Li et al. [62]

design a prototype model which supports coordination

between edge and energy supply systems. It integrates a

microgrid (e.g. a solar-wind hybrid energy system) and

edge devices to ensure full utilization of renewable energy

while maintaining QoS levels for time-sensitive IoT

applications. To address the challenge of minimizing car-

bon footprints in edge networks, Yu et al. [8] model a joint

task offloading and energy sharing problem. They map this

minimization problem to a ‘‘minimum-cost’’ flow opti-

mization problem in a graph, where nodes represent local

power grids, renewable energy sources, edge servers, tasks,

and batteries, and edges denote flows of energy with

associated carbon footprint costs. By tracing the optimal

(i.e. ‘‘minimum-cost’’) flow in the graph, they obtain the

optimal solution. To evaluate the efficacy of proposed

approach, they use a 24-hour carbon intensity dataset and

compare performance based on server and battery capaci-

ties. Jeong et al. [63] develop an energy-efficient

scheduling technique for federated edge clouds. The

scheduling approach allocates services with actual traffic

requirements to satisfy QoS levels, with the aim that it can

maximize co-location of services placed on one server

whilst reducing the total energy consumption of services.

To address the problem of multi-task offloading, Sharma

et al. [64] suggest a hybrid approach integrating first-order

meta-learning and deep Q-learning strategies. The authors

use simulation to measure improvements in applications’

energy consumption and training time under different set-

tings of Cloud–Edge environments. For green mobile edge

cloud environments, Chen et al. [65] develop a multi-user,

multi-task computation offloading problem and apply the

Lyaponuv optimization technique to decide on an energy

harvesting policy. Their objective is to maximize revenue

from successfully offloading tasks from mobile devices. In

this context, ’’revenue’’ pertains to the efficient routing of

harvested energy from the mobile edge cloud (wireless

devices) to a mobile device via an energy link.

Hasan et al. [66] introduce the Aura architecture design,

a highly mobile and localized ad-hoc cloud model to utilise

IoT devices for work offloading techniques and upgrading

apps. Through performance studies of Aura-powered IoT
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devices, they show the model’s efficacy in terms of job

completion times, memory usage, predicted CPU clock

cycle requirements, energy consumption, and cost. Gou

et al. [67] suggest an architecture for collaborative com-

putation offloading over FiWi (Fibre Wireless) networks.

To reduce the total energy consumption of all the mobile

devices while meeting the computation execution time

limit, they address the issue of Cloud–Edge collaborative

computation offloading.

To minimize carbon footprint, energy consumption, and

performance interference in Cloud–Edge ecosystems, Kaur

et al. [68] design a scalable controller for multi-constraint

Kubernetes platforms. For efficient scheduling of contain-

ers, they formulate an integer linear programming (ILP)

problem based on multi-objective optimization. Their

objective is to minimize carbon footprint emissions by

maximizing the utilization of green energy sources, such as

wind and solar energy. To reduce overall energy con-

sumption, the scheduler aims to consolidate incoming

workloads onto a minimal number of Cloud–Edge nodes.

Furthermore, they evaluate the performance of the pro-

posed strategy by applying real-time Google Cluster traces.

For scaling and offloading optimization, Yahya et al.

[69] present a two-tier architecture comprising of an access

network and a core network. To optimize capacity, they

introduce a two-phase optimization approach by adjusting

capacity and offloading ratios repeatedly. To address pri-

vacy Conflict of interest, Xu et al. [70] present an intelli-

gent offloading technique for smart cities, preserving

privacy, enhancing offloading efficiency, and promoting

edge utility. To achieve trade-offs between service

response time, energy, and maintaining load balance while

ensuring privacy during service offloading, the authors

adopt an ant colony optimization approach.

For mobile edge computing in 5G heterogeneous net-

works, an energy-efficient computation offloading tech-

nique is suggested in [71]. The authors address an

offloading system’s energy minimization problem, taking

into account the expenses associated with both task com-

puting and file transport. Li et al. [72] present a task

offloading policy that considers task deadline times. To

determine the optimum offloading strategy and address the

scalability issue of the deep Q-network action space, they

develop an edge-to-device deep reinforcement learning

approach. To improve the deep Q-network algorithm,

Zhang et al. [73] present a heuristic offloading technique

that minimizes both latency and energy consumption. The

prime idea behind the use of a heuristic algorithm is to

reduce the convergence time in hybrid edge computing

networks.

Ahvar et al. [74] introduce an energy model for esti-

mating the energy consumption of different cloud-related

architectures. The authors initially present a taxonomy to

classify cloud-related architectures, ranging from fully

centralized to completely distributed. Subsequently, they

design a PUE metric [75] based scalable energy model to

evaluate the energy efficiency of diverse infrastructures. In

an effort to minimize the energy consumption of serverless

platforms, Rastegar et al. [76] introduce an energy-aware

execution scheduler ‘EneX’ for serverless service provi-

ders. The authors explore the features of both offline and

online solutions, considering critical factors such as com-

plexity, scalability, and performance. Aslanpour et al. [77]

design priority-based and zone-oriented algorithms to

model energy-aware resource scheduling for serverless

edge computing. Through real-world implementations,

they demonstrate that their approach enhances the opera-

tional availability of nodes by up to 33% while maintaining

QoS. To investigate the utilization of serverless platforms

within the Cloud–Edge Continuum, Angelelli et al. [78]

propose a multi-objective scheduling policy. This policy

aims to optimize data transfers, makespan, and system

usage, while considering the heterogeneity of platforms.

3.5 Analysis and discussion

We meticulously scrutinized each article, categorizing

them into seven categories including research focus, Con-

tinuum coverage, formal model, energy model, optimiza-

tion objectives, type of applied technique, the evaluation

method, and prospective application areas, as illustrated in

Table 1. The key observations are discussed as follows:

Research focus: Concerning the research focus, the

majority of scrutinized papers emphasized task offloading

as a primary focus, as shown in Fig. 6.

Task offloading involves the transfer of resource-inten-

sive tasks to a separate platform to execute them more

efficiently. This offloading is necessary to meet various

constraints under different situations. Some key constraints

include considerations like latency, load balancing, pri-

vacy, storage limitations, and adherence to Service Level

Agreements (SLAs).

Continuum coverage: Most of the analyzed papers

considered the Cloud–Edge Continuum architecture divi-

ded into three layers (IoT, Edge, Fog, and Cloud). The

majority of works discussed in this article directed their

approach towards the edge and cloud layers (shown in Fig.

7). This is the most common approach from the perspective

that the Edge Layer functions as an intermediate layer to

achieve the defined objectives, such as enhancing QoS

metrics like latency, deadline, response time, etc. The

fulfillment of requests is not solely reliant on the Edge

Layer, but also involves the Cloud Layer.

Formal model: Concerning the techniques employed in

the examined papers for resource management in Cloud–

Edge Continuum, Fig. 8 illustrates the predominant
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modeling techniques. These strategies are categorized into

Integer Linear Programming (ILP), empirical model, dis-

crete event-based, population-based, fuzzy theory, game

theory, approximation theory, contract theory, Lyapunov

optimization, control theory, deep learning, architecture/

framework, queuing theory, machine learning, heuristics,

artificial intelligence, reinforcement learning, and graph

theory. Notably, heuristics emerged as the most frequently

utilized modeling technique in the analyzed papers.

The key advantage of heuristics is that they are straight-

forward algorithms, with less execution time. In the

heuristic-driven solution, decisions are generated based

solely on available information, without considering the

future effects. This leads to locally optimal choices at each

stage of execution, aiming to achieve a good, though not

necessarily optimal, but fast and sub-optimal solutions.

Such an approach aligns well with the Cloud–Edge Con-

tinuum model, as it gives the ability to accommodate the

dynamic nature of the environment, characterized by

platform heterogeneity, high geographical distribution, and

interoperability.

Energy model: Integrating energy awareness into the

Continuum design process significantly reduces the energy

consumption. The Cloud–Edge Continuum relies on

diverse energy driven models, including brown energy

model driven by grid power (electricity) for a reliable and

uninterrupted power supply, green energy model driven by

renewable energy sources such as solar and wind power,

battery power for providing backup and sustained service

during grid outages, and hybrid energy models that com-

bine multiple energy sources to enhance reliability and

efficiency. These energy models ensure uninterrupted

operation, reducing carbon footprint, and optimize energy

efficiency within the Cloud–Edge Continuum. The selec-

tion of energy sources depends on several factors such as

location, environmental impact, cost considerations, and

the specific requirements of services. Upon reviewing the

selected publications, it is observed that most of them have

not explicitly considered a specific energy model. In some

Fig. 6 Analysis based on research focus

Fig. 7 Analysis based on coverage

Fig. 8 Analysis based on formal modeling
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of the papers, various energy measures are applied (shown

in Fig. 9).

For example, Li et al. [62] utilized a power-capping

strategy to align the power supply of edge systems,

enabling the postponement of executions for delay-insen-

sitive applications until the local renewable energy

becomes available. Other approaches, such as power

metering, energy harvesting, power usage effectiveness

(PUE), battery management systems (BMS), dynamic

voltage and frequency scaling (DVFS), and energy-saving

strategies, are applied in different works.

Optimization objective: From our analysis of the arti-

cles, it is evident that the primary optimization objective in

the Cloud–Edge Continuum is the reduction of energy

consumption, as illustrated in Fig. 10. Indeed, this objec-

tive is not only standing alone but also intersects with

various other modeling objectives, including cost reduc-

tion, latency reduction, carbon footprint reduction, execu-

tion time reduction, and even performance maximization.

Evaluation: Simulation tools and models play a crucial

role in assessing the efficacy of system to work closer with

real-world conditions. A predominant approach among the

analyzed papers involves the utilization of either numerical

simulators or trace-driven simulations to validate their

methods (shown in Fig. 11).

This form of simulation is valuable while studying the

behavior of systems whose mathematical models are too

complex to provide analytical solutions, as in many non-

linear systems. The majority of works rely on small data-

sets, synthetic datasets, or datasets that lack representation

of real-world scenarios. Only a limited number of works

have applied small-scale test-beds for real-time modeling.

However, drawing definitive or comprehensive conclusions

is challenging without an evaluation in a production

environment.

Application: Over the past few years, there has been an

increasing attention on systems that support the IoT

applications and time-sensitive tasks (shown in Fig. 12).
Fig. 9 Analysis based on energy model

Fig. 10 Analysis based on objectives

Fig. 11 Analysis based on evaluation
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In some of the works, serverless computing and mobile

applications are also considered. With the rising demand

for applications necessitating low latency, it is expected

that new use cases for the Cloud–Edge Continuum will

emerge in the coming years.

3.6 Key omissions in Continuum modeling

After careful investigation of the current research on

Continuum modeling, we observe that in the literature,

several formal models for traditional cloud systems have

been proposed, e.g. [13, 95] but these do not capture the

dynamic nature of Cloud–Edge systems or integrate

stochastic properties, energy providers, pricing, and

renewable energy sources. Most work assumes a single

data center, precluding intrinsic challenges faced with the

management of federated systems, such as how to monitor

and schedule multiple complex resources across multiple

networks in a scalable and decentralised manner with SLO

awareness [96], and how to balance accuracy with decision

making latency (many recent approaches, such as [97, 98],

use machine-learning methods that are too slow to provide

the ultra-low latency scheduling required by edge appli-

cations). A basic model that integrates nodes with energy

providers is presented in [89] but does not consider fed-

erated edge systems or cross-site monitoring issues, while

[62] only considers micro-grid integration with edge nodes,

with no centralised cloud integration. Of work that does

consider energy-aware federated systems, little has been

achieved; [99] propose an integration between smart grids

and Cloud–Edge systems but the proposed architectural

model is extremely high-level and does not consider

monitoring overhead, task properties, or decentralised

control of the system.

The overall analysis of the state-of-the-art on Cloud–

Edge Continuum highlights the lack of unified systems,

formal models, and methods to seamlessly integrate vari-

ous energy factors including temporal pricing, renewable

energy sources, energy provider requirements, resource

restrictions, and balance consumption over large-areas with

other non-Cloud consumers. Research in this field typically

results in either reference architectures or simulated system

environments, with computing, networking, and storage

resource management serving as the primary focus. These

observations demonstrate the absence of a unified resource

orchestration technique capable of integrating the pricing

models, types of workloads, multi-objective optimization,

monitoring, and controlling strategies, QoS and SLO

requirements of end-users, heterogeneous systems and

networking technologies, energy policies, energy provi-

ders, energy sources, and administration of compute and

network resources in the energy-aware federated Cloud–

Edge Continuum. There is a clear need to bridge this gap

and exploit the modeling of Continuum key components,

their relevant stochastic properties and interactions, and

their integration with key energy factors.

4 Research challenges

Based on the omissions described in the previous section,

we identify seven key research questions that must be

addressed to adequately integrate energy considerations

into a formal model for the Cloud–Edge Continuum.

4.1 How to model the system?

In the literature, there is a lack of formal models for fed-

erated Cloud–Edge systems in general; no existing model

incorporates energy providers, pricing, and sustainability.

The creation of formal energy-aware models for federated

Cloud–Edge systems is a challenging task due to a lack of

empirical data to calculate stochastic properties, a lack of

Fig. 12 Analysis based on application
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analysis to model geographical energy distribution factors

such as supply and demand of green and brown energy

sources, a limited understanding of temporal energy pric-

ing, and limited modeling of energy provider policies &

restrictions. To address this, empirical data must be

assessed across a range of disciplines, and appropriate

model types identified for each sub-system.

4.2 How to combine models?

Once models for each sub-system in an energy-aware

Cloud–Edge infrastructure have been created, there are still

significant challenges with regard to integrating these

models. These challenges include how to best integrate

different model types (e.g. a graph-based model integrating

with a model based on queuing theory), how to determine

appropriate granularities when simulating the models, how

to mathematically reason across the combined model, etc.

These challenges are not unique to Cloud–Edge systems,

but various solutions in the literature need to be properly

assessed to determine which is appropriate for the scale and

number of interactions required.

4.3 How to model different regions or sub-sets
of the system?

Optimization at local level e.g., for a specific sub-system

(single data center, application, device, etc.) is relatively

straightforward to achieve. However, optimising or bal-

ancing resources across geographically federated regions

and providers is an extremely challenging task due to the

heterogeneity of the respective control systems, different

API models, multiple ownerships, conflicting priority

levels, user fairness constraints, monitoring and scheduling

complexities of multiple resources across multiple net-

works with SLO awareness.

4.4 How to develop a self-stabilizing model?

In the Continuum, failure of a node (from server to data

center level) will impact performance and result in task

interruption. An application’s sub-tasks may run on various

edge nodes; all sub-tasks executing on a specific resource

will be interrupted if it fails, and any sub-tasks that depend

on those interrupted sub-tasks will likewise be interrupted

(a partial manifestation of the ‘‘long tail’’ problem seen in

e.g. [100]). There is therefore a challenge to create a fail-

ure-resilient scheduling model that can recognize depen-

dencies between tasks and reschedule sub-tasks impacted

by failure events to limit interruptions. A further challenge

is to develop a self-stabilizing architecture which can

recover from transient faults automatically without any

manual intervention, as it is predicted that the failure

probability of edge servers will be far higher than that of

cloud servers [101].

4.5 How to maintain energy performance trade-
offs?

There are several studies that have investigated to enhance

the performance of individual cloud or edge systems. Most

of the existing studies are focused on resource management

in a non-federated Cloud–Edge system but do not consider

federations of resources (e.g. Cloud–Edge). Additionally,

there are no best practices or guidelines to optimize or

monitor the overall performance of the federated-Cloud

Edge Continuum. In a federated Cloud–Edge system, nodes

and regions have different SLOs and pricing-as do energy

providers. It is a critical task to optimize between indi-

vidual and regional SLOs while ensuring performance.

Therefore, we need to balance local and global optima at

different levels within the stack (e.g. edge, fog, cloud,

regional etc.) How to arbitrate and optimize conflicting

service levels and energy requirements in a holistic manner

across these levels is not yet fully understood.

4.6 How to model green Cloud–Edge systems?

Many new challenges arise when considering the impact of

Cloud–Edge resources on power grids, especially when

other users and demands on those power grids are taken

into account. Different power grids may have different

capacities and sources of renewable energy at any moment

in time; for example, a power grid in region A may at a

specific point in time incorporate 20% of its available

power from renewable sources and have 30% free capacity.

Later in the same day or week, those numbers may change

to 10% and 15% respectively. It may therefore be extre-

mely valuable to schedule tasks in a Continuum between

different grids to improve utilisation of renewable sources

and available capacities (and hence lower costs) whilst

maintaining service levels for users and applications.

modeling these factors and ultimately integrating these

models into energy-aware resource management systems is

a significant and vitally important challenge that needs to

be addressed. As observed in [62], approximately 80% of

today’s energy is still produced from brown energy sour-

ces; mechanisms to increase the use of green energy

sources in the Continuum will go a great way towards

reducing its carbon footprint (and hence impact on the

environment).

4.7 How to develop validation models?

The model-based simulation of any Cloud–Edge system

can utilise some existing simulators (such as
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EdgeCloudSim [102], ENIGMA simulator [103]). How-

ever, to iteratively test different aspects of an entire fed-

erated Cloud–Edge system such as decentralized

monitoring, arbitration, and optimization is a challenging

task due to limited scalability scenarios, Continuum

mobility behaviours, topology configurations, network

behavior at different levels of granularity, and energy

considerations. In addition, designing a software-defined

networking-based test-bed to monitor and track the energy

consumption of an entire federated Cloud–Edge infras-

tructure adds another level of complexity.

5 Energy-considerations for modeling
the Green Cloud–Edge Continuum

Efficiently integrating energy considerations into Cloud–

Edge models is paramount for sustainable and cost-effec-

tive computing, ensuring a reduced environmental footprint

and optimal resource utilization. It aligns with the broader

goals of cost reduction, and long-term viability in the

rapidly evolving landscape of cloud and edge computing.

Intrinsically, acquiring such objectives depends on identi-

fying the potential energy consumption factors and their

effect on these platforms. Therefore, in this section, we

discuss several studies involving different energy-consid-

erations (shown in Table 2) for a resilient and energy-

aware Cloud–Edge models.

• Energy Sources: The Cloud–Edge Continuum relies on

various energy sources, such as Grid Power (Electricity)

for reliable and continuous power supply, Renewable

energy sources such as solar and wind power, Battery

Power for providing backup power and ensuring unin-

terrupted service during grid outages, and Hybrid

energy systems combine multiple sources to enhance

reliability and efficiency. These energy ensures unin-

terrupted operation, reducing carbon footprint, and

optimizing energy efficiency within the Cloud–Edge

Continuum. The selection of energy sources depends on

various factors such as location, environmental impact,

cost considerations, and the specific requirements of

services. Upon reviewing the selected publications, it is

observed that most of the publications have considered

dual energy sources. Khosravi et al. [13] considered off-

site brown, and on-site renewable energy sources for

VM placement in distributed cloud model. Nan et al.

[104] considered dual energy sources for energy-aware

computation offloading in Cloud of Things systems,

where solar power represented the primary energy

supply and grid power is used for the backup supply. Li

et al. [62], and Xu et al. [70] assumed hybrid power

supply model which draws power from both power grid

and renewable energy sources to ensure the service

reliability in Cloud–Edge systems.

• Energy Constraints: It is necessary to adopt the energy

constraints in the Continuum, otherwise it can lead to

service disruptions, performance increased operational

costs, and environmental concerns. To maintain relia-

bility and sustainability in computing and networking

operations, authors have adopted energy constraints

depending on generated energy, available energy,

storage device operating range, pricing, and total

energy budget etc. [13, 62, 104].

• Energy Gentrification: Energy gentrification [6] is

considered as an analytical framework through which

we can examine negotiations and potential conflicts that

may arise when grid owners need to determine priority

in allowing grid access to different stakeholders. It also

provide the decision making and guidelines to develop

energy policies. Only few of the works have considered

the gentrification perspective. Such as Libertson et al.

[6] identified different scenarios in their case study such

as the prioritization of global versus local capital, the

resource competition, and the trade-offs between

private interests and common goods etc.

• Energy Storage: Continuum systems might not fully

utilize all of the available renewable energy during their

low workload periods. In such cases, any excess

renewable energy can be either stored in energy storage

devices or harnessed through net-metering [118]. In

some of the works different battery models are adopted

for example, Silva et al. [105] adopted UAV (unmanned

aerial vehicle) battery model to manage the variable

workload for fog infrastructure. To implement the

concept of energy sharing, Yu et al. [8] considered a

battery management system (BMS) to provide energy to

other edge servers.

• Energy Price Metrics: Energy price metrics provide

valuable insights into the cost-effectiveness of energy

usage. It helps the provider to make informed decisions

about when and how to allocate energy resources,

balance grid power with renewable sources, and

optimize energy-intensive operations. In the literature,

several price metrics are used - including cents per

kilowatt-hour energy usage (cents/kWh) [13, 104], and

determining energy price by different time periods such

as peak hour (high activity times, e.g., 2pm-8pm), off-

peak hour (when activity levels are lowest, e.g., 10pm-

7am) and shoulder hour (moderate levels of demand,

e.g., 7am-2pm and 8pm-10pm) [104, 119] are applied

for efficient budget planning, and to produce econom-

ically viable solutions for energy-aware Continuum

environments.

• Energy Models: It is essential to implement hybrid

power supply that can harness energy from both the
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power grid and renewable energy sources. So that, we

can minimize the adverse impacts of instability on

renewable energy supply and ensures the smooth

operation [62]. For example, Khosravi et al. [13]

adopted renewable energy and brown energy based

model to minimize the energy and carbon cost in data

centers. In some other works thermal, and cooling based

models [65, 88] are also used.

• Other Energy Measures: There are many other energy

measures used in different papers. For example, Li et al.

[62], utilize a power-capping strategy to match the

power supply of edge systems. Through this strategy,

Table 2 Energy-considerations for modeling the Green Cloud–Edge Continuum

Energy-

consideration

Description Technique Selection factors

Energy sources Provide reliable and

continuous power supply

Brown energy [13], Green energy [13],

Hybrid energy [62, 70, 104]

Location, climate impact, cost, and service

requirements

Energy

Constraints

To avoid service

disruptions, operational

costs, and environmental

concerns

Maximum available energy, Communication

to computation ratio (CCR) [62]

Generated energy, available energy, storage

device operating range, pricing, and total

energy budget etc

Energy

Gentrification

Examine negotiations and

potential conflicts

between stakeholders

Energy gentrification [6] Prioritization of global vs. local capital, the

resource competition, and the trade-offs

between private interests and common goods

Energy Storage To store excess renewable

energy

UAV battery model [105], battery

management system (BMS) [8]

Low workload periods

Energy Factors Factors affecting energy

consumption of Cloud–

Edge devices

WattEdge [91] Idle state, CPU, memory, storage, resource

bundle, short-range connectivity, network

bandwidth utilization, communication

protocols, Energy storage

Brownout

Approaches

Self-adaptive approach to

enable/disable services

CLOUDFARM [106], EDB [107], HYBP

[108], SaaScalar [109]

Application design, Workload scheduling,

Resource usage monitoring, Brownout

controller design, Performance metrics [110]

Energy Load

Forecasting

For efficient distribution of

power, planning process,

and auxiliary operations

[111]

Energy cloud management (ECM) [112] Industry equipment, lighting, water heaters,

motors, air-conditioning, peak hour, and off-

peak hour load [111, 113]

Energy Models To harness energy from

both the power grid and

renewable energy sources

Thermal model [88], cooling model [88],

power-capping [62], power metering [91],

energy harvesting [84], PUE [83], DVFS

[76]

Energy cost, carbon cost, delay sensitive &

insensitive applications

Demand

Response

Prediction

To balance the gap between

energy supply and energy

demand

Data analytical demand response management

[114]

Power supply, power demand

Electricity

Price

Prediction

Estimate price distribution

in future time periods

Short-term, Medium-term & Long-term

forecasting [111]

Seasonality, Day-to-day market operations

Energy Outage Temporary loss of

electrical power

Smart metering [115] Severe weather conditions, equipment failure,

maintenance activities [111]

Energy Price

Metrics

Provide valuable insights

into the cost-effectiveness

of energy usage

Cents per kilowatt-hour energy usage (cents/

kWh), peak hour, shoulder hour and off-

peak hour [13, 104]

Peak hour, Off-peak hour

Green Energy

Instability

Due to insufficient

renewable energy supply

Instability-resilient green energy allocation

system [82]

Time of a day, season, climate [82]

Energy Metrics To measure the

performance and impacts

of changes injected in

subsystems

Metrics for Greenness, Energy efficiency,

Thermal and Air management, Cooling,

Performance, Network, Storage, Security,

and Financial impact [17, 18]

IT equipment, cooling systems, temperature

control, site selection, building structure, and

power supply and distribution systems

[17, 18]

Anomaly

Detection

Unusual energy

consumption patterns

Ensemble learning framework [116], Decision

tree and SVM-based data analytics [117]

Operation behaviour, usage anomaly, theft

detection, load anomaly [111]
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we can postpone the executions of delay insensitive

applications until the local renewable energy supply

becomes available. Lajevardi et al. [120] suggest the

Power Density Efficiency (PDE) metric to provide

further insights into energy-efficiency and the effec-

tiveness of thermal management. Considering both

energy efficiency and performance requirements, it is

crucial to balance the rate at which power is dissipated

(power density) with the total amount of energy

consumed over a period of time - indeed, some

computation models may help to reduce energy density

while increasing total energy consumption. Similarly,

other approaches include analytical methods

[13, 64, 67, 70, 71], energy metrics [17, 18], power

metering [91], energy harvesting [84], power usage

effectiveness (PUE) [83], and dynamic voltage and

frequency scaling (DVFS) [76] etc.

6 High-level model to resolve key omissions

Although there are some preliminary studies on federated

Cloud–Edge systems but they are still in their early stages.

Thus, it opens several opportunities for future research in

energy-aware Cloud–Edge Continuum architectures.

To reason over federated Cloud–Edge systems, key

components, and their relevant features and interactions

need to be identified and modeled; no Cloud–Edge model

has yet been created that integrates multiple components

such as energy providers, renewable energy sources,

energy pricing, energy provider policies, and restrictions.

The major challenges are to identify key hardware, net-

work, and energy components within a Cloud–Edge system

and categorize these into a layered stack. Interactions

between components and layers are required to be analysed

and formally modeled.

To model such a system, the formal model can incor-

porate three aspects: (i) Creation of a formal layered

model: For the development of such models, we need to

identify and categorize the different energy, network,

hardware, and software components prevalent in Cloud–

Edge systems into a series of interacting layers. Interac-

tions between and across these layers are needed to be

explored and defined.

(ii) Identify and build models of typical Cloud–Edge

workloads: This task is concerned with identifying com-

mon types of workload submitted to Cloud–Edge infras-

tructures and quantifying their resource consumption,

duration, network, and energy characteristics.

(iii) A predictive energy consumption model for data

centers and workloads: Utilizing the outcomes of (i) and

(ii) as the basis for developing a method to quickly estimate

predicted energy consumption within Cloud–Edge nodes.

This could be used as part of the decision mechanism when

balancing and optimizing software placement.

6.1 Perspective model

To address the core research challenges and establish a

comprehensive framework, we aim to develop integrated

models that encompass various components such as data

centers, edge devices, fog nodes, energy providers, soft-

ware workloads, and the requirements and objectives of

users and stakeholders. We propose a perspective model

for energy-aware Cloud–Edge computing Continuum as

shown in Fig. 13- that identifies the end-users, application

manager, Cloud–Edge Continuum infrastructure, network

offloading manager, energy provider policies & metrics,

and controller components for an energy-aware design, and

interconnection between them. The operational aspects of

these components are elaborated as follows:

(i) End Users: End users submit their service requests

to the Cloud–Edge system through the end-users

layer. Within this layer, users have the ability to

specify certain QoS restrictions for their requests.

These may include parameters such as maximum

tolerable delay, available bandwidth for data

transfer, deadline, budget, as well as specific pri-

vacy and security requirements. By providing

these QoS restrictions, users can communicate

their desired service levels and constraints to the

Cloud–Edge system, allowing it to prioritize and

allocate resources accordingly. Subsequently, the

end users’ submitted requests are directed to the

application manager.

(ii) Application Manager: The application manager is

responsible for selecting suitable platforms to

fulfill end users’ requests across the heterogeneous

and distributed resources of the Cloud–Edge

Continuum. There are several common types of

workloads that are typically submitted to the

Continuum infrastructures. These include IoT data

processing, collaborative applications, web and

application hosting, video streaming and content

delivery, data storage and retrieval, big data

analytics, offloading workloads, and real-time

applications etc. To process these different types

of incoming workloads, the application manager

characterizes (as discussed in Sect. 3.1) the

workloads based on their resource consumption,

duration, network, and energy characteristics and

utilizes various hosting engines. The hosting

engines can be containerization platforms like

Docker [121] and Kubernetes [122], serverless

computing platforms such as AWS Lambda [123],
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Microsoft Azure Functions [124], Google Cloud

Functions [125], and IBM Cloud Code Engine

[126]. The selection of a hosting engine depends

on crucial factors such as workload requirements,

resource constraints, latency considerations, and

scalability needs. Each hosting engine offers

specific benefits and features that align with the

workload characteristics and goals of the Cloud–

Edge system design.

(iii) Continuum Infrastructure: The Continuum infras-

tructures can be divided into two parts: (i) virtual-

ized Cloud–Edge Continuum infrastructure,

utilizing virtual resources, and (ii) physical

Cloud–Edge Continuum infrastructure, utilizing

physical resources. For example, if an application

is containing several microservices then their

deployment across various Virtual Machines

(VMs) is a feasible option. The virtualized plat-

form efficiently handles virtualized resources

managed through platforms like VMware [127].

In the context of single-layer cloud systems,

infrastructure management platforms like OpenS-

tack [128] come into play, facilitating the deploy-

ment of multiple VMs across various hosts. In the

case of multi-layer systems that integrate cloud,

fog, and edge resources, the application manager

needs to handle the specification of dependencies,

execution logic, performance metrics, and life-

cycle management of running services [129]. It

needs to enable the coordination and orchestration

of complex workflows within the Continuum.

Additionally, to consider data storage require-

ments and the recent emergence of accelerators

(e.g. TPU, GPU, ASIC, FPGA, etc.), the multi-

layer system adopts different components includ-

ing: (i) data aware policies to optimize data

storage mechanisms and ensure efficient data

movement between different layers; (ii) integra-

tion of accelerators to accelerate data-intensive

tasks; (iii) dynamic provisioning of resources

based on computational and data processing

aspects; (iv) data caching techniques to store data

in near-edge resources to improve latency, speed

up task execution and save energy; (v) optimisation

of data transmission protocols to select feasible

communication protocols and data compression

techniques to reduce the overhead associated with

data transmission.

(iv) Network Offloading Manager: Since Cloud–Edge

Continuum systems aim to enhance user experi-

ence by providing better QoS, it is important to

perform well regulated filtering at the network

edge to filter unuseful data. This is the responsi-

bility of infrastructure networking. Similarly the

network offloading manager is also responsible for

balancing the traffic across the Cloud–Edge Con-

tinuum nodes, multi-tenant networking, securing

data from interception through packet sniffing,

monitoring delays & packet losses, and packet

transfer rates. One critical concern is that of

maintaining data sovereignty - ensuring that data

is stored and processed in compliance with

Fig. 13 A high-level model for energy-aware Continuum systems
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regulatory requirements across the system. We

propose to treat data sovereignty as a set of

constraints (e.g. regional whitelists, sets of

excluded nodes/providers, etc.) to be incorporated

by the network offloading manager. To incorpo-

rate data considerations, the network offloading

manager stores data network locations, which are

combined with the underlying network topology

model to calculate the impact on performance,

latency, energy etc. of transmitting data across

network links.

(v) Energy Provider Policies and Metrics: The energy

provider policies and metrics module is introduced

to integrate energy considerations in the Cloud–

Edge paradigm. It consists of sub-modules such

as: energy sources (brown, green, hybrid), energy

providers (responsible for following different

regional considerations such as grid control poli-

cies and power regulations by governing author-

ities), energy profiles, and energy price metrics for

both off-site and on-site utility grid providers. The

functionality of these sub-components is explained

as follows:

(a) Energy Sources: The foremost purpose of

this sub-module is to analyze all available energy

sources available in a particular region and

maximize the use of renewable energy sources

while, at the same time, assuring reliable and

efficient Cloud–Edge Continuum systems. For

better sustainability, reducing operational energy

usage and energy wastage alone is not sufficient.

Using green energy as much as possible and

minimizing power supply to the infrastructure is

equally crucial. To attain this goal, the implemen-

tation of a demand response program [130] has

become indispensable. It provides a balance

between demand and supply in the Cloud–Edge

Continuum by efficiently coordinating with avail-

able energy sources. This strategy employs direct

and indirect load control strategy to optimize

power usage and maintain a balance between the

demand and supply of electricity [62]. In the

Cloud–Edge Continuum, energy dependency is

largely on grid electricity that comes from sources

such as coal, natural gas, nuclear plant, hydro-

electric, wind or solar plants. These sources are

location dependent. To increase the use of renew-

able energy, energy sources such as hydroelectric,

solar or wind plants need to be used more so that

environmental footprint can be reduced. On-site

energy generation and grid electricity can also be

combined to provide a hybrid approach to ensure

reliability and less environmental footprint.

(b) Energy Providers: Energy providers are

responsible for delivering a consistent and reliable

supply of energy for uninterrupted operations in

the Cloud–Edge Continuum, while also following

different regional considerations such as grid

control policies and power regulations (such as

energy gentrification [6] perspectives to prioritize

user requests for grid owners).

Grid control policies and power regulations

may exhibit variations across countries, regions,

and utility companies, as they aim to balance

several objectives. These include ensuring grid

reliability, promoting the adoption of renewable

energy, optimizing energy markets, and safeguard-

ing consumer interests in the energy sector [6].

The energy grid control policies and regulations

component stores information about the rules and

guidelines established by governing authorities to

govern the operation, management, and control of

the energy grid.

It encompasses various aspects of grid opera-

tions, including policies dictating the types of

power generation sources allowed, such as renew-

able energy sources (solar, wind, hydro) or

traditional fossil fuel-based power plants; require-

ments for grid interconnection and power quality

standards; load management measures aim to

maintain grid stability and prevent overload con-

ditions; grid resilience policies focus on enhancing

the resilience of the grid to withstand disruptions,

energy market, and pricing regulations; policies

addressing the integration of distributed energy

resources (DERs), such as rooftop solar panels or

small wind turbines, into the grid; environmental

policies to promote cleaner energy production and

reduce greenhouse gas emissions; policies focus-

ing on energy consumers’ rights etc. These grid

control policies and regulations provide a frame-

work for governing energy grid operations and

ensuring the reliable and sustainable functioning

of the energy-driven Cloud–Edge Computing

Continuum.

(c) Energy Profiles: Energy profiles is the

detailed analysis and usage pattern of different

actors (energy producers & consumers). Energy

profiles are instrumental in understanding the

energy usage and this leads to efficient energy

management in the Cloud–Edge Continuum. The

energy profiles can be optimized in distributed

fashion, where each entity optimize their energy

consumption or production profile according to

their preference [131].

Energy profiles also include parameters such as
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Power Usage Effectiveness (PUE), that is the ratio

of the total energy used by Cloud–Edge Contin-

uum to the energy used by computing infrastruc-

ture, Energy load distribution among different

components of Cloud–Edge Continuum, energy

environmental footprint, energy consumption

effectiveness & trends and monitoring & manage-

ment of energy.

(d) Energy Price Metrics: The energy price

metrics in Cloud–Edge Continuum refers to

structured data that provides crucial information

regarding energy cost at different interval of time

so that the energy consumption can be optimized.

The energy cost varies depending on the energy

source type (on-site energy, off-site energy, green

or brown energy). The cost of these energy sources

is based on carbon emission intensity & carbon

taxes across different locations and energy prices

variation throughout the day (on-peak and off-

peak). The controller used these different metrics

and knowledgeable decision to efficiently manage

the energy consumption and cost in Cloud–Edge

Continuum.

(vi) Controller: A controller, whether centralized or

distributed, based on the MAPE-K (Monitoring,

Analysis, Planning, Execution, and Knowledge)

model [89, 132, 133], is essential to support

resource provision, monitoring, and allocation in

the Cloud–Edge Continuum. To develop interac-

tions with the system, sensors (hardware-attached

devices responsible for collecting data from var-

ious levels) and effectors (actuator devices used to

enable or disable services through API calls) are

applied. The monitoring module receives infor-

mation regarding energy usage and resource

utilization through these sensors.

The analysis module characterizes workloads

based on multiple factors, including time sensitiv-

ity, resource intensity (e.g. compute, memory,

data, network), location, and performance require-

ments. It utilizes cost models to calculate energy

cost, carbon cost, energy wastage, and considers

impact on climate. The planning module utilizes

allocation policies to make scheduling decisions

and analyzes the potential consequences of imple-

menting changes in the system.

The execution module utilizes actuators to

perform resource scheduling on the Continuum

infrastructure. It employs proactive scheduling

policies for multi-objective optimization. The

optimization objectives and trade-off parameters

are implemented and stored in the Knowledge

pool of the MAPE-K model. Resource scheduling

algorithms can be utilized to update the rules

within the Knowledge pool. The proactive

scheduling algorithms make use of the models

stored in the Knowledge pool to forecast the

supplied amount of energy, including both green

energy and brown energy, as well as the expected

resource usage.

6.2 Applicability of our solution

Based on our perspective model, we demonstrate the

applicability of our proposed solution for scheduling

Cloud–Edge Continuum workloads when considering

appropriate energy sources, energy providers, infrastruc-

tures, and controllers (centralized and distributed).

We illustrate six different scenarios for delay-sensitive

requests through a sequence diagram in Fig. 14. Here, the

objective is to maximize the utilization of renewable

energy in the federated Cloud–Edge Continuum. We cat-

egorise the scenarios based on the average communication

cost to computation cost ratio (CCR) [62] for a given

service request. By applying this cost metric, we can

identify whether a given service request is computation

intensive (CCR\1), communication-intensive (CCR[ 1),

or ordinary (CCR ¼ 1).

• In Scenario (I), through the End User Layer, a user

submits a ‘service request’ to the Application Manager,

which classifies it as ‘communication-intensive (delay

sensitive)’. The Application Manager forwards the

request to Controller 1. Controller 1 analyzes that the

‘available green energy is sufficient’ in Cloud–Edge

Continuum Infrastructure 1 (CE1) and sends a

scheduling request to CE1 for ‘local edge processing’.

Once the request is completed, CE1 sends the result

back to the End User Layer through the Application

Manager.

• In Scenario (II), we assume that ‘available green energy

in CE1 is low’, possibly due to an insufficient local

renewable energy supply. In such cases, Controller 1

sends a ‘processing request to Controller 2’ located in

another geographical region. If Controller 2 has ‘suf-

ficient available green energy’, it responds to Controller

1, and the ‘service request is migrated’ to CE2.

• In Scenario (III), the Application Manager identifies the

request as ‘computation-intensive’ and sends it to

Controller 1. Controller 1 analyzes that the ‘available

green energy is low at the edge’ and sends an ‘offload to

remote cloud request’ to CE1 and the execution is

performed at CE1.

• In Scenario (IV), if the ‘available green energy is

sufficient at the edge’, then Controller 1 can send a

‘local edge processing request’ to CE1.
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• Scenario (V) shows the case of ‘balancing energy

consumption’ for an ordinary request. Due to heavy

workload in CE1, Controller 2 is requested for ‘load

distribution’. If ‘workload is low in CE2’, it can accept

the ‘migrating request’ and complete the service

execution.

• Scenario (VI) demonstrates how to handle energy

pricing variations. As shown in Scenario (VI), Con-

troller 1 identifies that the ‘energy pricing is high in

CE1’. Thus, it sends the processing request to Con-

troller 2. If the ‘energy pricing is low’ in the CE2

region, then Controller 2 acknowledges and the ‘request

is migrated’ to Controller 2 for execution.

Fig. 14 Sequence diagram illustrating workflow execution for six scenarios in Sect. 6.2
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6.3 Integrations: cloud bursting and edge
caching

It is feasible to integrate our perspective model (with its

emphasis on integration of energy considerations) with a

number of existing cloud management techniques, such as

cloud bursting [134] and edge caching [135]. Cloud

bursting is utilised when local resources are exhausted;

computation is burst (transferred) to alternative data cen-

ters (typically central Clouds rather than Edge resources).

Our approach can be integrated when deciding which

resources to move computation to during the ‘‘bursting’’

phase, whereby resources can be selected based in part on

energy and sustainability decisions. Conversely, Edge

caching is a technique that stores content and data in near

edge resources (caches) to improve latency and speed up

task execution. Integration with our method can again be

used to make intelligent placement decisions at the network

edge, balancing latency and task execution gains with

overall energy efficiency and sustainability.

7 Conclusion

Energy consumption has become a critical issue as soci-

ety’s energy challenges grow, and is a serious concern for

power grids which must balance the needs of clouds

against other users. However, at present few formal models

of federated Cloud–Edge systems exist—and none ade-

quately represent and integrate energy considerations (e.g.

multiple providers, renewable energy sources, pricing, and

the need to balance consumption over large-areas with

other non-Cloud consumers, etc.). This paper analyses how

the modeling of Cloud, Cloud–Edge, and federated Con-

tinuum systems has been addressed in the literature, with a

particular focus on the integration of energy concerns.

Importantly, we identify key omissions in these models in

terms of Continuum coverage, federation model, energy

model, optimization objectives, technique, application, and

evaluation. To model the green Cloud–Edge Continuum,

we discuss several energy-considerations ensuring long-

term viability in the rapidly evolving landscape of Cloud–

Edge driven systems. We propose an initial high-level

architecture and approach to begin addressing the research

gaps, with the ultimate goal to develop a set of integrated

models to provide a formal foundation for energy-aware

Continuum management systems.

7.1 Future work

This paper lays the foundation for our vision of an energy-

aware and sustainable Green Cloud–Edge continuum. To

develop this further, there are a number of key steps that

must be taken. We discuss three areas of focus for our

upcoming future work in this area.

(i) Developing an integrated set of models to enable

formal reasoning over energy-aware Continuum

systems: This phase focuses on the creation of

formal models for federated Cloud–Edge systems

and workloads that incorporates energy sustain-

ability, pricing, providers, and consumption. For

the development of such models, we need to

identify and categorize the different energy, net-

work, hardware, and software components preva-

lent in Cloud–Edge systems into a series of

interacting layers.

(ii) Simulation and validation using a large-scale

physical test-bed: Once a comprehensive layered

model of the energy-aware Cloud–Edge contin-

uum exists, a natural progression is to use this to

create a model-based simulation framework. This

allows us to experiment with temporal and

stochastic properties (latencies, renewable energy

availabilities, resource utilisations, etc.) - the

results of which can then be validated on physical

test-beds. A physical test-bed may be implemented

in a similar manner to the E2Clab platform [129].

(iii) Autonomous resource management for Green

Cloud–Edge Continuum systems: Once a validated

model-based simulation has been created (and

released publicly), it will be possible to use this to

develop and iteratively test novel energy-aware

autonomous management approaches. We aim to

do this with a focus on next-generation Continuum

paradigms, particularly Serverless computing

[136, 137]. As an example, there exists clear

potential to integrate such a model-based simula-

tion with Serverless runtimes developed as part of

the SovereignEdge.COGNIT project [33].
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106. Nikolov, V., Kächele, S., Hauck, F. J., Rautenbach, D.: Cloud-

farm: An elastic cloud platform with flexible and adaptive

resource management. In: 2014 IEEE/ACM 7th International

Conference on Utility and Cloud Computing, pp. 547-553

(2014)

107. Desmeurs, D., Klein, C., Papadopoulos, A.V., Tordsson, J.:

Event-driven application brownout: reconciling high utilization

and low tail response times. In: 2015 International Conference

on Cloud and Autonomic Computing, pp. 1–12 (2015)

108. Pandey, A., Moreno, G. A., Cámara, J., Garlan, D.: Hybrid
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