
A container-based workflow for distributed training of deep learning
algorithms in HPC clusters

Jose González-Abad1 • Álvaro López Garcı́a1 • Valentin Y. Kozlov2

Received: 15 March 2022 / Revised: 1 October 2022 / Accepted: 25 October 2022 / Published online: 7 November 2022
� The Author(s) 2022, corrected publication 2023

Abstract
Deep learning has been postulated as a solution for numerous problems in different branches of science. Given the resource-

intensive nature of thesemodels, they often need to be executedon specialized hardware such graphical processing units (GPUs) in

a distributedmanner. In the academic field, researchers get access to this kind of resources through High Performance Computing

(HPC) clusters. This kind of infrastructures make the training of these models difficult due to their multi-user nature and limited

user permission. In addition, different HPC clusters may possess different peculiarities that can entangle the research cycle (e.g.,

libraries dependencies). In this paper we develop aworkflow andmethodology for the distributed training of deep learningmodels

in HPC clusters which provides researchers with a series of novel advantages. It relies on udocker as containerization tool and on

Horovod as library for the distribution of the models across multiple GPUs. udocker does not need any special permission,

allowing researchers to run the entire workflowwithout relying on any administrator. Horovod ensures the efficient distribution of

the training independently of the deep learning framework used. Additionally, due to containerization and specific features of the

workflow, it provides researchers with a cluster-agnostic way of running their models. The experiments carried out show that the

workflow offers good scalability in the distributed training of the models and that it easily adapts to different clusters.

Keywords Distributed training � Deep learning � High performance computing � udocker � Docker � Horovod

1 Introduction

The machine learning subfield known as deep learning [1]

has been the protagonist of a revolution in recent decades.

The growing amount of data available as well as the increase

in the computing power of current hardware has allowed

neural networks algorithms to become state-of-the-art

(SOTA) in multiple complex tasks such as language pro-

cessing, computer vision and image generation. These suc-

cesses have led researchers in more specific scientific areas

to begin applying these techniques in their own fields. For

this reason, these algorithms can now be seen applied in

fields as diverse as particle physics [2, 3], cosmology [4, 5],

biology [6] or climatology [7, 8], just to cite some examples.

Given their nature, this kind of algorithm is very

resource-intensive. The most recent SOTA results have

been obtained through large clusters, which are generally

provided with specialized hardware targeted to accelerate

the execution of these algorithms. Specifically, in deep

learning, graphical processing units (GPUs) have shown

the greatest speedup. This has led to the development of

powerful clusters equipped with multiple GPUs commu-

nicating between each other. Usually, researchers get

access to these machines in order to run their experiments,

but installing and configuring the required software to train

a deep learning model in these multi-user environments is

not an easy task, mainly due to restrictions in permissions.

Álvaro López Garcı́a and Valentin Y. Kozlov have

contributed equally to this work.

& Jose González-Abad

gonzabad@ifca.unican.es

Álvaro López Garcı́a

aloga@ifca.unican.es

Valentin Y. Kozlov

valentin.kozlov@kit.edu

1 Instituto de Fı́sica de Cantabria (IFCA), CSIC-Universidad de

Cantabria, Santander, Spain

2 Karlsruhe Institute of Technology (KIT), Steinbuch Centre

for Computing (SCC), Karlsruhe, Germany

123

Cluster Computing (2023) 26:2815–2834
https://doi.org/10.1007/s10586-022-03798-7(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-0764-3872
http://orcid.org/0000-0002-0013-4602
https://orcid.org/0000-0002-8770-3619
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-022-03798-7&domain=pdf
https://doi.org/10.1007/s10586-022-03798-7

Also, the deployment of models in such distributed envi-

ronments requires advance knowledge in computing, which

applied scientists may not have. There are cloud tech-

nologies with simple interfaces that seek to reduce this

barrier [9], but due to particular requirements of academia

and research (e.g. high throughput and low latency net-

works) it is still common to access High Performance

Computing (HPC) clusters.

One way to alleviate these problems is by allowing users

of HPC clusters to use containerization tools to encapsulate

and run specific software stacks. This kind of tools allows

the isolation of software from the rest of the system

through the use of specific features of the Linux kernel

(e.g., kernel namespaces and Linux controls groups). These

solutions are very popular and have been widely adopted in

both industry and academia. In the former, they have

become an important part of the development and

deployment of applications and services, while in the latter

they have helped increase the portability of the software

required to run an experiment, as well as ease its

reproducibility.

The most widespread containerization tool is Docker

[10], however, given the escalation of privileges needed, it

is not suitable for multi-user environments such as HPC

clusters. Due to this, new containerization tools focused on

running in such environments began to be developed,

among which Singularity [11], Charliecloud [12] and

Shifter [13] stand out. Some of these tools, while allowing

non-root users to execute their containers, still need root

permissions for the proper installation and configuration of

the tool. Some others avoid this by recurring to specific

features of the Linux kernel.

The tool used in the experiments described in this paper

is udocker [14]. It is a user tool oriented to the execution of

Docker containers without the need for root permissions or

any other kind of privileges. This tool supports a large

subset of Docker commands, so the researcher only needs

to know a few notions of the latter. Given udocker’s sole

dependency on Python, the researcher hardly needs any

administrator intervention for installing it, in contrast with

other solutions. In this way, users may safely leverage new

libraries and frameworks without recurring to HPC

administrators, making the research cycle more dynamic.

Running scientific experiments as containers in an HPC

cluster is not trivial. Sometimes the code needs to be

adapted and special versions of software may need to be

installed in order to take advantage of specialized hard-

ware. For this reason, several workflows have recently been

developed [15–17] to combine in a single flow the entire

process required to run an experiment, from the develop-

ment of the experiment to its deployment on a cluster,

using the previously mentioned containerization tools.

In this paper, we develop a container-based workflow to

train deep learning models in multiGPU environments in

HPC clusters. To the best of our knowledge, this workflow

is the first one specifically oriented to train this kind of

models on specialized hardware in a distributed manner

while filling previous research gaps. This workflow pro-

vides HPC users with a series of novel advantages:

• No administrator or superuser intervention is needed,

accelerating the research cycle.

• Cluster-agnosticism, which allows researchers to run

their experiments in any x86-64 architecture cluster

available with minor changes.

• Efficient scaling of the training of the model with

respect to native setups.

For this, we use udocker as containerization tool and

Horovod [18] as library for distributing the training of the

model across GPUs. Its use allows the distribution of the

training independently of the framework used (Ten-

sorFlow, Keras, Pytorch and MXNet). The conjunction of

these tools, developed integration efforts and good prac-

tices conform the workflow presented in this work. As a

result, we contribute with a novel workflow built on the

difficulties that researchers face when training deep learn-

ing models on multiGPU HPC clusters. Furthermore, we

show these advantages by running different synthetic and

real experiments on different clusters, without requiring

administrator intervention.

The paper is structured as follows. Section 2 introduces

all the technologies involved in the workflow. Section 3

introduces related work and shows how our workflow fills

the gaps in the literature. In Sect. 4 the actual workflow is

presented, while Sect. 5 describes the experiments. Sec-

tion 6 details the systems where these experiments were

executed, and Sect. 7 shows their results. Finally, Sect. 8

contains the discussion of these results and Sect. 9 the

conclusions of the work.

2 Background

2.1 Distributed deep learning

A GPU used to be enough to train a deep learning model. It

allowed researchers to speed up the training process and

therefore the experimentation with respect to a standard

central processing unit (CPU). Due to the increase in the

complexity of these kinds of models and the datasets used

to train them, environments with just a GPU started to

introduce limitations caused by its low available memory

and increased training time.

As a consequence of these complexities, researchers had

to start using distributed infrastructures to train their

2816 Cluster Computing (2023) 26:2815–2834

123

models. These infrastructures are usually made up of sev-

eral computing nodes, each of which is equipped with one

or more GPUs. This heterogeneity brings several dis-

tributed computing concepts to take into account, such as

communication between nodes, storage management and

effective use of computing resources. This fact entangles

researchers’ work, since these infrastructures are often

necessary to achieve SOTA in deep learning [19, 20].

The two most commonly used parallelization strategies

for this kind of models are data parallelism and model

parallelism [21]. In the former, each worker (GPU in this

case) loads a copy of the model and computes the gradients

of a chunk of training data. These gradients are then

averaged and used to update each of the models. The dif-

ficulty of this strategy lies in the synchronization of the

parameters between workers. In the latter, the model is split

between workers, so each of them computes the corre-

spondent part of the forward and backward pass. This split

is not trivial and is determined by the model itself. Con-

sidering its flexibility and ease of use regarding model

parallelism, data parallelism is more widely used by

researchers.

There are many deep learning frameworks available,

each with its characteristics and syntax [21]. Based on the

framework, the parallelization strategy may vary, adding

another layer of complexity to the experimentation process.

Tensorflow [22] supports both kinds of strategies, focusing

on data parallelism. Depending on the selected strategy, it

is possible to use different synchronizations between

workers (parameter server and all-reduce algorithms). All

these strategies are also accessible within Keras [23]

through the tf.Keras API. In the same way, Pytorch

[24] offers a variety of strategies based on data parallelism

in addition to some strategies focused on more specific

scenarios like RPC Distributed Training.

The variety of deep learning frameworks and their

implementations of distributed strategies complicates the

task of researchers without advanced knowledge in dis-

tributed systems since they must first know which strategy

is the best for them in terms of efficiency and scalability

with respect to their model, know extremely well the

syntax of the framework they are using and properly adapt

the code for the distributed execution. As a result of the

need to simplify this process, Horovod was born.

2.1.1 Horovod

Advances in deep learning made large companies like Uber

find it necessary to scale their models to multiGPU envi-

ronments. They began by testing Tensorflow, the most

widespread framework at that time, but they ran into some

issues. The first was its steep learning curve due to the high

number of concepts necessary for the correct

implementation, the second was the poor scalability

achieved. These facts led Uber to develop Horovod [18], a

distributed deep learning training framework built over

deep learning frameworks like Tensorflow, Keras and

Pytorch. Twin pillars of Horovod are:

• Ease of use Regardless of the framework we use, with

Horovod we only need to add a few lines of code to

train our model in both GPU and multiGPU environ-

ments. This removes barriers derived from differences

between syntax.

• Scalability Its use ensures good scalability thanks to its

implementation based on various communications

standards [18].

All communication between workers is done using a col-

lective communications library. Horovod allows the use of

either a Message Passing Interface (MPI) implementation

like OpenMPI or Gloo, a Facebook library oriented to

communicate workers in machine learning applications.

These libraries are in charge of the synchronization of the

parallel processes and allow the user to correctly manage

the execution.

The distribution of the training could be done with one

of these libraries, but operations like gradients average

among workers would introduce bottlenecks in the process.

Horovod recently added the NVIDIA Collective Commu-

nication Library (NCCL) to its framework. This library

includes communication routines optimized for NVIDIA

GPUs that speed up data exchange. Among those included,

the ring-Allreduce based on an implementation inspired by

[25] stands out. In this algorithm, each worker communi-

cates with two others. During these communications, the

workers exchange data and perform reduce-like operations.

This process is repeated until the complete reduction of the

data.

At present, Horovod combines MPI or Gloo for CPU

oriented operations and process management and NCCL

for GPU communications. All these features make Hor-

ovod an appropriate library for the distributed training of

deep learning algorithms.

2.2 HPC clusters

In research and academia, scientists normally gain access

to GPUs through HPC clusters. These are usually managed

by computing centers specialized in this type of technology

that offers their computing power as a service to a wide

range of researchers.

These computing clusters, which typically run under a

Linux operating system,1 are composed of a collection of

different nodes connected via high throughput and low

1 https://www.top500.org/statistics/details/osfam/1/.

Cluster Computing (2023) 26:2815–2834 2817

123

https://www.top500.org/statistics/details/osfam/1/

latency interconnects like Infiniband.2 In this way, it is

possible to parallelize tasks between nodes and process

large amounts of data efficiently. In some of these clusters,

several of their nodes are provided with a GPU besides the

CPU. Through access to several of these nodes, it is pos-

sible to distribute the training of deep learning models.

Once researchers have gained access to an HPC envi-

ronment, they connect remotely and execute their work-

loads through a batch system or job scheduler such as

Slurm [26]. For the proper execution of the job, it is nec-

essary to correctly configure the environment in which it

will run. This mainly includes the configuration and

installation of programming tools and libraries. In jobs that

need to be run on GPUs, this task becomes even more

complicated since they depend on more complex applica-

tions linked to the GPU like the Compute Unified Device

Architecture (CUDA) or the NVIDIA CUDA Deep Neural

Network library (cudNN). Because deep learning frame-

works depend on these applications, their installation must

be done taking into account the versions of these available

in the HPC cluster.

2.3 Containerization technologies

When a new user accesses an HPC facility, the first thing

they need to do is set up their own environment. In these

systems user permissions are restricted and the computing

environment (i.e., operating system and libraries) is fixed,

which can lead to issues in basic aspects like software

management (e.g., no package manager available) or no

administrative privileges, limiting the usage of certain

software. These problems are common in computational

science and are present when the user is forced with a fixed

environment [27]. Moreover, once the setup is done at one

facility, it may not correctly adapt to the heterogeneity of

systems that researchers can manage, since if they want to

deploy the same environment in another HPC they need to

redo the installation with the difficult additions of doing it

on a different system. They may also find differences

between the local system on which they programmed the

application and the HPC on which they deploy it. These

issues add another layer of complexity to the research

process.

One solution to these problems is containerization. This

technology allows all the software, settings, code and

environment variables of a user to be packaged in what is

known as containers, then this software stack can be

deployed on any machine with ease. Unlike virtual

machines that virtualize at the hardware level through a

hypervisor, containers virtualize at the operating system

(OS) level using several features of the Linux kernel.

Containers are isolated processes running on top of the OS

kernel, so there is no need for hardware virtualization.

These features make containers more efficient than Virtual

Machines [28].

Specifically, in HPC environments, the use of containers

can make the development and deployment process easier

for researchers. First, they can stack their environment in

an isolated file, which allows them to take better control of

aspects like the libraries used and their versions. This stack

allows them to run the same both in their local environment

and in HPC ones, avoiding tedious installations. In addi-

tion, it also facilitates reproducibility since this file can

include everything necessary to run these experiments

(e.g., code, models, seeds). The latter plays a fundamental

role in the field of deep learning, where the exact repro-

ducibility of the results does not depend solely on the code.

We briefly present some of the most popular container-

ization technologies in what follows.

2.3.1 Docker

Docker [10] is the most popular container creation and

execution solution. Its implementation is based on two

features of the Linux kernel: namespaces and

cgroups. The former is responsible for building the layer

of isolation, making the container processes run isolated

from the rest of the host. The latter is in charge of

managing and limiting the hardware resources assigned to

the containers. In addition, Docker also allows the distri-

bution of containers thanks to DockerHub, a registry ser-

vice focused on sharing container images. Unfortunately,

this solution has a major drawback in our context, which is

the dependency on a root owned daemon process, requir-

ing, therefore, administrative privileges to run a container.

In multi-user systems like HPC clusters, a standard user

does not have these privileges, making Docker unsuit-

able for these types of environments.

2.3.2 Singularity

Singularity [11] is a tool that offers image-based containers

which allow software encapsulation and its execution in

HPC environments, given its non-root execution. It is based

upon setuid file permission, which allows running a

program with escalated permissions. A setuid binary

gives root access to certain basic operations required for

the proper execution of the container. This method is

flexible but dangerous from a security perspective. It is also

possible to run Singularity in a non-setuid mode, but it

requires unprivileged user namespaces, a fairly recent

Linux kernel feature that may not be available on all HPC

environments. Moreover, apart from the security implica-

tions, the main issue with setuid-mode is that the2 https://www.infinibandta.org/.

2818 Cluster Computing (2023) 26:2815–2834

123

https://www.infinibandta.org/

binary needs to be previously installed with root permis-

sions, so the intervention of an administrator to install and

configure this tool is needed beforehand.

2.3.3 udocker

udocker [14] is a tool that enables the execution of con-

tainers without requiring administrative privileges. It

focuses on the execution of containers in multi-user envi-

ronments, leaving the process of creation and distribution

of images to Docker. In order to run these Docker con-

tainers, it is necessary to implement chroot-like function-

ality without the need for root access. This is achieved in

three different ways: unprivileged user namespaces,

PTRACE mechanism, and LD_PRELOAD mechanism. The

first works the same as in Singularity. The second allows

changing the pathnames of the system calls in runtime,

making them reference pathnames within the container.

The third allows the overriding of shared libraries, which

allows running those of the chroot-environment (see [14]

for more details). The required binaries for these operations

are statically compiled, which increases portability.

udocker does not require any restrictive permissions

beyond the user’s own, eliminating the need for adminis-

trative privileges required by other tools for its installation

and execution. This fact also provides more autonomy to

users, since they do not need to rely on the administrator’s

intervention.

3 Related work

The need to run experiments in multi-user environments

has led to the development of workflows oriented to such

purpose. In [9] a set of tools and services to cover and ease

the whole machine learning development cycle is pre-

sented, although useful it focuses on cloud computing and

not on HPC clusters. Regarding these environments, the

increased efficiency and lack of overhead of containers

compared to virtual machines [29] has led to the devel-

opment of container-based workflows.

In [30] the use of Docker containers in HPC clusters is

studied. They compare the deployment of applications with

Docker containers and virtual machines and conclude that

the former has more advantages in addition to no over-

heads. In [31] authors extend the Docker platform to meet

the requirements of HPC systems and ease the execution of

workflows on such environments. In [32] a Docker’s

wrapper is developed to execute containers via the Slurm

Workload Manager in the cluster of the University of Oslo.

These workflows rely on Docker, so it is still necessary for

the cluster to already have this system installed or for the

user to ask the administrator to install it. This dependency

makes these workflows non-cluster-agnostic, since the user

can not extend them to other clusters without the respective

administrators’ intervention.

In parallel, researchers developed workflows with the

same objectives but using containerization tools focused on

HPC environments. In [15] a workflow based in Singularity

is proposed for the deployment of containers developed in

a local environment both to the cloud and to an HPC

cluster. In [33] authors develop a workflow that allows

users to run containers in a cluster using Shifter [13], a

software oriented to running containers in multi-user

environments. Although these workflows are well adapted

to multi-user environments, they still depend on an

administrator since Singularity needs a daemon with root

permissions and Shifter needs to be installed on all nodes

where the experiment is run. Furthermore, these works still

focus on a single cluster.

The developments presented so far are for general pur-

pose experiments. Deep learning experiments have their

own characteristics that make them even more complex to

run in HPC contexts (e.g., requiring specific libraries to

control GPUs). In [16] authors focus on applications ori-

ented to deep learning, for which they use Charliecloud

[12]. Subsequently, a similar workflow is applied to the

training of a deep learning model in the field of particle

physics [17]. The developed workflow allows them to take

advantage of the hundreds of CPUs available in their

cluster. These workflows, although they focus on deep

learning algorithms, do not use specialized hardware

(GPUs) which usually requires more complex configura-

tions. Furthermore, many of these workflows are still

focused on a specific cluster, therefore not being cluster-

agnostic.

In [34] a study of the scalability of udocker with respect

to the number of GPUs used to train a deep learning model

is presented. udocker performance is compared against the

native environment and other containerization tools, and it

is observed that it does not present a significant overhead in

multiGPU scenarios.

In addition to the containerization tools explored in Sect.

2.3, there are others that seek to fulfill the same purposes.

Podman [35] is another containerization tool with features

similar to those of Docker, which also offers the possibility

of running containers without requiring root permissions.

The disadvantage of such tools with respect to the devel-

oped workflow is that they either require administrator

permissions for installation or, for compilation, depend on

software that may not be available in all clusters (e.g.

Podman requires Go3 for building it from source). udocker

installation can be performed by the user and its main

dependency is Python, the current most popular

3 https://go.dev/.

Cluster Computing (2023) 26:2815–2834 2819

123

https://go.dev/

programming language. Other tools aim to facilitate the

management and installation of libraries in multi-user

spaces, for example Spack [36], a package manager ori-

ented to these environments. Through a simple syntax, it

allows users a better management of versions and config-

urations options in HPC clusters. However, it does not have

all the benefits that a containerization tool can offer in the

context of this work (see 2.3).

Recently, work has been developed that explores the

future difficulties that researchers will face when scaling up

their experiments on HPC clusters. In [37] the difficulties

involved in moving workflows from CPU-based to GPU-

based systems are addressed. Authors propose initial steps

towards a framework for the automatic deployment of

optimized containers in such systems. In [38] authors

provide an analysis of the challenges in providing porta-

bility and reproducibility to containers in HPC. One of

these challenges is the need of mapping specific host

libraries to the container.

In this work we develop a new workflow offering a

number of advantages over more conventional ones. It is

based on udocker, so the user does not need administrator

intervention to run their containers, what is more, this

allows them to run their containers in a cluster-agnostic

way since users can manage its installation relying on a

very basic set of dependencies. The independence that this

workflow gives to the user (no administrators’ intervention

required) allows for an increase in the speed of the research

cycle. Previous work has explored the performance of

udocker, and it has been seen that scalability is not harmed,

thus being able to easily scale through various GPUs. All

this makes udocker the perfect candidate to develop

workflows oriented to the training of deep learning models

in multi-user multiGPU environments in a cluster-agnostic

way.

4 Methodology and workflow

Given the aforementioned necessity of training deep

learning models in distributed environments, we have

developed a methodology focused on this task when some

HPC cluster is involved. It is based mainly on the inter-

action between three tools: Docker, udocker and Horovod.

Figure 1 shows a diagram of the workflow.

Under this methodology, researchers develop the image

of their local environment with Docker. They can start

from images already built and tested by the community to

support computation on GPUs. Once they have an image of

their experiment’s environment, they upload it to Dock-

erHub making it accessible through the Internet. When they

want to deploy this image in any HPC cluster, they just

need to install udocker in the cluster and download the

image from DockerHub. Horovod is in charge of dis-

tributing the model training among the selected nodes of

the cluster without harming scalability.

In this section, we explore this workflow and study the

different problems that arise and how to tackle them.

4.1 Image development

Docker provides virtualization through running images as

containers. An image is a file that contains all the code,

libraries, tools and dependencies that define the environ-

ment. A container is a virtualized runtime environment

responsible for isolating the execution of the image from

the rest of the environment. The image building process is

defined in a file known as Dockerfile.

A Dockerfile is a file belonging to the Docker environ-

ment in which all the commands used to build the image

are defined as a series of steps. When the image is built,

these commands are executed sequentially. Each command

generates a layer that is stacked on top of the ones gener-

ated with previous commands. In this way, the final image

is conformed of a set of read-only layers. When a container

of a certain image is executed, Docker stacks a new read-

write layer that allows to work on top of the previously

installed ones.

Setting up working environments with GPU support is

not a trivial task. Correct installation and configuration of

GPU-related libraries such as CUDA, cudNN and NCCL

are required. This task is complicated in most HPC envi-

ronments given restrictions on user permissions and

dependency on already installed software. Thanks to the

Docker’s layer structure and the available already config-

ured images (e.g., TensorFlow, NVIDIA), it is possible to

avoid this tedious configuration, since we can stack custom

layers over those already supporting the needed GPU

libraries.

Horovod allows researchers to abstract from the com-

putational complexities involved in the adaptation to

training in distributed environments. Its use does not limit

researchers in any way, since it can be used with the most

popular deep learning frameworks with minor changes in

the syntax, which allows the standardization of the training

with respect to the framework used.

Once this basic software is installed, researchers can

move on to installing more specific things, such as the

libraries or additional programming languages that their

experiments require. During this process they can define

the versions of these, ensuring an environment fully com-

patible with their experiment.

This process can be carried out in its entirety in the local

environment, which allows researchers to test the devel-

oped environment easily and safely. Docker also has

instructions like COPY that allow copying local files to the

2820 Cluster Computing (2023) 26:2815–2834

123

image. This allows researchers to include code in the image

so that not only they can have their entire environment in a

single file, but also the code to reproduce their experiment.

In this way, researchers can easily develop a fully repro-

ducible experiment while working on it. This removes

well-known problems as libraries version mismatches or

compatibility issues, since all the elements required to

reproduce the experiment are encapsulated in the same

environment.

Once researchers have defined the Dockerfile, they own

a file that contains the specific environment of their

research, from OS to high level libraries passing through

specific dependencies and GPU-related software. For

example, a general image with GPU-support, OpenMPI,

and Horovod could be built and shared among researchers.

Taking this image as a basis, other researchers would only

need to add their code and specialized libraries to train

deep learning models in any HPC cluster under the work-

flow developed in this work.

4.2 OpenMPI and horovod integration

Parallel computing systems such as HPC clusters need

message passing approaches to communicate the different

nodes. MPI is the de facto standard when it comes to

message passing. There are many implementations of this

standard, OpenMPI [39] being the most widespread.

OpenMPI is an open-source MPI implementation that

enables efficient communications between applications on

different nodes and supports advanced protocols such as

Infiniband.

Horovod coordinates work between processes via MPI,

using OpenMPI as the basis for horovodrun, its MPI

wrapper. In addition, MPI is also needed to communicate

the different udocker containers distributed among nodes.

Due to inconsistencies between some commands, it is

necessary that the version of OpenMPI available in the

cluster and that of the udocker container match. This fact

introduces difficulties in the workflow, since now

researchers depend on the version of OpenMPI installed in

the cluster in which they run the experiment, making the

process non-cluster-agnostic. We propose several solutions

to this issue.

4.2.1 Docker tags

The most straightforward solution would be to build the

image taking into account the version of OpenMPI avail-

able in the HPC in which we want to run the experiment.

The main problem is that this solution complicates the

adaptation of the workflow to various HPC environments.

One way to tackle this problem is by using Docker tags.

Tags are names used to group an image with respect to, for

example, some version or variant. In this case, researchers

could, from their base image, upload variants to Dock-

erHub according to the OpenMPI version installed and

classify them based on tags. Hence, they can choose which

tag to pull based on the OpenMPI version available in the

HPC cluster in which they plan to run the experiment.

4.2.2 NGC catalog

NVIDIA GPU Cloud4 (NGC) is a catalog of GPU opti-

mized software developed by NVIDIA. It offers images

already built and optimized for the training of deep

learning models in multiGPU environments. Its objective is

Fig. 1 Diagram of the developed workflow

4 https://catalog.ngc.nvidia.com/.

Cluster Computing (2023) 26:2815–2834 2821

123

https://catalog.ngc.nvidia.com/

to provide researchers with ready-to-run images which they

can pull in any environment, thus avoiding complex

installations and configurations.

The images it offers are optimized and support the latest

NVIDIA hardware. They can be classified based on the

included software and applications. It also offers software

development kits (SDKs) for GPU computing in HPC

clusters. Some of these images come with Horovod and

OpenMPI integrated, so they can be used to train models in

multiGPU environments within our developed workflow as

long as these versions match the ones available in the HPC

cluster.

NVIDIA offers this as already built images, so

researchers have less control over the software installed on

them. This can lead to incompatibilities between the

included software and the one researchers need to install,

making proper configuration difficult. Furthermore, the

software included in this catalog is mainly optimized for

GPUs with an architecture equal to or more recent than

Pascal.

4.2.3 Docker entrypoint

When a container is executed, Docker runs a command that

can be defined in the Dockerfile through the ENTRYPOINT

instruction. This command is executed whenever the con-

tainer is run. It is possible to pass arguments to this com-

mand through the CMD instruction. These parameters can

be overwritten when we run the container, an example is

shown in Fig.2.

In this case, the instruction docker run \image[
makes the container run the ls command. It is possible to

overwrite what we pass to the entrypoint with docker

run \image[\cmd[. Taking this into account,

researchers could, for example, execute a certain script

when the container is started.

Based on this, we have developed a script that installs

OpenMPI and Horovod as follows:

1. Takes the versions of OpenMPI and Horovod to install

provided by the user as arguments.

2. If they are already installed, skip the process, otherwise

proceed with the installation.

3. Execute the command entered by the user as an

argument (if none is entered, execute /bin/bash).

It is possible to include this script as entrypoint in the

Dockerfile so when researchers run the container it installs

the OpenMPI and Horovod versions requested by them,

when the installation finishes the container tool (e.g.,

Docker, udocker) executes the command passed as cmd

argument. This allows having an image without OpenMPI

and Horovod installed, which gives a lot of flexibility since

researchers can define their image without taking into

account the OpenMPI version available in the cluster,

making their image cluster-agnostic. When researchers

start working in a specific cluster, they just need to run the

container, taking into account the version of OpenMPI

available there. The first time they run the container it

installs the versions required by the cluster, later executions

do not need to install them. The installation of Horovod is

needed given its dependency on OpenMPI version.

In this section, we offered three alternatives to solve the

dependency problem between OpenMPI versions in the

image and the cluster. Tags are a simple solution, although

it can complicate the researcher’s workflow since they have

to manage multiple images very similar to each other. The

NGC catalog offers images ready to run this type of

applications but limits the user to the software already

installed in them. The entrypoint approach seems to be the

best option given its flexibility, since the user ends up

having a single image that can be executed in any cluster

regardless of the OpenMPI version installed in it.

4.3 DockerHub

In addition to offering tools for building images, Docker

also offers DockerHub, a hosted repository service that

enables their distribution. Through this, it is possible to

upload images and share them with the rest of the world

through its push and pull system. Here we can also find

already built images that we can use as a basis to build our

own.

Once researchers have developed the Dockerfile of their

experiment, they can build the corresponding image and

push it to DockerHub. When researchers work in an

environment other than the local one, it is enough to pull

the image from DockerHub to have access to their work

environment. Within our developed workflow, this repos-

itory can be used as a download point for images. When

researchers start working on an HPC cluster, they just need

to pull the image from this repository and run the corre-

sponding container to have a functional environment to

train models in multiGPU settings.

DockerHub can also be useful for other researchers as

they have direct access to the work environment of their

colleagues, which facilitates both the replication of

experiments and the development of new ones based on

already developed computing environments.

In addition to DockerHub, with udocker researchers can

use any other private repository to pull images from. In this
Fig. 2 Dockerfile’s code to run a command by default when the

container is executed

2822 Cluster Computing (2023) 26:2815–2834

123

work we focus on DockerHub, but the extension to a dif-

ferent repository is trivial.

4.4 Dockerfile good practices

The Dockerfile is composed of code so, as in this kind of

project, it is important to follow best practices to produce

clean, understandable and functional code. Docker includes

in its official documentation the best practices for Dock-

erfile.5 If these recommended practices are not followed,

we will generate a poor quality Dockerfile. According to

the nomenclature of configuration smells [40], the

instructions that contribute to deteriorating this quality are

known as Dockerfile smells.

In [41] these smells are classified into two main groups:

DL-smells and SC-smells. The former is related to the

violation of Docker best practices and contributes to

building failures, increased build latency and security

issues. The latter is related to best practices of shell

scripting, a fundamental pillar of Dockerfile, its violation

can cause strange behaviors and failures under certain

conditions.

In [41] a study of the number of projects affected by

these smells is carried out. It concludes that 84% of the

Dockerfiles studied have some kind of smell. In the case of

our developed workflow, it is important to control this

mainly for two reasons. The first is to make our work

environment understandable and ease maintainability. The

second is to generate a clean and light image, since in our

workflow we transmit the image over the network (Dock-

erHub) between our local environment and the HPC

clusters.

Some specified smells contribute to increasing the size

of the images, these are known as temporary file smells

[42]. We have already seen that each command in the

Dockerfile generates a layer that once stacked is read-only.

Therefore, Docker images can be considered as append-

only. If in one of these layers we generate a temporary file

and subsequently we delete it in another, the space is not

freed, only its reference is removed (the original layer with

the temporary file is read-only and has its own filesystem).

Therefore, if we want to delete temporary files, we must do

it in the same layer in which they are generated, that is, the

same Dockerfile command that generates those files is the

one that must also delete them.

There are many ways to avoid these smells: using ADD

instead of COPY when we want to decompress a local file

in our image, avoiding the use of temporary files, or always

ending the shell command with an rm. It is important to

take all this into account to reduce the time elapsed on push

and pulls.

Some tools help us detect and correct Dockerfile smells,

one of these is Haskell Dockerfile Linter. This parses the

Dockerfile into an abstract syntax tree and applies rules to

see if best practices are followed, if not, it detects the smell

and provides the solution to the user. There is an online

version6 in which the Dockerfile is pasted and returns the

smells and their solutions. Researchers can use this tool to

remove smells, especially those that contribute to large

image size. This can be done once the Dockerfile has been

developed, so the image pushed to Dockerhub is already

the optimized one, preferably through software quality

assurance tools [43].

4.5 udocker

As we have already seen, the dependence on administrator

intervention or recent Linux kernel features of most of the

containerization tools made udocker a perfect candidate for

virtualization: it only depends on Python, can be executed

under different execution modes and can be installed with

not more than the user’s privileges. Hereby, udocker is in

charge of providing us with the virtualized runtime

environment.

To work with udocker, researchers must install it on the

cluster where they will launch their experiments. The main

requirement is the availability of Python, which should be

straightforward given that this programming language is

currently the most popular according to the PopularitY of

Programming Language (PYPL) index,7 especially in data

science and scientific computing fields. It also requires

some basic tools like tar, find and curl which are

usually available in such environments. udocker can be

installed in multiple ways such as GitHub, tarballs or pip.

Figure 3 shows an example of installation via GitHub. This

code downloads and executes the udocker Python script

and installs the required dependencies. Once this is done,

researchers have an executable that can use to run all the

udocker commands.

To run a container, udocker uses a syntax similar to

Docker. Suppose researchers have developed a Dockerfile

under this workflow, they have uploaded the image to

DockerHub and installed udocker on the cluster. To create

a container following, for example, the approach of Sect.

4.2.3, they just need to execute the code of Fig. 4. First, the

image is pulled from DockerHub to the cluster and the

corresponding container is created. Then with the com-

mand udocker --setup nvidia the necessary host

libraries are added to the container so that it has access to

5 https://docs.docker.com/develop/develop-images/dockerfile_best-

practices/.

6 https://hadolint.github.io/hadolint/.
7 https://pypl.github.io/PYPL.html.

Cluster Computing (2023) 26:2815–2834 2823

123

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://hadolint.github.io/hadolint/
https://pypl.github.io/PYPL.html

the GPUs of the node. Finally, the container is executed,

specifying the version of OpenMPI (the same as in the

cluster) and Horovod to install. Once finished, a container

ready to distribute the training of deep learning models in

the cluster is configured.

To distribute the training, OpenMPI submits the pro-

cesses as containers, so in each node a different copy of the

container can be found. These containers can communicate

between each other, allowing for parallel computation.

Horovod coordinates distributed work via MPI, so in this

case it is straightforward to communicate the different

deployed containers as workers, allowing for the paral-

lelization of the training. It is possible to use the

horovodrun API or directly OpenMPI through mpirun

and mpiexec. In the official Horovod documentation8

researchers can find how to execute their container through

these two approaches. This is straightforward and requires

no adjustments. We recommend using the OpenMPI

approach directly to have more control over the execution

of the processes.

Figure 5 shows an example of code to run an experiment

in an HPC cluster via udocker. In this case, the execution of

a script is being distributed across 2 nodes with 2 GPUs

each (4 GPUs in total). Given that this is executed through

a job in a Slurm batch system, the SBATCH directives must

be defined. These depend on the cluster configuration and

the batch system in use, although they do not usually vary

much. Then the cluster’s OpenMPI is loaded and the

mpirun parameters defined (we took as reference the

Horovod documentation mentioned before). By default, all

communication between GPUs is carried out through

NCCL and the rest through MPI, taking advantage of low

latency communications through specialized interconnects

such as Infiniband.

Finally, udocker run is executed through mpirun

which is responsible for distributing the container in the

selected nodes and communicating all the processes.

Fig. 3 Bash script to install

udocker via GitHub

Fig. 4 Bash script to create and

configure an udocker container

8 https://horovod.readthedocs.io/en/stable/.

2824 Cluster Computing (2023) 26:2815–2834

123

https://horovod.readthedocs.io/en/stable/

udocker takes as input the information related to the

researcher’s user in the cluster, the path to the volume to

mount in the container and the command to execute. If this

command runs a Python script with a Horovod adapted

deep learning training, it will be automatically distributed

across the selected nodes.

The conjunction between DockerHub and udocker pro-

vides researchers with an easily shareable workflow

between their local and HPC environment in which they

will run their experiments. They can develop their image

locally with Docker, upload it to DockerHub and access it

through udocker on any HPC cluster. They could also run

their experiment with Docker on a small scale in their local

environment to verify that everything works correctly and

once it is ready, upload it to DockerHub to pull it to the

HPC cluster and run it. Once researchers own a ready-to-

use image of their working environment, they can work

across multiple clusters without the need for specific

installations or root access, they just need to pull the image

from DockerHub to the respective cluster and start working

with their custom environment.

This methodology provides researchers with a dynamic

workflow between local environments and HPC clusters,

avoiding complex installations based on the environment

used (which would be the case if containerization is not

used) and providing them with a closed environment that

facilitates the deployment of experiments in a cluster-ag-

nostic way.

5 Evaluation

In this section we present the developed experiments to

assess the characteristics of the workflow presented in this

work: cluster-agnosticism and scaling efficiency. For the

former, different scientific workflows are executed in dif-

ferent clusters, using the same starting image as well as the

same code. For the latter, different deep learning models

are trained in various multiGPU distributed environments

with the aim to study its scalability. The code9 (including

Fig. 5 Example of bash code to

run an experiment through an

udocker container in an HPC

cluster using Slurm

9 https://github.com/IFCA/workflow-DL-HPC.

Cluster Computing (2023) 26:2815–2834 2825

123

https://github.com/IFCA/workflow-DL-HPC

Dockerfiles) and the Docker images10 for these experi-

ments are publicly available.

5.1 TensorFlow benchmark

Horovod includes TensorFlow Benchmark,11 an imple-

mentation of SOTA deep learning models used to test

training performance both in CPU and GPU environments.

This benchmark allows training models like ResNet [44],

InceptionV3 [45] and DenseNet [46] on synthetic and real

data. Particularly, we have trained ResNet50, ResNet101

and InceptionV3 on synthetic data to avoid disk I/O

uncertainty. Table 1 shows key characteristics of the

models employed.

The objective of this experiment is to verify that the

containerization environment scales correctly with respect

to the number of GPUs and the number of nodes in com-

parison with a non-containerized scenario. For this, we

train these models in a containerized and non-containerized

(native) environments. The former is implemented through

the developed workflow, while the latter is not.

This experiment requires a basic environment with a

GPU based Tensorflow and Horovod installation. For the

workflow test we have prepared a basic image12 satisfying

these requisites (OpenMPI and Horovod versions issue is

addressed by the technique described in Sect. 4.2.3). This

image can be used as a basis for building more complex

environments. udocker allows the use of different execu-

tion modes for running the containers, we have opted for

the default (P1) which uses the PRoot model with SEC-

COMP filtering (we refer the reader to [14] for more

details). For the native environment we had to depend on

software already installed on the HPC cluster, in addition

to manually performed installations. For this last part we

relied on Anaconda,13 one of the most popular set of

packages and tools among the data science community.

This installation is generally more complex than our pro-

posed method, since we heavily depend on the versions of

the software installed in the cluster. For example, the

version of cudatoolkit available through Anaconda does

not include the NVIDIA CUDA compiler (NVCC), so

users must install it manually from the NVIDIA reposito-

ries, taking into account the actual driver and CUDA ver-

sion of the cluster. Dependency management is also a

complex task, requiring specific configurations to avoid

incompatibilities between the different components of the

NVIDIA toolkit, as well as requiring the configuration of

additional libraries for MPI implementation. Horovod

provides documentation for the proper configuration in a

local environment.14

5.2 Empirical statistical downscaling

Climate modelling plays a critical role in decision-making,

in areas ranging from agriculture and health to tourism and

economy. This information is generated by Global Circu-

lation Models (GCMs), mathematical models that compute

the climate system components and their interactions.

These models are highly complex, so the generated pre-

dictions suffer from a coarse spatial resolution. Sometimes

it is necessary for this information to be available at a

higher-resolution in order to make decisions on local scale.

Empirical statistical downscaling (ESD, [47]) methods aim

to learn a statistical relationship between a set of low-res-

olution variables and a high-resolution variable of interest.

When these variables lean on observational records, we

work under the perfect-prognosis approach (PP-ESD).

Given the success of deep learning in fields like com-

puter vision, these kinds of techniques have recently been

successfully applied to PP-ESD [48–50]. In particular,

convolutional neural networks have been positioned as a

promising approach given the ability to model relationships

where the data present a spatial structure.

We develop a PP-ESD experiment following the

framework presented in [49]. We downscale precipitation

over the region of North America using deep learning

techniques. As predictor we use five thermodynamical

variables at four different vertical levels of the ERA-

Interim reanalysis dataset [51] (2� resolution) and as pre-

dictand the daily accumulated precipitation from EWEMBI

[52] (0:5� resolution). We train the model in the period

spanned by the years 1979–2002. ERA-Interim data can be

downloaded from the ECMWF website15 and EWEMBI

dataset is available at ISIMIP.16

Table 1 Characteristics of the models trained in the TensorFlow

Benchmark experiment

Model Number of parameters Batch size per GPU

InceptionV3 23,851,784 256

ResNet50 25,636,712 256

ResNet101 44,707,176 128

10 https://hub.docker.com/r/gonzabad/multigpu-horovod.
11 https://github.com/horovod/horovod/tree/master/examples/

tensorflow2.
12 https://hub.docker.com/layers/gonzabad/multigpu-horovod/base/

images/sha256-2b04fcdb1f7727abb4ba67fcaa12aefe36d2606

f1a25ef97bcab8be6ae7e7c00?context=explore.
13 https://www.anaconda.com/.

14 https://horovod.readthedocs.io/en/stable/conda_include.html.
15 https://www.ecmwf.int/.
16 https://www.isimip.org/.

2826 Cluster Computing (2023) 26:2815–2834

123

https://hub.docker.com/r/gonzabad/multigpu-horovod
https://github.com/horovod/horovod/tree/master/examples/tensorflow2
https://github.com/horovod/horovod/tree/master/examples/tensorflow2
https://hub.docker.com/layers/gonzabad/multigpu-horovod/base/images/sha256-2b04fcdb1f7727abb4ba67fcaa12aefe36d2606f1a25ef97bcab8be6ae7e7c00?context=explore
https://hub.docker.com/layers/gonzabad/multigpu-horovod/base/images/sha256-2b04fcdb1f7727abb4ba67fcaa12aefe36d2606f1a25ef97bcab8be6ae7e7c00?context=explore
https://hub.docker.com/layers/gonzabad/multigpu-horovod/base/images/sha256-2b04fcdb1f7727abb4ba67fcaa12aefe36d2606f1a25ef97bcab8be6ae7e7c00?context=explore
https://www.anaconda.com/
https://horovod.readthedocs.io/en/stable/conda_include.html
https://www.ecmwf.int/
https://www.isimip.org/

We have developed a custom model exclusively com-

posed of convolutional layers, what makes it fully-convo-

lutional. Our objective with this experiment is not to

improve the accuracy of previous models, but to prove that

the workflow possess benefits for a real scientific case.

Table 2 shows details of the model trained.

In this case we work with R and Python. The former is

used to pre-process and post-process the data, while the

latter is responsible to distribute the training of the model

(via Horovod). Training has been implemented with Keras,

a high level API of TensorFlow. To adapt it to Horovod we

only needed to add a few lines of code. This has been done

following the official Horovod documentation. In this

experiment the use of R is also justified by climate4R [53],

a bundle of R packages for access, pre-process, post-pro-

cess and visualization of climate data. In this case, to

configure the environment we just need to add to the

Dockerfile the commands required to install R and cli-

mate4R. As a result, we get a ready-to-use image satisfying

the requirements of our experiment.

The goal of this experiment is to show how the work-

flow can help in moving experiments between clusters

while maintaining its scalability in multiGPU environ-

ments. This experiment was executed in a different cluster

from the previous one, however it was not necessary to

apply substantial changes to the workflow. The image built

for this experiment17 was developed using as basis the

image from the TensorFlow Benchmark experiment, solely

adding the software required for this second experiment.

The scheduling of the jobs has been done in the same way

in both experiments (following the indications of Sect. 4.5),

modifying only the SBATCH directives since they depend

on specific configurations of each cluster. This has been

possible thanks to the workflow developed and its cluster-

agnosticism feature.

6 Cluster setup

The experiments have been executed on two different

computing clusters: one at the Spanish National Research

Council (CSIC) deep learning computing infrastructure

located at the Institute of Physics of Cantabria (IFCA,

CSIC–UC) in Spain and ForHLR2 at the Karlsruhe Insti-

tute of Technology (KIT) in Germany. Within these clus-

ters the nodes with GPUs are the ones accessed. Table 3

shows the specifications of each of these two clusters.

The experiments of Sect. 5.1 have been executed at

IFCA while those of Sect. 5.2 at ForHLR2.

7 Results

7.1 TensorFlow benchmark

For this experiment, we have trained the three models

mentioned in Sect. 5.1 in configurations of 1, 2, 3, 4, 5 and

6 GPUs. Training sessions consisted of 10 warm-up itera-

tions (not counting towards measurements) and 10 itera-

tions from which the final measures were obtained. Each

iteration processed 10 batches of data, each with the

number of synthetic samples specified in Table 1.

Figure 6 shows the speedup achieved for the six con-

figurations concerning the number of images processed per

second when training the models under the udocker

workflow. For one and two nodes the speedup in training is

very close to the ideal. For the configurations running on

three nodes, although not ideal, acceptable results are

achieved. Among the models, ResNet101 is the one that

scales the worst, followed by the ResNet50 and Incep-

tionV3. This order coincides with the number of parame-

ters, the more parameters the model has, the lower the

speedup.

Figure 7 shows the results for the same experiment but

in the native environment. These depict a similar trend in

the scalability with respect to the workflow experiment,

however the speedup seems to be a little bit closer to the

ideal one. In addition, the difference in speedup between

the three models is smaller, although it can still be

appreciated.

Finally, Figures 8, 9 and 10 compare the images pro-

cessed per second in the different configurations under the

udocker workflow and the native environment. Values

represented as bars correspond to the mean of images per

second across the different iterations. Within each bar it

can be seen the 95% confidence interval for these mea-

surements. Concerning udocker and native environments,

no significant differences are observed between models,

especially for one and two nodes. For three nodes a max-

imum difference of 3% of processed images in favor of the

native environment is observed, although differences ben-

efiting the udocker workflow can also be found (e.g.,

InceptionV3).

7.2 Statistical downscaling

This experiment has been executed in the ForHLR2 cluster.

The GPUs available had 6 GB of memory, which was not

enough to train the model for the statistical downscaling

task when using a batch size of more than 32 samples. We

have avoided this issue by scaling the training to more than

one GPU. More specifically, we ran the experiment in

configurations of 1, 2, 3 and 4 GPUs accessing a single

17 https://hub.docker.com/layers/gonzabad/multigpu-horovod/down

scaling/images/sha256-d695141efc6677e0ac38e6702c5a0c580ed8b

c7613a6e5063e609c3e83a738b1?context=explore.

Cluster Computing (2023) 26:2815–2834 2827

123

https://hub.docker.com/layers/gonzabad/multigpu-horovod/downscaling/images/sha256-d695141efc6677e0ac38e6702c5a0c580ed8bc7613a6e5063e609c3e83a738b1?context=explore
https://hub.docker.com/layers/gonzabad/multigpu-horovod/downscaling/images/sha256-d695141efc6677e0ac38e6702c5a0c580ed8bc7613a6e5063e609c3e83a738b1?context=explore
https://hub.docker.com/layers/gonzabad/multigpu-horovod/downscaling/images/sha256-d695141efc6677e0ac38e6702c5a0c580ed8bc7613a6e5063e609c3e83a738b1?context=explore

node. For this, we have deployed the distributed training

across GPUs with the udocker workflow. Although all

GPUs were located on a single node, we still benefited

from the Horovod framework. This has allowed us to work

with batch sizes of 32, 64, 96 and 128 samples (1, 2, 3 and

4 GPUs respectively).

Figure 11 shows the number of images processed per

second concerning the number of GPUs. Results depict an

optimal scalability given the similarity between the ideal

scenario and the amount of images processed.

Figure 12 shows the evolution of the loss during training

with respect to the number of GPUs. For 1, 2 and 3 GPUs

(effective batch size of 32, 64 and 96 respectively) a

similar convergence rate can be seen, however for 4 GPUs

a slower evolution of the loss is observed, although it ends

up reaching the same value.

8 Discussion

The presented results show that it is possible to efficiently

distribute the training of deep learning models in HPC

clusters with the developed workflow. The differences

observed in performance between udocker and the native

environment are minimal, highlighting an advantage of less

than 3% in images processed per second towards the latter.

This is an expected effect, since any type of containeriza-

tion or virtualization can introduce overhead, although it is

Table 2 Characteristics of the fully-convolutional model trained in the Statistical Downscaling experiment

Number of parameters Input size Output size Batch size per GPU Optimizer Learning rate

1,615,671 (30, 53, 20) (117, 209, 3) 32 Adam 0.0001

Table 3 Specifications (rows) for the two different clusters (columns) accessed for the different experiments

CSIC DL infrastructure ForHLR2

CPU Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GH Intel Xeon E7-4830 v3 processors @ 2.10GH

Memory 64 GB 1 TB

GPU NVIDIA Tesla V100 NVIDIA GeForce GTX980 Ti

GPU Memory 32 GB 6 GB

GPUs per node 2 4

GPU nodes 20 21

Connection InfiniBand EDR NVIDIA Mellanox ConnectX-5 cards InfiniBand 4X EDR Interconnect

Operating system Ubuntu 18.04.4 LTS Red Hat Enterprise Linux (RHEL) 7.x

Storage General Parallel File System (GPFS [54]) Lustre [55]

Fig. 6 Speedup plot for the

TensorFlow Benchmark

experiment using udocker over

the different GPU

configurations

2828 Cluster Computing (2023) 26:2815–2834

123

usually minimal [29]. No comparisons have been made

with models trained with other tools like Singularity, as it

has been already seen that their performance is very similar

[34].

Fig. 7 Speedup plot for the

TensorFlow Benchmark

experiment using the native

environment over the different

GPU configurations

Fig. 8 Comparison of images

processed per second when

training the InceptionV3 model.

The values represented

correspond to the mean across

different iterations. The 95%
confidence interval can be found

within each bar

Fig. 9 Comparison of images

processed per second when

training the ResNet50 model.

The values represented

correspond to the mean across

different iterations. The 95%
confidence interval can be found

within each bar

Cluster Computing (2023) 26:2815–2834 2829

123

Regarding the number of GPUs, the results show a small

deviation from the ideal scalability. This is expected both

in a containerized environment and in a native one since

the distribution of the training introduces difficulties (i.e.

communication between workers) that slightly damage the

speedup. A worse scalability is also observed with respect

Fig. 10 Comparison of images

processed per second when

training the ResNet101 model.

The values represented

correspond to the mean across

different iterations. The 95%
confidence interval can be found

within each bar

Fig. 11 Images processed per

second when training the

statistical downscaling model

using udocker

Fig. 12 Training Loss (Negative

Log Likelihood) evolution

during training of the statistical

downscaling model

2830 Cluster Computing (2023) 26:2815–2834

123

to the number of parameters of the model, this is due to the

increase in the communication time between workers: the

greater the model, the more data (parameters) need to

communicate over the network. This effect is most

noticeable when using udocker, as additional operations are

required between workers given the containerization layer.

Although in the case of statistical downscaling the dif-

ferent models achieve a similar loss value, they do it at

different speeds. This is an effect generally caused by the

use of large batch sizes [56]. Although advanced tech-

niques exist to mitigate this effect, we followed the Hor-

ovod recommendations and used a linear scaling of the

learning rate based on the number of GPUs, obtaining an

acceptable learning result regardless of the batch size.

The statistical downscaling experiment has been exe-

cuted in a different cluster than the TensorFlow bench-

mark, however both the deep learning framework and all

the libraries it depends on have been installed following the

same image. Also, the scripts to run the jobs have been

shared between experiments. Despite significant differ-

ences between clusters, such as the GPU model or the

operating system on which they run (see Sect. 6), there

have been no compatibility issues and the experiments

have been executed directly, proving the cluster-agnosti-

cism of the workflow.

Installation and configuration of the required software in

the clusters for both experiments has been carried out with

no need of administrators intervention given the non-root

nature of the tools conforming the workflow. The images of

both experiments have been developed in a local machine,

transferring them to the HPC cluster via Dockerhub. These

facts enable users with the autonomy to control their

experiments in a more dynamic way, without depending on

external individuals.

9 Conclusions

This work presents a methodology and workflow based on

containers to perform distributed training of deep learning

models in HPC clusters. It covers the entire process

required for this purpose, from the development of the

environment to its distribution and execution. In this way,

domain scientists who need to apply deep learning algo-

rithms can take advantage of the computing power avail-

able in HPC clusters. We have shown that this method

scales well with respect to the number of GPUs and nodes

thanks to the use of udocker. We have conducted experi-

ments with a real scientific use case proving that learning is

not affected.

Using Docker containers to encapsulate the execution of

scientific user applications poses benefits in order to port

and execute the workloads in HPC environments. The

workflow developed also offers a number of advantages

over more conventional ones: improves transferability

between different clusters, promotes scientific collabora-

tion and sharing between communities, allows for a more

dynamic research cycle given its non-root nature and per-

mits the use of the latest software in a secure way at HPC

clusters. With this work we hope to encourage domain

scientists to make use of these computing resources in

order to further advance their research.

Acknowledgements Authors would like to acknowledge the Euro-

pean Centre for Medium-Range Weather Forecasts (ECMWF) for the

ERA-Interim dataset and Potsdam Institute for Climate Impact

Research for the EWEMBI dataset.

Author contributions All authors contributed equally to the study

conception and design of the workflow. All authors read and approved

the final manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature. This work has been supported by the

project DEEP-Hybrid-DataCloud ‘‘Designing and Enabling E-infra-

structures for intensive Processing in a Hybrid DataCloud’’ that has

received funding from the European Union’s Horizon 2020 research

and innovation programme under Grant Agreement Number 777435.

J. González-Abad and A. López Garcı́a would also like to acknowl-

edge the support of the funding from the Spanish Agencia Estatal de
Investigación through the Unidad de Excelencia Marı́a de Maeztu
with reference MDM-2017-0765. A part of this work was performed

on the supercomputer ForHLR funded by the Ministry of Science,

Research and the Arts Baden-Württemberg and by the Federal Min-

istry of Education and Research.

Data availability Data and materials are available, URLs are provided

through the manuscript

Code availability Code is available, URLs are provided through the

manuscript.

Declarations

Conflict of interest Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Cluster Computing (2023) 26:2815–2834 2831

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

References

1. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT

Press, Cambridge (2006)

2. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic par-

ticles in high-energy physics with deep learning. Nat. Commun.

5(1), 1–9 (2014). https://doi.org/10.1038/ncomms5308

3. de Oliveira, L., Kagan, M., Mackey, L., Nachman, B.,

Schwartzman, A.: Jet-images–deep learning edition. J. High

Energy Phys. 2016(7), 1–32 (2016). https://doi.org/10.1007/

JHEP07(2016)069

4. Tuccillo, D., Huertas-Company, M., Decencière, E., Velasco-

Forero, S., Domı́nguez Sánchez, H., Dimauro, P.: Deep learning

for galaxy surface brightness profile fitting. Mon. Not. R. Astron.

Soc. 475(1), 894–909 (2018). https://doi.org/10.1093/mnras/

stx3186

5. Primack, J., Dekel, A., Koo, D., Lapiner, S., Ceverino, D.,

Simons, R., Snyder, G., Bernardi, M., Chen, Z., Domı́nguez-

Sánchez, H., et al.: Deep learning identifies high-z galaxies in a

central blue nugget phase in a characteristic mass range. Astro-

phys. J. 858(2), 114 (2018)

6. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,

Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek, A.,

Potapenko, A., et al.: Highly accurate protein structure prediction

with alphafold. Nature 596(7873), 583–589 (2021). https://doi.

org/10.1038/s41586-021-03819-2

7. Scher, S.: Toward data-driven weather and climate forecasting:

Approximating a simple general circulation model with deep

learning. Geophys. Res. Lett. 45(22), 12–616 (2018). https://doi.

org/10.1029/2018GL080704

8. Rasp, S., Pritchard, M.S., Gentine, P.: Deep learning to represent

subgrid processes in climate models. Proc. Natl. Acad. Sci.

115(39), 9684–9689 (2018). https://doi.org/10.1073/pnas.

1810286115

9. López Garcı́a, Á., Marco de Lucas, J., Antonacci, M., Zu Castell,

W., David, M., Hardt, M., Lloret Iglesias, L., Moltó, G., Ploci-

ennik, M., Tran, V., Alic, A.S., Caballer, M., Campos Plasencia,

I., Costantini, A., Dlugolinsky, S., Duma, D.C., Donvito, G.,

Gomes, J., Heredia Cacha, I., Ito, K., Kozlov, V.Y., Nguyen, G.,

Orviz Fernández, P., Šustr, Z., Wolniewicz, P.: A cloud-based

framework for machine learning workloads and applications.

IEEE Access 8, 18681–18692 (2020). https://doi.org/10.1109/

ACCESS.2020.2964386

10. Merkel, D.: Docker: lightweight linux containers for consistent

development and deployment. Linux J. 239, 2 (2014)

11. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific

containers for mobility of compute. PLoS ONE 12(5), 0177459
(2017). https://doi.org/10.1371/journal.pone.0177459

12. Priedhorsky, R., Randles, T.: Charliecloud: unprivileged con-

tainers for user-defined software stacks in hpc. In: Proceedings of

the international conference for high performance computing,

networking, storage and analysis, pp. 1–10 (2017). https://doi.org/

10.1145/3126908.3126925

13. Gerhardt, L., Bhimji, W., Canon, S., Fasel, M., Jacobsen, D.,

Mustafa, M., Porter, J., Tsulaia, V.: Shifter: containers for hpc.

J. Phys.: Conf. Ser. 898, 082021 (2017). https://doi.org/10.1088/

1742-6596/898/8/082021

14. Gomes, J., Bagnaschi, E., Campos, I., David, M., Alves, L.,

Martins, J., Pina, J., Lopez-Garcia, A., Orviz, P.: Enabling root-

less linux containers in multi-user environments: the udocker

tool. Comput. Phys. Commun. 232, 84–97 (2018). https://doi.org/

10.1016/j.cpc.2018.05.021

15. Younge, A.J., Pedretti, K., Grant, R.E., Brightwell, R.: A tale of

two systems: using containers to deploy hpc applications on

supercomputers and clouds. In: 2017 IEEE international

conference on cloud computing technology and science (Cloud-

Com), pp. 74–81. , IEEE (2017). https://doi.org/10.1109/Cloud

Com.2017.40.

16. Brayford, D., Vallecorsa, S., Atanasov, A., Baruffa, F., Riviera,

W.: Deploying AI frameworks on secure HPC systems with

containers. In: 2019 IEEE high performance extreme computing

conference (HPEC), pp. 1–6 (2019). https://doi.org/10.1109/

HPEC.2019.8916576

17. Brayford, D., Vallecorsa, S.: Deploying scientific al networks at

petaflop scale on secure large scale HPC production systems with

containers. In: Proceedings of the platform for advanced scientific

computing conference. PASC ’20, pp. 1–8. Association for

Computing Machinery, New York, NY, USA (2020). https://doi.

org/10.1145/3394277.3401850

18. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed

deep learning in TensorFlow. arXiv:1802.05799 [cs, stat] (2018).

https://doi.org/10.48550/arXiv.1802.05799

19. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A.N., Kaiser, L.u., Polosukhin, I.: Attention is all you

need. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H.,

Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in

neural information processing systems, vol. 30, pp. 5998–6008

(2017). https://papers.nips.cc/paper/2017/hash/3f5ee243547dee9

1fbd053c1c4a845aa-Abstract.html

20. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila,

T.: Analyzing and improving the image quality of StyleGAN. In:

2020 IEEE/CVF conference on computer vision and pattern

recognition (CVPR), pp. 8107–8116 (2020). https://doi.org/10.

1109/CVPR42600.2020.00813

21. Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López Garcı́a,

Á., Heredia, I., Malı́k, P., Hluchý, L.: Machine learning and deep

learning frameworks and libraries for large-scale data mining: a

survey. Artif. Intell. Rev. 52(1), 77–124 (2019). https://doi.org/

10.1007/s10462-018-09679-z

22. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,

Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M.,

Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B.,

Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y.,

Zheng, X.: Tensorflow: a system for large-scale machine learn-

ing. In: 12th USENIX symposium on operating systems design

and implementation (OSDI 16), pp. 265–283. USENIX Associ-

ation, Savannah, GA (2016)

23. Chollet, F., et al.: Keras (2015). https://keras.io

24. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,

G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,

A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,

Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:

PyTorch: An imperative style, high-performance deep learning

library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-

Buc, F.d., Fox, E., Garnett, R. (eds.) Advances in neural infor-

mation processing systems, vol. 32, pp. 8024–8035 (2019).

https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7

012727740-Abstract.html

25. Patarasuk, P., Yuan, X.: Bandwidth optimal all-reduce algorithms

for clusters of workstations. J. Parallel Distrib. Comput. 69(2),
117–124 (2009). https://doi.org/10.1016/j.jpdc.2008.09.002

26. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux

utility for resource management. In: Feitelson, D., Rudolph, L.,

Schwiegelshohn, U. (eds.) Job scheduling strategies for parallel

processing. Lecture notes in computer science, pp. 44–60.

Springer, Berlin (2003). https://doi.org/10.1007/10968987_3

27. Oesterle, F., Ostermann, S., Prodan, R., Mayr, G.J.: Experiences

with distributed computing for meteorological applications: grid

computing and cloud computing. Geosci. Model Dev. 8(7),
2067–2078 (2015). https://doi.org/10.5194/gmd-8-2067-2015

2832 Cluster Computing (2023) 26:2815–2834

123

https://doi.org/10.1038/ncomms5308
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1093/mnras/stx3186
https://doi.org/10.1093/mnras/stx3186
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1029/2018GL080704
https://doi.org/10.1029/2018GL080704
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1109/ACCESS.2020.2964386
https://doi.org/10.1109/ACCESS.2020.2964386
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.1088/1742-6596/898/8/082021
https://doi.org/10.1088/1742-6596/898/8/082021
https://doi.org/10.1016/j.cpc.2018.05.021
https://doi.org/10.1016/j.cpc.2018.05.021
https://doi.org/10.1109/CloudCom.2017.40.
https://doi.org/10.1109/CloudCom.2017.40.
https://doi.org/10.1109/HPEC.2019.8916576
https://doi.org/10.1109/HPEC.2019.8916576
https://doi.org/10.1145/3394277.3401850
https://doi.org/10.1145/3394277.3401850
http://arxiv.org/abs/1802.05799
https://doi.org/10.48550/arXiv.1802.05799
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/CVPR42600.2020.00813
https://doi.org/10.1109/CVPR42600.2020.00813
https://doi.org/10.1007/s10462-018-09679-z
https://doi.org/10.1007/s10462-018-09679-z
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1016/j.jpdc.2008.09.002
https://doi.org/10.1007/10968987_3
https://doi.org/10.5194/gmd-8-2067-2015

28. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated

performance comparison of virtual machines and Linux con-

tainers. In: 2015 IEEE international symposium on performance

analysis of systems and software (ISPASS), pp. 171–172 (2015).

https://doi.org/10.1109/ISPASS.2015.7095802

29. Torrez, A., Randles, T., Priedhorsky, R.: HPC Container runtimes

have minimal or no performance impact. In: 2019 IEEE/ACM

international workshop on containers and new orchestration

paradigms for isolated environments in HPC (CANOPIE-HPC),

pp. 37–42 (2019). https://doi.org/10.1109/CANOPIE-HPC49598.

2019.00010

30. Chung, M.T., Quang-Hung, N., Nguyen, M.-T., Thoai, N.: Using

Docker in high performance computing applications. In: 2016

IEEE sixth international conference on communications and

electronics (ICCE), pp. 52–57 (2016). https://doi.org/10.1109/

CCE.2016.7562612

31. Sparks, J.: Enabling Docker for HPC. Concurr. Comput.: Pract.

Exp. 31(16), 5018 (2019). https://doi.org/10.1002/cpe.5018

32. Azab, A.: Enabling Docker containers for high-performance and

many-task computing. In: 2017 IEEE international conference on

cloud engineering (IC2E), pp. 279–285 (2017). https://doi.org/10.

1109/IC2E.2017.52

33. Jacobsen, D.M., Canon, R.S.: Contain this, unleashing docker for

HPC. In: Proceedings of the cray user group, p. 8 (2015)

34. Grupp, A., Kozlov, V., Campos, I., David, M., Gomes, J.,

López Garcı́a, Á.: Benchmarking deep learning infrastructures by

means of tensorflow and containers. In: Weiland, M., Juckeland,

G., Alam, S., Jagode, H. (eds.) High performance computing.

Lecture notes in computer science, pp. 478–489. Springer, Cham

(2019). https://doi.org/10.1007/978-3-030-34356-9_36

35. Gantikow, H., Walter, S., Reich, C.: Rootless containers with

podman for HPC. In: Springer (ed.) International conference on

high performance computing, pp. 343–354 (2020). https://doi.

org/10.1007/978-3-030-59851-8_23

36. Gamblin, T., LeGendre, M., Collette, M.R., Lee, G.L., Moody,

A., De Supinski, B.R., Futral, S.: The spack package manager:

bringing order to hpc software chaos. In: Proceedings of the

international conference for high performance computing, net-

working, storage and analysis, pp. 1–12 (2015). https://doi.org/

10.1145/2807591.2807623

37. Höb, M., Kranzlmüller, D.: Enabling easey deployment of con-

tainerized applications for future hpc systems. In: Springer (ed.)

International conference on computational science, pp. 206–219

(2020). https://doi.org/10.1007/978-3-030-50371-0_15

38. Canon, R.S., Younge, A.: A case for portability and repro-

ducibility of hpc containers. In: IEEE (ed.) 2019 IEEE/ACM

international workshop on containers and new orchestration

paradigms for isolated environments in HPC (CANOPIE-HPC),

pp. 49–54 (2019). https://doi.org/10.1109/CANOPIE-HPC49598.

2019.00012

39. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J.,

Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine,

A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall, T.S.:

Open MPI: Goals, concept, and design of a next generation MPI

implementation. In: Proceedings, 11th European PVM/MPI

users’ group meeting, Budapest, Hungary, pp. 97–104 (2004).

https://doi.org/10.1007/978-3-540-30218-6_19

40. Sharma, T., Fragkoulis, M., Spinellis, D.: Does your configura-

tion code smell? In: 2016 IEEE/ACM 13th working conference

on mining software repositories (MSR), pp. 189–200 (2016)

41. Wu, Y., Zhang, Y., Wang, T., Wang, H.: Characterizing the

occurrence of dockerfile smells in open-source software: an

empirical study. IEEE Access 8, 34127–34139 (2020). https://doi.
org/10.1109/ACCESS.2020.2973750

42. Lu, Z., Xu, J., Wu, Y., Wang, T., Huang, T.: An empirical case

study on the temporary file smell in dockerfiles. IEEE Access 7,

63650–63659 (2019). https://doi.org/10.1109/ACCESS.2019.

2905424

43. Orviz Fernández, P., David, M., Duma, D.C., Ronchieri, E.,

Gomes, J., Salomoni, D.: Software quality assurance in INDIGO-

datacloud project: a converging evolution of software engineering

practices to support European research e-infrastructures. J. Grid

Comput. 18(1), 81–98 (2020). https://doi.org/10.1007/s10723-

020-09509-z

44. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for

image recognition. In: 2016 IEEE conference on computer vision

and pattern recognition (CVPR), pp. 770–778 (2016). https://doi.

org/10.1109/CVPR.2016.90

45. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,

D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with

convolutions. In: 2015 IEEE conference on computer vision and

pattern recognition (CVPR), pp. 1–9 (2015). https://doi.org/10.

1109/CVPR.2015.7298594

46. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.:

Densely connected convolutional networks. In: 2017 IEEE con-

ference on computer vision and pattern recognition (CVPR),

pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243

47. Maraun, D., Widmann, M.: Statistical downscaling and bias

correction for climate research. Cambridge University Press,

Cambridge (2018)

48. Vandal, T., Kodra, E., Ganguly, S., Michaelis, A., Nemani, R.,

Ganguly, A.R.: DeepSD: generating high resolution climate

change projections through single image super-resolution. In:

Proceedings of the 23rd ACM SIGKDD international conference

on knowledge discovery and data mining. KDD ’17,

pp. 1663–1672. Association for Computing Machinery, New

York, NY, USA (2017). https://doi.org/10.1145/3097983.

3098004

49. Baño-Medina, J., Manzanas, R., Gutiérrez, J.M.: Configuration

and intercomparison of deep learning neural models for statistical

downscaling. Geosci. Model Dev. 13(4), 2109–2124 (2020).

https://doi.org/10.5194/gmd-13-2109-2020

50. Sun, L., Lan, Y.: Statistical downscaling of daily temperature and

precipitation over China using deep learning neural models:

Localization and comparison with other methods. Int. J. Climatol.

41(2), 1128–1147 (2021). https://doi.org/10.1002/joc.6769

51. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P.,

Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G.,

Bauer, P., Bechtold, P., Beljaars, A.C.M., Berg, L.V.D., Bidlot,

J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J.,

Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen,

L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P.,

Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C.,

Rosnay, P.D., Tavolato, C., Thépaut, J.-N., Vitart, F.: The ERA-

interim reanalysis: configuration and performance of the data

assimilation system. Q. J. R. Meteorol. Soc. 137(656), 553–597
(2011). https://doi.org/10.1002/qj.828

52. Lange, S.: EartH2Observe, WFDEI and ERA-interim data

merged and bias-corrected for ISIMIP (EWEMBI). GFZ Data

Serv. (2019). https://doi.org/10.5880/PIK.2019.004

53. Iturbide, M., Bedia, J., Herrera, S., Baño-Medina, J., Fernández,

J., Frı́as, M.D., Manzanas, R., San-Martı́n, D., Cimadevilla, E.,

Cofiño, A.S., Gutiérrez, J.M.: The R-based climate4R open

framework for reproducible climate data access and post-pro-

cessing. Environ. Model Softw. 111, 42–54 (2019). https://doi.

org/10.1016/j.envsoft.2018.09.009

54. Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for

large computing clusters. In: Conference on file and storage

technologies (FAST 02) (2002)

55. Braam, P.: The lustre storage architecture (2019). arXiv preprint

arXiv:1903.01955. https://doi.org/10.48550/arXiv.1903.01955

Cluster Computing (2023) 26:2815–2834 2833

123

https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00010
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00010
https://doi.org/10.1109/CCE.2016.7562612
https://doi.org/10.1109/CCE.2016.7562612
https://doi.org/10.1002/cpe.5018
https://doi.org/10.1109/IC2E.2017.52
https://doi.org/10.1109/IC2E.2017.52
https://doi.org/10.1007/978-3-030-34356-9_36
https://doi.org/10.1007/978-3-030-59851-8_23
https://doi.org/10.1007/978-3-030-59851-8_23
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1007/978-3-030-50371-0_15
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00012
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00012
https://doi.org/10.1007/978-3-540-30218-6_19
https://doi.org/10.1109/ACCESS.2020.2973750
https://doi.org/10.1109/ACCESS.2020.2973750
https://doi.org/10.1109/ACCESS.2019.2905424
https://doi.org/10.1109/ACCESS.2019.2905424
https://doi.org/10.1007/s10723-020-09509-z
https://doi.org/10.1007/s10723-020-09509-z
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1145/3097983.3098004
https://doi.org/10.1145/3097983.3098004
https://doi.org/10.5194/gmd-13-2109-2020
https://doi.org/10.1002/joc.6769
https://doi.org/10.1002/qj.828
https://doi.org/10.5880/PIK.2019.004
https://doi.org/10.1016/j.envsoft.2018.09.009
https://doi.org/10.1016/j.envsoft.2018.09.009
http://arxiv.org/abs/1903.01955
https://doi.org/10.48550/arXiv.1903.01955

56. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang,

P.T.P.: On large-batch training for deep learning: generalization

gap and sharp minima (2016). arXiv preprint arXiv:1609.04836.

https://doi.org/10.48550/arXiv.1609.04836

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Jose González-Abad is a Ph.D

candidate in Data Science at the

Institute of Physics of Cantab-

ria. He received the B.S degree

in Statistics at University of

Salamanca and the M.S degree

in Data Science at University of

Cantabria. His current research

interests include Deep Learning

for Climate Modelling and

scalability of Deep Learning

models in HPC and Cloud

environments.

Álvaro López Garcı́a is a CSIC

Tenured Scientist (Cientifico

Titular) at the Institute of Phy-

sics of Cantabria. His main

research interests are focused on

the implementation, develop-

ment and promotion of

advanced computing services

for science and research,

exploiting distributed infras-

tructures over the computing

continuum (i.e. Cloud and Edge

computing, High Performance

Computing, etc.). Some of the

services and platforms that have

been developed under his coordination and supervision are being used

in pan-European production e-Infrastructures (like the EGI.eu Com-

pute Service) or are being exploited by end users in the context of the

European Open Science Cloud (EOSC). In this context, he has par-

ticipated in more than 20 EU projects (FP7, Horizon 2020, Horizon

Europe) such as EGEE-II/III, Int.Eu.Grid, EUFORIA, EGI- InSPIRE,

EGIEngage, INDIGO- DataCloud, EOSC-Hub, EOSC-Synergy and

EGI-ACE among others; noteworthy being the technical coordinator

of iMagine (2022–2025, 25 partners, 2.5M€), and coordinating the

H2020 DEEP-Hybrid-DataCloud (2018–2020, 9 partners) and the

Horizon Europe AI4EOSC (2022–2025, 10 partners) actions.

Valentin Y. Kozlov is a

researcher in the Data Analyt-

ics, Access, and Applications

(D3A) department at Steinbuch

Centre for Computing (SCC) of

Karlsruhe Institute of Technol-

ogy (KIT). His interests focus

on supporting scientists in pur-

suing their research leveraging

e.g. cloud services, deep learn-

ing, DevOps. In his current

position, he is working in the

EU project EOSC-Synergy,

before that in the DEEP

HybridDataCloud project, and a

participant of the upcoming projects iMagine and AI4EOSC. Prior to

SCC, he worked as a physicist in the Institute for Nuclear Physics

(KIT) and actively participated in the analysis of various experiments

in fundamental physics, also supervised a local Linux cluster and a

Wiki system of international collaboration. He earned his Ph.D. in

Katholieke Universiteit Leuven (Belgium). He is co-author of more

than 40 peer-reviewed publications in peer reviewed conferences,

workshops, and journals.

2834 Cluster Computing (2023) 26:2815–2834

123

http://arxiv.org/abs/1609.04836
https://doi.org/10.48550/arXiv.1609.04836

	A container-based workflow for distributed training of deep learning algorithms in HPC clusters
	Abstract
	Introduction
	Background
	Distributed deep learning
	Horovod

	HPC clusters
	Containerization technologies
	Docker
	Singularity
	udocker

	Related work
	Methodology and workflow
	Image development
	OpenMPI and horovod integration
	Docker tags
	NGC catalog
	Docker entrypoint

	DockerHub
	Dockerfile good practices
	udocker

	Evaluation
	TensorFlow benchmark
	Empirical statistical downscaling

	Cluster setup
	Results
	TensorFlow benchmark
	Statistical downscaling

	Discussion
	Conclusions
	Author contributions
	Code availability
	References

