Cluster Computing
https://doi.org/10.1007/s10586-024-04343-4

f')

Check for
updates

Formulating a quality model for cloud-native software architectures:
conceptual and methodological considerations

Robin Lichtenthiler! - Guido Wirtz'

Received: 13 September 2023 / Revised: 23 January 2024 / Accepted: 4 February 2024
© The Author(s) 2024

Abstract

Interest in cloud computing is steadily increasing and the range of offerings is evolving due to continuous technological
innovation. Hence, cloud-native has been established as a term for building applications in a way that maximally exploits
benefits of modern cloud computing concepts. However, cloud-native as a topic is broad and the variety in cloud computing
technologies is large. Thus, we identify a need in supporting developers and software architects who want to benefit from
cloud-native concepts. We provide this support in the form of a quality model for cloud-native software architectures that
explains how architectural characteristics impact different quality aspects. Our focus is on the design time and the aim
is that architectural models of applications can be evaluated according to cloud-native characteristics and corresponding
quality aspects. In this work we present our approach for formulating and validating the quality model for cloud-native
software architectures as well as its current state. This presentation is based on previous work, especially a recently conducted
validation survey that focused on the impacts of architectural characteristics on quality aspects. The new contribution of this
work is the integrated presentation of our approach in a larger context of conceptual and methodological considerations.
Further, revision of the quality model based on a repeated literature search for architectural measures is presented. We provide
a more detailed look on the quality model, explaining exemplary product factors and their relevance within the topic of
cloud-native. Our results provide a qualitative overview of characteristics associated with cloud native software architectures
and lay the foundation for quantitative quality evaluations based on architectural models of applications.

Keywords Cloud-native - Quality model - Quality model formulation - Architectural evaluation

1 Introduction

The term cloud-native describes a concept of developing
and operating applications in a way that aims to maximally
exploit the benefits of modern cloud computing environments
[1]. The type of applications we refer to in this context are
web applications implemented by organizations specifically
to serve their customers or to satisfy internal needs via either
internal networks or the internet. This covers mainly, but not
exclusively, so called enterprise applications as discussed
by Cerny et al. [2] who rely on a description by Fowler
[3]. With the term application we refer to such web applica-

> Robin Lichtenthiler
robin.lichtenthaeler @uni-bamberg.de

Guido Wirtz
guido.wirtz@uni-bamberg.de

Distributed Systems Group, University of Bamberg, An der
Weberei 5, 96047 Bamberg, Bavaria, Germany

Published online: 25 March 2024

tions in this work. We differentiate them from other software
described as being cloud-native, like the software listed in the
Cloud Native Computing Foundation (CNCF) Landscape.
That software may enable the development of or is used
in cloud-native applications, but these are not cloud-native
applications themselves in the sense of this work.

The implementation of such cloud-native applications
covers a broad range of aspects: the choice of cloud service
offerings and technologies, the functional decomposition of
business logic over components, setting up the communi-
cation between components, or managing the deployment
and upgrade process of applications [4, 5]. When applied
correctly, many benefits are associated with cloud-native
applications, such as increased performance and scalability,
cost effectiveness, reliability or improved maintainability [6—
8]. Therefore, when aiming to implement an application in
a cloud-native way or evaluating how an existing applica-

! https://landscape.cncf.io/.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04343-4&domain=pdf
https://landscape.cncf.io/

Cluster Computing

tion could benefit from cloud-native concepts, the question
arises how this can be done in an informed and structured
way. Because of the thematic breadth of cloud-native and
the multiple, potentially conflicting, desirable benefits, this
presents a challenge.

To take up this challenge from a conceptual perspective,
the essential question is how certain architectural character-
istics (those associated with cloud-native concepts) impact
the observable behavior of an application. As architectural
characteristics we consider design time properties of an
application that are the result of the decisions made by its
developers. This covers all implementation aspects, such
as technological options or software design. As observable
behavior we consider runtime properties of an application
that are measurable when the application is running and
being operated. Runtime properties therefore indicate how
well an application fulfills its intended functionalities. This is
in general also summarized as the quality of an application.
The relationships between architectural characteristics and
observable behavior, however, can be complex and different
architectural characteristics can also have interfering effects.
But if these relationships can be described in a structured
and comprehensive way, it would represent the necessary
knowledge to evaluate application architectures according to
quality aspects. This knowledge would thus satisfy the con-
ceptual perspective.

But to actually support developers and architects in
designing and implementing applications in a cloud-native
way, also the practical perspective needs to be considered.
From a practical perspective, the additional question would
be how this knowledge can be integrated and made useful
within suitable tooling.

Based on these considerations, we see a hierarchical
quality model for software architectures of cloud-native
applications as a suitable approach. It can both describe the
relationships between architectural characteristics and qual-
ity aspects and be integrated into practical tooling for quality
evaluations.

This hierarchical structure is one of the factors that differ-
entiates our approach from other existing work. Apel at al.
[9] for example present an approach with a similar goal, but
directly linked metrics to quality aspects. In addition, they
focus on microservices, instead of the broader cloud-native
scope. Also focusing on microservices, Soldani et al. [10]
present an approach to evaluate and improve microservices
architectures, but orient their approach towards best prac-
tices instead of quality aspects. Another differentiating factor
is the consideration of multiple quality aspects in combina-
tion. Also focusing on microservices, for example Camilli
et al. [11] present an approach to specifically evaluate the
quality aspects performance and reliability. Thus they link
runtime metrics directly to quality aspects, but focus less on
architectural characteristics that lead to the gained results.

@ Springer

Although we can differentiate our work from the mentioned
approaches, showing its novel contribution, they are related.
Therefore, we aim to also integrate their results and recom-
mendations into our approach.

For a solid foundation to build a hierarchical quality
model, we rely on the structure as described by the Quamoco
meta-model [12]. In this meta-model, quality aspects differ-
entiate distinct dimensions of quality and are structured in a
hierarchy together with product factors. Product factors rep-
resent characteristics of a software. The hierarchy is built
through impact relations which describe how the presence of
product factors has an effect on quality aspects. Such a quality
model is therefore suitable for describing how architectural
characteristics of an application impact its quality aspects
conceptually in a structured way. Product factors can then
be linked to entities, that means distinguishable components
of a software architecture, to enable their measurement. And
thus, a practical evaluation of a software architecture accord-
ing to the relationships of a quality model becomes possible.

Our overall aim therefore is to formulate a quality model
for software architectures of cloud-native applications. This
essentially means defining all the different elements required
for acomplete quality model: quality aspects, product factors,
impact relations, entities, measures, and evaluations.

In this work we focus on the formulation and validation of
all mentioned elements, except evaluations. Thus, we present
our approach from an integrated, holistic perspective. This
includes content from previous work. On the one hand, our
initial formulation of quality aspects and product factors [8].
And on the other hand, our work on validating this initially
formulated quality model [1] to which this work specifically
represents an enhanced version. Validation in this context
means the assurance that the relations described in the qual-
ity model reflect reality as closely as possible. Furthermore,
we expand on both previous works by further defining the
elements of the quality model and outline how software archi-
tectures can be suitably represented.

The guiding research questions which summarize these
aims and considerations are:

RQ1: How are characteristics of cloud-native applications
related to quality aspects of distinct dimensions?

RQ2: How can a quality model for software architectures
of cloud-native applications be formulated and validated?

To answer these research questions, we start with foun-
dations of quality models in Sect.2, based on which we
present our methodology for this work in Sect. 3. The results
of applying this methodology, especially the current state
of the quality model, is presented in Sect.4 and further dis-
cussed in Sect.5. The relation to other work is described in
Sect. 6, before a final conclusion in Sect. 7.

Cluster Computing

2 Foundations

In this section, relevant foundations are presented to more
clearly specify the type of quality model we consider (hier-
archical). And we explain how quality models can be
formulated and validated and how these activities are related
to each other.

2.1 Hierarchical quality models

The history of quality models is tightly connected to the his-
tory of software engineering itself [13], Their core idea is
to provide a conceptual foundation for linking measurable
characteristics of a software with quality aspects. If the qual-
ity of software can be measured and assessed, then it is also
possible to show how software quality can be improved by
changing the characteristics of software. In earlier days indi-
vidual metrics have been used to measure for example the
complexity of source code [13]. But it has become appar-
ent that relations between characteristics of software and its
quality are more complex. Therefore, quality models such
as those of McCall [14] or Boehm [15] were structured as
hierarchical quality models [13]. In these higher-level qual-
ity aspects can be differentiated into quality sub-aspects for
which in turn it is easier to formulate relations with character-
istics of software. Hierarchical quality models are therefore
essentially representable through graphs. The higher level
quality aspects are independent nodes in such a graph and the
other elements have effects on these quality aspects. These
effects are the edges of the graph. Through this a hierarchical
quality model is able to capture the complexity of how soft-
ware characteristics influence quality and it is also possible
to consider several aspects in relation to each other.

Work on software quality models has been consolidated
in standards with the ISO 25000 series [16] being the lat-
est. Because it considers software quality on a rather abstract
level, it has since been used as a basis for formulating new
quality models [13]. And it can be used to compare and dif-
ferentiate quality models. A main differentiator for quality
models is the scope that they cover. The scope of a qual-
ity model is defined by the number and heterogeneity of
its elements. Heterogeneity can be considered regarding the
number of different quality aspects included, often referring
to the number of different high-level quality aspects from
the ISO 25000 standard [16]. And heterogeneity can also be
observed for the aspects covered by the other elements of the
quality model, also referred to as the dimensions [17, 18].
Different dimensions can for example be static characteris-
tics of an application at different layers like the infrastructure,
application logic, or supported business functionality, run-
time behavior, development process characteristics, or also
organizational aspects.

Since the overview paper on quality models by Ferenc
et al. [13], further quality models have been proposed and
in turn been reviewed by researchers. It is thus worthwhile
to analyze such reviews for insights on important aspects of
quality models. Reviews exist for quality models in general
[17, 19, 20], but also for quality models in specific areas, for
example web service [21]. One finding is that from the high-
level quality aspects, mostly maintainability, reliability, and
performance efficiency have been in focus of quality models
[19]. Another finding by Galli et al. [20] is that although many
quality models have been proposed in literature, their rele-
vance, also regarding the practical use in the industry, differs
significantly. The quality models with the highest relevance,
as reported by Galli et al. [20], are the ISO 25000 standard
[16] with its predecessor ISO 9126, the SQALE model [22]
and the Quamoco model [12]. The respective reasons, how-
ever, are different. The ISO 25000 standards [16] popularity
is because of its simplicity and the possibility to adapt it to
more specific contexts [20]. The popularity of SQALE [22] is
based on its widespread tooling support, e.g. within Sonar,?
which facilitates its integration into the development process
[20]. And the importance of Quamoco [12] lies within the
extensive research it is based on and the formulation of a
comprehensive meta model for hierarchical quality models
that new quality models can build on.

The importance of effective tooling support for the adop-
tion of quality models as in the case of SQALE is also stated
by Yan et al. [19]. Related to the aspect of tooling, an addi-
tional success factor for the adoption of quality models is
the completeness of definitions for its elements. To analyze
this, Nistala et al. [17] differentiate between different phases
of when quality models can be used (planning, realization,
documentation, and assessment) and then map the type of ele-
ments of quality models to the phases in which they are used.
Through this, they identify significant differences for the defi-
nition completeness of quality model elements. Furthermore,
they observe a gap regarding the mapping of certain soft-
ware properties and processes to the quality aspects in focus.
These are, however, important for the practical application of
a quality model. The aspect that definitions of quality model
elements are not always complete is also stated for web ser-
vice quality models by Oriol et al. [21].

Major aspects are therefore the elements of a quality model
themselves and a suitable tooling support. Considering the
elements of a quality model, the mentioned Quamoco meta
model [12] from our perspective provides the most compre-
hensive foundation to build on. The main elements of the
Quamoco meta model are shown in Fig. 1 and explained in
the following.

2 https://www.sonarsource.com/blog/sqale-the-ultimate-quality-
model-to-assess-technical-debt/.

@ Springer

https://www.sonarsource.com/blog/sqale-the-ultimate-quality-model-to-assess-technical-debt/
https://www.sonarsource.com/blog/sqale-the-ultimate-quality-model-to-assess-technical-debt/

Cluster Computing

. . part-of
impacts characterizes]
Factor > Entity
is-a
is-a measures

[!
Quality Product Measure
Aspect Factor

A
evaluates
M Evaluation _T uses
uses

Fig. 1 Elements of the Quamoco meta model [12]

The core elements of the Quamoco meta model are fac-
tors which are differentiated into quality aspects and product
factors. Quality aspects represent the rather abstract quality
characteristics for example from the ISO 25000 standard.
Product factors capture characteristics of a software which
should be measurable for a specific software based on mea-
sures. Through the impact relationship, it is possible to define
a hierarchy of factors where quality aspects define the top-
level elements and product factors are structured below. The
impact relationship can be defined coarsely, for example, as
being positive or negative, describing how a factor impacts
another factor, if that factor is present in a software. More
detailed statements about how certain product factors impact
quality aspects, also using mathematical approaches, can be
made using evaluations. Evaluations can be considered as
a kind of rules that configure the exact way in which the
quality of a software system can be evaluated using mea-
sures, product factors and quality aspects. Evaluations can
also be set in relation to each other, for example to enable
aggregations of evaluations. Finally, to connect the quality
model with the actual software under consideration, entities
are used that represent different components of a software
system. The extent to which product factors are present in a
certain software system is characterized through the specific
set of entities which describes this software system. Based on
how these entities are structured and which properties they
have, product factors can be measured, in the end enabling a
quality evaluation of the software system.

In the rest of this article we use the terms introduced by
the Quamoco model to describe our approach for formulating
and validating a quality model for cloud-native applications.

2.2 Quality model formulation

With Formulation we refer to the process of creating a new
quality model. In essence, this means that elements corre-
sponding to the types of the Quamoco meta model [12] need
to be formulated and set into relation. There are several ways
to do this and some constraints that need to be considered.
First, the scope of the quality model should be decided on.
That means for example what kind of software is considered,

@ Springer

at which layer it is considered and also which quality aspects
are of interest. Only if the scope is defined, it is possible to
decide which elements to include in the quality model and
which not. The quality aspects and product factors should be
defined first, because they represent the core of the quality
model. Entities, measures and evaluations should be defined
in a second step, suitable to the factors. In the end, complete-
ness of a quality model needs to be ensured so that all factors
are defined in a clear and understandable way, measures are
available to quantify factors, and evaluations enable the qual-
ity assessment of a system. Considering the structure of the
quality model, AL-Badareen et al. [23] have investigated
rules and constraints to consider when formulating quality
models. One exemplary rule is that there should be only one
path from an element to a certain top-level quality aspect
[23] in order to keep evaluations regarding this quality aspect
unambiguous. The most important aspect, however, for a
quality model to be useful and of good quality itself, is that the
conditions and relations it describes reflect reality as closely
as possible. Although an exact reflection of reality is impossi-
ble, because a model per its definition has to abstract from the
real world, it should be ensured that software quality relations
are modeled realistically. This is also stated by Wagner et al.
who emphasize the importance of a Rationale [12] for each
stated impact relation between factors of the quality model.
The respective rationale included in a quality model is a direct
result of the approach used for formulating a quality model.
Different approaches have been listed by Moody [24], includ-
ing for example: theory-based (deductive), experience-based
(codification), observation-based (inductive), or consensus-
based (social). Based on the available possibilities, a suitable
choice needs to be made on the approach used for formulat-
ing a quality model. In any case, the chosen approach should
be documented and explained so that it can be reproduced
and evaluated by others.

2.3 Quality model validation

As stated in the previous section, a quality model necessarily
abstracts from reality, but should nevertheless reflect reality
as closely as possible for meaningful assessments of soft-
ware. Ensuring this reflection of actually observable quality
impacts is therefore an important property of a useful quality
model. We refer to this assurance as validation [19, 25] in
the sense that the theory underlying the formulation of qual-
ity model elements is validated using suitable approaches.
There are several aspects of a quality model that can be val-
idated and validations can in turn be also done in several
ways. In previous work [25] we have investigated validation
approaches and scopes for quality models in more detail. An
important aspect that emerged is that not all types of vali-
dation are possible during all phases of the creation process
of a quality model. Especially in an early phase, when only

Cluster Computing

quality aspects, product factors, and their respective impact
relations are formulated, a complete validation of the qual-
ity model based on an assessment of software is difficult
because of the missing measures and evaluations. Neverthe-
less it is possible to validate these formulated elements, but
a suitable approach needs to be chosen. To decide which val-
idation approach is a suitable one, it is necessary to check
whether an approach can accomplish the goal of a successful
validation. And that goal is the confirmation of relations and
statements defined during the initial formulation of a qual-
ity model based on a different type of rationale than initially
used. For example, if a quality model has been formulated
based on experience by experts, it could be validated using an
experimental approach relying on measures of an actual soft-
ware system. Or, if a quality model has been formulated based
on theory, e.g., relying on literature, it could be validated
through an empirical survey (consensus-based) which is also
the scenario that is considered in this work. Approaches that
do not require the complete formulation of all elements of
a quality model are for example consensus-based empirical
approaches, such as interviews or surveys. These can be used
to validate factors by asking for the clearness of their descrip-
tions or their applicability to software systems. Or they can be
used to validate the formulated impact relationships between
factors by asking for the type and strength of impact certain
factors have on other factors. Although using a somewhat
different categorization of validation approaches, Yan et al.
[19] found this to be the most used validation approach, called
expert-opinion by them.

An iterative approach of formulation, validation, and
refinement through new formulations can therefore be taken
and validation can be applied repeatedly and from differ-
ent perspectives. As a general rule it can be stated that the
more validations from different perspectives are performed,
the more confidence exists that the quality model is appro-
priate and usable. Validations during the creation process
should thus also be complemented by validations once all ele-
ments of a quality model are defined. This explicitly includes
experimental approaches during which quantitative measures
should be taken to evaluate the factors for a specific soft-
ware system and compare them with additional measures,
for example taken at runtime. Validation in this regard has
also been named as the “representation condition” by Galli
et al. [20] which they define as the assertion that “properties
of real-world entities measured are mapped in numeric rep-
resentations in such a way that the numeric representations
are equivalent to the reality” [20].

3 Methodology

Building on the presented foundations regarding quality
models, we explain in this section our methodology for

formulating and validating a quality model for software
architectures of cloud-native applications. This methodol-
ogy integrates the previous works [8] and especially [1] to
which this work represents an extended version. In addition,
we have developed the quality model further by repeating and
therefore updating the literature search for suitable measures
from [8]. Furthermore, we provide a more detailed view on
the refinement of the quality model done after the validation
survey presented in [1]. To provide a better overview, we
have summarized our methodology in Fig.2 and explain the
steps which can be seen there in the following.

Step A: First, we have formulated the quality aspects and
product factors relevant to cloud-native applications together
with their connecting impact relationships. To do so, we
relied on literature, namely the ISO 25000 standard [16],
existing definitions for the term cloud-native, and practitioner
books on the topic. This has been done and presented in pre-
vious work [8].

Step B: In addition to the factors of the quality model, we
have also performed a literature search to identify suitable
measures that can be used to evaluate the formulated factors.
This has also been done in the mentioned previous work
[8]. We found measures, especially for the factors grouped
under the maintainability quality aspect, but for many factors
suitable measures still need to be defined.

Step C: Because we wanted to validate the elements for-
mulated up until this point before proceeding further with
the work on the quality model, we performed a survey to
validate the existing elements. The focus was specifically on
the impact relationships between product factors and quality
aspects. The survey and its result have been presented in [1]
and it led to a refinement of the quality model elements. This
refinement is described in Sect.3.1.

Repeat Step B: To further develop the quality model in
this work, we have repeated and revised the literature search
for measures to identify additional measures from newly
published work. How we repeated and revised this search
is described in Sect.3.2.

Step D: In parallel to the validation of the existing entities,
we prepared the actual evaluation of software architectures by
formulating suitable entities to which factors can be linked. In
addition, we reviewed modeling options for describing soft-
ware architectures of cloud-native applications. This review
and initial tooling support has been presented in [26].

Step E: (Planned in future work) Based on the found mea-
sures and the development of tooling support, we plan to
validate the quality model from additional perspectives. In
specific, we plan for an experimental approach with software
architectures of applications that serve as use cases.

@ Springer

Cluster Computing

7 Quality model \\\ / Evaluation Object (Application) AN
] \ 1 \
g ! Quality Quality ‘: ! ':
! aspect aspect h oo |
i \ HE A i |, N !
| 3 | ' o
i g 2 Quality I Runtime View | !
1 8 2 Measure \ |
H g- “ | aspect ! @ (Deployed application 1 !
1 - T 1
1 1 1
i - Quality ! | M / !
' Quality aspect «---A--)----- -: :
! aspect ' ! '
1 %O L VoA :
\ g s \ , Design Time View ! 1
mb £ J ' L L (Source Code, Model) | . g
1 1 1
Illl : EQ Product t Measure \J
! = factor ! o, Entity | | Entity g~ |
i | Product Product ! \ i \ ;o @
\ | factor factor ! g . \ STmmmmmmmmmmommeees !
\ /7 G \ /
N ’ N 7’
N e . Pid N e e e . P
Activit Rationale

g Theory-based (Literature)
M Consensus-based (Survey)
"7 Observation-based (Experiment)

Fig.2 The overall methodology of our approach

3.1 Validation survey (Step C)

Because the initial quality model was formulated based on
literature [8] and only to the extent of quality aspects and
product factors, we chose to use an empirical survey-based
approach for the validation of the formulated elements. A
detailed description of how the survey was prepared and con-
ducted can be found in [1]. In this work, we only repeat the
main aspects and focus on how the survey results were used
to refine the quality model.

As survey participants we targeted IT professionals who
have practical experience with implementing and deploy-
ing web applications on cloud infrastructures. We contacted
potential participants based on relevant publications or talks
they had given, social media groups and communities with a
fitting topic, as well as personal contacts. The basic approach
of the survey was to build pairs of product factors (i.e., archi-
tectural characteristics of a cloud-native application) and
quality aspects (i.e., the sub-characteristics from the ISO
25000 standard [16] such as Availability, Fault Tolerance,
or Modifiability). In total, 45 product factors and 24 quality
aspects were considered. For each product factor the survey
participants were then tasked to freely rate potential impacts
on any of the quality aspects. The impacts stated in the initial
quality model were intentionally not shown to the partici-

@ Springer

pants to avoid bias in their answers. Impacts could be rated
on a 5-point scale of:

factor has positive impact (++) on quality aspect

factor has slightly positive impact (+) on quality aspect
factor has no impact (0) on quality aspect

factor has slightly negative impact (—) on quality aspect
factor has negative impact (——) on quality aspect

Thus, the survey resulted in a set of impact ratings stated
for each pair of a product factor and a quality aspect. For
each set we calculated a mean value using numeric values
of +2,+ 1,0, — 1, and — 2 for the respective impact rat-
ings and a p value as an indicator for the significance of a
result. The p value was calculated using the Exact multino-
mial test of goodness-of-fit [27]. We chose this test, because
it is suitable when there are multiple values of one nomi-
nal variable (the different types of impact) and the sample
size is small. For the test we assumed equal probabilities for
each impact rating, except for the rating of 0 (no impact).
Because “no impact” was selected as a default if a partici-
pant did not explicitly state any impact, we assumed it to be
twice as likely as the other rating options. Based on the mean
values and the p-Values, we refined the impact relationships
of the quality model from two points of view: First, we iter-
ated over the impact relations already stated in the initially

Cluster Computing

formulated quality model and checked whether they could
be confirmed by the survey results or had to be rejected.
And second, guided by the significance indicator, we iter-
ated over the impact relations not yet considered, but found
through the survey, and decided whether to include them
as new impact relations in the model or not. Orthogonal to
these two points of view, we also considered each product
factor individually with its rated impacts on quality aspects
to identify factors which might need to be refined as such. In
fact, a few factors showed to be ambiguous, because either
significant impacts on several different quality aspects were
found or because conflicting types of impact (that means pos-
itive and negative) were found for the same quality aspect. In
these cases, we revised the factors as such and included the
found impacts as new impact relations in the quality model.
Revision could also mean splitting a factor into new separate
factors which cover distinguishable aspects of the factor that
showed ambiguous results. All refinements were based on
the interpretations by us as authors, but in each case we also
reconsidered the initially used literature to substantiate our
decisions. To summarize, the following refinement actions
were applied to the quality model based on the validation
survey results:

e Removal of an initially stated impact relation (17 times)

e Addition of an newly found impact relation (16 times)

e Reformulation of a product factor and selection of suit-
able impact relations (2 times)

e Splitting a product factor in two or more new product
factors which cover distinguishable sub-aspects of the
original product factor (1 time)

Which refinements regarding specific impacts and factors
were applied is also listed online.>

3.2 Repeated literature search (Repeat Step B)

As mentioned, the overall goal of our work is to have a formu-
lated and validated quality model for software architectures
of cloud-native applications. Measures, in this regard, are one
type of model elements needed to make factors measurable.
Once suitable measures are formulated, additional types of
validation can be applied including quantitative experiments.
Because we identified a lack of suitable measures in previous
work [8] and some time has passed since the initial literature
search, we decided to repeat and revise this literature search.
Through this, we aim to include literature published in the
meantime and identify potentially missed literature. In a sec-
ond search done on 2023-07-13 with exactly the same search
terms as in the initial search, we included literature that had

3 https://r0light.github.io/cna-quality-model/survey.

been published since the first search. However, based on a
closer review of the search terms and results, we realized that
papers may have been missed due to the usage of either sin-
gular or plural forms in literature. For example, in the initial
search terms, we included the term “microservices”, but not
“microservice”. Through this, the paper by Zdun et al. [28]
was not in our results, although relevant metrics are presented
in it. Thus, we revised the search terms and performed a third
search on 2024-01-16. The revised search strings include one
focusing microservices architectures as an architectural style
commonly associated with cloud-native applications:

(Abstract:(architecture)) AND (Abstract:(measure)
OR Abstract:(measures) OR Abstract:(metric) OR
Abstract:(metrics)) AND
(Abstract:(service-oriented) OR
Abstract:(microservices) OR
Abstract:(microservice))

\. J

And a second search string focuses on cloud applications,
especially their quality:

(Abstract:(cloud-native) OR Abstract:(“‘cloud
computing”)) AND (Abstract:(measure) OR
Abstract:(measures) OR Abstract:(metric) OR
Abstract:(metrics)) AND (Abstract:(quality))

These search strings were adapted to search the ACM Digital
Library,* IEEE Xplore,> and Springer Link.°

The steps and numbers of papers considered from these
searches are combined in Fig.3. The number left of the +
operator describes the results from the second search and the
number right of it describes the results from the third search.
The overall process is also described in more detail online.”

Asrelevant results, we considered only literature in which:

e a perspective is taken corresponding to that of applica-
tion developers (in contrast to the perspective of cloud
providers),

e software architectures are considered on a level suitable
to the quality model (in contrast to lower levels such as
internal component design or higher levels such as the
end-user perspective),

e measures are presented that can be evaluated at design
time (in contrast to runtime specific measures),

e calculations for measures are specified clearly so that they
can be adopted

4 https://dl.acm.org/.

3 https://ieeexplore.ieee.org/Xplore/home.jsp.

© https://link.springer.com.

7 https://r0light.github.io/cna-quality-model/search-process.

@ Springer

https://r0light.github.io/cna-quality-model/survey
https://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://link.springer.com
https://r0light.github.io/cna-quality-model/search-process

Cluster Computing

Repeated and revised
literature search starting
from date of initial search

124 + 972 = 1096 results

Filtering based on title

89 + 110 = 199 results

Filtering based on abstract

32 +49 = 81 results

Forward search based on
previous result set

Filtering based on full-text

6 + 13 =19 results

23 newly identified works leading to an
updated literature set of 84 works

Fig.3 Repeated and revised literature search results

Asitcanbee seen in Fig. 3, we could thereby extend the lit-
erature set describing suitable measures. 23 additional works
that present measures suitable for the factors of the quality
model were found so that in total 84 works can be considered
for the quality model. It was encouraging that also measures
could be found for factors for which previously no measures
were found in the literature. We included these additional
measures in the quality model which therefore represents an
improved basis for quantitative validations relying on such
measures. The successful identification of additional mea-
sures also shows the possibility of using an iterative approach
for the formulation of a quality model in the sense that such
a literature search can be done repeatedly to continuously
update and refine a quality model.

The results of applying this methodology are presented in
the following Sect. 4. It has to be noted that this approach is
one possible option for the development of a quality model
which we found suitable in the context of our goal. Other
approaches for the formulation and validation of a quality
model are also possible. Our description of foundations for
the formulation and validation of quality models in Sect. 2 as
well as the documentation of our methodology aim to make
different approaches comparable.

4 The cloud-native quality model

In this section we present the current state of the qual-
ity model. Therefore the different types of elements are
explained and then exemplary factors from the model are
described in more detail. Using the examples, we also show
how the formulation and validation steps lead to their current
state.

@ Springer

4.1 Elements of the quality model

The quality model for software architectures of cloud-native
applications is based on the Quamoco Metamodel [12] and
in its current status, quality aspects, product factors, impacts,
entities and partly measures are defined. This means the
completion of providing measures to make product factors
measurable as well as the definition of evaluations that enable
meaningful analyses are still needed for quantitative eval-
uations of software architectures. In contrast, a qualitative
evaluation based on a manual assessment of a software archi-
tecture regarding the product factors of the quality model
would already be possible. We therefore present the quality
model in its current form in this section and focus specifi-
cally on the different product factors of the quality model We
describe how they should be understood, which rationale was
used for their formulation and how a potential evaluation may
use them. The quality model in visual form is shown in Fig. 4.
It includes product factors in white boxes and quality aspects
in gray boxes. The connecting arrows represent the impact
relations with B indicating a positive impact and B indicat-
ing a negative impact. It is important to state that the focus
of the quality model is on the design time of an application.
Thus, the included product factors are intended to be evalu-
able at design time based on an architectural representation of
an application. Additional aspects, such as characteristics of
the deployment process, are also important within the topic
of cloud-native, but out of the scope of this quality model.

However, a decision needed to be made, about what a
suitable architectural representation of an application would
be. While in general, applying the quality model directly to
source code and deployment descriptions would be imag-
inable, it makes the implementation increasingly complex,
because then a multitude of technologies would have to be
supported. We therefore chose to rely on a model of a soft-
ware architecture and formulated potential entities of such a
model in [8]. Additionally, to rely on existing approaches, we
reviewed currently available modeling options [26] for soft-
ware architectures of cloud-native applications, as described
in Sect. 3: Step D. The result are the entities shown in Fig. 5.

These entities together with further properties describ-
ing them in more detail enable the modeling of software
architectures of cloud-native applications so that these archi-
tectures can be evaluated. The formulation of the specific
properties added to each type of entity strongly depends on
the respective measures associated with the product factors.
These properties together with the component structure pro-
vide the data basis for measuring. The definition of properties
is therefore intended to be more flexible so that they can be
adapted as required by the used measures.

Cluster Computing

Access control
management
consistenc
Y

Least-privileged
access

Access
restriction

Security

Authentication
delegation

Addressing
abstraction

Limited request
trace scope

Isolated
configuration

Functional Configuration
: decentralization stored in
) Service specialized
independence services

A

Configuration
management

Infrastructure
abstraction

Contract-based
links

Adaptability

Cloud vendor
abstraction

Maintainability

Reusability

Backing service

Secrets
management

Secrets stored in
specialized
services

Guarded ingress Reliability

Availability
Physical services
distribution

Distribution
E]
Physical data
distribution

Built-in
autoscaling

decentralization

Consistent
centralized
logging

n—

)

Automated
infrastructure
maintenance

Automated Portability
infrastructure Installability
provisioning

Component

similarity

Standardized
deployment unit

Use
infrastructure as
code

)

ul g

Health and
readiness checks

Service
replication

Sharded data
store replication
Horizontal data
replication

Circuit breaked

communication

Retries for safe
invocations

Reliability

Fault tolerance

Invocation
timeouts

Persistent

communication

-

Performance

Resource
utilisation

Distributed
Rolling upgrades tracing of
enabled invocations
Automated -
Consistent monitoring Analysability
centralized A
metrics ?:l
Isolated state
Spezialized Mostly stateless Maintainabilit
stateful services services (-
4
Vertical data Compatibility
replication
Consistently
mediated
W communication

partner
abstraction

Communication

3

Enforcement of
appropriate resource
boundaries

Asynchronous
communication

Separation by
gateways

Managed backing
services

Managed
infrastructure

Responsibility

‘ Command Query

efficiency

! Quality Model Elements

High-level Quality Aspect
Quality Aspect

Highlighted
Product Factor

Fig.4 The quality model for software architectures of cloud-native applications

Segregation

Usage of existing
solutions

Sparsity

@ Springer

Cluster Computing

System

processes / stores

Component

Data Aggregate

processes / stores

connects <

External
Endpoint

Backing Data

Backing
Service

connects D
Deployment
Mapping
Storage —\I
Backing
Service
Infrastructure

Fig.5 Entities proposed for the architectural description of cloud-native applications

4.2 Exemplary product factors

Based on the general description of the elements in Sect. 4.1,
we now present three exemplary factors in more detail. These
factors are also highlighted in blue in Fig.4. We specifically
describe how they were formulated, validated, and how they
can be evaluated based on a cloud-native architecture con-
sidering required entities and measures:

Automated infrastructure provisioning This product
factor is described as “Infrastructure provisioning should
be automated based on component requirements which are
either stated explicitly or inferred from the component which
should be deployed. The infrastructure and tools used should
require only minimal manual effort. Ideally it should be com-
bined with continuous delivery processes so that no further
interaction is needed for a component deployment.” and is
considered to have positive impacts on both, Modifiabil-
ity and Installability. The initial formulation is for example
based on literature by Reznik et al. [29] who write that “Any
manual work that is required in between the changes com-
mitted by the developer and the delivery to production will
significantly reduce the speed of delivery” [29, Pattern: Auto-
mated Infrastructure (Chapter 10)] and therefore argue that
through automated provisioning of required infrastructure,
modifications are simplified and can be done more quickly.
In the originally formulated quality model this aspect was
subsumed in a product factor called Automated infrastruc-
ture, but the results from the validation survey [1] showed an
ambiguity for this factor, because several impacts on differ-

@ Springer

ent quality aspects were reported. This can be seen in Table 1
where selected results from the validation survey are listed.
On the basis of the survey results we therefore refined the
factor and split it up into two separate factors Automated
infrastructure provisioning and Automated infrastructure
maintenance which impact the respective quality aspects.
What has to be noted is that we kept the positive impact
from Automated infrastructure provisioning on Modifiability,
although the survey results did not show a clear confirma-
tion. The reason is that we used the survey results as a basis
for refining the quality model and not as definitive results,
because the sample was not representative and participants
were also not able to provide a reasoning for their ratings.
To evaluate the product factor Automated infrastructure pro-
visioning, the infrastructure entities need to be considered
and it has to be evaluated whether they can be provisioned
automatically, that means with little or no manual actions.
This could, for example, be the case when the infrastruc-
ture is managed by a cloud provider and can be provisioned
once needed by a component. Another case would be the
usage of Infrastructure as Code (IaC) approaches for which
an additional product factor Use infrastructure as code exists.
A suitable measure could then, for example, be the ratio of
infrastructure entities which can be provisioned automati-
cally as a basic indicator.

Autonomous Fault Handling This factor is described as
“In cloud-native applications services should expect faults
at different levels and either handle them or minimize their
impact by relying on the capabilities of cloud environments.”.

Cluster Computing

Table 1 Exemplary results from the validation survey [1]

Factor Quality Aspect Hypothesized Mean Impact Validation p value
Automated infrastructure Modifiability Positive 0.45 + X 0.0224
Modularity n/a 0.60 + n/a 0.0031
Reusability n/a 0.80 + n/a 0.0028
Testability n/a 0.65 + n/a 0.0997
Capability n/a 0.55 + n/a 0.0008
Elasticity n/a 0.80 + n/a 0.0028
Resource utilization n/a 0.60 + n/a 0.0031
Time-behaviour n/a 0.60 + n/a 0.0031
Installability n/a 0.95 + n/a 0.0050
Recoverability Positive 1.15 + v 0.0006
Availability n/a 1.15 + n/a 0.0006
Fault tolerance n/a 0.85 + n/a 0.0006
Circuit breaked communication Fault tolerance Positive 1.12 +) 0.1455
Recoverability n/a 0.62 +) n/a 0.3182
Consistent centralized logging Analyzability Positive 1.33 + W) 0.1185
Testability n/a 0.67 +) n/a 0.3158
Recoverability Positive 0.33 + *) 0.1718
Accountability n/a 0.67 (+) n/a 0.6399
Retries for safe invocations Fault tolerance Positive 1.20 +) 0.2695
Availability n/a 1.00 +) n/a 0.7222
Recoverability n/a 0.80 +) n/a 0.3519

“n/a” means that an impact was not included in the initial quality model, but was stated by survey participants

It is a mediating factor for the product factors Invocation
timeouts, Retries for safe invocations, and Circuit breaked
communication. Circuit breaked communication has been
mentioned regularly in the literature [30, Chapter 10.1], [31,
Use Circuit Breakers for Nontransient Failures (Chapter 6)],
[32, 3.2.3] and it can be used “to prevent components from
doing operations that will likely fail and are not transient”
[31] so that an alternative action can be used until the affected
component is healthy again. Invocation timeouts [33, Chap-
ter 3], [32, 3.2.3] and Retries for safe invocations [30, 9.1],
[31, Chapter 6], [33, Chapter 3] are also based on litera-
ture. In the validation survey, however, we only considered
Retries for safe invocations and Circuit breaked communi-
cation, because we assumed Invocation timeouts to be less
specific to cloud-native applications. For both it can be seen
in Table 1 that their positive impact on Fault Tolerance could
be confirmed, although we had to mark the results as poten-
tially valid due to a low number of responses. To evaluate
these product factors, the link entities need to be analyzed to
check whether these mechanisms are used and in addition for
the product factor Retries for safe invocations, the endpoint
to which a link is connected, needs to be analyzed for check-
ing whether it is safe to be invoked multiple times. Suitable
measures have already been proposed in the literature, such
as Number of Links with retry logic or Number of Links with
Complex Failover by Apel et al. [9].

Consistent centralized logging This factor is described
as “Logging functionality should be concentrated in a cen-
tralized component which combines and stores logs from the
components of a system. The logs should also be consistent
regarding their format and level of granularity so that a cor-
relation and analyzability of logs is facilitated.”. It has been
formulated based on literature and covers aspects such as
that logs are stored in a central component [31, Use a Uni-
fied Logging System (Chapter 6)], Logs are collected in a
consistent format [31, Common and Structured Logging For-
mat (Chapter 6)], or that functionalities for log aggregation
and analysis are provided [30, Chapter 11.1], [32, Applying
the Log aggregation pattern (11.3.2)]. The validation sur-
vey confirmed the positive impact on Analyzability, although
the result had to be marked as potentially valid, because the
p-Value was above the chosen significance level of 0.1. Fur-
thermore, a positive impact on Accountability was added to
the quality model based on the survey results. To evaluate
this factor, the backing service is relevant, since a potential
logging service would be modeled as such and then it could
be checked which components provide logs to this backing
service, for example by sending logs to a certain endpoint. As
a suitable measure, the Ratio of Components or Infrastruc-
ture nodes that export logs to a central service by Ntentos et
al. [34] could be used.

@ Springer

Cluster Computing

4.3 Support through measures

The support of the product factors through measures is a
key aspect for enabling quantitative evaluations of software
architectures. As described in Sect.3.2, we have repeated
the initial literature search for suitable measures and could
identify additional measures for product factors of the qual-
ity model. This included also product factors for which we
previously had not found any metrics, such as Guarded
Ingress for which Ntentos et al. [34] proposed a metric called
Ingress Traffic Control utilization metric (ING) which we
slightly adapted to our model as Ratio of endpoints whose
ingress is guarded. This adaptation was necessary because of
the differing approaches for representing software architec-
tures. Ntentos et al. [34] have developed their own modeling
approach and for our model we have proposed the entities
shown in Fig. 5.

As a general observation regarding the architectural mea-
sures proposed in the literature, we can state that a main
focus has been on maintainability aspects, especially regard-
ing coupling and cohesion [35, 36]. But more recently also
measures in other areas such as security have been proposed
[34].

Regarding measure support for the product factors of
the quality model, there are two aspects which need to be
addressed. On the one hand there are product factors for
which no or only a few suitable measures have been pro-
posed in the literature yet. For these, it is necessary to propose
and validate new measures. And on the other hand, there
are product factors for which numerous measures have been
proposed, partly being very similar in terms of what they
measure. For these, it is necessary to make a selection of
meaningful measures that reflect the product factors in a suit-
able and understandable way. It has to be noted that so far
only measures that have been already presented in the litera-
ture have been included in the quality model. As a next step
further measures need to be formulated and validated in a
structured way.

5 Discussion

In this section we want to reflect on the current state of the
quality model, provide answers to the initially posed research
questions, and outline future work regarding the formulation
and validation of the quality model.

An interesting aspect that came up during our work on
the quality model is how product factors and design patterns
are related. Many of the practitioner books [30, 32, 33, 37]
present patterns to achieve cloud-nativeness and also in the
scientific literature the evaluation of the quality of an archi-
tecture is often based on patterns [36, 38—41]. From our point
of view, product factors and patterns are highly interrelated

@ Springer

and in some cases a product factor directly maps to a pattern
(for example Circuit breaked communication [30]). Ideally,
however, patterns are reflected by certain formations of enti-
ties and their respective properties within an architecture.
When an architecture is evaluated, the fact that a certain pat-
tern was used, should be measurable through corresponding
architectural measures which measure a related product fac-
tor. The quality aspect that this product factor impacts should
then be the same as the one also targeted by the original pat-
tern, leading essentially to the same outcome that if a certain
pattern was used, it should have an impact on a certain quality
aspect.

Another interesting aspect to discuss is that a majority
of impact relations in the quality model describes positive
impacts on quality aspects. This is to a large extent due to our
chosen methodology which considered practitioner books on
how to implement cloud-native applications for the initial for-
mulation of the quality model. This literature highlighted the
potential benefits of using cloud-native concepts. Through
the validation survey we also aimed at potential negative
impacts which could indeed be identified, but only to some
extent, for example the negative impact of Consistently medi-
ated communication on Time behaviour. Because there are,
however, typically trade-offs between quality aspects [42],
this should in the end also be visible in the quality model.
Further work on the quality model, especially considering
use cases, should therefore also put a focus on potential neg-
ative impacts of application characteristics.

While keeping these aspects in mind, we are never-
theless confident that our quality model shown in Fig.4
adequately describes how characteristics of cloud-native
applications impact multiple quality aspects, therefore pro-
viding an answer to RQ1. Because of the reliance on the
Quamoco meta model [12], the quality model is formu-
lated on a sound theoretical foundation. It provides the basis
for being further developed to enable quality evaluations of
software architectures. The methodology that we used for for-
mulating the quality model aims to show on the one hand how
the model was developed in this specific case. But on the other
hand, it also shows what needs to be considered more gener-
ally when developing a quality model and which approaches
can be used. The presentation and demonstrated application
of our methodology therefore represents the answer to RQ2
of how a quality model can be formulated and validated.
We want to make clear that it is one of several ways of for-
mulating and validating a quality model and that different
approaches can be taken, also in an iterative way. In fact, the
more a quality model can be validated from different per-
spectives and based on different types of rationale, the more
confidence can be put in its applicability.

Thus, a major aspect for future work is to use addi-
tional validation approaches for the quality model, namely
an experimental approach as already mentioned in Sect.3

Cluster Computing

Step: E. To facilitate this, corresponding tooling support is
crucial. Specifically, the tooling support should enable the
intuitive modeling of software architectures using the enti-
ties shown in Fig.5, the specification of measures based on
modeled architectures, and their automated calculation so
that they can be used for evaluations of the quality model. A
prototype focusing on the modeling functionality has been
presented in [26] and is the basis for further implementation
of tooling support.® One aspect to discuss in this regard is
how architectural models are created. Generally, it is possible
to either manually model software architectures based on the
understanding of the software or to automatically generate
models based on artifacts such as source code or deploy-
ment descriptors. While it would significantly facilitate the
usage of tooling if models could be generated automatically,
the problem is the heterogeneity of technologies available
in the context of cloud-native applications to which tooling
in turn would need to be adapted. Ntentos et al. [34] have
taken this approach of generating models automatically from
IaC artifacts, but had to start with one specific technology to
then continuously include further technologies. We decided
to preliminary provide only manual modeling of software
architectures, because we wanted to focus on the relations
between architectural characteristics and quality aspects in
the quality model. Therefore our aim for the tooling support
is to make the manual modeling nevertheless as intuitive as
possible. In addition, we based the modeling approach on
TOSCA [43] as a standard. This provides the foundation for
transforming deployment descriptors of various technologies
to a TOSCA template, if adapters are available, and therefore
improves the compatibility of our tooling.

6 Related work

In abroader context, our work can be seen as a part of research
on Software Architecture Optimization methods which has
been reviewed by Aleti et al. [44]. By using the taxonomy
presented by Aleti et al. [44], our work can be characterized
so that it can be better related to and compared with other
work. We have done this in Table 2 which shows the different
categories of the taxonomy by Aleti et al. [44] and a selection
of related work to which our approach is compared to. The
common aim of these approaches is to evaluate the quality of
an architecture and, based on this evaluation, suggest poten-
tial options for quality improvements. Differences, however,
can be seen when considering the categorizations in more
detail.

The scope is set by the problem category which char-
acterizes the problem tackled by an approach. It can be
differentiated based on the domain, the phase of the soft-
ware development lifecycle it is used in, and the covered

8 https://github.com/rOlight/cna-quality-tool.

quality aspects. Regarding quality aspects, Aleti et al. differ-
entiate between quality attributes which are to be optimized,
and constraints which are specified upfront and limit the
potential solutions. Furthermore, with the dimensionality it
can be expressed whether multiple quality dimensions are
considered simultaneously, potentially conflicting with each
other, or if there is a single objective. In contrast to other
approaches, when using a hierarchical quality model, typi-
cally multiple quality attributes are considered and a quality
evaluation and potential optimization aims to weigh mul-
tiple objectives against each other. This is a commonality
between our approach and the approaches in Table 2. On
which basis the quality attributes are defined, however, dif-
fers. While our approach is based on the quality aspects of the
ISO 25000 standard [16] combined with cloud-native char-
acteristics, Mayr et al. [45] focus on requirements derived
from expert knowledge. Achilleos et al. [46] formulate Ser-
vice Level Objectives (SLO), for example regarding the
response time of a system. And Soldani et al. [10] rely on
best practices for microservices-based systems obtained from
literature. With quality models, constraints are formulated
implicitly within the model, while Achilleos et al. [46] allow
for a custom specification of constraints. For the approach
of Soldani et al. [10] constraints may come from external
business-specific considerations that might justify violations
of certain best practices. Regarding the solution character-
istics, it can be seen that the other approaches are similarly
based on models for the quality evaluation, but the types of
models used for the Architecture representation differ signif-
icantly. They range from directly using source code [45] or
using deployment-focused descriptions such as CAMEL [46]
or #TOSCA [10]. The degrees of freedom describe which
aspects of an architecture are considered to be changeable
in order to improve the quality of a system. These degrees
are highly related to the used representation of a system and
while, for example, Achilleos et al. [46] have a more narrow
focus on deployment configurations to also enable runtime
adaptations, our scope is broader considering both, how
components are structured and interact with each other and
the deployment perspective. For the strategy used to enable
optimizations, multi-objective problems are often approxi-
mate and problem-specific options need to be evaluated. The
approach of Mayr et al. [45] can be categorized as being
more exact, because of the focus on requirements which
allows for an optimization in terms of either fulfilling require-
ments or not. And regarding constraint handling, different
approaches are used related to how constraints are expressed.
For example, in the case of Achilleos et al. [46] deployment
options that violate specified constraints are not considered
at all, while in our approach constraints occur implicitly
within the model and therefore potential violations might
be acceptable if other quality aspects are considered more
important. Finally, a comparison is possible regarding how

@ Springer

https://github.com/r0light/cna-quality-tool

Cluster Computing

Table 2 Comparison of our approach to other work based on the taxonomy by Aleti et al. [44]

Category Our approach Mayr et al. [45] Achilleos et al. [46] Soldani et al. [10]
Problem

Domain Cloud applications Embedded systems Cloud deployment Microservices
Phase Design time Design time Design- and runtime Design time

Quality attribute

Dimensionality

Constraint

Solution

Architecture
representation

Quality evaluation

Degrees of freedom
Optimization strategy

Constraint handling
Validation
Approach validation

Optimization validation

Multiple

Multi-objective
Implicit

TOSCA extension

Model-based

Component types,
interactions and deployment

Problem-specific approximate

General

Survey
t.b.d

Multiple, based on
requirements

Multi-objective

Implicit

Source code

Model-based

Source code changes
Problem-specific exact

Penalty

Expert judgment
Expert judgment

SLOs focusing on
performance, cost,
security

Multi-objective

Custom, e.g. cost,
hardware

CAMEL

Model-based

Deployment
configuration

Problem-specific
approximate

Prohibit

Use cases and survey

Use cases

Best practices

Multi-objective

External

wTOSCA

Model-based

Component interactions
and configuration

Problem-specific
approximate

General

Use cases

Use cases

an approach as such is validated and whether an optimization
done through the approach has been validated. In our case,
a validation has been performed through the survey and an
actual optimization based on the quality model is planned for
future work. For the other compared approaches, several dif-
ferent types of validations have been done, although applying
an approach to an actual use case is a common procedure.
With this comparison, we aim to set our work in a broader
context and compare it to other related work. Although only
a selection of different work was used, other work can also
be compared to ours based on the taxonomy by Aleti et al.
[44]. But from this comparison it becomes clear already that
despite the common goal of evaluating and improving archi-
tectural aspects of applications, there is a large variety of
problems and corresponding solutions to consider. Especially
for approaches that cover a similar domain as ours, there is
a significant potential for synergies in terms of integrating
knowledge from these approaches in our quality model. A
closely related domain is that of microservices for which
approaches have been presented that evaluate the architec-
ture of a microservices based system. The work included in
our comparison by Soldani et al. [10] belongs to this category,
but also works focusing on security aspects of microservices
[28, 34, 47]. Furthermore, in the context of microservices, the
analysis of anti-patterns [48, 49] or patterns [41, 42] together
with an application to microservices architectures has been
investigated. Another closely related domain is that of cloud
deployments for which the work included in the comparison

@ Springer

by Achilleos et al. [46] represents an example. Additional
related work again applies a focus on patterns used in the
context of cloud deployments [40, 50, 51] and how these
can be used to detect problems or compare different deploy-
ment options. As mentioned, many of these related works
provide aspects that are integrable in our approach. But they
differ regarding their specific domain, formulation of qual-
ity attributes, architectural representations, and degrees of
freedom. To summarize, our work thus represents a novel
approach which can be differentiated from other existing
work specifically based on:

e the considered domain: Because we cover both, how
components of cloud applications interact and how they
are deployed

e the consideration of multiple quality aspects in a hier-
archy: Because we aim at the capability to also express
trade-offs between quality aspects

e the abstraction from specific technology: Because we
take into account the technological heterogeneity of
cloud applications and therefore abstract from it

7 Conclusion

With cloud-native being a recent and noteworthy topic, being
able to assess how applications can benefit from cloud-native
concepts and technologies is an advantageous capability for
software developers and architects. Due to its breadth of

Cluster Computing

scope and the technological heterogeneity, however, this rep-
resents a challenge. With the quality model for software
architectures of cloud-native applications presented in this
work, we provide an approach for tackling this challenge.
From a theoretical perspective, the quality model aims to
provide a structured understanding about how cloud-native
characteristics impact different quality aspects. This is in line
with the possibility of using the quality model for a qualita-
tive evaluation of software architectures. For a quantitative
evaluation and therefore a more practical perspective, how-
ever, a further enhancement of the quality model is needed
for which we have built the foundation and plan to continue in
future work. Furthermore, our work represents a methodolog-
ical contribution on how quality models can be formulated
and validated. Through the structured and comprehensive
description of the approach for formulating and validating
the quality model, we aim to make approaches for developing
quality models more comparable and therefore comprehen-
sible.

Author contributions All authors contributed to the study conception
and design. Material preparation, data collection and analysis were per-
formed by Robin Lichtenthéler and Guido Wirtz. The first draft of the
manuscript was written by Robin Lichtenthiler and all authors com-
mented on previous versions of the manuscript. All authors read and
approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL. The authors declare that no funds, grants, or other support were
received during the preparation of this manuscript.

Data availability The qualitiy model, as well as more details on the
formulation and validation processes, such as literature references and
the raw result data from the survey can be found here: https://rOlight.
github.io/cna-quality-model/.

Declarations

Competing interests The authors have no relevant financial or non-
financial interests to disclose.

Ethical approval Not applicable.
Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

10.

11.

12.

13.

14.

15.

16.

. Lichtenthiler, R., Fritzsch, J., Wirtz, G.: Cloud-native architec-

tural characteristics and their impacts on software quality: a
validation survey. In: 2023 IEEE International Conference on
Service-Oriented System Engineering (SOSE). IEEE Computer
Society, Los Alamitos, CA, USA (2023). https://doi.org/10.1109/
SOSES58276.2023.00008

. Cerny, T., et al.: On code analysis opportunities and challenges for

enterprise systems and microservices. IEEE Access 8, 159449—
159470 (2020). https://doi.org/10.1109/access.2020.3019985

. Fowler, M.: Patterns of Enterprise Application Architecture, 1st

edn. Pearson International, Toronto (2002)

. Gannon, D., Barga, R., Sundaresan, N.: Cloud-native applications.

IEEE Cloud Comput. 4, 16-21 (2017). https://doi.org/10.1109/
mcc.2017.4250939

. Kratzke, N., Quint, P.-C.: Understanding cloud-native applications

after 10 years of cloud computing—a systematic mapping study. J.
Syst. Softw. 126, 1-16 (2017). https://doi.org/10.1016/j.jss.2017.
01.001

. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to Cloud-

Native Architectures Using Microservices: An Experience Report,
pp- 201-215. Springer, New York (2016). https://doi.org/10.1007/
978-3-319-33313-7_15

. Torkura, K. A., Sukmana, M. 1., Meinel, C.: Integrating con-

tinuous security assessments in microservices and cloud native
applications. In: Proceedings of thel0Oth International Conference
on Utility and Cloud Computing. ACM (2017). https://doi.org/10.
1145/3147213.3147229

. Lichtenthiler, R., Wirtz, G.: Towards a quality model for cloud-

native applications. In: Service-Oriented and Cloud Computing,
pp. 109-117. Springer, New York (2022). https://doi.org/10.1007/
978-3-031-04718-3_7

. Apel, S., Hertrampf, F., Spithe, S.: Towards a metrics-based soft-

ware quality rating for a microservice architecture. In: 19th I4CS,
pp. 205-220. Springer, New York (2019). https://doi.org/10.1007/
978-3-030-22482-0_15

Soldani, J., Muntoni, G., Neri, D., Brogi, A.: The uTOSCA
toolchain: mining, analyzing, and refactoring microservice-based
architectures. Software (2021). https://doi.org/10.1002/spe.2974
Camilli, M., Guerriero, A., Janes, A., Russo, B., Russo, S.:
Microservices integrated performance and reliability testing. In:
Proceedings of the 3rd ACM/IEEE International Conference on
Automation of Software Test, AST ’22, 29-39. Association for
Computing Machinery, New York, NY, USA (2022). https://doi.
org/10.1145/3524481.3527233

Wagner, S. et al.: The quamoco quality meta-model. Tech. Rep.
TUM-I128, TU Miinchen, Institut fiir Informatik (2012). https://
mediatum.ub.tum.de/attfile/1110600/hd2/incoming/2012-Jul/
517198.pdf

Ferenc, R., Hegedds, P., Gyimoéthy, T.: Software product quality
models. In: Evolving Software Systems, pp. 65-100. Springer,
Berlin (2013). https://doi.org/10.1007/978-3-642-45398-4_3
McCall, J.A., Richards, P.K., Walters, G.E.: Factors in software
quality, vol. I. Concepts and definitions of software quality. Techre-
port ADA049014, General Electric Co (1977). https://apps.dtic.
mil/sti/pdfs/ ADA049014.pdf

Boehm, B.W., Brown, J.R., Lipow, M.: Quantitative evaluation of
software quality. In: Proceedings of the 2nd International Con-
ference on Software Engineering, ICSE ’76, pp. 592-605. IEEE
Computer Society Press, Washington, DC, USA (1976). https:/
doi.org/10.5555/800253.807736

ISO/IEC: ISO/IEC 25000 Systems and software engineering—
Systems and software Quality Requirements and Evaluation
(SQuaRE) (2014). https://www.iso.org/standard/64764.html

@ Springer

https://r0light.github.io/cna-quality-model/
https://r0light.github.io/cna-quality-model/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SOSE58276.2023.00008
https://doi.org/10.1109/SOSE58276.2023.00008
https://doi.org/10.1109/access.2020.3019985
https://doi.org/10.1109/mcc.2017.4250939
https://doi.org/10.1109/mcc.2017.4250939
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1145/3147213.3147229
https://doi.org/10.1145/3147213.3147229
https://doi.org/10.1007/978-3-031-04718-3_7
https://doi.org/10.1007/978-3-031-04718-3_7
https://doi.org/10.1007/978-3-030-22482-0_15
https://doi.org/10.1007/978-3-030-22482-0_15
https://doi.org/10.1002/spe.2974
https://doi.org/10.1145/3524481.3527233
https://doi.org/10.1145/3524481.3527233
https://mediatum.ub.tum.de/attfile/1110600/hd2/incoming/2012-Jul/517198.pdf
https://mediatum.ub.tum.de/attfile/1110600/hd2/incoming/2012-Jul/517198.pdf
https://mediatum.ub.tum.de/attfile/1110600/hd2/incoming/2012-Jul/517198.pdf
https://doi.org/10.1007/978-3-642-45398-4_3
https://apps.dtic.mil/sti/pdfs/ADA049014.pdf
https://apps.dtic.mil/sti/pdfs/ADA049014.pdf
https://doi.org/10.5555/800253.807736
https://doi.org/10.5555/800253.807736
https://www.iso.org/standard/64764.html

Cluster Computing

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.
31.

32.

33.

34.

35.

Nistala, P., Nori, K.V., Reddy, R.: Software quality models: a
systematic mapping study. In: 2019 IEEE/ACM International Con-
ference on Software and System Processes (ICSSP). IEEE (2019).
https://doi.org/10.1109/icssp.2019.00025

Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., Girard, J.-F.:
An activity-based quality model for maintainability. In: 2007 IEEE
International Conference on Software Maintenance, pp. 184—193.
IEEE (2007). https://doi.org/10.1109/icsm.2007.4362631

Yan, M., Xia, X., Zhang, X., Xu, L., Yang, D.: A systematic map-
ping study of quality assessment models for software products. In:
International Conference on Software Analysis, Testing and Evo-
lution (SATE). IEEE (2017). https://doi.org/10.1109/sate.2017.16
Galli, T., Chiclana, F,, Siewe, F.: Software product quality models,
developments, trends, and evaluation. SN Comput. Sci. (2020).
https://doi.org/10.1007/s42979-020-00140-z

Oriol, M., Marco, J., Franch, X.: Quality models for web services:
a systematic mapping. Inf. Softw. Technol. 56, 1167-1182 (2014).
https://doi.org/10.1016/j.infsof.2014.03.012

Letouzey, J.-L., Coq, T.: The SQALE analysis model: an analysis
model compliant with the representation condition for assessing
the quality of software source code. In: 2010 Second International
Conference on Advances in System Testing and Validation Lifecy-
cle. IEEE (2010). https://doi.org/10.1109/valid.2010.31
AL-Badareen, A.B., Desharnais, J.-M., Abran, A.: A suite of rules
for developing and evaluating software quality models. In: Soft-
ware Measurement, pp. 1-13. Springer, New York (2015). https://
doi.org/10.1007/978-3-319-24285-9_1

Moody, D.L.: Theoretical and practical issues in evaluating the
quality of conceptual models: current state and future directions.
Data Knowl. Eng. 55, 243-276 (2005). https://doi.org/10.1016/j.
datak.2004.12.005

Lichtenthiler, R., Wirtz, G.: A review of approaches for quality
model validations in the context of cloud-native applications. In:
14th Central European Workshop on Services and their Composi-
tion (ZEUS), pp. 30-41. CEUR-WS (2022). https://ceur-ws.org/
Vol-3113/paper6.pdf

Diirr, K., Lichtenthiler, R.: An evaluation of modeling options
for cloud-native application architectures to enable quality inves-
tigations. In: 2022 IEEE/ACM 15th International Conference on
Utility and Cloud Computing (UCC). IEEE (2022). https://doi.org/
10.1109/ucc56403.2022.00053

McDonald, J.H.: Handbook of Biological Statistics, 3rd edn.
Sparky House Publishing, Baltimore (2014)

Zdun, U., et al.: Microservice security metrics for secure com-
munication, identity management, and observability. ACM Trans.
Softw. Eng. Methodol. (2023). https://doi.org/10.1145/3532183
Reznik, P., Dobson, J., Gienow, M.: Cloud Native Transformation.
O’Reilly, Newton (2019)

Davis, C.: Cloud Native Patterns. Manning, Shelter Island (2019)
Scholl, B., Swanson, T., Jausovec, P.: Cloud Native. O’Reilly, New-
ton (2019)

Richardson, C.: Microservices Patterns, 1st edn. Manning, Shelter
Island (2019)

Indrasiri, K., Suhothayan, S.: Design Patterns for Cloud Native
Applications. O’Reilly, Newton (2021)

Ntentos, E., Zdun, U., Falazi, G., Breitenbucher, U., Leymann, F.:
Assessing architecture conformance to security-related practices
in infrastructure as code based deployments. In: 2022 IEEE Inter-
national Conference on Services Computing (SCC). IEEE (2022).
https://doi.org/10.1109/scc55611.2022.00029

Bogner, J., Wagner, S., Zimmermann, A.: Automatically measur-
ing the maintainability of service-and microservice-based systems:
a literature review. In: Proceedings of the 27th International Work-
shop on Software Measurement and 12th International Conference
on Software Process and Product Measurement, pp. 107-115. ACM
(2017). https://doi.org/10.1145/3143434.3143443

@ Springer

36.

37.
38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Ntentos, E., Zdun, U., Plakidas, K., Meixner, S., Geiger, S.:
Assessing architecture conformance to coupling-related patterns
and practices in microservices. In: ECSA, pp. 3-20. Springer, New
York (2020). https://doi.org/10.1007/978-3-030-58923-3_1
Ibryam, B., HuB3, R.: Kubernetes Patterns. O’Reilly, Newton (2020)
Zdun, U., Navarro, E., Leymann, F.: in Ensuring and assessing
architecture conformance to microservice decomposition patterns.
In: ICSOC, pp. 411-429. Springer, New York (2017). https://doi.
org/10.1007/978-3-319-69035-3_29

Ntentos, E., Zdun, U., Plakidas, K., Meixner, S., Geiger, S.: Metrics
for assessing architecture conformance to microservice architec-
ture patterns and practices. In: ICSOC, pp. 580-596. Springer, New
York (2020). https://doi.org/10.1007/978-3-030-65310-1_42
Yussupov, V. et al.: Serverless or serverful? a pattern-based
approach for exploring hosting alternatives. In: Service-Oriented
Computing, pp. 45-67. Springer, New York (2022). https://doi.org/
10.1007/978-3-031-18304-1_3

Daniel, J., Guerra, E., Rosa, T., Goldman, A.: Towards the detec-
tion of microservice patterns based on metrics. In: 2023 49th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 132-139 (2023). https://doi.org/10.
1109/SEAA60479.2023.00029

Vale, G. et al.: Designing microservice systems using patterns:
an empirical study on quality trade-offs. In: 2022 IEEE 19th
International Conference on Software Architecture (ICSA). IEEE
Computer Society (2022). https://doi.org/10.1109/ICSA-C54293.
2022.00020. arxiv: 2201.03598

OASIS: TOSCA Simple Profile in YAML Version 1.3 (2020).
https://docs.oasis-open.org/tosca/ TOSCA-Simple-Profile-
YAML/v1.3/. OASIS Standard

Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.:
Software architecture optimization methods: a systematic literature
review. IEEE Trans. Softw. Eng. 39, 658-683 (2013). https://doi.
org/10.1109/tse.2012.64

Mayr, A., Plosch, R., Klas, M., Lampasona, C., Saft, M.: A
comprehensive code-based quality model for embedded systems:
systematic development and validation by industrial projects. In:
23rd International Symposium on Software Reliability Engineer-
ing. IEEE (2012). https://doi.org/10.1109/issre.2012.4

Achilleos, A.P., et al.: The cloud application modelling and execu-
tion language. J. Cloud Comput. (2019). https://doi.org/10.1186/
s13677-019-0138-7

Bambhore Tukaram, A. et al.: Towards a security benchmark for the
architectural design of microservice applications. In: Proceedings
of the 17th International Conference on Availability, Reliability
and Security, ARES 2022. ACM (2022). https://doi.org/10.1145/
3538969.3543807

Ponce, F., Soldani, J., Astudillo, H., Brogi, A.: Smells and refac-
torings for microservices security: a multivocal literature review.
J. Syst. Softw. 192, 111393 (2022). https://doi.org/10.1016/j jss.
2022.111393

Taibi, D., Lenarduzzi, V., Pahl, C.: Microservices anti-patterns: a
taxonomy. In: Microservices, pp. 111-128. Springer, New York
(2019). https://doi.org/10.1007/978-3-030-31646-4_5

Saatkamp, K., Breitenbiicher, U., Kopp, O., Leymann, F.: An
approach to automatically detect problems in restructured deploy-
ment models based on formalizing architecture and design patterns.
SICS Soft.-Intensive Cyber-Phys. Syst. (2019). https://doi.org/10.
1007/s00450-019-00397-7

Sousa, T., Ferreira, H.S., Correia, FF.: A survey on the adoption of
patterns for engineering software for the cloud. IEEE Trans. Softw.
Eng. (2021). https://doi.org/10.1109/tse.2021.3052177

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/icssp.2019.00025
https://doi.org/10.1109/icsm.2007.4362631
https://doi.org/10.1109/sate.2017.16
https://doi.org/10.1007/s42979-020-00140-z
https://doi.org/10.1016/j.infsof.2014.03.012
https://doi.org/10.1109/valid.2010.31
https://doi.org/10.1007/978-3-319-24285-9_1
https://doi.org/10.1007/978-3-319-24285-9_1
https://doi.org/10.1016/j.datak.2004.12.005
https://doi.org/10.1016/j.datak.2004.12.005
https://ceur-ws.org/Vol-3113/paper6.pdf
https://ceur-ws.org/Vol-3113/paper6.pdf
https://doi.org/10.1109/ucc56403.2022.00053
https://doi.org/10.1109/ucc56403.2022.00053
https://doi.org/10.1145/3532183
https://doi.org/10.1109/scc55611.2022.00029
https://doi.org/10.1145/3143434.3143443
https://doi.org/10.1007/978-3-030-58923-3_1
https://doi.org/10.1007/978-3-319-69035-3_29
https://doi.org/10.1007/978-3-319-69035-3_29
https://doi.org/10.1007/978-3-030-65310-1_42
https://doi.org/10.1007/978-3-031-18304-1_3
https://doi.org/10.1007/978-3-031-18304-1_3
https://doi.org/10.1109/SEAA60479.2023.00029
https://doi.org/10.1109/SEAA60479.2023.00029
https://doi.org/10.1109/ICSA-C54293.2022.00020
https://doi.org/10.1109/ICSA-C54293.2022.00020
http://arxiv.org/abs/2201.03598
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/
https://doi.org/10.1109/tse.2012.64
https://doi.org/10.1109/tse.2012.64
https://doi.org/10.1109/issre.2012.4
https://doi.org/10.1186/s13677-019-0138-7
https://doi.org/10.1186/s13677-019-0138-7
https://doi.org/10.1145/3538969.3543807
https://doi.org/10.1145/3538969.3543807
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1007/s00450-019-00397-7
https://doi.org/10.1007/s00450-019-00397-7
https://doi.org/10.1109/tse.2021.3052177

Cluster Computing

Robin Lichtenthdler M.Sc., is
a Ph.D. student at the Distributed
Systems Group of the University
of Bamberg. In his research, he
focuses on software architectures
of cloud-native applications and
their defining characteristics. He
is currently working on a qual-
ity model for cloudnative soft-
ware architectures based on which
applications can be evaluated.

#

Guido Wirtz is a full profes-
sor of computer science, heads
the Distributed Systems Group of
the University of Bamberg, and is
Vice President of Technology and
Innovation of the University of
Bamberg. He received his Ph.D.
from the University of Bonn and
his habilitation from the Univer-
sity of Siegen. His main research
areas are in the field of software
development for complex, esp. dis-
tributed, systems on all levels. This
includes design methods, visual
languages and tools for distributed

systems development as well as middleware, SOA and cloud com-
puting. Current interests are on the seamless transition from business
processes to their implementation in a SOA and cloud context as well
as in new models for cloud computing like, e.g., serverless.

@ Springer

	Formulating a quality model for cloud-native software architectures: conceptual and methodological considerations
	Abstract
	1 Introduction
	2 Foundations
	2.1 Hierarchical quality models
	2.2 Quality model formulation
	2.3 Quality model validation

	3 Methodology
	3.1 Validation survey (Step C)
	3.2 Repeated literature search (Repeat Step B)

	4 The cloud-native quality model
	4.1 Elements of the quality model
	4.2 Exemplary product factors
	4.3 Support through measures

	5 Discussion
	6 Related work
	7 Conclusion
	References

