
New Spark solutions for distributed frequent itemset and association
rule mining algorithms

Carlos Fernandez-Basso1,2 • M. Dolores Ruiz1 • Maria J. Martin-Bautista1

Received: 9 June 2022 / Revised: 18 July 2022 / Accepted: 18 April 2023 / Published online: 30 April 2023
� The Author(s) 2023

Abstract
The large amount of data generated every day makes necessary the re-implementation of new methods capable of handle with

massive data efficiently. This is the case of AssociationRules, an unsupervised datamining tool capable of extracting information

in the form of IF-THEN patterns. Although several methods have been proposed for the extraction of frequent itemsets (previous

phase before mining association rules) in very large databases, the high computational cost and lack of memory remains a major

problem to be solvedwhen processing large data. Therefore, the aimof this paper is three fold: (1) to reviewexistent algorithms for

frequent itemset and association rule mining, (2)to develop new efficient frequent itemset Big Data algorithms using distributive

computation, as well as a new association rule mining algorithm in Spark, and (3) to compare the proposed algorithms with the

existent proposals varying the number of transactions and the number of items. To this purpose, we have used the Spark platform

which has been demonstrated to outperform existing distributive algorithmic implementations.

Keywords Big Data � Data Mining � Association Rule � Frequent Itemset � Distributed computing � Spark

1 Introduction

The enormous amounts of data stored by companies, social

networks and internet of things like sensors in buildings

and/or cities, are producing new challenges when applying

Data Mining techniques [1]. Businesses and society have

increased their interest on knowledge and information

discovery from these huge quantities of data by means of

different procedures. The problem arise when the majority

of the classic knowledge extraction techniques are not

capable of working with these amounts of data, triggering

to the undesired memory overflows. For this reason new

techniques have appeared in order to store and process

data, facilitating the programmer to abstract the complexity

of data management in large clusters. The Big Data

framework gives a new perspective to store and process

large amounts of data, enabling the management and pro-

cessing of a large variety of data like streaming data (e.g.

audio, image, video, etc.).

Data mining covers a wide range of techniques for

knowledge discovery which can be classified into two main

types: supervised techniques such as classification methods

[2] and non-supervised such as clustering [3] or association

rule mining. In this paper, we focus on Association Rule

Mining (ARM) which discovers patterns in the data in the

form of IF-THEN rules. ARM is usually based on two pha-

ses: (1) the extraction of frequent itemset by means of

algorithms such as Apriori [4], Eclat [5] or FP-Growth [6]

and (2) the extraction of association rules using previously

extracted frequent itemsets using some measure of interest

(e.g. Confidence, Lift or Certainty Factor) [7]. Association

rules are specially interesting to discover relationships

between items, that can be market or bank transactions [8],

student records [9], or sensor meters [10], but often this kind

of datasets are too large to analyse them with classic tech-

niques. Additionally, frequent itemsets mining is an

M. Dolores Ruiz and Maria J. Martin-Bautista have

contributed equally to this work.

& Carlos Fernandez-Basso

cjferba@decsai.ugr.es; carlos.basso@ucl.ac.uk

M. Dolores Ruiz

mdruiz@decsai.ugr.es

Maria J. Martin-Bautista

mbautis@decsai.ugr.es

1 Dept of Computer Science and A.I., University of Granada,

Granada, Spain

2 Causal Cognition lab, University College London, London,

United Kingdom

123

Cluster Computing (2024) 27:1217–1234
https://doi.org/10.1007/s10586-023-04014-w(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-023-04014-w&domain=pdf
https://doi.org/10.1007/s10586-023-04014-w

important phase in ARM that can also be employed for dis-

covering other types of patterns such as sequential patterns

[11], gradual dependencies [12] or exception and anomalous

rules [13] to discover meaningful information in the data.

For being capable of processing such massive data we

are going to focus on distributive computing based on

MapReduce framework since it is transparent to the pro-

grammer and the distribution process is automatically

managed by the system. For that, two main platforms have

arisen: Hadoop and Spark. The former is a great solution to

manage data and store them in large clusters, but its par-

allel processing is done on disk and its implementation of

MapReduce only allows a phase Map and Reduce without

being able to use iterative processing. On the contrary,

Spark performs its processing in main memory increasing

thus the computing speed significantly (up to 100 times

faster) [14, 15] and allows global shared variables among

clusters, important feature for our proposals.

Moreover, other of the limitations of Hadoop is that it

has to query the dataset after executing each job, thus

incurring in a large disk input/output, while Spark directly

passes the data without writing to a persistent storage

[16, 17]. In addition, the implementation of Spark [3]

enables faster memory operations than Hadoop [18] since it

allows in-memory computations (see the complete com-

parison made in [19] where Hadoop and Spark frameworks

are compared in several Machine Learning algorithms).

There are few available implementations using the Spark

framework for mining frequent itemsets and association

rules. Although some research has been published in this

direction, mainly in proceedings papers (examples of this are

[20–23]) some of them are parallel versions but are not

thought to work in distributed systems. Other available

proposals only include frequent itemset mining and are

designed using the pure MapReduce framework and imple-

mented inHadoop. Theseworks cannot be directly compared

to Spark proposals due to the limitations previously men-

tioned of MapReduce in Hadoop. Frequent itemset mining

(FIM) proposals have been also proposed in Spark [23–25],

although their implementations are not available. The only

algorithm available in Spark is that of PFP presented in [20]

where a distributed version of FP-Growth is presented to

extract top Q frequent itemsets to support query recom-

mendations. Therefore, it does not discover all frequent

itemsets exceeding a support threshold. This is a clear dis-

advantagewhen discovering association rules, since itemsets

with not such a high support may co-occur with high confi-

dence with other items and therefore we might miss the

information captured with the omitted rules.

In the light of previous observations, the aim of this

paper is threefold. Firstly, we review existent parallel and

distributive algorithms for frequent itemset and association

rule mining. Secondly, three new exhaustive algorithms

have been designed inspired on the sequential versions of

the Apriori, Apriori-TID and ECLAT algorithms. These

novel and original designs allow data to be processed using

a Spark distributive framework that improves efficiency

and performance for processing massive data. In addition,

as far as we know, we have proposed the first Association

Rule mining algorithm in Spark. Lastly, we compare these

three new proposals with a Spark version of the YAFIM

[25] (implemented by us), and the PFP [20] algorithm

available in the Spark library, by studying speed up, effi-

ciency and memory consumption, in terms of the amount

of transactions and items in different sets of data, as well as

the number of obtained association rules (since the PFP is

not exhaustive). For that, we have employed very large

datasets that fail when processing them with non-Big Data

versions of the algorithms. The different algorithms are

also compared in terms of the obtained results when they

are applied to discover frequent itemsets and frequent and

confident association rules.

The paper is structured as follows: Next section sum-

marizes some needed concepts and reviews the existent

works for association rule and frequent itemset mining. It

also contains a brief explanation of the different approa-

ches and highlights their main differences. Section 3 pre-

sents three new Big Data algorithms for frequent itemset

mining. Section 4 develops a new proposal for association

rule mining in Spark. In Section 5 we compare the new

implemented algorithms with YAFIM and the PFP algo-

rithm available in the Spark library. Finally in last Sec-

tion the reader can find the main conclusions of the

comparative analysis and some lines for future research.

2 Previous research and related work

In this section we first summarize the notions of support and

confidence and afterwards we review the existent literature

about association rule discovery algorithms [26] and fre-

quent itemset mining, since FIM is in many cases the first

phase of association rule mining algorithms. We focus this

review on distributive proposals, classifying them according

to the framework employed (Hadoop of Spark).

2.1 Definitions

Association rules were formally first defined by Agrawal

et al. [4] as follows. Let I ¼ fi1; i2; . . .; ing a set of items

and D ¼ ft1; t2; . . .; tNg be a set of N transactions con-

taining a subset of items. In this ambient an association rule

can be defined as follows:

X ! Y ; where X; Y � I and X \ Y ¼ ;: ð1Þ

1218 Cluster Computing (2024) 27:1217–1234

123

X is referred as the antecedent (or left-hand side of the rule)

and Y as the consequent (or right-hand side of the rule).

The problem of uncovering association rules is usually

developed in two steps:

• Step 1: Finding all the itemsets above the minimum

support threshold. These itemsets are known as frequent

itemsets.

• Step 2: Using the frequent itemsets, association rules

are discovered by imposing a minimum threshold for an

assessment measure such as confidence.

The most commonly used measures to extract frequent

itemsets and association rules are:

• The support [27] measures the frequency of appearance

of an itemset in the database. In general, the most

interesting association rules are those with a high

support value.

SuppDðXÞ ¼
ti 2 D : X � ti

jDj ð2Þ

• Given the itemsets X and Y, and the database D, the

confidence of the rule X ! Y [27], represented as

ConfDðX ! YÞ, is the conditional probability of Y

appearing in those transactions of D that also contain X.

ConfDðX ! YÞ ¼ SuppDðX [YÞ
SuppDðXÞ

ð3Þ

In the literature one can find diverse kinds of algorithms

which use different data structures to represent the trans-

actions. Depending on these structures it is necessary to use

different approaches to distribute the algorithms and

extract association rules. For this reason we first analyse

traditional sequential algorithms and we move a step for-

ward by describing parallel and distributed approaches

using Big Data models.

2.2 Related works

In this section we review the existent algorithms for

association rule and frequent itemset mining focusing on

those that are distributive.

2.2.1 Sequential and parallel approaches

Apriori was first proposed byAgrawal and Srikant in the mid-

nineties [4] for finding the frequent set of itemsets and after-

words mining association rules using the downward closure

property. Since then, other proposals have been developed

such asApriori-TID, ECLATor FP-Growth. Themain idea of

the Apriori-TID algorithm is to reduce the itemsets to be

analysed by sorting the transactions by item frequency, and

removing non-frequent ones in each step [4]. The ECLAT

algorithm [5] uses the structure of TD-list [28] to improve

computations using Boolean operators. FP-growth employs

an FP-tree structure for using the divide-and-conquer tech-

nique and consulting the database of transactions only once

[6]. This results in a very fast algorithm. These algorithms

have been analysed and compared in several works [29–32]

concluding that although the Apriori algorithm is the most

widely used and known, the FP-Growth outperforms the

others with respect to time consumption, but, Apriori and

Apriori-TID need less resources in terms of memory.

A different type of proposals are those considering a

parallelization of the frequent itemset extraction process. In

this regard, we can highlight the following works: parallel

versions of Apriori, with some variations, can be found in

[33, 34], ParEclat (Parallel Eclat) is described in [35], and

Parallel FP-Growth with Sampling is presented in [36].

2.2.2 Distributive approaches

Distributive algorithms are capturing more attention due to

the new philosophy introduced around Big Data using the

MapReduce framework. In this regard, two different

environments arise: Hadoop [37], which follows pure

MapReduce philosophy, and Spark [38], which also

enables in-memory computations.

2.2.2.1 Hadoop approaches Among the proposals using

Hadoop, we can highlight the Dist-Eclat and BigFIM algo-

rithms presented in [21] for the extraction of frequent item-

sets. These proposals employed a load balancing scheme for

the Dist-Eclat algorithm, and for the BigFIM proposal, a

hybrid approach following an Apriori variant which dis-

tributes the mappers using the sequential ECLAT algorithm.

In [39–41] the authors proposed different Apriori imple-

mentations for FIM using Hadoop called SPC, FPC and

DPC. More Apriori-based proposals in Hadoop where pro-

posed in [42] with and without pruning strategy,1 called

AprioriMR, iterative AprioriMR, pruning AprioriMR and

top AprioriMR. Additionally, the authors also proposed a

maximal AprioriMR algorithm for mining condensed rep-

resentations of frequent itemsets. In [43] the FIMMR algo-

rithm is proposed for FIM inHadoop andwas comparedwith

PFP (parallel FP-growth available in Mahout) and SPC in

two datasets with very good time speedup performance.

Authors in [44] developed the BIGMiner algorithm for FIM

and compared it with the following implementations of

Hadoop: SPC, BigFIM, FIMMR and PFP in Mahout,

obtaining that BIGMiner improved the other MapReduce

versions accelerating the support counting and reducing the

network communication overhead.

1 The pruning strategy is the well known anti-monotone property

employed in Apriori.

Cluster Computing (2024) 27:1217–1234 1219

123

Regarding Hadoop implementations of association rule

mining algorithms, as far as we know, there are two dif-

ferent proposals. The proposal in [45] is based on genetic

programming and was compared with 14 sequential ver-

sions of ARM algorithms including Apriori and ECLAT,

and other multi-objective proposals. And the work in [46]

developed an algorithm to discover quantitative association

rules, which is a special type of association rule where the

attribute values lie in a numerical range.

Nevertheless, as was pointed in the introduction, Spark

offers some advantages enabling faster memory operations

than Hadoop since it allows in-memory computations,

increasing thus the computing speed significantly (up to

100 times faster) [19].

2.2.2.2 Spark approaches We can distinguish among two

types of approaches: exhaustive and non-exhaustive ones, based

on their capacity to extract all the frequent itemsets or part of

them. In additionwe also describe themain differences between

batch data processing algorithms and stream data ones.

• Exhaustive approaches: Among the proposals using the

Spark framework we highlight the YAFIM algorithm

presented in [25] and the R-Apriori developed in [23]

which are Spark approaches of Apriori similar to our

proposal. The main difference is the ordering of the

MapReduce phase. They make the loop to search k-

itemsets inside the distributed process using a hash tree,

meanwhile we make the MapReduce for every k-itemset

using a hash table. The problem of the implementations in

[23, 25] is that it is very difficult to adapt it for the Apriori-

TID, since in every step of the loop the YAFIM and

R-Apriori algorithms do not know if a k-itemset is frequent

or not, information that is used in the TID list. In addition,

posterior analysis made in [47] which compares MapRe-

duce implementations for different data structures con-

cluded that using the hash table accelerates the algorithm

performance versus using hash trees and tries (prefix trees).

• Non-exhaustive approaches: Another proposal using the

Spark framework, but not exhaustive, is the PFP which

is a distributed adaptation of FP-Growth algorithm for

mining most frequent itemsets. It is based on a different

structure which does not coincide with the traditional

FP-Tree, because there does not exist efficient Spark

implementations of distributed trees. The PFP algo-

rithm sorts and divides data in several groups and

counts itemsets in each group using MapReduce

paradigm. This algorithm has different phases:

– Parallel counting of the number of repetitions of

each item using MapReduce.

– Grouping Items: Dividing all the items into

k groups. The algorithm obtains a list of groups,

where each group is given by a unique groupID.

– MapReduce phase: Per each transaction it extracts

the groups containing the items in it. Afterwards,

they are reduced by groupID.

– Aggregation of results. It aggregates the results

obtained in previous steps giving as a final result the

top Q frequent itemsets.

This implementation only returns the frequent itemsets

of higher level exceeding the minimum support

threshold (i.e. if ABC is a frequent itemset,

A, B, C, AB, AC and BC are not retrieved). Note that

the PFP also depends on a parameter k set at the

beginning of the algorithm. This may be an inconve-

nient, for instance when mining association rules, since

itemsets of different granularity are necessary during

the extraction process. Following with non exhaustive

algorithms, we can highlight the proposals developed in

[48–50] whose efficiency is improved through the use

of some pruning and reduction techniques in the search

of candidates. This leads to a reduction on the number

of obtained frequent itemsets in the results. As occurred

with PFP, these algorithms are often used in recom-

mendation systems [20, 49] where it is not require to be

exhaustive in their search space, since they are more

interested in retrieving only the most frequent itemsets

(not all of them exceeding the MinSupp threshold).

• Batch vs stream data algorithms: It is also worth to

distinguish two different types of algorithms. On the one

handwe can differentiate among those proposals oriented

to the extraction of frequent itemsets or association rules

in batch data [20, 25, 44, 48–50]. And, on the other hand,

those oriented to mine streaming data as [51] and [52]. In

these cases the data is analysed in sliding windows along

the time to be analysed. A summary of the proposals can

be found in Table 1, where some of their main charac-

teristics are shown.

From this regard, our proposal is based on three new

Spark implementations inspired on Apriori, Apriori-TID

and ECLAT to discover frequent itemsets, and another new

algorithm to extract association rules. Our experimentation

focuses in those available algorithms that are exhaustive

with batch data processing, incorporating the PFP (Parallel

FP-Growth) [20] approach to compare with a non-ex-

haustive algorithm, and the YAFIM algorithm whose

implementations are available in the Spark library. These

algorithms have been selected because the vast majority of

proposals do not have the implementation available, so it is

not possible to use them in the experimental comparison.

To this purpose, next section goes into a detaileddescription

of developed algorithms DApriori, DATID and DECLAT

(where the first ‘‘D’’ stands for distributive) for frequent

itemset mining, and proposes a distributive algorithm for

AssociationRuleMining, part in common for every algorithm.

1220 Cluster Computing (2024) 27:1217–1234

123

3 New frequent itemset mining Spark
algorithms

In this section, we present three new algorithms for frequent

itemsetmining usingBigData techniques. These proposals are

inspired by the operation of the traditional sequential Apriori,

Apriori-TID and ECLAT algorithms, which justify the given

names for them: DApriori, DATID and DECLAT. These

algorithms are all implemented using the Spark framework.

Before delve into the details, next section recalls the necessary

concepts for the good understanding of the algorithms.

3.1 Preliminary concepts

The most famous framework for Big Data is MapReduce

designed by Google in 2003 [53]. It has become one of the

most relevant tools for processing large datasets with parallel

and distributed algorithms on a cluster. The MapReduce

framework manages all data transfers and communications

between the systems. It also provides redundancy, fault-

tolerance and job scheduling. In this programming paradigm

we usually have two phases. Firstly the Map() function,

which makes the processing of data and returns the data

transformed into key value pairs depending on our necessi-

ties. For instance, we may use a Map function applied to

\key; value[pairs that gives transformed pairs. In our

case, the Map function is used to retrieve lists of itemsets:

Mapð\item; valuei [Þ ! listð\itemset; valuej [Þ ð4Þ

Secondly, the Reduce() function aggregates the lists of

\key; value[pairs sharing the same key to obtain a

piece of processed data. For example, to compute the fre-

quency of appearance of an item we may use a Reduce

function in the following way:

Reduceð\item; listðvalueÞ[Þ ! \item; valueaggregated [ð5Þ

Apache Hadoop [37] is an open source software platform for

distributed storageanddistributedprocessingof very largedata.

Hadoop allows distribution and processing of data comfortably

for the programmer since it also provides services such as

security, data access, data governance, operations, data storage

and data processing. Later, Apache Spark appeared as an open-

source framework built around speed, ease of use, and

sophisticated analytics [38]. The most important feature of

Spark is that it allows in-memory computing, and, as a conse-

quence more complex algorithms can be developed. This is

because Spark supports an advanced Directed Acyclic Graph

(DAG) execution engine that enables cyclic data flow. In

ApacheSpark there exists an implementation of a data structure

to abstract the concept of data partition. This structure is called

Resilient distributed dataset (RDD) [54]. The RDD concept

means that data collections are distributed across the clusters.

The RDD has two different types of operations. First type of

transformations converts theRDDstructure in a differentRDD,

which are called Transformation operations. The second type

are evaluation Actions performed over the above transforma-

tions which return a final value for each RDD partition. The

programmer has to take into account, that evaluations are not

executed until a specific Action operation is specified in the

code. This is due to the ‘‘lazy’’ evaluation of Spark that strongly

distinguishes between Transformations and Actions.

To design the distributed algorithms inspired on Apriori,

Apriori-TID and ECLAT for frequent itemsets mining it

would be necessary some primitive Spark functions. Here,

we explain them:

• Map: Applies a transformation function to each element

of RDD and returns a transformed RDD.

• FlatMap: Similar to Map, but each input item can be

mapped to 0 or more output items.

• Reduce: Aggregates the elements of the dataset using an

aggregation function.

Additionally the algorithm uses broadcast variables to

enable access to global variables in every node of the

cluster, i.e. broadcast variables are available in every par-

tition performed by the Map functions. The shared

Table 1 Distributive frequent itemset (FIM) and association rule mining (ARM) algorithms

Cite Name Type Year Comments Availability

[20] PFP FIM 2008 Non-exhaustive algorithm U

[25] YAFIM FIM 2014 Exhaustive algorithm U

[50] DFIMA FIM 2015 Non-exhaustive algorithm �
[23] R-Apriori FIM 2015 Exhaustive algorithm �
[48] HFIM FIM 2017 Non-exhaustive algorithm �
[42] AprioriMR FIM 2018 Non-exhaustive algorithm �
[44] BIGMiner FIM 2018 Non-exhaustive algorithm �
[49] Adaptive-Miner ARM 2018 Non-exhaustive algorithm for

a recommendation system

�

[51] Distributed FIMoTS FIM 2019 Streaming �
[52] SWEclat FIM 2020 Streaming �

Cluster Computing (2024) 27:1217–1234 1221

123

variables are stored in a hash tree format, allowing direct

and fast access to the query and insertion of the frequencies

of each item or itemsets.

For a better understanding of the running algorithms we

use the example database depicted in Table 2. In next

sections, we explain the three approaches to extract fre-

quent itemsets using Spark and after that we compare these

algorithms with our implementation of YAFIM and the

available Spark implementation of PFP.

3.2 DApriori: Apriori big data approach

DApriori has two main steps. The foremost involves

loading the dataset and calculating how often each item

appears in the set of transactions using Map and Reduce

functions. The second step involves the calculation of

frequent itemsets having atomic frequent items as input.

In the first stage of the algorithm we must have the

appearing items in each transaction separately in order to be

processed by the Map function. To that aim a FlatMap

function is employed (see line 5 of Algorithm 1 and first and

second rows of Fig. 1). Right after, the Map function is

applied returning pairs of the form \item; 1[when item

has appeared in a transaction (line 6 of Algorithm 1 and third

row of Fig. 1). Finally the Reduce phase is in charge of

merging items with the same key (line 7) filtering only those

items exceeding the MinSupp threshold. Figure 1 describes

this whole stage using the example database of Table 2.

During the second phase, the list of frequent items

resulting from the previous stage are utilised to form the

candidate itemsets of superior length using the downward

closure property of frequent itemsets. For the new candidates

the same process followed in the first stage is applied, i.e. a

FlatMap followed by a MapReduce process plus a filtering

step by their support. In Fig. 2 we can see the whole process

for the second stage of the algorithm. This phase is executed

repeatedly until no more candidates of higher length can be

formed (see lines 15-26 of Algorithm 1).

Algorithm 1 Main Spark procedure for DApriori algorithm

1: Input: Data: RDD transactions: {t1, . . . , tn}
2: Input: MinSupp: minimum support threshold
3: Output: Global FreqItemset: frequent itemsets exceeding MinSupp

Phase 1: FreqItems()
4: Distributive computing in q chunks of transactions: {S1, . . . , Sq}
5: {< it1 >, . . . , < itm >} ← Si.FlatMap()
6: {< it1, 1 >, . . . , < itm, 1 >} ←Map(< itk >)
7: {< it1, card1 >, . . . , < itm, cardm >} ←Reduce(|itk|)
8: ItemSupport ←Support(< itk >)
9: DicFreqItemset ← Filter(ItemSupport ≥ MinSupp)

10: End distributive computation
Phase 2: Candidate generation

11: Candidate ← DicFreqItemset #Candidates of Length =1
12: Length = 2
13: Global FreqItemset ← Candidate
14: broadcast(Global FreqItemset) #Creation of a broadcast variable avail-

able across all the cores in the cluster
15: while |DicFreqItemset| > 1 do
16: Distributive computing in q chunks of transactions: {S1, . . . , Sq}
17: {< its1 >, . . . , < itsm >} ← Si.FlatMap()
18: {< its1, 1 >, . . . , < itsm, 1 >} ←Map(< itsk >)
19: {< its1, card1 >, . . . , < itsm, cardm >} ←Reduce(|itsk|)
20: ItemsetSupport ←Support(< itsk >)
21: DicFreqItemset = Filter(ItemsetSupport ≥ MinSupp)
22: End distributive computation
23: Length++
24: Candidate ← CandidateGen(DicFreqItemset, Length)
25: Global FreqItemset.Append(Candidate)
26: end while
27: return Global FreqItemset

1222 Cluster Computing (2024) 27:1217–1234

123

In particular, Fig. 3 depicts the second phase for the

example database of Table 2 to obtain the frequent itemsets

of length 2. In this second stage, a global broadcast variable

is employed, as a global variable in sequential

programming, to store the candidate items in order to have

them available in every partition of the cluster.

3.3 DATID: Apriori-TID approach

DATID algorithm follows the same filosophy of Apriori-TID

Algorithm. In Algorithm 2 can be seen the details, with two

main differences with respect to DApriori. The first change

occurs at theendoffirst phase. In this case, the algorithmsortsby

support the frequent items obtained in the first stage and then

removes the non-frequent items from the set (see Fig. 4 and line

10 of Algorithm 2). For this reason, the second stage differs

fromDApriori, since the computation of frequent itemsets is not

performed over the original data. Instead, this computation is

made using the transformed data, i.e data which only contain

frequent items. Thanks to this modification, the second phase

that retrieves itemsets of length 2, and subsequent k þ 1-item-

sets, is faster and decreases memory consumption.

Table 2 Dataset example
ID Items

1 A,B,C

2 B,D

3 A,C,D

4 B,C

5 A,C

6 B,D

7 A,B,C

8 B,C,D

9 A,B,D

10 B,C,D

Algorithm 2 Main Spark procedure for DATID algorithm

1: Input: Data: RDD transactions: {t1, . . . , tn}
2: Input: MinSupp: minimum support threshold
3: Output: Global FreqItemset: frequent itemsets exceeding MinSupp

Phase 1: FreqItems()
4: Distributive computing in q chunks of transactions: {S1, . . . , Sq}
5: {< it1 >, . . . , < itm >} ← Si.FlatMap()
6: {< it1, 1 >, . . . , < itm, 1 >} ←Map(< itk >)
7: {< it1, card1 >, . . . , < itm, cardm >} ←Reduce(|itk|)
8: ItemSupport ←Support(< itk >)
9: DicFreqItemset ← Filter(ItemSupport ≥ MinSupp)

10: ArrayData ← Si.Map(Remove(DicFreqItemset)).
Map(Sort(DicFreqItemset)).collect()

11: End distributive computation
Phase 2: Candidate generation

12: Candidate ← DicFreqItemset #Candidates of Length =1
13: Length = 2
14: Global FreqItemset ← Candidate
15: broadcast(Global FreqItemset) #Creation of a broadcast variable avail-

able across all the cores in the cluster
16: while |DicFreqItemset| > 1 do
17: Distributive computing in q chunks of transactions: {S1, . . . , Sq}
18: {< its1 >, . . . , < itsm >} ← Si.FlatMap()
19: {< its1, 1 >, . . . , < itsm, 1 >} ←Map(< itsk >)
20: {< its1, card1 >, . . . , < itsm, cardm >} ←Reduce(|itsk|)
21: ItemsetSupport ←Support(< itsk >)
22: DicFreqItemset = Filter(ItemsetSupport ≥ MinSupp)
23: ArrayData ← Si.Map(Remove(DicFreqItemset))
24: End distributive computation
25: Length++
26: Candidate ← CandidateGen(DicFreqItemset, Length)
27: Global FreqItemset.Append(Candidate)
28: end while
29: return Global FreqItemset

Cluster Computing (2024) 27:1217–1234 1223

123

Figure 5 illustrates the second stage of DATID algo-

rithm for the example dataset of Table 2. Second row in

Fig. 5 contains ordered frequent items for their posterior

processing. Let us emphasize, that for implementation of

DATID, two broadcast variables are employed. The first

variable called Global FreqItemset contains the ordered

list of frequent items and the second variable called Can-

didate which stores the candidate list of itemsets for every

iteration in the second phase.

3.4 DECLAT: ECLAT approach

We have also developed DECLAT algorithm following the

philosophy of the sequential ECLAT algorithm, but using the

MapReduce paradigm in the Spark framework (see Algo-

rithm 3). In this case, the principal difference resides in the data

distributionby itemsets, insteadof distributing the process by set

of transactions like in DApriori or DATID algorithms Fig. 6.

For this reason, DECLAT has a preprocessing phase,

because the database has to be changed to consider items as

transactions. This process is developed in lines 4-7 of Algo-

rithm 3 where we can see the two main distributive functions

for preprocessing the data. First step uses FlatMap, returning

for each transaction a pair \TransactionID; Item[if the

item appears in the transaction. After that, the function

GroupByKey aggregates the pairs and returns pairs

\Item; ½ListTransaction�[where the list transaction con-

tains 1 or 0 dependingwhether the item is in the transaction or

not respectively. Figure 7 depicts this process.

DECLAT is also comprised of two phases like previous

algorithms. In the first phase, the algorithm counts the number

of appearances of every item in every transaction. After pre-

processing, the Reduce function calculates frequent items and

generates the itemsets candidates for the next step. For the

computation of the itemsets support, the algorithm employs

the FlatMap() function and the itemsets lists like broadcast

variables to generate the pairs\Itemset; support[.

Afterwards, in the second phase, the FlatMap() function

returns a pair comprised of an itemset and a list with 1 or 0

if the itemset appear in the transaction or not, and the

algorithm follows with the computation of the support

Fig. 3 Example of Phase 2 using the example dataset for DApriori

algorithm

Fig. 2 Phase 2 of DApriori

algorithm using Spark

Fig. 1 Example of Phase 1 using the example dataset for DApriori

and DATID algorithms

1224 Cluster Computing (2024) 27:1217–1234

123

using the Reduce function (see the Fig. 8 and lines 20-21 of

Algorithm 3).

4 A new Spark association rule mining
algorithm

Once frequent itemsets are extracted, the final step is to

uncover the association rules that assess the predetermined

thresholds for support and confidence. This process has

been also designed to follow the MapReduce framework.

The result of previous FIM algorithms results in a list of

frequent itemsets that will be in RDD format used by

Spark. After that, for each partition the Map function

generates the possible rules which are determined by the

list of frequent itemsets and it also calculates the confi-

dence of each candidate rule (see lines 4-5 of Algorithm 4).

This will return, for each partition, the list of rules using the

following format \key; value[where

• key: represents a rule where the antecedent is separated

from the consequent by string , where the underscore is

used to separate both parts of the rule.

• value: contains the confidence of the rule

To finish, the Reduce function is applied to generate the

final association rules (see line 6 of Algorithm 4) Fig. 9.

Algorithm 3 Main Spark procedure for DECLAT algorithm

1: Input: Data: RDD transactions: {t1, . . . , tn}
2: Input: MinSupp: minimum support threshold
3: Output: Global FreqItemset: frequent itemsets exceeding MinSupp

Preprocessing
4: Distributive computing in q chunks of transactions: {S1, . . . , Sq}
5: {< t1, it1 >, . . . , < tn, itm >} ← Si.FlatMap()
6: ArrayData = {< it1, [ListTr1] >, . . . , < itm, [ListTrm] >} ←

Si.GroupByKey(itk)
7: End distributive computation

Phase 1: FreqItems()
8: Distributive computing in q chunks of ArrayData: {AD1, . . . , ADq}
9: {< it1, [ListTr1] >, . . . , < itm, [ListTrm] >} ← ADi.FlatMap()

10: {< it1, card1 >, . . . , < itm, cardm >} ←Reduce(
∑

ListTrk)
#

∑
ListTrk computes the number of 1s in ListTrk (see Figure 6)

11: ItemSupport ←Support(< itk >)
12: DicFreqItemset ← Filter(ItemSupport ≥ MinSupp)
13: End distributive computation

Phase 2: Candidate generation
14: Candidate ← DicFreqItemset #Candidates of Length =1
15: Length = 2
16: Global FreqItemset ← Candidate
17: broadcast(Global FreqItemset) #Creation of a broadcast variable avail-

able across all the cores in the cluster
18: while |DicFreqItemset| > 1 do
19: Distributive computing in q chunks of ArrayData: {AD1, . . . , ADq}
20: {< its1, [ListTr1] >, . . . , < itsm, [ListTrm] >} ←

ADi.FlatMap()
21: {< its1, card1 >, . . . , < itsm, cardm >} ←Reduce(

∑
ListTrk)

22: ItemsetSupport ←Support(< itsk >)
23: DicFreqItemset = Filter(ItemsetSupport ≥ MinSupp)
24: End distributive computation
25: Length++
26: Candidate ← CandidateGen(DicFreqItemset, Length)
27: Global FreqItemset.Append(Candidate)
28: end while
29: return Global FreqItemset

Cluster Computing (2024) 27:1217–1234 1225

123

5 Experiments and results

We now move on to the different experiments we carried

out with the PFP (available in the Spark library), our

implementation of the YAFIM algorithm [25], DApriori,

DATID and DECLAT algorithms in order to compare their

performance. Our aim was to study the behaviour of the

different available algorithms implemented using Big Data

philosophy, in particular using the Spark technology. Tra-

ditional association rule extraction algorithms do not

enable the use of this type of large data sets because they

have no memory capacity or their execution time is

extremely high.

To this end, all the performed experiments have been

executed on a cluster with 32 cores on 2 Intel Xeon E5 and

with 200 GB of RAM; and four different datasets have

been employed. These datasets and the parameters used can

be found in Table 3. The first three datasets are available at

the UCI Machine Learning repository and the last one

(Otto database) can be found in the open repository

KAGGLE:

Fig. 4 Phase 2 of DATID

algorithm using Spark

Algorithm 4 Spark procedure for association rule mining

1: Input: Candidate: Candidate list of frequent itemsets
2: Input: MinConf: minimum confidence threshold
3: Output: Rules : Association Rules exceeding MinConf
4: Distributive computing in r chunks of Candidate: {C1, . . . , Cr}
5: {< Rule1, Conf1 >, . . . , < Rules, Confs >} ←

Cj .FlatMap(GenerateRules(), Conf())
The FlatMap generate the rules using the list of candidates and

computes their confidence using
the frequency information in Global FreqItemset variable

6: Rules ← Reduce(Confi ≥ MinConf)
7: End distributive computation
8: return Rules

Fig. 5 Process for extracting frequent itemsets with DATID

Algorithm

1226 Cluster Computing (2024) 27:1217–1234

123

• Poker dataset has 1 025 000 instances and 11

attributes. In this dataset each transaction is an example

of a hand consisting of five playing cards drawn from a

standard deck of 52. Each card is described using two

attributes (suit and rank) making a total of 78 items.

[55]

• Susy dataset [56], which consists of 5 000 000

instances and 18 attributes, contains simulated colli-

sions events at the Large Hadron Collider.

• Higgs dataset [57], which has 11 000 000 instances

and 28 attributes, consists of another trial of simulated

collisions at the Large Hadron Collider.

• Otto dataset, which consists in 90 000 instances and

93 attributes, contains features about different products

of the Otto group online shop.

The described datasets will be used to study the beha-

viour of the three algorithms with regard to different

perspectives:

• The first group of experiments has been designed to

study the consumption time with regard to the number

of transactions and different configurations for the

number of items in the datasets. For the latter, we have

restricted the performed the experiments for the Otto

dataset with different scales of magnitude for the

number of items, because the number of items is lower

in the rest of datasets.

• The second group of experiments aimed to analyse the

scalability with regard to the memory usage for every

algorithm.

• The third group of experiments is aimed to study the

efficiency and speed up of the different algorithms. For

that, several executions have been run for the different

datasets by varying the number of processors (or cores)

in order to study the percentage of improvement and the

speed up achieved by increasing the number or cores.

Fig. 8 Example of second Phase

for DECLAT algorithm

Fig. 7 Example of

transformation of Data for

DECLAT algorithm

Fig. 6 Example of first Phase

for DECLAT algorithm

Cluster Computing (2024) 27:1217–1234 1227

123

Figures 10 and 11 contain the runtime in minutes for

each algorithm in the four datasets. The difference between

the DApriori, DATID, DECLAT and YAFIM algorithms is

not very significant regarding the runtime, but the DATID

significantly improves the memory usage in some cases

(see Fig. 13). Moreover the memory usage of DECLAT is

worse than the others algorithms because the use of lists is

more inefficient. The PFP algorithm outperforms the

DApriori, DATID and DECLAT with respect to the run-

time in every dataset, but DATID improves memory con-

sumption in all cases except for the Otto database which

remains equal in the rest of the cases.

Fig. 9 Main procedure for

Spark association rule mining

Table 3 Dataset and parameters

description
Name Transactions Features Items MinSupport MinConfidence

Poker 1 025 010 11 78 0.05 0.7

Susy 5 000 000 18 54 0.2 0.7

Higgs 11 000 000 28 92 0.2 0.7

Otto 90 000 93 4 300 0.2 0.7

Fig. 10 Runtime in minutes for Poker (left) and Higgs (right) datasets

1228 Cluster Computing (2024) 27:1217–1234

123

It is important to note that PFP is not exhaustive, in the

sense that not all frequent itemsets are retrieved since it

only gives top Q frequent itemsets with the highest length

(i.e. the highest itemset containing each frequent item).

This is because it was originally designed for query rec-

ommendation where only top Q frequent itemsets are

needed. This issue is a drawback when using this imple-

mentation of PFP algorithm for association rule mining,

because frequent itemsets of every length are needed to

extract the association rules, unless we are interested in

only the association rules containing items with high sup-

port. We have adapted this part (i.e. association rule min-

ing) using the Q parameter to group the sets of items

according to the frequency of the items of length 1. Then,

in the following phases, these groups are used to build the

different combinations to generate the sets of k-itemsets.

Therefore, we must take care, because more confident

rules could be missed due to their low support. This phe-

nomenon is clearly depicted in Fig. 17 where PFP does not

obtain all the association rules for the same support and

confidence thresholds.

Figures 10 and 11 show that the execution time for

Susy (5 M transactions) and Higgs (11 M transactions)

is lower compared to Otto (0.09 M transactions) dataset.

This is due to the high dimensionality of Otto database in

the number of items. This phenomenon can also be

observed in Fig. 12, where the runtime exponentially

increases with respect to the number of items. It can be

seen therefore that by growing the number of items the

algorithm worsens their operation more than by increasing

the number of transactions. This is because the algorithm

needs to perform many searches when combining the dif-

ferent items to create the itemsets in each iteration.

Figure 13 shows the memory usage of each algorithm

for every dataset. It can be seen that DATID outperforms

the others in almost all cases (it remains the same for the

Otto database). This is due to the treatment of TidLists to

accelerate the queries to the database.

With the purpose of measuring the efficiency of our pro-

posal and compare it to the existent approaches, we have

analysed the speed up and the efficiency [58–60] according to

the number of cores. For that, we have computed the well-

known measure of speed up defined as [60, 61]

Sn ¼ T1=Tn ð6Þ

where T1 is the time of the sequential algorithm and Tn is

the execution time of the distributed algorithm using sev-

eral cores. The efficiency [58–60] is defined in a similar

way as

En ¼ Sn=n ¼ T1=ðn � TnÞ: ð7Þ

In Figs. 14 and 15 it can be seen the results obtained for

Higgs database (similar results are obtained for the

Fig. 11 Runtime in minutes for Otto (left) and Susy (right) datasets

Cluster Computing (2024) 27:1217–1234 1229

123

reminder datasets). In them, we can observe that as the

number of cores increases, the efficiency and speed up are

improved, although they are not optimal. This is due to the

cores workloads and the network congestion employed for

the communication among the cores. Moreover, in Fig. 14

it is observed that the speed up increased along the number

of processors employed, although it is not proportional as

resources expand (see also how the efficiency does not

increases in Fig. 15). This same behavior can be observed

in other studies of speed up and efficiency in distributed

algorithms, where the efficiency is not improved, as

desired, with more processing cores [60, 62].

Finally, the generation of rules by each algorithm can be

seen in Figs. 16 and 17. The DApriori, DATID, ECLAT

and YAFIM algorithms generate all possible rules, while

the PFP only discovers some of them. This is because the

generation of association rules with the PFP is only made

with the sets of longer frequent itemsets and do not con-

sider all frequent itemsets of any length.

Fig. 12 Runtime in hours (y-axis) for Otto dataset with different sets

of items (x-axis)

Fig. 13 Memory consumption for each dataset in every algorithm

Fig. 14 Speed up of different algorithms for Higgs dataset

Fig. 15 Efficiency of different algorithms for Higgs dataset

measured by percentage of improvement

1230 Cluster Computing (2024) 27:1217–1234

123

This also explains the better speed up and efficiency of

PFP algorithm, since it is not exhaustive. We remember

that, the PFP algorithm was conceived to be used for rec-

ommendation systems, where only top Q frequent itemsets

are needed.

5.1 Lessons learned

After all the performed experiments it can be observed that the

most efficient solution is the Spark PFP. Nevertheless, this

algorithm is not exhaustive and does not provide complete

data results. So depending on the users’ needs, a different

algorithm should be chosen. For instance, if it is necessary to

search the whole set to explore all possible association rules

we need to use DATID (Distributive Apriori-TID) algorithm.

On the other hand, if our search is less deep orwe only need to

obtain a subset of association rules, e.g. in a recommendation

system, the PFP will be faster, although some interesting

associations could be missing.

6 Conclusions

This paper gives an overview of the main literature about

most representative algorithms for association rule mining,

focusing in those designed to process very large data. Due

to the drawbacks that Hadoop has compared to Spark, we

have decided to developed new Big Data algorithms using

Spark framework by inspiring on Apriori, Apriori-TID and

ECLAT algorithms. These algorithms (DApriori, DATID

and DECLAT) have been proved to be capable of pro-

cessing massive data in large computer clusters. Addi-

tionally, these new algorithms have been compared with

the YAFIM algorithm and the PFP algorithm available in

the Spark library, obtaining that PFP outperforms

Fig. 16 Number of association rules extracted for Otto and Poker datasets

Fig. 17 Percentage of association rules obtained for the different

datasets by each algorithm

Cluster Computing (2024) 27:1217–1234 1231

123

DApriori, DATID, DECLAT and YAFIM algorithms as far

as the time consumption perspective is concerned, and

DATID improves memory consumption. However, the PFP

results are not always convenient for their posterior pro-

cessing to extract association rules, since PFP is not

exhaustive and only provides the longest frequent itemsets

and their support. Therefore when the user is interested in

obtaining the entire set of association rules exceeding the

imposed thresholds in massive data, the best option avail-

able so far is to use DATID algorithm.

Regarding future research, our intention is to implement

more efficient association rule mining algorithms by con-

veniently changing the PFP to extract all frequent itemsets.

We also plan to face the problem of Association Rule

Mining for streaming data, i.e. data continuously generated

in real time. Additionally, we intend to apply the developed

algorithms to extract patterns in sensor meters from

buildings to improve their efficiency behaviour [10], a Big

Data scenario where traditional association rule mining

algorithms fail due to memory overflow problems.

Author contributions CF-B: Conceptualization, Investigation, Soft-

ware, Writing, Original draft preparation MDR: Supervision, Writ-

ing—Reviewing and Editing MJM-B: Supervision, Writing—

Reviewing and Editing

Funding Funding for open access publishing: Universidad de Gran-

ada/CBUA. The research reported in this paper was partially sup-

ported by the BIGDATAMED project, which has received funding

from the Andalusian Government (Junta de Andalucı́a) under grant

agreement No P18-RT-1765, by Grants PID2021-123960OB-I00 and

Grant TED2021-129402B-C21 funded by Ministerio de Ciencia e

Innovación and, by ERDF A way of making Europe and by the

European Union NextGenerationEU. In addition, this work has been

partially supported by the Ministry of Universities through the EU-

funded Margarita Salas programme NextGenerationEU. Funding for

open access charge: Universidad de Granada/CBUA.

Data availibility The used data is available on https://archive.ics.uci.

edu/ml/index.php and https://www.kaggle.com

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Wu, X., Zhu, X., Wu, G.-Q., Ding, W.: Data mining with big

data. Knowl. Data Eng. IEEE Trans. 26(1), 97–107 (2014)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

3. Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S.,

Liu, D., Freeman, J., Tsai, D., Amde, M., Owen, S., et al.: Mllib:

machine learning in apache spark. J. Mach. Learn. Res. 17(1),
1235–1241 (2016)

4. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining

association rules. In: Proc. 20th Int. Conf. Very Large Data

Bases, VLDB, vol. 1215, pp. 487–499 (1994)

5. Zaki, M.J.: Scalable algorithms for association mining. IEEE

Trans. Know. Data Eng. 12(3), 372–390 (2000)

6. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without can-

didate generation. ACM Sigmod Record 29(2), 1–12 (2000).

(ACM)

7. Delgado, M., Ruiz, M.D., Sánchez, D.: Studying interest mea-

sures for association rules through a logical model. Int.

J. Uncertain. Fuzziness Knowl.-Based Syst. 18(1), 87 (2010).

https://doi.org/10.1142/S0218488510006404

8. Delgado, M., Martin-Bautista, M.J., Ruiz, M.D., Sánchez, D.:

Detecting anomalous and exceptional behaviour on credit data by

means of association rules. In: Lecture Notes in Computer Science

(including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 8132 LNAI, pp. 143–154

(2013). https://doi.org/10.1007/978-3-642-40769-7_13

9. Bello-Orgaz, G., Jung, J.J., Camacho, D.: Social big data: Recent

achievements and new challenges. Information Fusion 28, 45–59
(2016). https://doi.org/10.1016/j.inffus.2015.08.005

10. Fernandez-Basso, C., Ruiz, M.D., Martin-Bautista, M.J.: A fuzzy

mining approach for energy efficiency in a big data framework.

IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.

2020.2992180

11. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q.,

Dayal, U., Hsu, M.-C.: Mining sequential patterns by pattern-

growth: the prefixspan approach. Knowl. Data Eng. IEEE Trans.

16(11), 1424–1440 (2004)

12. Hüllermeier, E.: Association rules for expressing gradual

dependencies. In: Proc. PKDD 2002 Lecture Notes in Computer

Science, 2431, pp. 200–211 (2002)

13. Delgado, M., Ruiz, M.D., Sánchez, D.: New approaches for

discovering exception and anomalous rules. Int. J. Uncertain.

Fuzziness Knowled.-Based Syst. 19(2), 361–399 (2011)

14. Samadi, Y., Zbakh, M., Tadonki, C.: Comparative study between

hadoop and spark based on hibench benchmarks. In: 2016 2nd

International Conference on Cloud Computing Technologies and

Applications (CloudTech), pp. 267–275 (2016). IEEE

15. Mavridis, I., Karatza, H.: Performance evaluation of cloud-based

log file analysis with apache hadoop and apache spark. J. Syst.

Softw. 125, 133–151 (2017)

16. Lin, X., Wang, P., Wu, B.: Log analysis in cloud computing

environment with hadoop and spark. In: 2013 5th IEEE Inter-

national Conference on Broadband Network & Multimedia

Technology, pp. 273–276 (2013). IEEE

17. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica,

I.: Spark: cluster computing with working sets. HotCloud 10(10),
95 (2010)

18. White, T.: Hadoop: The Definitive Guide. Fourth Edition.

O’Reilly, (2015)

1232 Cluster Computing (2024) 27:1217–1234

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/S0218488510006404
https://doi.org/10.1007/978-3-642-40769-7_13
https://doi.org/10.1016/j.inffus.2015.08.005
https://doi.org/10.1109/TFUZZ.2020.2992180
https://doi.org/10.1109/TFUZZ.2020.2992180

19. Liu, L.: Performance comparison by running benchmarks on

hadoop, spark and hamr. PhD thesis, University of Delaware

(2016). http://udspace.udel.edu/bitstream/handle/19716/17628/

2015_LiuLu_MS.pdf?sequence=1

20. Li, H., Wang, Y., Zhang, D., Zhang, M., Chang, E.Y.: PFP:

parallel fp-growth for query recommendation. In: Proceedings of

the 2008 ACM Conference on Recommender Systems,

pp. 107–114 (2008). ACM

21. Moens, S., Aksehirli, E., Goethals, B.: Frequent itemset mining

for big data. In: Big Data, 2013 IEEE International Conference

On, pp. 111–118 (2013). IEEE

22. Chaudhary, H., Yadav, D.K., Bhatnagar, R., Chandrasekhar, U.:

Mapreduce based frequent itemset mining algorithm on stream

data. In: Lobal Conference on Comunication Technologies 2015

(GCCT 2015), pp. 598–603 (2015)

23. Rathee, S., Kaul, M., Kashyap, A.: R-apriori: An efficient apriori

based algorithm on spark. In: Proceedings of the PIKM’15,

pp. 27–34. ACM, Melbourne, VIC, Australia (2015)

24. Zaki, M.J.: Parallel and distributed association mining: a survey.

IEEE Concurr. 4, 14–25 (1999)

25. Qiu, H., Gu, R., Yuan, C., Huang, Y.: Yafim: A parallel frequent

itemset mining algorithm with spark. In: Parallel & Distributed

Processing Symposium Workshops (IPDPSW), 2014 IEEE

International, pp. 1664–1671 (2014). IEEE

26. Aggarwal, C.C., Han, J.: Frequent pattern mining. Springer,

Berlin (2014)

27. Berzal, F., Blanco, I., Sánchez, D., Vila, M.A.: A new framework

to assess association rules. Advances in intelligent data analysis,

pp. 95–104. Springer, Berlin (2001)

28. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W., et al.: New
algorithms for fast discovery of association rules. In: KDD, vol.

97, pp. 283–286 (1997)

29. Zheng, Z., Kohavi, R., Mason, L.: Real world performance of

association rule algorithms. In: Proceedings of the Seventh ACM

SIGKDD International Conference on Knowledge Discovery and

Data Mining, pp. 401–406 (2001). ACM

30. Borgelt, C.: Efficient implementations of apriori and eclat. In:

FIMI’03: Proceedings of the IEEE ICDM Workshop on Frequent

Itemset Mining Implementations, p. 90 (2003)

31. Hunyadi, D.: Performance comparison of Apriori and FP-Growth

algorithms in generating association rules. In: Proceedings of the

European Computing Conference, pp. 376–381 (2011)

32. Garg, K., Kumar, D.: Comparing the performance of frequent

pattern mining algorithms. Int. J. Comput. Appl. 69(25), 21–28
(2013)

33. Agrawal, R., Shafer, J.C.: Parallel mining of association rules.

IEEE Trans. Know. Data Eng. 8(6), 962–969 (1996). https://doi.

org/10.1109/69.553164

34. Shintani, T., Kitsuregawa, M.: Hash based parallel algorithms for

mining association rules. In: Parallel and Distributed Information

Systems, 1996., Fourth International Conference On, pp. 19–30

(1996). IEEE

35. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: Parallel

algorithms for discovery of association rules. Data Mining Know.

Discov. 1(4), 343–373 (1997)

36. Cong, S., Han, J., Hoeflinger, J., Padua, D.: A sampling-based

framework for parallel data mining. In: Proceedings of the Tenth

ACM SIGPLAN Symposium on Principles and Practice of Par-

allel Programming, pp. 255–265 (2005). ACM

37. White, T.: Hadoop: the definitive guide. O’Reilly Media Inc.,

Sebastopol (2012)

38. Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning

spark: lightning-fast big data analysis. O’Reilly Media Inc.,

Sebastopol (2015)

39. Li, N., Zeng, L., He, Q., Shi, Z.: Parallel implementation of

apriori algorithm based on mapreduce. In: Proceedings of the

2012 13th ACIS International Conference on Software Engi-

neering, Artificial Intelligence, Networking and Parallel/Dis-

tributed Computing. SNPD ’12, pp. 236–241. IEEE Computer

Society, Washington, DC, USA (2012)

40. Farzanyar, Z., Cercone, N.: Efficient mining of frequent itemsets

in social network data based on mapreduce framework. In: Pro-

ceedings of the 2013 International Conference on Advances in

Social Networks Analysis and Mining (ASONAM 2013),

pp. 1183–1188 (2013)

41. Farzanyar, Z., Cercone, N.: Accelerating frequent itemset mining

on the cloud: A mapreduce-based approach. In: IEEE 13th

International Conference on Data Mining Workshops,

pp. 592–598 (2013)

42. Luna, J.M., Padillo, F., Pechenizkiy, M., Ventura, S.: Apriori

versions based on mapreduce for mining frequent patterns on big

data. IEEE Trans. Cybern. 48(10), 2851–2865 (2018). https://doi.

org/10.1109/TCYB.2017.2751081

43. Wang, L., Feng, L., Zhang, J., Liao, P.: An Efficient Algorithm of

Frequent Itemsets Mining Based on MapReduce. Journal of

Information Computational Science 11(8), 2809–2816 (2014).

https://doi.org/10.12733/jics20103619

44. Chon, K.W., Kim, M.S.: BIGMiner: a fast and scalable dis-

tributed frequent pattern miner for big data. Cluster Computing

21(3), 1507–1520 (2018). https://doi.org/10.1007/s10586-018-

1812-0

45. Padillo, F., Luna, J.M., Herrera, F., Ventura, S.: Mining associ-

ation rules on Big Data through MapReduce genetic program-

ming. Integrated Computer-Aided Engineering 25(1), 31–48

(2017). https://doi.org/10.3233/ICA-170555

46. Martı́n, D., Martı́nez-Ballesteros, M., Garcı́a-Gil, D., Alcalá-

Fdez, J., Herrera, F., Riquelme-Santos, J.C.: MRQAR: A generic

MapReduce framework to discover quantitative association rules

in big data problems. Knowledge-Based Systems 153, 176–192
(2018). https://doi.org/10.1016/j.knosys.2018.04.037

47. Singh, S., Garg, R., Mishra, P.K.: Performance analysis of apriori

algorithm with different data structures on hadoop cluster.

International Journal of Computer Applications 128(9), 45–51
(2015)

48. Sethi, K.K., Ramesh, D.: Hfim: a spark-based hybrid frequent

itemset mining algorithm for big data processing. The Journal of

Supercomputing 73(8), 3652–3668 (2017)

49. Rathee, S., Kashyap, A.: Adaptive-miner: an efficient distributed

association rule mining algorithm on spark. Journal of Big Data

5(1), 6 (2018)

50. Zhang, F., Liu, M., Gui, F., Shen, W., Shami, A., Ma, Y.: A

distributed frequent itemset mining algorithm using spark for big

data analytics. Cluster Computing 18(4), 1493–1501 (2015)

51. Fernandez-Basso, C., Francisco-Agra, A.J., Martin-Bautista,

M.J., Ruiz, M.D.: Finding tendencies in streaming data using big

data frequent itemset mining. Knowledge-Based Systems 163,
666–674 (2019)

52. Xiao, W., Hu, J.: Sweclat: a frequent itemset mining algorithm

over streaming data using spark streaming. The Journal of

Supercomputing, 1–16 (2020)

53. Dean, J., Ghemawat, S.: MapReduce: simplified data processing

on large clusters. Communications of the ACM 51(1), 107–113
(2008)

54. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,

McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient

distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing. In: Proceedings of the 9th USENIX Confer-

ence on Networked Systems Design and Implementation, p. 2

(2012). USENIX Association

55. Lichman, M.: UCI Machine Learning Repository (2013). http://

archive.ics.uci.edu/ml

Cluster Computing (2024) 27:1217–1234 1233

123

http://udspace.udel.edu/bitstream/handle/19716/17628/2015_LiuLu_MS.pdf?sequence=1
http://udspace.udel.edu/bitstream/handle/19716/17628/2015_LiuLu_MS.pdf?sequence=1
https://doi.org/10.1109/69.553164
https://doi.org/10.1109/69.553164
https://doi.org/10.1109/TCYB.2017.2751081
https://doi.org/10.1109/TCYB.2017.2751081
https://doi.org/10.12733/jics20103619
https://doi.org/10.1007/s10586-018-1812-0
https://doi.org/10.1007/s10586-018-1812-0
https://doi.org/10.3233/ICA-170555
https://doi.org/10.1016/j.knosys.2018.04.037
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

56. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic par-

ticles in high-energy physics with deep learning. Nature Com-

munications 5(4308) (2014)
57. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic par-

ticles in high-energy physics with deep learning. Nature Com-

munications 5 (2014)

58. Kumar, V.P., Gupta, A.: Analyzing scalability of parallel algo-

rithms and architectures. Journal of parallel and distributed

computing 22(3), 379–391 (1994)

59. Grama, A.Y., Gupta, A., Kumar, V.: Isoefficiency: Measuring the

scalability of parallel algorithms and architectures. IEEE Parallel

& Distributed Technology: Systems & Applications 1(3), 12–21
(1993)

60. Barba-González, C., Garcı́a-Nieto, J., Benı́tez-Hidalgo, A.,

Nebro, A.J., Aldana-Montes, J.F.: Scalable inference of gene

regulatory networks with the spark distributed computing plat-

form. In: Del Ser, J., Osaba, E., Bilbao, M.N., Sanchez-Medina,

J.J., Vecchio, M., Yang, X.-S. (eds.) Intelligent Distributed

Computing XII, pp. 61–70. Springer, Cham (2018)

61. Baldán, F.J., Benı́tez, J.M.: Distributed fastshapelet transform: a

big data time series classification algorithm. Information Sciences

496, 451–463 (2018)

62. Barba-Gonzaléz, C., Garcı́a-Nieto, J., Nebro, A.J., Aldana-Mon-

tes, J.F.: Multi-objective big data optimization with jmetal and

spark. In: Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O.,

Wiecek, M., Jin, Y., Grimme, C. (eds.) Evolutionary Multi-Cri-

terion Optimization, pp. 16–30. Springer, Cham (2017)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Carlos Fernandez-Basso Carlos

Fernandez-Basso received the

degree in computer science, the

M.Sc. degree in data science,

and the Ph.D. degree in com-

puter science from the Univer-

sity of Granada, Granada, Spain,

in 2014, 2015, and 2020,

respectively. He is currently a

Postdoctoral Fellow with Causal

Cognition Lab, University Col-

lege London, London, U.K. He

was a Lead Developer in the EU

FP7 Project Energy IN TIME in

the topics of building simulation

and control, data analytics, and machine learning, and in the COPKIT

Project in the topics of cybercrime, Big Data, and machine learning.

From 2016 to 2018, he collaborated with the Data Science Institute,

Imperial College London, London, U.K., where he has carried out

research stays.

M. Dolores Ruiz M. Dolores

Ruiz received the degree in

mathematics and the European

Ph.D. degree in computer sci-

ence from the Universidad de

Granada, in 2005 and 2010,

respectively. She is a Professor

at the Department of Computer

Science and Artificial Intelli-

gence at the University of

Granada, Spain, since 2020. She

has participated in more than ten

projects, including the EU FP7

Projects ePOOLICE and Energy

IN TIME, and the COPKIT

H2020 project. Her research interests include data mining, informa-

tion retrieval, energy efficiency, big data, correlation statistical

measures, sentence quantification, and fuzzy sets theory. She has

organized several special sessions about Data Mining in international

conferences and was part of the organization committee of the

FQAS’2013, SUM’2017 and FQAS’2023 conferences. Dr. Ruiz

belongs to the Approximate Reasoning and Artificial Intelligence

Research Group and the Cybersecurity Lab, Universidad de Granada.

She is the Principal Investigator of several projects about federated

mining and desinformation detection.

Maria J. Martin-Bautista Maria J.

Martin-Bautista is a Full Pro-

fessor at the Department of

Computer Science and Artificial

Intelligence at the University of

Granada, Spain, since 1997. She

is a member of the IDBIS

(Intelligent Data Bases and

Information Systems) research

group. Her current research

interests include Data Science

and Big Data Analytics in Data,

Text, Web and Social Networks,

Intelligent Information Systems,

Knowledge Representation and

Uncertainty. She has supervised several Ph. D. Thesis and published

more than 100 papers in high impact international journals and con-

ferences. She has participated in more than 20 R?D projects and has

supervised several research technology transfers with companies. She

has served as a program committee member for several international

conferences.

1234 Cluster Computing (2024) 27:1217–1234

123

	New Spark solutions for distributed frequent itemset and association rule mining algorithms
	Abstract
	Introduction
	Previous research and related work
	Definitions
	Related works
	Sequential and parallel approaches
	Distributive approaches
	Hadoop approaches
	Spark approaches

	New frequent itemset mining Spark algorithms
	Preliminary concepts
	DApriori: Apriori big data approach
	DATID: Apriori-TID approach
	DECLAT: ECLAT approach

	A new Spark association rule mining algorithm
	Experiments and results
	Lessons learned

	Conclusions
	Author contributions
	Open Access
	References

