
RESTBERTa: a Transformer-based question answering approach
for semantic search in Web API documentation

Sebastian Kotstein1 • Christian Decker1

Received: 15 September 2023 / Revised: 12 November 2023 / Accepted: 11 December 2023
� The Author(s) 2024

Abstract
To enable machines to process state-of-practice Web API documentation, we propose a Transformer model for the generic

task of identifying a Web API element within a syntax structure that matches a natural language query. We solve this

semantic-search task with Transformer-based question answering and demonstrate the applicability of our approach to two

different tasks, namely the discovery of endpoints and the identification of parameters in payload schemas. With samples

from 2321 OpenAPI documentation, we prepare different datasets and fine-tune pre-trained BERT models to these two

tasks. We evaluate the generalizability and the robustness of our fine-tuned models. We achieve accuracies of 81.95% for

the parameter-matching and 88.44% for the endpoint-discovery task.

Keywords Web API documentation � Semantic search � Endpoint discovery � Parameter matching � Question answering �
BERT

1 Introduction

Protocols and formats like the Hypertext Transfer Protocol

(HTTP), Uniform Resource Identifier (URI), and Java-

Script Object Notation (JSON) are the technical foundation

for realizing modern Web Application Programming

Interfaces (APIs) [1]. With these protocols and formats,

Web API developers can rely on standardized concepts

with well-defined semantics, like HTTP verbs and status

codes, but also extend their Web APIs with individual

URIs, data schemas, and parameters [2]. This maximizes

flexibility when designing Web APIs and allows develop-

ers to abstract nearly every application through suit-

able interfaces. However, it also complicates the

integration of Web APIs from a client perspective. Inte-

grators, regardless of whether they are human or machine

agents, are confronted with different Web API designs with

individual syntax and semantics [3]. For a successful

integration, they must understand these application-specific

syntax and semantics [4].

Web API documentation are a common way to describe

interface characteristics, especially to share syntax and

semantic descriptions with integrators. The syntax can be

described in structured specifications and schemas, which

are, to some extent, understandable for both humans and

machines. However, it remains a challenge to express

semantics in a structured way so that machines can reason

from descriptions.

At the beginning of the 21st century, automated service

composition was a promising field of research [5], and

researchers proposed numerous rich description formats

and language models to describe the semantics of Web

APIs, mainly WSDL/SOAP-based Web services, in a

structured and machine-understandable way. However,

these proposed formats and models, like OWL-S [6],

WSMO [7], and SA-WSDL [8], were not widely accepted

in practice, because of their complexity and the required

expert knowledge for their creation [9, 10].

Instead, more recent formats like OpenAPI, WADL,

RAML, and API Blueprint became state-of-practice for

documenting Web APIs [11] as they are easy to create and

distribute in the form of online and offline documents.

They are human- and machine-readable since they rely on

& Sebastian Kotstein

sebastian.kotstein@reutlingen-university.de

Christian Decker

christian.decker@reutlingen-university.de

1 Herman Hollerith Zentrum, Reutlingen University, Danziger

Straße 6, Böblingen 71034, Baden-Württemberg, Germany

123

Cluster Computing
https://doi.org/10.1007/s10586-023-04237-x(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-023-04237-x&domain=pdf
https://doi.org/10.1007/s10586-023-04237-x

structured formats such as JSON, YAML, and XML.

However, only the syntax of a Web API and its elements is

expressed through standardized key-value pairs in a

structured and machine-understandable way. To explain

the meaning and purpose, i.e., the semantics, of Web API

elements, descriptions are embedded as natural language

(NL) text snippets into the documentation but target human

readers and not machines.

The shift from those rich description formats of the

automated service composition domain toward these more

lightweight formats suggests that providers have cut their

efforts to make Web APIs machine-consumable, or at least

to make their semantics machine-understandable. Instead

of creating complex descriptions for machines, they offer

more user-friendly formats with descriptions in NL, which

are easy to create and address human readers.

The latest success in the field of natural language pro-

cessing (NLP), however, leads us to believe that, by using

NLP techniques, machines shall be able to understand

current state-of-practice Web API documentation, even

though they consist of structured syntax and unstructured

NL descriptions for semantics. The ubiquitous Transformer

architecture has proven to be effective and reliable on a

variety of NLP tasks, e.g., text classification [12] and

summarization [13], but is also applicable to other lan-

guage domains, like programming languages [14]. In our

previous work [15], we demonstrated that a Transformer

model can support machines in reading and processing

state-of-practice Web API documentation, consisting of

structured syntax and unstructured NL descriptions for

semantics. For our first prototype, we focused on a par-

ticular Web API integration task requiring the processing

of Web API documentation, namely the matchmaking of

output and input parameters [9, 10]. We defined this task as

follows: Given an NL description of an output parameter

and a documented syntax schema containing multiple,

hierarchically organized input parameters, the model

should choose the input parameter from the schema that

matches the NL description best.

Technically, we fine-tuned a pre-trained CodeBERT

[14] encoder model to the downstream task of question

answering. Question answering, in a broader sense, is the

task of finding an answer to a given question in a given

paragraph. We formulated the original question-answering

problem as a multiple-choice task to align it with the

parameter-matching task: Given a semantic NL description

of an output parameter, which is the question, and the

syntax of the input schema, which is the paragraph, the

model should choose the input parameter, i.e., the answer,

in the schema that matches the description best.

During research and implementation, we noticed that

this Transformer-based question-answering approach is not

limited to parameter matching. It might also apply to other

integration tasks requiring the processing, more precisely,

the identification and extraction of syntax Web API ele-

ments from Web API documentation. For example, anal-

ogous to parameter matching, we can also model the

integration task of endpoint discovery as a question-an-

swering downstream task: Given an NL query describing

the expected behavior of a target endpoint, the model

should choose an endpoint from a list of endpoints that

matches the NL query best.

This article is an extension of our previous work titled

‘‘Semantic Parameter Matching in Web APIs with Trans-

former-based Question Answering’’ [15]. In this article, we

extend the approach not only to the integration task of

endpoint discovery but also reconceptualize the entire

approach by describing and investigating it from a more

generic, i.e., task-independent, perspective. With this work,

we want to establish an approach that serves as a frame-

work for any Web API integration task relying on semantic

search in Web API documentation, which is, to our

understanding, the identification and extraction of a syntax

Web API element matching a given NL query.

This article covers the concepts of fine-tuning a pre-

trained BERT model to a specific Web API integration

task, evaluating the performance of the fine-tuned model,

and utilizing it as a search engine afterward. This includes

the processing steps for the preparation of task-specific

samples used for fine-tuning and evaluation, the conver-

sion, i.e., tokenization, of samples into a BERT-compatible

input format, and the interpretation of the model’s output to

obtain a chosen Web API element. Note that we developed

these steps originally for the parameter-matching task and

presented them in our previous work. Nonetheless, the

steps for tokenization and output interpretation were

mostly generic, and we could adopt them without signifi-

cant modifications. The data preparation process, however,

is individual for each integration task. In the course of this

article, we have extended this process to prepare task-

specific samples not only for parameter matching but also

for endpoint discovery. Additionally, we have collected

several metrics providing deeper insights into created

samples of both tasks, which we will discuss later.

As such a framework consists not only of these reusable

concepts and processing steps but also encompasses

guidelines on preparing an optimal model for a specific

task, we set particular focus on different fine-tuning

strategies in this article. In detail, instead of fine-tuning

only a CodeBERT base model to the parameter-matching

task, as we did in our previous work, we test six fine-tuning

strategies with combinations of two base models, namely

CodeBERT [14] and RoBERTa [16], and different datasets

for fine-tuning with samples from either one or both tasks.

As a result, we create large models covering both the

parameter-matching and the endpoint-discovery task and

Cluster Computing

123

separate models for each task. To determine an optimal

strategy, we evaluate them in terms of generalizability and

compare their performance.

Moreover, we test the robustness of the best-performing

models of each task and identify issues in NL queries and

syntax that can lead to incorrect predictions. These findings

should guide developers when using the models as a search

engine and show how to prompt a fine-tuned model to

obtain accurate results.

In summary, the contribution of this work is a novel

approach for the semantic search in Web API documen-

tation implemented on top of BERT. For this:

• We model semantic search as a question-answering

downstream task.

• We present the steps to prepare a BERT model for a

specific Web API integration task relying on semantic

search. This includes preparing task-specific samples

for fine-tuning and evaluation, which we extract from

OpenAPI documentation of real-world Web APIs.

• We examine different fine-tuning strategies and demon-

strate the applicability of our approach to two integra-

tion tasks, namely parameter matching and endpoint

discovery.

• To identify limitations of our approach, we evaluate the

best-performing fine-tuned models in terms of

robustness.

We call our approach RESTBERTa, which stands for

Representational State Transfer on Bidirectional Encoder

Representations from Transformers approach. However,

other than the name suggests, the approach is not limited to

the semantic search in documentation of RESTful APIs.

Instead, RESTBERTa can be applied to any Web API that

exposes its functionality over URIs and HTTP and uses

documents of hierarchically organized parameters for

exchanging data, e.g., JSON or XML. To the best of our

knowledge, RESTBERTa is the first approach that lever-

ages Transformer-based question answering for the

semantic search in Web API documentation.

We make the detailed evaluation results and the datasets

that are required for fine-tuning and evaluation available on

Zenodo.1 Additionally, we publish the code used for fine-

tuning and evaluation on GitHub.2

2 Background and related work

This section discusses the concepts of the original Trans-

former architecture, the BERT architecture, and the ques-

tion-answering downstream task. We also describe the

characteristics of the two models RoBERTa and Code-

BERT, which we use as base models for fine-tuning.

Afterward, we review related work that proposes approa-

ches for the two tasks that we cover with our approach.

2.1 Transformers

In 2017, Vaswani et al. introduced the Transformer

architecture [17], which set a new state of the art in the

field of NLP. Similar to the former Sequence-to-Sequence

(Seq2Seq) architecture for NLP tasks, like language

translation and text summarization [18], the original

Transformer architecture consists of an encoder, trans-

forming an input text into a context vector, and a decoder,

converting the context vector into an output text. While

Seq2Seq models rely on recurrent neural networks (RNN),

Transformers solely use stacks of point-wise, fully con-

nected layers with a self-attention mechanism. This allows

massively parallel processing and makes the utilization of

Transformers fast and efficient on modern hardware with

parallel computing capabilities, like GPUs. Transformers

outperformed former models in various NLP tasks, e.g.,

text classification [12], text summarization [13], and lan-

guage translation [17].

2.1.1 BERT

Although Transformers are faster than former NLP models,

it is still computationally expensive to train a Transformer

to a specific NL task from scratch [19]. Fortunately, Devlin

et al. [20] introduced a new language model architecture

pre-trained with unlabeled text and afterward fine-tuned

with relatively little effort to a specific downstream task.

They named this architecture BERT, which stands for

Bidirectional Encoder Representations from Transformers.

Compared to the original Transformer architecture [17],

BERT only consists of an encoder, which takes the

numerical representation of a text as input and calculates a

context vector. This context, i.e., output, vector must be

interpreted with respect to the individual pre-training or

downstream task.

The original BERT model combines two self-supervised

tasks in the pre-training procedure, namely Masked Lan-

guage Modeling (MLM) and Next Sentence Prediction

(NSP). By taking a pair of two sentences, i.e., sequences of

tokens, as input, BERT has to predict whether the second

sentence logically follows the first sentence, which is the

NSP task, and, at the same time for the MLM task, tokens

that have been removed from both sentences. In 50% of the

training samples, the second sentence actually follows the

first sentence. In the other 50%, the second sentence is

chosen randomly. Additionally, 15% of all tokens have

been randomly replaced with a special [MASK] or a

1 https://doi.org/10.5281/zenodo.8349083.
2 https://github.com/SebastianKotstein/RESTBERTa.

Cluster Computing

123

random token in both sentences. For the later explanation,

it is essential to know that both sentences are separated by a

special separation token [SEP]. Moreover, the whole

sequence starts with the classification token [CLS] and

ends with the end of sequence token [EOS].

For fine-tuning BERT, a copy of the pre-trained base

model is taken, which means the model is initialized with

the pre-trained parameters. Additionally, the model is

extended with a task-specific output layer. Then, both the

parameters of the base model and the task-specific output

layer are fine-tuned to a specific downstream task. In the

following section, we will explain the question-answering

downstream task, which is the foundation for our approach.

2.1.2 Question answering

Question answering (QA) is a downstream task in which a

BERT model has to predict a span of text within a given

paragraph containing the answer to a given question [20].

Therefore, this form of QA is also called extractive ques-

tion answering since the model has to extract the answer

from the paragraph [21] rather than generating an indi-

vidual answer.

Similar to the two pre-training tasks, MLM and NSP, the

model’s input is the numerical representation of two

sequences of tokens. The first sequence should contain the

numerical representation of the tokens of the question. The

second sequence is designated to the numerical represen-

tation of the tokens belonging to the paragraph. Techni-

cally, a tokenizer splits the original question and paragraph

into their tokens and infixes the special [SEP] between

both resulting sequences to separate their content. Addi-

tionally, the tokenizer adds the [CLS] as the first token to

the whole sequence to indicate its start and appends the

[EOS] token to the sequence. Then, a numerical repre-

sentation is calculated for each token. For this calculation,

BERT uses a combination of token, segment, and position

embedding.

The model processes the input and predicts two vectors

defining the span of the answer. The first vector gives the

probability for each token that the respective token is the

start of the answer. Accordingly, the second vector deter-

mines the probability for each token that the respective

token is the end of the answer.

It is important to emphasize (1) that the size of the

Transformer model, i.e., the number of inputs, which are

512 tokens in the case of BERT, limits the length of the

input sequence. Moreover, (2) the answer must be within a

contiguous span of text, meaning it cannot be distributed

over multiple spans in the paragraph [22]. In Sect. 3.2 and

Sect. 4.6, we will address these limitations and present

workarounds as these constraints challenge the application

of Transformer-based QA on both semantic-search tasks.

2.1.3 RoBERTa and CodeBERT

Since the introduction of BERT in 2018, several works

have either proposed improved versions of the original

BERT approach [16, 23] or used its architecture or one of

its derivatives to train models for special language domains

and NLP applications [24, 25].

Liu et al. [16], for instance, optimized with RoBERTa

the original training approach of BERT. The authors

identified several improvements by conducting training

experiments with different hyperparameter settings and

pre-training tasks. They proposed, amongst others, the

following modifications to the original BERT pre-training

strategy:

First, while Devlin et al. stated that NSP is very bene-

ficial, especially for the QA downstream task [20], Liu

et al. pre-trained RoBERTa with MLM but omitted NSP as

they found that the latter task does not improve but even

compromises the performance of downstream tasks.

Second, they used a larger byte-level Byte Pair Encod-

ing (BPE) vocabulary, introduced by Radford et al. [26],

and a corresponding BPE tokenizer. It consists of 50K sub-

words instead of the 30K character-level BPE vocabulary

of BERT. Using bytes instead of characters as the base for

sub-word units has the benefit that any input text can be

encoded, and ‘‘unknown’’ tokens can be avoided, even with

a modest vocabulary size of 50K.

Third, RoBERTa was pre-trained with 160 GB of

uncompressed text crawled from books, news, Wikipedia

articles, etc., which was roughly ten times more data

compared with BERT.

CodeBERT [14] is a model optimized for source-code-

related NLP tasks. Relying on the optimizations of

RoBERTa, Feng et al. pre-trained CodeBERT with bimo-

dal samples consisting of NL and programming language

(PL), i.e., code in Python, Java, JavaScript, PHP, Ruby, and

Go, as well as unimodal samples containing only pure NL

or pure PL. The objective of CodeBERT was to capture the

semantic connection between both language domains and

to offer a model that can be used for different PL- and NL-

related tasks, such as code search and the generation of

code documentation. As proposed by Liu et al. [16], the

authors pre-trained CodeBERT using MLM but also

Replaced Token Detection (RTD).

For pre-training, they used 2.1M bimodal samples,

where each sample is an individual code function paired

with documentation in NL, plus 6.4M unimodal code

samples. The pre-training dataset had a size of approxi-

mately 20 GB.3

3 According to the official repository of the dataset: https://github.-

com/github/CodeSearchNet.

Cluster Computing

123

As the language domains in CodeBERT are close to

those in our application, we consider CodeBERT as a base

model for our approach. Nevertheless, RoBERTa is also an

interesting candidate since it was pre-trained with a larger

dataset compared with CodeBERT.

2.2 Service and endpoint discovery

Although there is no unique definition of ‘‘semantic

search’’ in the field of Web APIs and automated service

composition, we observed that the term often goes hand in

hand with the tasks of service and endpoint discovery.

More specifically, semantic search, and especially service

discovery, originates from the idea of making the semantics

of WSDL/SOAP-based Web services machine-under-

standable by describing them in a structured way in rich

description formats and with ontologies. Semantic-search

engines should process ontology-based knowledge repre-

sentations, understand the described semantics, and support

integrators in identifying Web services that match a list of

input keywords or even complex queries [27, 28]. With the

shift from rich description formats and ontologies toward

more lightweight formats, like OpenAPI, RAML, WADL,

and API Blueprint, and the advent of Web APIs following

the principles of Representational State Transfer (REST), it

is, in our opinion, necessary to adjust the requirements for

semantic search: Search engines must be able to process

state-of-practice Web API documentation consisting of

structured syntax and unstructured NL descriptions for

semantics rather than ontology-based knowledge repre-

sentations to identify APIs and their endpoints.

Indeed, the research focus has expanded from solutions

addressing only service discovery in WSDL/SOAP-based

Web services toward approaches for API and endpoint

discovery in Web APIs over the last few years. Neverthe-

less, although Web APIs have displaced WSDL/SOAP-

based Web services in practice, as well as related

description formats and ontologies, there is still active

research in the former area [29–31]. This development

makes it difficult to capture the large body of work in this

field of research. Therefore, we focus the presentation of

related work on studies that either rely on a similar

approach, in our case, the use of deep neural networks

(DNN) with Transformers, or address the same domain and

task, i.e., endpoint discovery in Web APIs.

In [32], Yang et al. proposed the DNN architecture

ServeNet for automated Web service classification. Based

on a given service name and description in NL, ServeNet

predicts the categories of a Web service, e.g., ‘‘Weather’’,

‘‘Music’’, and ‘‘Payments’’. The architecture of ServeNet

consists of convolutional neural network (CNN) layers and

a bidirectional long short-term memory (BiLSTM) layer. It

is mostly the same as in their former work [33], except that

they use the pre-trained BERT uncased model as an

embedding input layer instead of GloVe embeddings [34].

This input layer generates a sentence embedding for the

service description and word embeddings for the service

name. They trained ServeNet with 8733 samples extracted

from ProgrammableWeb, where each sample represented a

service and consisted of its name, description, and the

primary category out of 50 available categories. For eval-

uation, they used another set of 2210 samples and the top-k

metric as we did. ServeNet achieved an accuracy of

91.58% for k ¼ 5, which means that in 91.58% of all

evaluation samples, the correct category was under the five

highest-ranked predictions, and 69.95% for k ¼ 1.

Another Transformer-based approach for Web service

classification and recommendation was proposed by Wang

et al. [35]. However, unlike ServeNet [32], they pre-trained

a BERT model using MLM, RTD, and Contrastive

Learning from scratch. As training data, they crawled

128,536 raw documents, consisting of unstructured NL

descriptions, Web API syntax, and exemplary source code,

from ProgrammableWeb. Afterward, they fine-tuned the

pre-trained base model, which they named ServiceBERT,

to the task of Web API tagging, which is comparable to the

objective of ServeNet, and a separate base model to a

mashup-oriented API recommendation task. In both tasks,

ServiceBERT outperformed former methods and approa-

ches, including ServeNet. This emphasizes the effective-

ness of pre-training a model with domain-specific data to

this special language domain in Web services and Web

APIs. ServiceBERT might be another interesting base-

model candidate for our semantic search approach, but the

model is not publicly available.

While [32] and [35] proposed solutions that should

enable the discovery of relevant candidates on the service

level, Liu et al. [36] introduced an approach for the dis-

covery of endpoints in a set of Web APIs. Their proposed

model takes an NL query, which describes the purpose of

the target endpoint, as input and predicts endpoints

matching the query. Technically, they treat endpoint dis-

covery as a multi-class classification problem. The model,

consisting of embedding input layers, BiLSTM layers, and

multiple dense layers, has a static number of outputs. Each

output represents a specific endpoint of a Web API. Con-

sequently, the approach is limited to Web APIs and their

endpoints that were known when the model was created.

Unknown, e.g., recent, Web APIs and endpoints cannot be

considered. Nevertheless, the approach yielded a remark-

able accuracy of 91.13% for k ¼ 1 and 97.42% for k ¼ 10,

with a model covering 1127 Web APIs and 9004 endpoints.

In another experiment with a larger model serving 9040

Web APIs with 49,083 endpoints, they achieved an accu-

racy of 78.85% for k ¼ 1 and 89.69% for k ¼ 10.

Cluster Computing

123

Most of the work we reviewed focuses on discovery on

Web service or Web API level [32, 35] rather than on the

endpoint level. To the best of our knowledge, the pro-

cessing of NL and syntax descriptions with Transformers

for endpoint discovery has not been addressed yet.

RESTBERTa is the first approach that processes NL and

syntax descriptions to identify matching endpoints.

2.3 Semantic parameter matching

In our previous work [15], we reviewed studies from the

field of Web service and Web API composition that solve

parameter matching by grounding parameters in Web APIs

in globally defined semantic concepts and models, e.g., in

ontologies [9, 10] and knowledge bases (KB) [37, 38].

Although these solutions reduce the manual effort for

annotating parameters with machine-understandable

semantic descriptions, it remains a challenge to manually

find and select a suitable ontology or KB covering the

entire domain of the respective Web API beforehand. It is

even more problematic if a suitable ontology or KB does

not exist and must be manually created.

However, parameter matching is not only an exclusive

topic of the Web API domain but is also addressed in the

domain of data integration, albeit with a focus on matching

database schemas and their attributes. This domain has

proposed several approaches relying on DNNs, which are

close to our solution:

The matching of two schemas and their attributes can be

described in a similarity matrix [39]. Shraga et al. pre-

sented in [39] ADnEV, an algorithm that calibrates, i.e.,

improves, the similarity parameters in a given matrix in

multiple iterations by using a self-evaluation mechanism.

For calibration and self-evaluation, ADnEV relies on a

DNN consisting of CNN layers to capture spatial patterns

in similarity matrices and RNNs to capture the improve-

ment of a matrix over multiple iterations. To train the

DNN, the authors generated similarity matrices from

schema pairs of three benchmarking datasets by using three

state-of-the-art schema matchers.

In [40], Zhang et al. proposed SMAT, a DNN model that

uses an attention over attention (AOA) mechanism to

obtain semantic mappings between attributes in source and

target schemas. To determine semantic correlations

between attributes, SMAT considers the syntax name of an

attribute, its NL description, and the NL description of the

table, i.e., schema, the attribute is contained within.

Moreover, the authors treat the matchmaking of attributes

in schemas as a binary classification problem. This means

that SMAT takes the aforementioned features of two

attributes as input and predicts whether they match. To

capture the semantics of an attribute from text consisting of

NL descriptions and a syntax name, they use a combination

of BPE, GloVe embeddings [34], and a BiLSTM network

to process input text. Zhang et al. used different schema-

matching datasets with samples of different domains and

applications, like healthcare, Web forms, and purchase

orders for training and evaluation. They evaluated SMAT

against five baseline models, including a fine-tuned BERT

[20] uncased model and ADnEV [39], and used precision,

recall, and F1 score for comparison. While SMAT out-

performed all baseline models in terms of precision and F1

score, the recall score of BERT was comparable with that

of SMAT.

In summary, the work of Zhang et al. [40] has some

parallels to our approach, like the processing of syntax to

construe semantics and the use of a DNN with an attention

mechanism. However, it also differs in several aspects:

SMAT processes syntax names and descriptions of both

attributes to determine a semantic correlation between two

attributes. RESTBERTa, however, tries to identify

semantic correlations from NL queries describing source

parameters to syntax names of target parameters but

without considering the syntax names and NL descriptions

of source and target parameters, respectively. Furthermore,

RESTBERTa processes hierarchical syntax schemas with

deep structures to construe semantics, while the schemas in

databases, and thus attribute names, are relatively flat.

Ultimately, SMAT relies on a network with BiLSTM and

AOA and uses binary classification, whereas we use a

Transformer encoder model with QA for matching

parameters. Unfortunately, the performance of both

approaches cannot be compared, since they use different

metrics and datasets for their evaluation.

3 RESTBERTa: semantic search
with question answering

In this section, we explain our understanding of the term

‘‘semantic search’’ when applied to state-of-practice Web

API documentation. Furthermore, we present the concept

of modeling semantic-search tasks as QA downstream

tasks, which is the foundation of RESTBERTa.

3.1 Semantic search in Web API documentation

Semantic search applied to Web API documentation is the

generic task of identifying a Web API element whose

syntax is described in a documentation that semantically

matches a given query describing the meaning and purpose

of the target element in NL. Without providing any further

semantic NL descriptions for the Web API elements in the

documentation, the search engine has to construe the

semantics of a Web API element from its syntax

Cluster Computing

123

description, e.g., from syntax names, and compare it with

the NL query to determine a match.

At this point, how the search engine would construe

semantics from syntax and how this comparison mecha-

nism would look remains open. However, to construe

semantics from syntax accurately, developers must use

meaningful names and identifiers in syntax, e.g., for

parameter names or path segments in URIs, which reflect

the semantics of the respective element and its relation to

other elements. Using meaningful names for software

artifacts is a fundamental principle in software engineering

[41]. This should be the case in every well-designed Web

API.

Moreover, to identify, in this sense, means that the

search engine has to extract one matching Web API ele-

ment from the documentation. We consider the documen-

tation to be a selection of elements. Depending on the

specific search task, e.g., endpoint discovery or parameter

matching, relevant elements might be endpoints or payload

parameters. Thus, it is reasonable to limit the selection to

relevant elements and present only a subset of the docu-

mentation to the search engine, e.g., a list of endpoints or a

specific payload schema.

3.2 Semantic search as a question-answering
downstream task

Our idea is to model semantic search in Web API docu-

mentation as a QA downstream task and fine-tune a pre-

trained BERT model to this task to use it as a search

engine.

Aligned with our definition of semantic search in the

previous Sect. 3.1, the objective of the fine-tuned BERT

model would be to extract the Web API element from a

selection of elements whose syntactic appearance matches

the semantics described in an NL query. For the application

of QA to this task, we formulate the original problem of

QA as a multiple-choice task: Given a selection of Web

API elements and a query in NL, which describes the

meaning and purpose of the target element, the model

should extract the element from the selection that matches

the query best. In detail, we feed the NL query and the

selection of Web API elements in the form of a syntax

structure into the BERT model and let the model extract

the Web API element from the presented syntax structure.

From a technical perspective, applying QA to semantic

search in Web documentation is not straightforward. We

have to bridge the gap between the structure of Web API

documentation, in particular how the syntax of Web API

elements is described, and the characteristics of BERT. In

the following, we discuss these characteristics requiring

special treatment and present our solution.

BERT and its derivatives are mostly optimized for the

processing of NL, which is commonly linear text. In Web

API documentation, however, hierarchically organized tree

structures for describing syntax are omnipresent. As illus-

trated in Fig. 1a, a payload schema of a JSON or XML

document can be described in a tree structure consisting of

nodes whose labels are the syntax names of the respective

properties. Inner nodes represent either objects or arrays,

and leaf nodes are parameters. Similarly, the endpoints of a

Web API typically rely on a hierarchical URI model (see

Fig. 1b), whose paths and operations can be described in a

tree structure: While inner nodes represent path segments,

leaf nodes are the operations in the form of HTTP verbs. In

both cases, a Web API element, i.e., a parameter or an

endpoint, is uniquely addressed by naming all nodes along

the path from the root of the tree to the respective leaf.

A naı̈ve approach would be to treat a tree structure,

regardless of whether it is a payload schema or a URI

model, as linear text and feed it together with the NL

query, which is naturally linear text, as a sequence of

tokens into the model. However, this would destroy not

only the inherent hierarchical structure but also, we

assume, impede the model from making correct predic-

tions. Additionally, BERT can predict the start and end

positions of an answer only if this answer is contained

within a contiguous span of text (see Sect. 2.1.2). Treating

a hierarchical structure just as linear text would fragment

the answer, i.e., the path of a respective Web API element,

and scatter it across the linear text.

Fig. 1 Hierarchical payload schema (a) and URI model (b) serialized

into lists of parameter (c) and endpoint (d) paths, respectively

Cluster Computing

123

Hence, we serialize a syntax tree structure by extracting

all Web API elements and their paths. We transform each

path, regardless of whether it addresses a parameter or an

endpoint, into an XPath-like notation (see Figs. 1c and d).

Additionally, we flag all properties that are arrays in

parameter paths with a [*] tag. Likewise, we use curly

brackets ({...}) to indicate URI parameters in endpoint

paths. The result is a linear list of paths so that every

possible answer forms a contiguous span of text, which

satisfies the contiguous span constraint. The model has to

choose an answer by naming the path of the targeting Web

API element.

As illustrated in Figs. 1c and d, we sort the list of paths

in alphabetical order. This has the effect that Web API

elements located under the same parent node are relatively

close to each other in the resulting list of paths. It should

support the model in construing hierarchical relations from

the resulting linear text.

4 Data preparation and fine-tuning
architecture

It is necessary to fine-tune a pre-trained base model to the

modified QA downstream task described in Sect. 3.2 to use

BERT as a search engine for the semantic search in Web

API documentation.

Technically, fine-tuning has two effects: First, it aligns

the base model to the characteristics of the QA downstream

task. Second, by fine-tuning the base model with task- and

domain-specific samples, we adjust its inherent language

model to the modalities of NL and Web API syntax lan-

guage and how they are semantically connected.

In Sect. 3.2, we have shown that both semantic-search

tasks, namely parameter matching and endpoint discovery,

can be theoretically addressed with the same QA approach.

Both tasks rely on the search of Web API syntax elements

following a hierarchical structure that can be serialized into

a list of XPaths. However, although they share a similar

syntax and are subject to the same language domain of

Web APIs, the semantics of a parameter differs from that

of an endpoint as both have a completely different meaning

and purpose. Therefore, instead of fine-tuning one model

for both semantic-search tasks with mixed samples, it is

reasonable to fine-tune two separate models, i.e., one for

each task, with task-specific samples. In this work, we want

to test six different fine-tuning strategies and compare the

performance of the resulting models.

Before we present the different fine-tuning strategies in

Sect. 5, we clarify how we create samples for fine-tuning,

as well as the later evaluation, and fine-tune a pre-trained

base model to the modified QA downstream task with these

samples.

Figure 2 illustrates our architecture for data preparation

and fine-tuning: It consists of a data preparation process,

which creates three datasets with task-specific or mixed

QA samples. Depending on the respective fine-tuning

strategy (see Sect. 5), we will use the QA samples of one of

these datasets to fine-tune a specific base model but also for

the later evaluation. For fine-tuning, as well as inference, a

tokenizer must convert the QA samples into a numerical

representation before they can be fed into the BERT model.

This section starts with an introduction of the main

characteristics of the OpenAPI format, whose documenta-

tion serve as data sources for QA samples for fine-tuning

and evaluation. Afterward, we present the details of the

data preparation process and provide a deeper insight into

the created task-specific datasets, especially into collected

metrics describing the samples. Finally, we present the

details of the tokenization process.

4.1 OpenAPI format

As illustrated in Listing 1, the content of an OpenAPI

documentation is a tree structure.

Fig. 2 Architecture for data preparation and for fine-tuning a pre-

trained BERT base model to the QA downstream task with either

task-specific or mixed QA samples

Cluster Computing

123

openapi : 3 . 0 . 3
paths :
/ groups /{ groupId }/ us e r s :
get :
r e sponse s :
’ 200 ’ :
summary :
Get u s e r s o f group

d e s c r i p t i o n :
Returns a l l u s e r s o f the group
having the s p e c i f i e d ID .

content :
app l i c a t i o n / j son :
schema :
type : ob j e c t
p r op e r t i e s :
count :
d e s c r i p t i o n : Number o f u s e r s
type : number

u s e r s :
type : array
items :
type : ob j e c t
p r op e r t i e s :
id :
d e s c r i p t i o n : ID o f a user
type : s t r i n g

name :
d e s c r i p t i o n :
Name o f a user
type : s t r i n g

l i n k :
$r e f : ’#/schemas/ l inkObjec t ’

The path object lists all paths the Web API exposes plus

their operations labeled with the intended HTTP verb, e.g.,

GET or POST. The OpenAPI standard specifies two fields

for describing the semantics of an operation in NL. As the

field name suggests, the summary field is intended for a

short description of the purpose of the operation. The

description field should contain a detailed explanation of

what the operation does and how it behaves. Throughout

the paper, we use the term endpoint, which is the combi-

nation of a path and a respective operation.

As the OpenAPI standard allows the specification of

individual response payloads for each possible status code,

an operation may have one request but multiple response

payloads.Moreover, it is possible to definemultiple schemas

for a specific request and response payload. Each schema

defines a different resource representation format that the

endpoint supports, e.g., JSON or XML, and is labeled with

the intended media type, e.g., application/json.

The OpenAPI schema object specification extends the

original JSON schema specification. It allows one to define

the schema of documents having a hierarchical structure,

such as JSON and XML, which are often used in request

and response payloads of Web APIs [3].

A schema consists of nested properties representing

arrays, objects, and attributes. Arrays and objects can have

other properties as children. They are commonly the inner

nodes in the resulting tree structure. Attributes, on the other

hand, are leaves in the tree structure and are types of string,

number, integer, or boolean. In the context of schemas and

parameter matching, we use the term parameter as an alias

for attribute throughout the paper. Like operations, each

property can have a description field to explain its meaning

and purpose in NL.

Schemas can be defined globally, even outside of the

document, and referenced at multiple places, which avoids

redundant schema definitions and increases their reusabil-

ity in Web API documentation. For example, they can be

reused in request or response payloads of different opera-

tions or as sub-schemas in larger schemas.

Relying on OpenAPI documentation as a data source for

our QA samples has multiple advantages: First, all docu-

ments are in the same standardized format. This simplifies

the extraction of samples and allows us to use uniform code

for processing all documentation. Second, due to the pop-

ularity of the OpenAPI format, a large amount of publicly

available documentation of real-world Web APIs exists in

this format. Third, OpenAPI documentation are a potential

source for samples for both semantic-search tasks as they

list the endpoints of Web APIs and their payload schemas

with parameters.

Nevertheless, OpenAPI documentation also bear the risk

that they contain many NL descriptions with similar or

even identical wording compared with the wording used in

syntax. The author of the NL description was either the

same person who also designed the syntax and thus tended

to use the same words for both or was at least biased when

writing the NL description after reading the syntax, or vice

versa. Consequently, multiple QA samples might have

identical wording in their NL descriptions and the Web

API element paths. This could compromise the robustness

of a fine-tuned model. Instead of capturing the underlying

meaning of both description and syntax, it might lean

toward seeking words given in the Web API element path

and the NL description. Hence, the model could fail

whenever synonyms are used. As part of our evaluation, we

analyze the robustness of our fine-tuned models in terms of

synonyms (see Sect. 6.3).

4.2 Data preparation

In an initial step, we downloaded 2358 OpenAPI docu-

mentation from APIs.guru,4 which was the entire available

4 https://apis.guru.

Cluster Computing

123

set on this platform as of October 2022. Then, we used a

tool to parse the OpenAPI documentation and convert the

parsed content into a canonical tree structure. In detail, the

tool tries to resolve all schema references, including

allOf, oneOf, and anyOf, and also attaches input and

output schemas directly to operation nodes. We excluded

32 of these 2358 initially downloaded OpenAPI docu-

mentation due to syntax issues and another five due to their

large size and schema complexity. The resulting 2321 tree

structures were stored as files on disk.

In the second step, we extracted the task-specific sam-

ples from these 2321 tree structure files. For this, we

implemented two scripts, one for each task:

The first script extracts the QA samples for the param-

eter-matching task. The script analyzes the request- and

response-payload schemas of all endpoints of all tree

structure files and extracts all parameters. For each

parameter that has an NL description, it creates a QA

sample consisting of the NL description, which is the

question, the parameter in path notation, which is the

answer, and the serialized schema, i.e., the list of param-

eters in path notation (see Fig. 1c), which is the paragraph.

The second script extracts the QA samples for the

endpoint-discovery task. It iterates over all tree structure

files and analyzes the documented endpoints. For each

endpoint that has an NL description, which means that at

least the description or the summary field is set, the script

creates a QA sample. Each QA sample consists of the NL

description, which is the question, the endpoint in path

notation, which is the answer, and the list of endpoints of

the respective Web API in path notation (see Fig. 1d),

which is the paragraph. If both summary and description

are set for an endpoint, the script compares their content

lengths and chooses the NL description having more

tokens.

Additionally, we implemented the following constraints

for a valid QA sample in both scripts: The NL description

must consist of at least three tokens. It must not exceed a

maximum length of 96 tokens. Both scripts remove all

URIs embedded in NL descriptions beforehand to avoid an

exceedance of these 96 tokens. If an NL description con-

sisting of multiple sentences still exceeds the limit of 96

tokens even after removing all URIs, the description is

truncated by removing all trailing sentences that caused the

exceedance.

These constraints should ensure that the descriptions

contain enough semantic context. However, as the input

size of BERT is limited to 512 tokens, they also should

ensure enough space for the paragraph. For the same

motivation, we limited the maximum depth of a path of a

Web API element to eight nodes (without the root node) for

both paths in the paragraph and the answer. For these and

all subsequent length calculations, i.e., to determine the

number of tokens, we used the byte-level BPE tokenizer

proposed by the base model RoBERTa [16] (see

Sect. 2.1.3).

4.3 Parameter-matching dataset

As a result, out of 2,502,078 extracted parameters, the first

script created 1,085,051 valid QA samples for the param-

eter-matching task. 1,417,027 parameters, i.e., 56.63%,

must be excluded either as their paths exceeded the max-

imum depth or their NL descriptions did not satisfy the

constraints defined in Sect. 4.2 or both. In detail, in

159,781 cases, parameter paths were too deep. 1,362,649

parameters had missing (1,311,950), too short (50,246), or

too long NL descriptions (453). The script created these

1,085,051 valid QA samples from the content of 1473

OpenAPI documentation and 54,611 request and response

schemas. The remaining 848 documentation either did not

contain at least one schema parameter that would satisfy all

constraints or did not document request or response sche-

mas with parameters.

To better understand the created QA samples, the script

additionally collected the metrics listed in Table 1: The

description, i.e., question, length in tokens ranged between

three and 96 tokens, which were the lower and upper limits

we set as constraints, with a mean value of 15.22 and a

median of 10. Both values for mean and median suggest

that rather compact than verbose descriptions were present

in the created QA samples. The schemas, i.e., paragraphs,

encompassed between one and 160,955 tokens, with a

mean value of 12,721.25 and a median of 1196. Moreover,

the number of parameters in a schema ranged between one

and 6129, with a mean of 576.07 and a median of 105

parameters. At first glance, these high mean and median

values suggest that using large schemas with hundreds of

parameters is common practice in Web APIs. However, it

is important to bear in mind that a schema consisting of n

parameters is a potential source for n QA samples and,

therefore, occurs up to n times in the dataset as a paragraph.

Among the entire set of 1,085,051 QA samples, there were

only 12,921 unique schemas.

Finally, the script evenly distributed the 1,085,051 valid

QA samples into ten data chunks and stored the chunks on

disk. We, furthermore, set the constraint that all QA sam-

ples originating from the same Web API were stored in the

same chunk. As we used the samples of eight chunks with

864,494 samples (79.67%) for fine-tuning and the

remaining two chunks with 220,557 samples (20.33%) for

evaluation, we ensured that the model was fine-tuned with

samples from specific Web APIs but confronted with

unseen Web APIs and their samples during evaluation.

This helped us to investigate model capabilities in terms of

generalization. However, it resulted in a slightly

Cluster Computing

123

unbalanced distribution since the number of samples per

Web API varied for each Web API.

4.4 Endpoint-discovery dataset

For the endpoint-discovery task, the second script created

55,659 valid QA samples. Similarly to the QA samples for

the parameter-matching task, 10,051 out of 65,710 ana-

lyzed endpoints, i.e., 15.30%, must be excluded due to too

deep paths (7021), missing (2323), too short (673), or too

long NL descriptions (90). 2012 OpenAPI documentation

served as a source for these valid QA samples. The

remaining 309 documentation either did not contain at least

one endpoint that would satisfy all constraints or did not

document endpoints.

Due to the structure of Web APIs and the hierarchical

relation between endpoints and schema parameters, the

number of QA samples for the endpoint-discovery task is

unsurprisingly magnitudes smaller than the number of QA

samples for the parameter-matching task. Nevertheless, the

share of parameters that must be excluded for the param-

eter-matching tasks is higher than that of excluded

endpoints.

While most parameters were excluded due to missing

NL descriptions, endpoints were mainly excluded because

of the depth of their paths but rarely due to a missing NL

description. These numbers suggest that authors of

OpenAPI documentation spend more effort on the semantic

description of endpoints but often neglect the description of

parameters. Apart from this, these numbers reveal only a

quantitative perspective. We cannot make any statement

concerning the quality of descriptions.

The descriptions, i.e., questions, had between three and

96 tokens, with a mean value of 28.33 and a median of 14,

which indicates that more verbose descriptions were used

in these QA samples compared with the samples of the

parameter-matching task. In contrast, the paragraphs con-

tained fewer tokens and Web API elements compared with

the samples of the other task: The paragraphs comprised

between one and 13,262 tokens, with a mean value of

2852.53 and a median of 1301. Between one and 930

endpoints were contained within a paragraph, with a mean

of 197.88 and a median of 101. We noticed 1889 unique

paragraphs, i.e., lists of endpoints, among these 55,659

valid QA samples.

Similar to the dataset for the parameter-matching task,

the script distributed the 55,659 valid QA samples into ten

data chunks. While eight chunks, containing 44,595 sam-

ples (80.12%), were dedicated to fine-tuning, we used the

remaining two chunks, with 11,064 samples (19.88%), for

evaluation.

Table 1 List of collected

metrics for the datasets of the

parameter-matching and

endpoint-discovery task

Metric Parameter matching (PM) Endpoint discovery (ED)

Total samples 1,085,051 55,659

Samples in fine-tuning set 864,494 (79.67%) 44,595 (80.12%)

Samples in 1st eval. set 110,877 (10.22%) 5536 (9.95%)

Samples in 2nd eval. set 109,680 (10.11%) 5528 (9.93%)

Length of question (in tokens)

Min 3 3

Max 96 96

Mean 15.22 28.33

Median 10 14

Std. deviation 15.69 27.73

Length of paragraph (in tokens)

Min 1 1

Max 160,955 13,262

Mean 12,721.25 2852.53

Median 1196 1301

Std. deviation 29,242.51 3431.92

Web API elements in paragraph

Min 1 1

Max 6129 930

Mean 576.07 197.88

Median 105 101

Std. deviation 1138.92 217.98

Cluster Computing

123

4.5 Mixed dataset

In preparation for fine-tuning a base model to both tasks,

we merged the 864,494 fine-tuning QA samples of the

parameter-matching task and the 44,595 fine-tuning QA

samples of the endpoint-discovery task into an additional

dataset. This mixed dataset contained 909,089 QA samples.

4.6 Tokenization

Before we can feed the QA samples into a BERT model for

fine-tuning and inference, they must be converted into a

numerical representation. For this purpose, we used the

byte-level BPE tokenizer mentioned in Sect. 2.1.3.

Due to BERT’s input length limitation, the tokenizer

must split a single QA sample into multiple tokenized

samples if the input sequence, consisting of the question

and the paragraph of the QA sample, has more than 512

tokens. The tokenizer splits only the paragraph and leaves

the question unaltered. Consequently, the question is the

same for each tokenized sample, but another fragment of

the original paragraph is presented to the model. We set a

doc stride of 128 so that the resulting fragments overlap by

128 tokens.

For instance, Fig. 3 lists five tokenized samples in their

token representation resulting from splitting a QA sample

with the question ‘‘The first name of a user’’ and the

paragraph displayed in Fig. 1c. In this example, we set a

maximum length of 16 tokens and a doc stride of two.

The tokenizer generates the numerical representation of

the input token sequence for each tokenized sample. In

detail, it outputs a vector of token identifiers used as model

input. For fine-tuning, the tokenizer calculates the start and

end index of the answer span on the token level for each

tokenized sample. It adds these two indices as labels to the

tokenized sample.

The splitting of paragraphs into multiple fragments may

result in many tokenized samples that are unanswerable as

the answer is no longer in the respective fragment. If a

tokenized sample is unanswerable, the start and end index

of the answer span is set to the [CLS] token (see Fig. 3).

Furthermore, the tokenizer may split the path of the Web

API element being the correct answer into two halves so

the resulting fragments contain only a portion of the

original path at its boundaries. By setting a doc stride of

128, we can ensure that at least one of these tokenized

samples contains this path entirely but only if the path has

fewer than 128 tokens.

Nevertheless, the splitting of QA samples into multiple

tokenized samples led to an unbalanced distribution of

answerable and unanswerable samples for both task-

specific fine-tuning datasets:

For the parameter-matching fine-tuning dataset, we

noticed that 35,744,686 (97.26%) of all 36,749,955

resulting tokenized samples were unanswerable, whereas

only 1,005,269 (2.74%) of the samples contained the

answer within the presented fragment. 537,905 QA sam-

ples (62.22%) in this fine-tuning dataset exceeded the

maximum token length of 512 and must be split. These

numbers were unsurprising considering the large schemas

consisting of hundreds of parameters and thousands of

tokens (see Table 1).

Similarly, the splitting of the QA samples of the fine-

tuning dataset of the endpoint-discovery task resulted in

324,957 (85.92%) tokenized samples being unanswerable

and only 53,238 (14.08%) tokenized samples that were

answerable. In this dataset, 32,463 QA samples (72.80%)

had an input sequence with more than 512 tokens.

Using these unbalanced samples for fine-tuning, we

assume that the resulting models would be highly biased

toward unanswerable samples. This means they tend to

classify any input as unanswerable during inference rather

than predicting the correct answer. To avoid this, we set a

maximum of three unanswerable tokenized samples that

could result from tokenizing a single QA sample. We

picked these unanswerable tokenized samples randomly for

each fine-tuning dataset.

As a result, after processing all 864,494 QA samples of

the fine-tuning dataset for the parameter-matching task, the

tokenizer output 2,441,687 tokenized samples, of which

1,436,418 were unanswerable (58.83%), and 1,005,269

(41.17%) were answerable. Furthermore, the fragments of

these tokenized samples contained between one and 126

parameter paths, with a mean of 30.32 and a median of 27

paths.

The processing of the 44,595 fine-tuning QA samples of

the endpoint-discovery task resulted in 81,084 (60.37%)

unanswerable and 53,238 (39.63%) answerable tokenized

Fig. 3 Tokenized samples with

max. length = 16 and doc stride

= 2. Only the third sample

contains the correct answer

(underlined tokens) entirely,

while for the other samples, the

start and end positions are set to

the [CLS] token

Cluster Computing

123

samples. The number of endpoint paths in the fragments of

these tokenized samples ranged between one and 93, with a

mean value of 33.27 and a median of 32.

As expected, the tokenized samples of both tasks con-

tained fewer Web API elements in their fragments as in the

paragraphs of the original QA samples (see Table 1) and

the number of elements was also more balanced over all

tokenized samples.

The tokenizer output 2,576,009 tokenized samples after

processing the 909,089 fine-tuning QA samples of the

mixed dataset, covering both tasks. 1,058,507 (41.09%)

samples were answerable; 1,517,502 (58.91%) samples

were unanswerable.

5 Experiments

In our previous work, we focused on parameter match-

ing and fine-tuned a CodeBERT model to this task. With

the extension of our approach to a second task, namely

endpoint discovery, and by generalizing this approach,

further fine-tuning strategies came into consideration. As

mentioned at the beginning of Sect. 4, it is reasonable to

fine-tune not only one large model for both tasks but two

separate models for each task with task-specific samples.

Furthermore, with CodeBERT, a pre-trained BERT model

exists that is aligned to the language domain of PL and NL,

which we estimate to be close to the language domain of

our application. CodeBERT relies on the architecture of

RoBERTa, but the latter was pre-trained with much more

data, albeit mainly NL. Hence, in addition to CodeBERT,

RoBERTa is also an interesting base-model candidate.

Eventually, we tested six different fine-tuning strategies.

Each strategy was an independent fine-tuning process,

using a specific combination of base model and fine-tuning

samples. Each fine-tuning process resulted in an individu-

ally fine-tuned model. Table 2 lists these combinations of

base models and fine-tuning samples, which we discuss in

the following:

The first four combinations address the strategy of fine-

tuning separate models for each task. We fine-tuned one

instance of the CodeBERT base model and another of the

RoBERTa base model with the 2,441,687 tokenized sam-

ples of the parameter-matching dataset to this task. We

named the resulting fine-tuned models CB-PM and RO-

PM. These model names, which we will use throughout the

remaining paper, contain the code of the underlying base

model, i.e., CB for CodeBERT and RO for RoBERTa, as

well as the tokenized samples the models were fine-tuned

with, i.e., PM for samples from the parameter-matching

dataset, ED for samples from the endpoint-discovery

dataset, and PM?ED for the dataset with mixed samples.

In the same way, we used the 134,322 tokenized sam-

ples of the endpoint-discovery dataset to fine-tune one

instance of the CodeBERT base model and another of the

RoBERTa base model to the endpoint-discovery task. We

named the resulting models CB-ED and RO-ED using the

same systematic as before.

To fine-tune two large models addressing both tasks,

which was the fifth and sixth strategy and combination, we

used the 2,576,009 tokenized samples of the mixed dataset.

We fine-tuned one instance of the CodeBERT base model

and another of the RoBERTa base model with these sam-

ples. The resulting models had the labels CB-PM?ED and

RO-PM?ED.

In each process, we fine-tuned the respective base model

with ten epochs and a batch size of 16 on a single GPU

system.5 The entire set of generated tokenized samples of

the respective dataset (see Sect. 4.6) was used for each

epoch. We saved a checkpoint of the model after each

epoch of fine-tuning. One epoch of fine-tuning with the

134,322 tokenized samples of the endpoint-discovery task

took about one hour. The 2,441,687 samples of the

parameter-matching task, as well as the 2,576,009 samples

of the merged dataset, required roughly one day of com-

puting time for one epoch.

6 Evaluation

To determine an optimal strategy, we evaluated all six fine-

tuned models in terms of generalizability and compared

their performance. Generalizability is a quality attribute

Table 2 Model configurations

for fine-tuning
Fine-tuned model Fine-tuning dataset Base model

CB-PM Parameter matching (Sect. 4.3) CodeBERT [14]

RO-PM Parameter matching (Sect. 4.3) RoBERTa [16]

CB-ED Endpoint discovery (Sect. 4.4) CodeBERT [14]

RO-ED Endpoint discovery (Sect. 4.4) RoBERTa [16]

CB-PM?ED Parameter matching ? Endpoint discovery (Sect. 4.5) CodeBERT [14]

RO-PM?ED Parameter matching ? Endpoint discovery (Sect. 4.5) RoBERTa [16]

5 Nvidia Ampere GPU.

Cluster Computing

123

that describes the performance of a model when applied to

unseen data [42], i.e., samples that were not presented to

the model while pre-training or fine-tuning.

Afterward, we evaluated the robustness of the two

models that yielded the best performance on the parameter-

matching and endpoint-discovery task. Robustness is

another quality attribute and is understood as the model’s

resilience to outliers and noisy data [42]. To some extent,

we can ensure uniformity in the presented paragraphs, e.g.,

by always presenting Web API elements in path notation,

but the question is subject to strong variations. In input

queries, we must expect individual wording, e.g., syn-

onyms, and different sentence structures, e.g., questions

instead of descriptions. This may challenge the robustness

of a fine-tuned model.

We withheld two data chunks in each task-specific

dataset to evaluate generalizability and robustness. These

two data chunks contained approximately 20% of all QA

samples of the respective dataset. They did not only con-

tain unseen QA samples of different Web APIs, i.e., sam-

ples we did not use for fine-tuning. They may also contain

new combinations of Web API elements in paragraphs, i.e.,

payload schemas and list of endpoints, resulting from Web

APIs that we completely excluded as sources for fine-

tuning samples (see Sect. 4.3 and 4.4).

In Sect. 4.6, we have explained the tokenization process

that splits a QA sample into multiple tokenized samples

and inputs them into the model in their numerical repre-

sentation. Before discussing the evaluation results in this

section, we have to clarify how we interpret the model’s

output to obtain a chosen Web API element, i.e., a pre-

dicted answer. This output interpretation process is

required for the later application of the model as a search

engine (see Sect. 7) but also for the evaluation to determine

whether a QA sample is predicted correctly.

6.1 Output interpretation

A BERT model that has been fine-tuned to the QA

downstream task outputs two vectors when making a pre-

diction for a tokenized sample. The first vector contains a

logit for each token of the input sequence that indicates the

probability that the respective token is the start of the span

containing the answer. Similarly, the second vector con-

tains a logit for each token stating the probability that the

respective token is the end of the answer span. An input

size of 512 tokens leads to 512 x 512 possible start-end

combinations, i.e., answer spans. We can rank these spans

by calculating a score for each start-end combination,

which is the sum of the start and the end logit.

It would be relatively straightforward to interpret these

results in pure NL applications. With only minor

postprocessing, the QA system could directly present the

highest-ranked span to the user. However, a search engine

for our semantic-search tasks should extract a Web API

element from the presented fragment by unambiguously

naming its element path. As a predicted span may contain

multiple element paths that are either entirely or only

partially contained, we require additional logic to interpret

the model’s output.

We implemented this logic as part of a component

named output interpreter. This output interpreter has the

objective of removing predicted spans that are invalid or

lead to ambiguous answers. This could happen if (1) the

resulting span is reversed, i.e., the end position is before the

start position. (2) The span contains tokens that do not

belong to the fragment but to the question. And (3),

although being syntactically correct, the span contains

multiple Web API element paths that are entirely or only

partially covered.

While (1) and (2) can also be an issue for pure NL

applications, the issue of ambiguous answers (3) is unique

to our application. To reduce a span to a single Web API

element and, therefore, an unambiguous answer, we

implemented a function that distinguishes the following

cases: If the span contains multiple element paths, but one

path is entirely covered within the span, the function

chooses this entirely-covered element path as the answer. If

the span contains, however, only partially covered paths, it

chooses the element path with more covered characters. In

any other case, especially if more than one element path is

entirely covered, the span is marked invalid and removed

from the results list. Furthermore, the model may predict a

tokenized sample as unanswerable. In this case (4), both

start and end positions point at the first token of the input

sequence, which is the [CLS] token. Figure 4 presents

four exemplary answer spans to which these four cases

(1–4) apply.

As a result, the output interpreter creates a list of sug-

gested Web API elements that apparently match the

description in the question.

6.2 Generalizability

We tested the performance of all six fine-tuned models

applied to unseen task-specific samples. Or in other words,

we evaluated their generalizability with respect to the task

they were fine-tuned to.

We used the 110,877 QA samples of the first of the two

withheld chunks of the parameter-matching dataset to

evaluate the performance of the models CB-PM, RO-PM,

CB-PM?ED, and RO-PM?ED, which were 10.22% of all

samples of this dataset. Similarly, we evaluated the per-

formance of the models CB-ED, RO-ED, CB-PM?ED, and

RO-PM?ED on the endpoint-discovery task with 5536 QA

Cluster Computing

123

samples (9.95%) contained in the first evaluation chunk of

the endpoint-discovery dataset. Note that the models CB-

PM?ED and RO-PM?ED were fine-tuned with mixed

samples to both semantic-search tasks. We evaluated the

performance of these models on both tasks in two inde-

pendent iterations.

Beforehand, we converted all QA samples into their

numerical representation, i.e., into tokenized samples, by

using the tokenizer described in Sect. 4.6. Similar to what

we did for fine-tuning, we set a limit of three unanswerable

tokenized samples for each QA sample. The tokenizer

converted the 110,877 QA samples of the parameter-

matching task into 328,435 tokenized samples. 129,359

(39.39%) were answerable, and 199,076 (60.61%) were

unanswerable. Moreover, the fragments of these tokenized

samples had between one and 126 parameter paths, with a

mean of 43.24 and a median of 40 paths.

The tokenization of the other 5536 QA samples of the

endpoint-discovery task resulted in 16,162 tokenized

samples, with 6604 (40.86%) being answerable and 9558

(59.14%) being unanswerable. Their fragments contained

between one and 78 endpoint paths, with a mean of 31.93

and a median of 30 paths.

6.2.1 Accuracy of fine-tuned models

To measure the performance of a specific fine-tuned model,

we let the model predict the answer spans for all tokenized

samples of a specific task and collected the ranked results

for each sample by applying the steps described in

Sect. 6.1. For performance reasons, we considered only the

20 highest-ranked spans for each tokenized sample and not

all 512 9 512 possible combinations when interpreting the

model’s output. Afterward, we used the top-k metric to

assess the model’s accuracy: A tokenized sample was

correctly predicted if its correct answer was under the

k highest ranked results. The accuracy for k, also known as

Accuracy@k, was the number of correctly predicted tok-

enized samples under the top-k metric divided by the total

number of tokenized samples of the specific task.

We did not only measure the performance of the entirely

fine-tuned models, i.e., after all, ten epochs of fine-tuning,

but for all ten available checkpoints, which means after one

to ten epochs of fine-tuning.

This provided us, on the one hand, insights into the fine-

tuning processes, i.e., how the models evolved over ten

epochs, and helped to identify side effects, like overfitting.

On the other hand, with these fine-grained measurements,

we could determine and select the best checkpoint for each

model for subsequent tests, e.g., the robustness analysis,

and the later utilization of a model as part of the search

engine.

In the following, we first discuss the evaluation results

of the models we fine-tuned to a specific task and afterward

present the results of the models fine-tuned to both tasks.

Figure 5 shows the accuracy for k ¼ 1; 2; 3; 5; and 10

for all ten checkpoints of the four models CB-PM, CB-ED,

RO-PM, and RO-ED.

Already one epoch of fine-tuning was sufficient to adjust

all four base model instances to their designated task so the

resulting models CB-PM, RO-PM, CB-ED, and RO-ED

achieved an accuracy of more than 80% for k ¼ 1. All

models could preserve or even improve this value over the

following epochs, except RO-PM, whose accuracy dropped

under 80% after the seventh epoch.

In general, we noticed that the models CB-ED and RO-

ED, which we fine-tuned exclusively to the endpoint-dis-

covery task, performed better for k ¼ 1 than their coun-

terpart models CB-PM and RO-PM, which we fine-tuned to

the parameter-matching task. While CB-PM and RO-PM

achieved their highest accuracies for k ¼ 1 after the fifth

epoch (81.46%) and second epoch (80.79%), respectively,

the highest accuracies of the models CB-ED and RO-ED

were roughly 7% higher, with 88.44% and 87.80%,

respectively, after ten epochs of fine-tuning. This result

was unexpected since we fine-tuned the models for the

endpoint-discovery task with a set of tokenized samples

that was twenty times smaller compared with the set used

for fine-tuning the other models to the parameter-matching

task. Moreover, CB-PM and RO-PM had their highest

accuracies after five and two epochs of fine-tuning,

respectively. The models, fine-tuned to the endpoint-dis-

covery task, were steadily improved with each additional

epoch and achieved their highest accuracy after the final

Fig. 4 presents four answer spans. The green diamond and the red

triangle indicate the start and the end token of each span, respectively.

The spans (1) and (2) are invalid as they are reversed and contain

tokens of the question, respectively. Span (3) contains multiple Web

API elements, but users[*].name is entirely covered; thus, (3) is

valid. Span (4) points to the [CLS] token and is, therefore, valid

Cluster Computing

123

epoch of fine-tuning. This suggests it might be worth

continuing fine-tuning these models for another few epochs

for even better results.

Another interesting aspect was that the fine-tuned

models relying on CodeBERT performed slightly better on

both tasks for k ¼ 1 than those resulting from fine-tuning

RoBERTa. However, the differences between the highest

accuracy values of both variants, i.e., CB-PM with 81.46%

compared with RO-PM with 80.79% and CB-ED with

88.44% versus RO-ED with 87.80%, were with less than

1% very marginal.

The accuracy values for k ¼ 2; 3; 5; and 10 followed a

similar pattern in all four models: The highest accuracy

values for these ks were achieved between the first and the

fourth epoch of fine-tuning, except for RO-ED, which had

the highest accuracy for k ¼ 2 after the seventh epoch.

Then, the values started slightly to drop over the remaining

epochs, which suggests minimal overfitting while fine-

tuning.

The measured performance of the CB-PM?ED and RO-

PM?ED models, which we fine-tuned with mixed samples

to both tasks, was almost similar to the performance of the

four models that we fine-tuned to specific tasks: Fig. 6

reveals that the endpoint-discovery task performed better

on the CB-ED model, i.e., the model that we fine-tuned

exclusively to this task, than on the CB-PM?ED model. In

detail, the CB-PM?ED model achieved its highest accu-

racy of 87.89% for k ¼ 1 after eight epochs for this task,

whereas the CB-ED model performed 0.55% better. The

parameter-matching task, however, yielded a slightly

higher accuracy of 82.08% for k ¼ 1 when performed on

the CB-PM?ED model compared with the CB-PM model

(81.46%). The parameter-matching task seems to benefit

from these few additional endpoint-discovery task samples

used for fine-tuning the CB-PM?ED model. However,

from the perspective of the endpoint-discovery task, the

mix of samples decreased the performance of the CB-

PM?ED model when applied to this task. We assume this

might have something to do with the stringent syntax of

(a) CB-PM applied to parameter matching (b) CB-ED applied to endpoint discovery

(c) RO-PM applied to parameter matching (d) RO-ED applied to endpoint discovery

Fig. 5 Accuracy of the models CB-PM, RO-PM, CB-ED, and RO-ED for k = 1, 2, 3, 5, and 10 after one to ten epochs of fine-tuning

Cluster Computing

123

endpoint paths in the QA samples of the endpoint-discov-

ery task. The path of a parameter solely consists of entity

names plus special characters for indicating arrays and path

segment delimiters, e.g., users[*].name. The path of

an endpoint also encompasses entity names for the seg-

ments of the URI path, but the last segment of the endpoint

path is always the HTTP verb, e.g., GET in users.{u-

serId}.get. Fine-tuning the model with a large number

of samples that do not follow this endpoint path syntax, in

particular having no HTTP verb in their paths, might have

the effect that the model pays less attention to the HTTP

verb of an endpoint when matching it with a description,

which leads to inaccurate results. The parameter-matching

task, however, might benefit from these few additional

samples of the endpoint-discovery task as these samples

contribute further entity-description pairs. Due to their

relatively small number, the contained HTTP verbs might

not disturb the overall performance of the parameter-

matching task. However, with only approximately 0.50%

differences between the highest accuracy values for both

tasks in the different models, it is difficult to support this

assumption. Nonetheless, we recommend considering these

findings when extending the approach to other, i.e., future

semantic-search tasks: A task that uses a task-specific

syntax for Web API elements might perform better on a

model that has been fine-tuned exclusively to this task. In

contrast, tasks with a more generic, i.e., task-independent,

syntax might benefit from fine-tuning with mixed samples.

By comparing the accuracy values of CB-PM?ED and

RO-PM?ED, we could again observe that the CodeBERT

model was the better base-model candidate. The CB-

PM?ED model, which was a fine-tuned CodeBERT

model, outperformed the RO-PM?ED model, relying on

RoBERTa. Nevertheless, the differences between these

highest accuracy values were minimal again. While CB-

PM?ED yielded its highest accuracy of 82.08% for k ¼ 1

on the parameter-matching task after the tenth epoch of

fine-tuning, the highest accuracy of the RO-PM?ED model

for k ¼ 1 was 1.18% less, with 80.90% after the ninth

epoch. Similarly, the difference between the highest

(a) CB-PM+ED applied to parameter matching (b) CB-PM+ED applied to endpoint discovery

(c) RO-PM+ED applied to parameter matching (d) RO-PM+ED applied to endpoint discovery

Fig. 6 Accuracy of the models CB-PM?ED and RO-PM?ED for k = 1, 2, 3, 5, and 10 after one to ten epochs of fine-tuning

Cluster Computing

123

accuracy values for the endpoint-discovery task was only

0.98%. The CB-PM?ED achieved its highest accuracy of

87.89% for k ¼ 1 after the eighth epoch of fine-tuning,

while RO-PM?ED yielded 86.91% after the final epoch.

With these marginal differences in all model configu-

rations, it is difficult to find an explanation for this result

and to nominate one of the two base models as the clear

winner. It seems that neither the large amount of pre-

training data of RoBERTa nor the pre-training with PL,

i.e., syntax language, in the case of CodeBERT, could yield

a decisive advantage over the other. To achieve an even

better performance, i.e., higher accuracy, on these seman-

tic-search tasks, we should consider fine-tuning a base

model that has been pre-trained to the language domain of

Web APIs, such as ServiceBERT [35], which is, unfortu-

nately, to the best of our knowledge, not publicly available.

As part of our future work, we therefore plan to pre-train

a base model similar to Wang et al. [35]. Although the

authors of RoBERTa [16] could not recommend NSP as a

pre-training objective, we believe that a modified version

of NSP as a pre-training method could improve the per-

formance of both as well as future semantic-search tasks.

Instead of presenting pairs of following or not-following

sentences to the model, which is the original NSP proce-

dure (see Sect. 2.1.1), we would feed combinations of Web

API element paths, i.e., syntax, and their NL descriptions

into the model. As a training objective, the model has to

predict whether a description belongs to a Web API ele-

ment, which is similar to the fine-tuning objective of the

QA downstream task.

The accuracy value of the best-performing model CB-

ED on the endpoint-discovery task is comparable with or

even better than the performance of state-of-the-art

approaches that we reviewed in Sect. 2.2: With 88.44% for

k ¼ 1 and 99.21% for k ¼ 10, the CB-ED model achieved

a similar accuracy on the endpoint-discovery task com-

pared with the model proposed in [36], which covered 1127

Web APIs and 9004 endpoints and yielded an accuracy of

91.13% for k ¼ 1 and 97.42% k ¼ 10. Our model even

outperformed the larger model of [36] that covered 9040

Web APIs with 49,083 endpoints and achieved an accuracy

of 78.85% for k ¼ 1 and 89.69% for k ¼ 10. Moreover, in

contrast to their model architecture, our approach is not

limited to a pre-defined set of Web APIs and their end-

points but can also process endpoints that were unknown

when the model was compiled. Ultimately, it is essential to

mention that these comparisons must be interpreted with

caution because different datasets were used to evaluate

each approach.

Unfortunately, the state-of-the-art approach SMAT [40],

which we reviewed in Sect. 2.3, used another evaluation

metric as we did. As a consequence, we could not compare

the performance of SMAT with the CB-PM?ED model on

the parameter-matching task.

For all subsequent tests, including the following manual

analysis of incorrect samples and the robustness analysis,

we chose the model and the checkpoint yielding the best

accuracy for each task. We chose the CB-ED model after

the tenth epoch of fine-tuning (88.44% for k ¼ 1) for the

endpoint-discovery task and the CB-PM?ED model after

the fifth epoch of fine-tuning (81.95% for k ¼ 1) for the

parameter-matching task. Although CB-PM?ED yielded a

slightly better accuracy of 82.08% for k ¼ 1 after the tenth

epoch compared with its accuracy after the fifth epoch, we

assessed the latter-mentioned checkpoint as the better

choice: Compared with the fifth epoch, the accuracy was

after the tenth epoch of fine-tuning with a plus of 0.13%

only marginally higher for k ¼ 1, but the accuracy values

for k ¼ 2; 3; 5, and 10 dropped by more than 1%.

6.2.2 Analysis of incorrect answers

In all eight graphs in Figs. 5 and 6, we noticed a relatively

large step between accuracy values for k ¼ 1 and k ¼ 2,

while values for k ¼ 2; 3; 5; and 10 were closer. This might

indicate that for the majority of incorrectly predicted

answers for k ¼ 1 the respective model was confronted

with a binary decision after it had excluded all other

choices, but it chose the wrong Web API element.

We manually analyzed tokenized samples answered

incorrectly to investigate the causes of incorrect decisions.

We randomly picked 100 tokenized samples for each task

that the respective model, i.e., CB-PM?ED and CB-ED,

had answered incorrectly for k ¼ 1. We analyzed the

properties of each of these tokenized samples manually.

We tried to identify patterns in their questions and frag-

ments that seemed to impede the model from predicting the

correct answer.

Among these 200 tokenized samples, we could identify

four patterns that occurred in samples of both tasks, which

seem to be a general limitation of our approach. Addi-

tionally, we identified three patterns that were exclusively

present in the samples of the endpoint-discovery task and

another task-specific pattern that occurred in the samples of

the parameter-matching task.

Note that the following pattern definitions and the

number of occurrences slightly differ from those presented

in our previous work [15]: On the one hand, we adjusted

some pattern definitions to distinguish them better from

each other and detect them more unequivocally in a tok-

enized sample. On the other hand, in this work, we found a

model configuration, namely CB-PM?ED, that performed

slightly better on the parameter-matching task than the CB-

PM model we analyzed in our previous work. Therefore,

we had to repeat this manual analysis with another 100

Cluster Computing

123

randomly picked tokenized samples for the parameter-

matching task.

In particular, we labeled each of these 200 tokenized

samples with the pattern that, in our subjective judgment,

was the most likely cause of an incorrect answer. Never-

theless, we did not conduct any further experiments to

confirm that the identified issues and the related patterns

were indeed causing incorrect answers.

We identified the following four patterns in the tok-

enized samples of both tasks:

Domain-specific descriptions (DS): In seven samples

of the parameter-matching and 20 samples of the endpoint-

discovery task, we found that the NL description was too

domain-specific. A developer unfamiliar with the respec-

tive domain would probably have difficulty choosing the

correct parameter or endpoint.

Missing context in description (MC): In 72 samples of

the parameter-matching task and another 22 samples of the

endpoint-discovery task, we observed that there was not

enough context about the addressed parent entities in the

NL descriptions of the questions. As a result, multiple Web

API elements, i.e., parameters or endpoints, came into

consideration. Examples of this were descriptions like

‘‘Gets or sets the delivery URL.’’, where a parameter

named DeliveryUrl could be found multiple times

within the original schema attached to different parent

entities, e.g., MediaStreams[*].DeliveryUrl and

MediaSources[*].MediaAttachments[*].

DeliveryUrl.

Among all 94 tokenized samples that lacked context in

descriptions, we furthermore identified four measures that

the models took when being confronted with such a

situation:

In 29 cases, the respective model chose the only visible

Web API element in the fragment that matched the

description since the correct answer lay outside the frag-

ment. In another 23 cases, multiple elements in the frag-

ment apparently matched the description. Therefore, the

model guessed the answer. In three cases, the model

identified another element that seemed to match the

description even better, although the correct answer was in

the fragment. In the remaining 39 cases, the model exclu-

ded all Web API elements, including the correct answer,

and predicted the sample as unanswerable. This happened

especially with short descriptions, e.g., ‘‘Gets or sets the

type’’, which mentioned generic artifacts like ‘‘type’’,

‘‘identifier’’, ‘‘status’’, and ‘‘name’’.

Invisible parameter or endpoint (IV): In another ten

cases in the parameter-matching task and 12 cases in the

endpoint-discovery task, the correct answer lay outside the

presented fragment, i.e., was invisible to the model. Instead

of predicting such a tokenized sample as unanswerable, the

respective model chose another visible Web API element

in the fragment that also seemed to match the description.

At first glance, these 22 cases appear similar to the 29 cases

of the MC pattern. However, in contrast to the latter,

missing context in the description was not the cause but

merely the invisibility of the Web API element being the

correct answer. In detail, we found that if the invisible

element had been in the fragment of the respective tok-

enized sample, the model would probably have predicted it

as the answer since it would have matched the description

even better than the chosen element.

Not understandable description (NU): In nine tok-

enized samples of the parameter-matching task and another

16 samples of the endpoint-discovery task, we observed

that the models could not understand the descriptions and,

therefore, predicted incorrect answers. For these 25 cases,

we could not find any explanation for making an incorrect

prediction.

Moreover, we identified one additional pattern in the

incorrect samples of the parameter-matching tasks and

three further patterns for the endpoint-discovery task:

Missing context in schema (MCS): In two tokenized

samples of the parameter-matching task, the descriptions

mentioned entities, e.g., ‘‘payment’’, that might be part of a

Web API endpoint but did not occur in the schemas and

were invisible to the model. These missing entity names in

syntax seemed to confuse the model.

Missing information in description (MI): In three

cases of the endpoint-discovery task, the descriptions were

too sparse. While these descriptions mentioned all neces-

sary entities to make a prediction, they omitted hints

regarding the HTTP verb, path parameters, etc.

Defective description (DD): In another three cases of

the endpoint-discovery task, the descriptions seemed to be

defective. This might result from removing URIs and

sentence truncation during data preparation (see Sect. 4.2).

As a consequence, essential keywords were missing in the

descriptions, impeding the model from making correct

predictions.

Antipatterns in endpoint design (ED): In contrast to

previously mentioned patterns, it was not only the NL

description or the visibility of a Web API element in the

fragment that impeded the model from making correct

predictions: We identified 24 tokenized samples of the

endpoint-discovery task in which poor design in presented

endpoints, i.e., in the syntax, was the reason for incorrect

answers.

In detail, we noticed 11 samples in which the Web API

designers chose HTTP verbs for endpoints that misled the

model as their semantics did not match the respective NL

description. In these samples, developers of Web APIs

confused the meaning of the HTTP verbs PUT and POST

and misused these two HTTP verbs. Examples were

descriptions like ‘‘Create a manual journal’’, which referred

Cluster Computing

123

to the endpoint manualjournals.put, but the model

predicted manualjournals.post as the correct

answer. Furthermore, the use of POST instead of GET for

tunneling a read operation also confused the model, as well

as the opposite case where GET was used instead of POST

for unsafe controlling operations. Remarkably, in almost

all 11 cases, the model tried to choose an endpoint with an

HTTP verb that, from the perspective of common RESTful

API design rules [43], better suited the NL description.

In another eight cases, the API designer used singular

nouns for collections and, vice versa, plural nouns for

document resources, which can be considered an antipat-

tern according to [4, 43].

Tables 3 and 4 list the number of occurrences of pat-

terns we identified in the tokenized samples of the

parameter-matching and endpoint-discovery task, respec-

tively. All 200 tokenized samples were incorrect for k ¼ 1,

but the correct answers could be found on another rank. For

the following discussion, we grouped these numbers by the

rank of their correct answers in both tables.

In general, in both tasks, the correct answer was on the

second rank for the majority of incorrectly predicted

samples. This observation is aligned with the large step

between accuracy values for k ¼ 1 and 2 that we noticed in

all eight graphs in Figs. 5 and 6. For instance, an invisible

parameter or endpoint (IV) led in both tasks to an incorrect

answer on the first rank. However, for the majority of these

tokenized samples to which this pattern applied, the

respective model correctly predicted the samples as unan-

swerable as the second choice. It seems that the respective

model tends to exclude all options, except the wrong one,

rather than guessing Web API elements that do not match

the description in the question. The score for the prediction

that the sample is unanswerable is higher than the score for

any other Web API element, except for the incorrect

answer.

Similarly, the correct answer could be found on the

second rank for more than half of the tokenized samples of

the endpoint-discovery task that the model did not under-

stand (NU and DS).

Although the model tended to follow the principles and

best practices of REST when choosing an endpoint, it

chose the correct answer on the second rank for 12 of these

24 tokenized samples suffering from poor endpoint design.

Moreover, we observed that the model had predicted nine

of these 12 tokenized samples as unanswerable on the first

rank. In these nine cases, the model could not associate any

endpoint of the respective fragment with the description

without conflicting principles and best practices of REST.

For the answer on the second rank, the model was more

liberal toward an imperfect endpoint design, though.

The problem of missing context in the description (MC)

appeared to be the most common cause of an incorrect

answer in the parameter-matching task (72 cases) but also

affected 22 tokenized samples of the endpoint-discovery

task.

At first glance, it seems that this problem can be solved

by complementing descriptions with further details about

parent entities, which should be considered in the later

application of the approach as a search engine. However,

this pattern also revealed a limitation of our approach:

Neither in the QA samples used for fine-tuning nor in the

evaluation did we consider that a QA sample might have

alternative answers besides the main answer. A QA sample

would have alternative answers if multiple Web API ele-

ments in its paragraph shared the same or at least similar

descriptions as in its question. These Web API elements

sharing the same description would be the alternative

answers.

On the one hand, we did not consider this case for fine-

tuning due to a technical limitation of QA applied to a

BERT model: To convert the prediction of a BERT model

into an answer span, we choose the start and end

Table 3 Occurrences of the patterns Missing Context in Description

(MC), Invisible Parameter (IV), Not Understandable Description

(NU), Domain-Specific Descriptions (DS), and Missing Context in

Schema (MCS) in tokenized samples of the parameter-matching task,
grouped by rank of correct answer

Rank #MC #IV #NU #DS #MCS Total

r ¼ 2 50 6 3 2 2 63

3� r\5 14 3 3 2 0 22

5� r\10 4 1 2 2 0 9

r� 10 4 0 1 1 0 6

Total 72 10 9 7 2 100

Table 4 Occurrences of the patterns Antipatterns in Endpoint Design

(ED), Missing Context in Description (MC), Domain-Specific

Descriptions (DS), Not Understandable Description (NU), Invisible

Parameter (IV), and Missing Information in Description (MI), and

Defective Description (DD) in tokenized samples of the endpoint-
discovery task, grouped by rank of correct answer

Rank #ED #MC #DS #NU #IV #MI #DD Total

r ¼ 2 12 11 11 8 8 1 0 51

3� r\5 3 6 1 2 1 0 1 14

5� r\10 4 2 1 1 1 0 2 11

r� 10 5 3 7 5 2 2 0 24

Total 24 22 20 16 12 3 3 100

Cluster Computing

123

combination that has the highest score (see Sect. 6.1).

Consequently, a single prediction cannot result in multiple

spans and independent answers on the same rank. The same

limitation applies to the fine-tuning process. Each QA

sample used to fine-tune the model must specify one start

and end token of the span containing the answer but cannot

specify multiple answer spans. Nevertheless, we can fine-

tune the model with many independent QA samples shar-

ing the same question but having different answers, which

is what we have done in our approach.

On the other hand, we assumed that in Web APIs, any

Web API element in a syntax structure, i.e., paragraph,

does not only have a unique syntax, expressed through a

distinct path, but also a unique purpose. Hence, every

unique Web element should have its unique description.

We do accept multiple suggestions in the form of a ranked

list of Web API elements, which the model predicts.

However, we do not accept multiple correct answers,

which means that only one of these suggested elements

could be the correct answer. The manual analysis of

incorrectly answered tokenized samples has shown that

there were cases in which different Web API elements in

the same paragraph shared the same or a similar descrip-

tion, which caused a decision problem. We consider this a

quality issue of some QA samples in the dataset as, in most

cases, the description was too sparse and did not contain

enough context. Nevertheless, it is interesting that the

respective model tended to exclude all Web API elements

when confronted with a too-short, not-meaningful

description, which is, from our point of view, a rational and

legitimate decision.

6.3 Robustness

The manual analysis of incorrect samples in Sect. 6.2.2

revealed that inaccurate and sparse NL descriptions could

lead to inconclusive or even incorrect answers because

many Web API elements might come into consideration.

However, NL descriptions are not only subject to strong

variations in terms of verbosity and abundance of embed-

ded information. In the later application of the fine-tuned

models as a search engine, we must expect variations in

wording and structure in the NL descriptions of the input

queries. A developer who uses the search engine might be

unaware of how to prompt the model, i.e., how to formulate

optimal queries to obtain accurate results.

To test the robustness of our fine-tuned models CB-

PM?ED and CB-ED, we let both models predict answer

spans of task-specific QA samples with rephrased NL

descriptions and compared the measured accuracies with

those that resulted from processing the original QA sam-

ples. We defined three test cases. Each case addressed a

specific variation of the original NL description. In detail,

we wanted to know whether the performance, i.e., the

measured accuracy, of a fine-tuned model is negatively

affected: (1) if we translate the NL description into a

question, (2) if we replace important keywords that also

occur in the answer, i.e., in syntax, with synonyms in the

NL description, and (3) if we change the word order or

sentence structure of the original description. We assume

these cases might also occur in practical applications, i.e.,

when a model is used as a search engine.

We used statistical hypothesis testing to support our

findings as we could conduct these tests only with a limited

number of QA samples since we had to rephrase NL

descriptions manually. More precisely, we applied bino-

mial testing [44] to test the statistical significance of

deviations between an expected distribution that resulted

from processing the original QA samples and distributions

resulting from processing rephrased QA samples. Further-

more, we defined the model’s accuracy for a specific k as

the probability of success p.
For each case, we formulated one null hypothesis, stat-

ing that the respective modification of the NL description

does not affect, or even increases the accuracy for a

specific k, i.e., p� p0, and one alternative hypothesis,

claiming that the modification decreases the model’s

accuracy for a specific k, i.e., p\p0. They are listed in

Table 5. While this table lists only three hypotheses, we

tested these hypotheses individually for each model and

different ks, namely k ¼ 1; 2; 3; 5; and 10, with indepen-

dent sample sets. Moreover, we set a targeted significance

Table 5 Null hypotheses with their alternative hypotheses for the three different cases

Case Null Hypothesis Alternative Hypothesis

Questions H 1
0: Translating descriptions into questions does not affect, or

increases the model’s accuracy for a specific k, i.e., p� p0
H 1

1: Translating descriptions into questions decreases the

model’s accuracy for a specific k, i.e., p\p0
Synonyms H 2

0: Replacing keywords with synonyms does not affect, or

increases the model’s accuracy for a specific k, i.e., p� p0
H 2

1: Replacing keywords with synonyms decreases the

model’s accuracy for a specific k, i.e., p\p0
Word order/

sentence

structure

H 3
0: Changing the word order or sentence structure does not affect,

or increases the model’s accuracy for a specific k, i.e., p� p0
H 3

1: Changing the word order or sentence structure

decreases the model’s accuracy for a specific k, i.e.,
p\p0

Cluster Computing

123

level of a ¼ 0:05 that we adjusted to a ¼ 0:05=15 ¼ 0:003

using the Bonferroni correction method [45] as we tested

15 hypotheses per model. If the calculated p-value was less

than this adjusted significance level, we rejected the

respective null hypothesis and accepted its alternative for a

specific case, model, and k.

We randomly picked 50 QA samples for each task from

the second evaluation chunk of the respective task-specific

dataset. Then, we created three copies of each QA sample

and manually rephrased the original NL description:

Questions: We used the first copy of each original QA

sample to translate the NL description into a question. In

detail, we prefixed the descriptions of 25 QA samples of

the parameter-matching task with the phrase ‘‘What is the

property which contains’’ and the other 25 descriptions

with ‘‘Which is the parameter that provides’’. Similarly, we

prefixed the descriptions of 25 QA samples of the end-

point-discovery task with ‘‘What is the endpoint that’’ and

the descriptions of the remaining 25 QA samples with

‘‘Which operation’’. If necessary, we changed the word

order in the remaining sentence and fixed potential gram-

matical errors so that the resulting description was a

question. We changed the original description of a QA

sample of the parameter-matching task from ‘‘The search

algorithm specified for the study.’’ to ‘‘What is the property

which contains the search algorithm specified for the

study?’’, for instance.

Synonyms: In the second copy of each original QA

sample, we individually replaced keywords that occurred in

both the NL description and the syntax of the correct

answer with synonyms. ‘‘The product’s unit price for the

order’’ was changed to ‘‘The article’s cost per entity for the

purchase’’, for instance, so that none of the words in the

description was contained in the related parameter

orders[*].products[*].unitPrice.

Word order: We changed the sentence structures and

reordered words in the description of the third copy but

without altering the meaning. We modified the description

‘‘Returns a part by part number.’’ to ‘‘Given a part number,

it returns a part.’’, for instance.

We took care that the original QA samples and their

rephrased versions did not exceed the maximum input size

of 512 tokens. This ensured comparability between the

predicted answers of the different QA sample versions. For

each QA sample, there was only one tokenized sample, and

the correct answer could not move from one to another

sample due to rephrasing, which avoids side effects like the

pattern of an invisible parameter or endpoint (IV, see

Sect. 6.2).

After rephrasing the NL descriptions in the created

copies, we let the models process the rephrased as well as

the original QA samples and measured for each sample set

the accuracies for k ¼ 1; 2; 3; 5; and 10 that the respective

model achieved. Table 6 lists these measured accuracies

plus the p-values for the rephrased QA sample sets that we

Table 6 Accuracies that the

models CB-PM?ED and CB-

ED yielded on the original and

rephrased sample sets plus the

calculated p-values. P-values in

bold are lower than the adjusted

significance level

QA sample set CB-PM?ED CB-ED

k Accuracy p-value k Accuracy p-value

Original 1 82% 1 86%

2 90% 2 90%

3 94% 3 90%

5 94% 5 90%

10 96% 10 96%

Questions 1 78% (-4%) 0.281 1 86% 0.562

2 84% (-6%) 0.122 2 92% (?2%) 0.75

3 90% (-4%) 0.179 3 92% (?2%) 0.75

5 94% 0.584 5 92% (?2%) 0.75

10 98% (?2%) 0.870 10 96% 0.6

Synonyms 1 52% (-30%) \0:001 1 22% (-64%) \0:001

2 58% (-32%) \0:001 2 46% (-44%) \0:001

3 62% (-32%) \0:001 3 50% (-40%) \0:001

5 74% (-20%) \0:001 5 58% (-32%) \0:001

10 90% (-6%) 0.049 10 76% (-20%) \0:001

Word order/ sentence structure 1 78% (-4%) 0.281 1 88% (?2%) 0.719

2 90% 0.569 2 90% 0.569

3 92% (-2%) 0.353 3 90% 0.569

5 94% 0.584 5 90% 0.569

10 96% 0.6 10 96% 0.6

Cluster Computing

123

computed as follows: We used the measured accuracy for a

specific k resulting from processing the original QA sam-

ples as the expected probability of success p0 to calculate

the p-value for each rephrased QA sample set with

p ¼
Xc

i¼0

n

i

� �
pi0ð1� p0Þn�i

, where n is the number of QA samples and c the number of

correctly predicted QA samples.

Translating the original NL description into questions,

changing the sentence structure, and reordering words had

almost no effect on the accuracy of both models. While the

accuracy values of the CB-PM?ED model for k ¼ 1; 2;

and 3 dropped slightly for QA samples whose descriptions

were translated into questions, the CB-ED model could

sustain its accuracy for k ¼ 1 and even increase the accu-

racies for k ¼ 2; 3; and 5 for samples of this case. Simi-

larly, changing the sentence structure and reordering words

let the accuracy values of CB-PM?ED for k ¼ 1 and 3

drop by a few percent, while CB-ED could increase its

accuracy for k ¼ 1 by 2%. The calculated p-values

exceeded our adjusted significance level (a ¼ 0:003).

Therefore, we retained the null hypotheses H 1
0 and H

3
0 and

rejected the alternatives H 1
1 and H 3

1 for both models and

all ks. This means that translating the original description

into questions, changing the sentence structure, and

reordering words did not significantly decrease the model’s

accuracy.

The use of synonyms, however, impeded both models

from making correct predictions. The accuracy values of

the CB-PM?ED model for k ¼ 1; 2; and 3 dropped by

roughly 30% and by 20% for k ¼ 5. The drop in the

accuracies of the CB-ED model was even worse as the

model achieved only an accuracy of 22% for k ¼ 1, which

was 64% less than the baseline accuracy achieved with the

original samples. Also, the accuracy values for k ¼ 2; 3; 5,

and 10 dropped by 44%, 40%, 32%, and 20%, respectively.

For both tasks, we noticed that the models were rather

able to associate synonyms of common words, like ‘‘en-

abled’’ with ‘‘activated’’, ‘‘name’’ with ‘‘label’’, and ‘‘se-

cret’’ with ‘‘confidential token’’, than domain-specific

words and their synonyms, like ‘‘regions’’ and ‘‘areas’’.

This may be explained by the fact that common words and

combinations of synonyms, e.g., ‘‘activate’’ in NL

description and ‘‘enable’’ in syntax, occur more frequently

in different OpenAPI documentation and, therefore, also

fine-tuning samples than combinations of synonymous

domain-specific words. This is especially true in endpoint

descriptions where different NL verbs are used to describe

the behavior of a limited number of syntactically stan-

dardized HTTP verbs so the model can learn various syn-

onyms for the same HTTP verb. For the endpoint-

discovery task, we observed that in 28 of 50 cases, the CB-

ED model was able to successfully map a verb in the

description, e.g., ‘‘retrieve’’ or ‘‘generate’’, to the respec-

tive HTTP verb, e.g., GET or PUT, and suggested endpoints

with the identified HTTP verb.

However, we also noticed that multiple Web API ele-

ments within the same paragraph often have similar syntax

names with synonymous words, although addressing

completely different semantic concepts. This confused the

models. For instance, after replacing the keyword ‘‘kind’’

in the description ‘‘The kind of resources that are supported

in this SKU.’’ with ‘‘sort’’, the CB-PM?ED model sug-

gested value[*].resourceType be the correct

answer instead of value[*].kind. Moreover, in this

sample, the model seemed to focus on the keyword ‘‘re-

sources’’ since the word ‘‘sort’’ was not present in any Web

API element in the paragraph. From this and other samples,

we conclude that in case of doubt, i.e., multiple Web API

elements apparently match a given word, the respective

model seeks other keywords to commit to an answer. If a

paragraph consists of semantically and syntactically dis-

tinct Web API elements, the chance of identifying the

correct answer is higher, even if described with synonyms.

For both models and all ks, except k ¼ 10 for CB-

PM?ED, we rejected the null hypothesis H 2
0 and accepted

the alternative H 2
1 as the calculated p-values were lower

than the adjusted significance level.

7 Applicability

After evaluating the fine-tuned models, we discuss their

application as a search engine. In detail, we propose an

architecture for a search engine for the semantic-search

tasks we cover with our approach. Furthermore, we com-

ment on possible extensions and further applications of this

search engine and, in general, our approach.

7.1 Search engine architecture

As the two semantic-search tasks yielded their best per-

formance on different models, we suggest using two dif-

ferent search engine instances, one with the CB-PM?ED

model for the parameter-matching task and another with

the CB-ED model for the endpoint-discovery task. Never-

theless, the architecture for both instances is the same.

Figure 7 illustrates the architecture of the search engine.

Several components that we already used for fine-tuning

and evaluation can be reused. While the processes for

tokenization and output interpretation are mostly the same

as described in Sect. 4, only the data preparation process

slightly differs: For fine-tuning and evaluation, we

Cluster Computing

123

prepared datasets with QA samples that we extracted from

2321 OpenAPI documentation. The first step of using the

search engine, however, is that the developer, i.e., the user

of the system, inputs a syntax structure, e.g., a payload

schema or a list of endpoints, and an NL query. Then, the

search engine transforms, i.e., serializes, the syntax struc-

ture into a linear list of Web API element paths. Afterward,

the tokenizer splits the query and the list of Web API

element paths into tokens and converts each token into its

numerical representation. Similar to the tokenization of QA

samples for fine-tuning and evaluation, we have to expect

multiple tokenized samples if the input sequence exceeds

the limit of 512 tokens. In the next step, the respective

model processes all tokenized samples and yields one

prediction for each sample. Finally, we input these pre-

dictions into the output interpreter (see Sect. 6.1) to obtain

a ranked list of suggested Web API elements for each

tokenized sample.

For performance reasons, limiting the number of pre-

dictions the output interpreter should process might be

reasonable. Or even limit the number of results per tok-

enized sample and present only the highest-ranked results

for each sample to the developer, who reviews the sug-

gestions of the search engine. Nevertheless, as the accuracy

values for k ¼ 2 of the models CB-PM?ED and CB-ED

were roughly 12% and 5% higher compared with k ¼ 1,

respectively, we recommend not only accepting the high-

est-ranked result but also considering suggestions at least

on the second rank.

7.2 Further applications and extensions

In our current approach, the fine-tuned models consider

only the syntax of Web API elements to determine a match

between an element and an NL query. For more accurate

predictions in the two semantic-search tasks, as well as

future tasks, it might be reasonable to construe the

semantics of a Web API element not only from its syntax

description but also to compare an NL query with the NL

description of the element. We have not considered this

additional feature in our work yet, since, to the best of our

knowledge, there exists no dataset containing samples of

matching NL queries and NL descriptions of Web API

elements that could be used to fine-tune an additional

model. Nevertheless, instead of fine-tuning another model,

we could also rely on a pre-trained Sentence Transformer,

like SBERT [46], to calculate the semantic distance

between an NL query and an NL description of a Web API

element as an additional matching criterion. As part of our

future work, we will investigate whether a pre-trained

SBERT model applies to the language domain of Web

APIs and could be integrated into our approach.

In the current implementation, we only tag arrays and

URI parameters in the path of Web API elements with

special characters (see Sect. 3.2) to express their role.

Especially for the parameter-matching task, it could be

helpful to encode also the data type, e.g., string, number,

integer, or boolean, of the parameter into paths, e.g.,

users½��:surname\str[. With this additional infor-

mation, the model might consider syntactic compatibility

when matching a parameter with an NL description.

Furthermore, as an extension of the parameter-matching

task, it is possible to add further logic to the respective

search engine that allows not only the identification of

parameters matching an NL query but also the mapping of

entire schemas. Given a schema with output parameters,

e.g., a response schema, and a schema with input param-

eters, e.g., a request schema, the underlying model could

suggest possible pairs of output and input parameters.

Technically, an algorithm would traverse the output

schema and extract the NL description of each output

parameter. Then, for each NL description, the model would

predict ideally one parameter from the input schema that

matches the respective description. To verify predicted

results, we should consider the predictions of one direction,

namely from output to input parameters, and the results of

the other direction from input to output parameters.

Accordingly, the algorithm should also iterate over the list

of input parameters and let the model propose the param-

eter in the output schema that matches the description of

the respective input parameter. Ideally, both mappings,

from output to input schema and the opposite case, should

be identical.

8 Conclusion

In this article, we proposed a Transformer encoder model

for the semantic search in state-of-practice Web API doc-

umentation, consisting of structured syntax and natural

Fig. 7 The architecture of the search engine using a fine-tuned BERT

model

Cluster Computing

123

language descriptions for the Web API’s semantics. We

modeled semantic search as a question-answering task and

aligned our model architecture to this task: Given a natural

language query (question) and a syntax structure in the

Web API documentation (paragraph), the model chooses

the Web API element (answer) in the structure that matches

the query best. Our approach covers two specific semantic-

search tasks, namely endpoint discovery and parameter

matching.

Technically, we fine-tuned different pre-trained BERT

models to these semantic-search tasks. For fine-tuning and

evaluation, we extracted 1,085,051 question-answering

samples for the parameter-matching task and another

55,659 for the endpoint-discovery task from 2321 real-

world OpenAPI documentation. We tested six fine-tuning

strategies with different combinations of base models and

task-specific samples. In detail, we fine-tuned the two pre-

trained base models CodeBERT and RoBERTa either to

one dedicated task or to both tasks. We evaluated all six

fine-tuned models in terms of generalizability with with-

held samples using the top-k accuracy metric. The results

revealed that the fine-tuned models relying on CodeBERT

performed slightly better than those resulting from fine-

tuning RoBERTa. However, the differences between the

highest accuracies for k ¼ 1 were very marginal, with

roughly 1%, so it was difficult to nominate a clear winner.

Another finding was that the parameter-matching task

performed better on a base model we fine-tuned to both

tasks. In contrast, the endpoint-discovery task had its

highest accuracy on a base model fine-tuned to this task

exclusively. For the parameter-matching task, the best-

performing model yielded an accuracy of 81.95% for k ¼ 1

and 94.09% for k ¼ 2. The best model for the endpoint-

discovery task performed even better, with an accuracy of

88.44% for k ¼ 1 and 93.84% for k ¼ 2.

For both tasks and their best-performing models, we

manually analyzed samples that were incorrectly answered.

We identified patterns like missing context in the natural

language description, i.e., query, that impeded the model

from making correct predictions. Moreover, we tested the

robustness of the best-performing models by rephrasing NL

queries. The models were robust to changes in the sentence

structure, but the accuracy significantly dropped when

using synonyms for domain-specific words.

Funding Open Access funding enabled and organized by Projekt

DEAL.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Jacobson, D., Brail, G., Woods, D.: APIs: A Strategy Guide.

O’Reilly Media Inc., Sebastopol (2011)

2. Webber, J., Parastatidis, S., Robinson, I.: REST in Practice:

Hypermedia and Systems Architecture. O’Reilly Media Inc.,

Sebastopol (2010)

3. Rodrı́guez, C., et al.: REST APIs: A large-scale analysis of

compliance with principles and best practices. In: International

Conference on Web Engineering (ICWE 2016). Lecture Notes in

Computer Science (LNISA), vol. 9671. Springer, Berlin (2016)

4. Palma, F., et al.: Semantic Analysis of RESTful APIs for the

Detection of Linguistic Patterns and Antipatterns. Int. J. Coop.

Inf. Syst. 26, 1742001 (2017). https://doi.org/10.1142/

S0218843017420011

5. Aiello, M.: A challenge for the next 50 years of automated device

composition. In: International Conference on Service-Oriented

Computing (ICSOC 2022), pp. 635–643. Springer Nature, Cham

(2022)

6. Martin, D., et al.: OWL-S: semantic markup for web services

(2004). https://www.w3.org/Submission/OWL-S/. Accessed 30

Aug 2023

7. de Bruijn, J., et al.: Web service modeling ontology (WSMO)

(2005). https://www.w3.org/Submission/WSMO/. Accessed 30

Aug 2023

8. Farrell, J., Lausen, H.: Semantic annotations for WSDL and XML

schema (2007). https://www.w3.org/TR/sawsdl/. Accessed 30

Aug 2023

9. Cremaschi, M., De Paoli, F.: Toward automatic semantic API

descriptions to support services composition. In: European Con-

ference on Service-Oriented and Cloud Computing (ESOCC

2017), pp. 159–167. Springer, Cham (2017)

10. Cremaschi, M., De Paoli, F.: A practical approach to services

composition through light semantic descriptions. In: European

Conference on Service-Oriented and Cloud Computing (ESOCC

2018), pp. 130–145. Springer, Cham (2018)

11. Haupt, F., Leymann, F., Vukojevic-Haupt, K.: API governance

support through the structural analysis of REST APIs. Comput.

Sci. 33, 291–303 (2018). https://doi.org/10.1007/s00450-017-

0384-1

12. Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune BERT for

text classification. In: China National Conference on Chinese

Computational Linguistics (CCL 2019), pp. 194–206. Springer,

Cham (2019)

13. Liu, Y., Lapata, M.: Text summarization with pretrained enco-

ders. In: 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference

on Natural Language Processing (EMNLP-IJCNLP),

pp. 3730–3740. Association for Computational Linguistics, Hong

Kong (2019). https://doi.org/10.18653/v1/D19-1387

14. Feng, Z., et al.: CodeBERT: A pre-trained model for program-

ming and natural languages. In: Findings of the Association for

Computational Linguistics (EMNLP 2020), pp. 1536–1547.

Cluster Computing

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/S0218843017420011
https://doi.org/10.1142/S0218843017420011
https://www.w3.org/Submission/OWL-S/
https://www.w3.org/Submission/WSMO/
https://www.w3.org/TR/sawsdl/
https://doi.org/10.1007/s00450-017-0384-1
https://doi.org/10.1007/s00450-017-0384-1
https://doi.org/10.18653/v1/D19-1387

Association for Computational Linguistics (2020). https://doi.org/

10.18653/v1/2020.findings-emnlp.139

15. Kotstein, S., Decker, C.: Semantic parameter matching in Web

APIs with Transformer-based question answering. In: 2023 IEEE

International Conference on Service-Oriented System Engineer-

ing (SOSE), pp. 114–123. IEEE (2023). https://doi.org/10.1109/

SOSE58276.2023.00020

16. Liu, Y.: et al. RoBERTa: a robustly optimized BERT pretraining

approach (2019). https://doi.org/10.48550/arXiv.1907.11692

17. Vaswani, A., et al.: Attention Is All You Need, NIPS’17,

6000–6010. Curran Associates Inc., Red Hook (2017)

18. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence

learning with neural networks. NIPS 27, 3104–3112 (2014)

19. Borzunov, A., et al.: Training transformers together, Vol. 176 of

Proceedings of Machine Learning Research, pp. 335–342

(PMLR) (2022)

20. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-

training of deep bidirectional transformers for language under-

standing. In: 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers),

pp. 4171–4186. Association for Computational Linguistics,

Minneapolis (2019)

21. Pearce, K., Zhan, T., Komanduri, A., Zhan, J.: A comparative

study of transformer-based language models on extractive ques-

tion answering (2021). https://doi.org/10.48550/arXiv.2110.

03142

22. Segal, E., Efrat, A., Shoham, M., Globerson, A., Berant, J.: A

simple and effective model for answering multi-span questions.

In: 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pp. 3074–3080. Association for Compu-

tational Linguistics (2020). https://doi.org/10.18653/v1/2020.

emnlp-main.248

23. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a

distilled version of BERT: smaller, faster, cheaper and lighter

(2019). https://doi.org/10.48550/arXiv.1910.01108

24. Adhikari, A., Ram, A., Tang, R., Lin, J.: DocBERT: BERT for

document classification (2019). https://doi.org/10.48550/arXiv.

1904.08398

25. Scheible, R., Thomczyk, F., Tippmann, P., Jaravine, V., Boeker,

M.: GottBERT: a pure German language model (2020). https://

doi.org/10.48550/arXiv.2012.02110

26. Radford, A., et al.: Language models are unsupervised multitask

learners (2019)

27. Celik, D., Elci, A.: Discovery and scoring of semantic web ser-

vices based on client requirement(s) through a semantic search

agent. DBLP 2, 273–278 (2006). https://doi.org/10.1109/COMP

SAC.2006.127

28. Fang, W.-D., Zhang, L., Wang, Y.-X., Dong, S.-B.: Toward a

semantic search engine based on ontologies. IEEE Explore 3,
1913–1918 (2005). https://doi.org/10.1109/ICMLC.2005.

1527258

29. Huang, Z., Zhao, W.: Combination of ELMo representation and

CNN approaches to enhance service discovery. IEEE Access 8,
130782–130796 (2020). https://doi.org/10.1109/ACCESS.2020.

3009393

30. Merin, B., Banu, W.A.: Discovering web services by matching

semantic relationships through ontology. In: 2020 6th Interna-

tional Conference on Advanced Computing and Communication

Systems (ICACCS), pp. 998–1002 (2020). https://doi.org/10.

1109/ICACCS48705.2020.9074364

31. Jalal, S., Yadav, D.K., Negi, C.S.: Web service discovery with

incorporation of web services clustering. Int. J. Comput. Appl.

45, 51–62 (2023). https://doi.org/10.1080/1206212X.2019.

1698131

32. Yang, Y., et al.: ServeNet: A deep neural network for web ser-

vices classification. In: 2020 IEEE International Conference on

Web Services (ICWS), pp. 168–175. IEEE Computer Society,

Los Alamitos (2020)

33. Yang, Y., Ke, W., Wang, W., Zhao, Y.: Deep learning for web

services classification. In: 2019 IEEE International Conference

on Web Services (ICWS), pp. 440–442. IEEE (2019). https://doi.

org/10.1109/ICWS.2019.00079

34. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors

for word representation. In: 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP),

pp. 1532–1543. Association for Computational Linguistics

(2014). https://doi.org/10.3115/v1/D14-1162

35. Wang, X., et al.: ServiceBERT: a pre-trained model for web

service tagging and recommendation. In: International Confer-

ence on Service-Oriented Computing (ICSOC 2021),

pp. 464–478. Springer, Cham (2021)

36. Liu, L., Bahrami, M., Park, J., Chen, W.-P.: Web API search:

discover Web API and Its endpoint with natural language queries.

In: International Conference on Web Services (ICWS 2020),

pp. 96–113. Springer, Cham (2020)

37. Zeimetz, T., Schenkel, R.: Sample driven data mapping for linked

data and web APIs, CIKM ’20, pp. 3481–3484. Association for

Computing Machinery, New York. https://doi.org/10.1145/

3340531.3417438 (2020)

38. Zeimetz, T., Schenkel, R.: Filipo: A sample driven approach for

finding linkage points between RDF data and APIs. In: European

Conference on Advances in Databases and Information Systems

(ADBIS 2021), pp. 244–259. Springer, Cham (2021)

39. Shraga, R., Gal, A., Roitman, H.: ADnEV: cross-domain schema

matching using deep similarity matrix adjustment and evaluation.

Proc. VLDB Endow. 13, 1401–1415 (2020). https://doi.org/10.

14778/3397230.3397237

40. Zhang, J., Shin, B., Choi, J.D., Ho, J.C.: SMAT: An attention-

based deep learning solution to the automation of schema

matching. In: European Conference on Advances in Databases

and Information Systems (ADBIS 2021), pp. 260–274. Springer,

Cham (2021)

41. Jones, D.M.: Operand names influence operator precedence

decisions (part 1 of 2) (2008). http://www.knosof.co.uk/cbook/

oprandname.pdf. Accessed 30 Aug 2023

42. Paschali, M., Conjeti, S., Navarro, F., Navab, N.: Generalizability

vs. robustness: adversarial examples for medical imaging (2018).

https://doi.org/10.48550/arXiv.1804.00504

43. Masse, M.: REST API Design Rulebook, 1st edn. O’Reilly Media

Inc., Sebastopol (2011)

44. Wohlin, C., et al.: Analysis and Interpretation, pp. 123–151.

Springer, Berlin (2012)

45. Shaffer, J.P.: Multiple hypothesis testing. Annu Rev. Psychol. 46,
561–584 (1995). https://doi.org/10.1146/annurev.ps.46.020195.

003021

46. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings

using siamese BERT-networks. In: 2019 Conference on Empiri-

cal Methods in Natural Language Processing and the 9th Inter-

national Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pp. 3982–3992. Association for Computa-

tional Linguistics, Hong Kong (2019)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cluster Computing

123

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/SOSE58276.2023.00020
https://doi.org/10.1109/SOSE58276.2023.00020
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.2110.03142
https://doi.org/10.48550/arXiv.2110.03142
https://doi.org/10.18653/v1/2020.emnlp-main.248
https://doi.org/10.18653/v1/2020.emnlp-main.248
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.48550/arXiv.1904.08398
https://doi.org/10.48550/arXiv.1904.08398
https://doi.org/10.48550/arXiv.2012.02110
https://doi.org/10.48550/arXiv.2012.02110
https://doi.org/10.1109/COMPSAC.2006.127
https://doi.org/10.1109/COMPSAC.2006.127
https://doi.org/10.1109/ICMLC.2005.1527258
https://doi.org/10.1109/ICMLC.2005.1527258
https://doi.org/10.1109/ACCESS.2020.3009393
https://doi.org/10.1109/ACCESS.2020.3009393
https://doi.org/10.1109/ICACCS48705.2020.9074364
https://doi.org/10.1109/ICACCS48705.2020.9074364
https://doi.org/10.1080/1206212X.2019.1698131
https://doi.org/10.1080/1206212X.2019.1698131
https://doi.org/10.1109/ICWS.2019.00079
https://doi.org/10.1109/ICWS.2019.00079
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1145/3340531.3417438
https://doi.org/10.1145/3340531.3417438
https://doi.org/10.14778/3397230.3397237
https://doi.org/10.14778/3397230.3397237
http://www.knosof.co.uk/cbook/oprandname.pdf
http://www.knosof.co.uk/cbook/oprandname.pdf
https://doi.org/10.48550/arXiv.1804.00504
https://doi.org/10.1146/annurev.ps.46.020195.003021
https://doi.org/10.1146/annurev.ps.46.020195.003021

Sebastian Kotstein is a

researcher and Ph.D. student at

the Herman Hollerith Zentrum

at Reutlingen University since

2018. He received his B.Sc.

degree in Computer Science

from Baden-Wuerttemberg

Cooperative State University in

2014 and his M.Sc. in Services

Computing from Reutlingen

University in 2016. He is cur-

rently working on methods for

(semi-) automatic integration of

Web and REST APIs with deep

learning and natural language

processing techniques.

Christian Decker is a Computer

Science professor at the Herman

Hollerith Zentrum at Reutlingen

University. He received his

master’s degree and Ph.D. in

Computer Science from the

University of Karlsruhe. Chris-

tian’s research interest lies in

the study of data appliances for

the Internet of Things (IoT). He

develops methods to design and

engineer IoT smart data services

using technologies, such as

machine and statistical learning.

Cluster Computing

123

	RESTBERTa: a Transformer-based question answering approach for semantic search in Web API documentation
	Abstract
	Introduction
	Background and related work
	Transformers
	BERT
	Question answering
	RoBERTa and CodeBERT

	Service and endpoint discovery
	Semantic parameter matching

	RESTBERTa: semantic search with question answering
	Semantic search in Web API documentation
	Semantic search as a question-answering downstream task

	Data preparation and fine-tuning architecture
	OpenAPI format
	Data preparation
	Parameter-matching dataset
	Endpoint-discovery dataset
	Mixed dataset
	Tokenization

	Experiments
	Evaluation
	Output interpretation
	Generalizability
	Accuracy of fine-tuned models
	Analysis of incorrect answers

	Robustness

	Applicability
	Search engine architecture
	Further applications and extensions

	Conclusion
	Open Access
	References

