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Abstract
Data sharing is very important for medical researchers to do research on certain diseases in cloud-assisted electronic

medical systems. Nonetheless, there are large amounts of duplicate data in shared electronic medical records, which incurs

redundant storage. In addition, data sharing of electronic medical records might expose the sensitive information of

patients. In order to address above problems, we propose a secure data sharing scheme with data deduplication and

sensitive information hiding in cloud-assisted electronic medical systems in this paper. In order to protect the sensitive

information privacy and enhance the deduplication efficiency, we replace the patient’s sensitive information of electronic

medical records by wildcards before encrypting the whole electronic medical records. The authorized researcher can

decrypt and obtain the electronic medical records under the condition that the sensitive information of shared electronic

medical records is hidden. Moreover, we clarify the diagnose information of the electronic medical records into different

types according to the duplicate ratio. The authorized researchers can selectively download data according to the duplicate

ratio of diagnostic information. Our proposed scheme can resist brute-force attacks and single-point-of-failure attack. The

experimental results show our proposed scheme is more efficient than the existing schemes.

Keywords Data sharing � Secure deduplication � Sensitive information hiding � COVID-19 � Electronic medical record �
Data integrity

1 Introduction

In the era of data explosion, individuals and enterprises

need to store huge amounts of data. For example, IDC

thinks that the global datasphere will reach 175 zettabytes

by 2025 [1]. Faced with heavy storage burden, users would

like to upload the data to the cloud server to release them

from storing and managing such large-scale data.

Nonetheless, it incurs a lot of duplicate data stored in cloud

server because a lot of identical data may be uploaded to

the cloud server by different users. The study shows that

about 75% of data is duplicate in standard application

system [2] and the proportion of identical data even reaches

90% in backup and archival storage system [3]. In order to

reduce redundant data in cloud server, deduplication

technology comes into being. Deduplication technology

means that the cloud server only stores one duplicate for

several identical data. This technology attracts wide

attention since it can save a lot of financial cost of the cloud

server and the user.

Data deduplication has a wide range of applications in

various fields, such as cloud-assisted electronic health

systems. Compared to traditional medical record manage-

ment systems, cloud-assisted electronic health systems are

more efficient, accurate and reliable in managing electronic

medical records [4, 5]. In addition, cloud-assisted elec-

tronic health systems also play an important role in

resolving judgements and disputes in medical malpractice

[6, 7]. As we all know, the type of the diagnostic infor-

mation such as symptoms and drugs in electronic medical

records is limited. For example, there are only about 100
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kinds of antibiotics in existence [8]. Accordingly, there

exist a lot of the same data in electronic medical records.

The study shows that data deduplication saves about 65%

storage space in electronic health systems [9]. Data sharing

of electronic medical records is very important for medical

researchers to do research on certain diseases. For example,

the COVID-19 electronic medical record contains some

patient’s common symptoms like fever and dizziness.

Sharing such electronic medical records is very helpful for

researchers to study how to find the potential COVID-19

patients. Nevertheless, data sharing of electronic medical

records might bring privacy-exposure problems. Generally,

the electronic medical record is composed of two parts.

The first part contains the sensitive information, such as

patient’s name, age, ID number and phone number. The

second part is the diagnostic information prescribed by the

doctor, including the patient’s symptoms, the type of ill-

ness, the dose of medication and so on. Actually, only the

diagnostic information is valuable to researchers, while

researchers should not know patient’s sensitive information

by data sharing services [10, 11]. Therefore, it is very

important to achieve data sharing under the condition that

data deduplication is performed efficiently and the sensi-

tive information of shared electronic medical records is

hidden.

1.1 Contribution

To cope with this problem, we design a secure data sharing

scheme for cloud-assisted electronic medical systems in

this paper. To protect the privacy and enhance the dedu-

plication efficiency, we replace the patient’s sensitive

information of electronic medical records by wildcards

before encrypting whole electronic medical records. After

that, the encrypted electronic medical records are uploaded

to the cloud server so that it could not know anything

useful about the electronic medical records. Any authorized

researcher can decrypt and obtain the electronic medical

records under the condition that the sensitive information

of shared electronic medical records is hidden. Since the

sensitive information is uniformly blinded with wildcards,

the duplicate ratio of blinded sensitive information

becomes higher. As a result, our scheme greatly improves

the deduplication efficiency remarkably. Moreover, we

clarify the diagnose information of the electronic medical

records into three types according to duplicate ratios: high

duplicate ratio, intermediate duplicate ratio and low

duplicate ratio. The authorized researchers can selectively

download data according to duplicate ratio of diagnostic

information. Furthermore, the security of the key might be

a bottleneck of the system. If the key server is compro-

mised, the key may be leaked. In order to improve the

security of the key, we employ proactive secret sharing

technique [12] to resist brute-force attacks and single-

point-of-failure attack. Security analysis shows that the

proposed scheme ensures the confidentiality of shared

electronic medical records. On the one hand, the sensitive

information in the electronic medical records is confiden-

tial to researchers. Meanwhile, the integrity of the elec-

tronic medical records can be guaranteed. We also conduct

experiments to evaluate the performance of the proposed

scheme according to deduplication efficiency, storage

efficiency, computational costs and computation delay.

1.1.1 Organization

The rest organization of the paper is as follows. In Sect. 2,

we introduce the related work. In the next section, we show

some necessary preliminaries. Section 4 gives the system

model and the security model. We describe our secure data

sharing scheme in Sect. 5 and give the security analysis in

Sect. 6. Performance evaluation is shown in Sect. 7. In the

last section, we conclude this paper.

2 Related work

With the security awareness increasing,more andmore users

would like to encrypt their data before the data are uploaded

to the cloud server. Unfortunately, even if the identical data

is encrypted, different users can produce different cipher-

texts since they use different keys to encrypt the identical

data. It leads to the cloud server unable to perform dedupli-

cation according to ciphertext of data. To cope with the

problem of deduplication over encrypted data and improve

the storage efficiency [13], convergent encryption (CE) has

been proposed [14]. It requires that the encryption key is

derived from the data itself. Bellare et al. [15] formalized a

new primitive named as message-locked encryption (MLE)

and proved that the MLE scheme is secure. Moreover, many

data deduplication schemes based on convergent encryption

and message-locked encryption have been proposed

[16–19]. Unfortunately, these MLE-based and CE-based

schemes cannot be against brute-force attacks [20]. Bellare

et al. [21] proposed the server-aided deduplication

scheme calledDupLESSwhich introduces a fully trusted key

server to produce MLE keys. After that, many deduplication

schemes have been proposed to resist brute-force attacks

[22–25], where the key server is fully trusted and will not be

attacked by any adversary. Thereby, the completely trusted

key server becomes single point of failure.More specifically,

it is infeasible to introduce a completely trusted key server. It

is hard to be equipped with such a fully trusted key server in

reality. If the key server is broken down, the secret stored in

the key server is exposed. In other words, attackers only need

to compromise one key server if they want to obtain the
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server-side secret. To resist single-point-of-failure attack,

Zhang et al. [26] and Duan et al. [27] proposed to store the

secret by multiple key servers using a threshold secret

sharing [28]. Zhang et al. [12] improved the scheme of

multiple key servers and proposed to replace some new key

servers periodically. Let the new key servers store new secret

shares while share the same server-side secret. It improves

the security of server-side secret. Asmentioned in [15], there

exists a duplicate faking attackwhich causes legitimate users

unable to obtain the correct data. More specifically, if

attackers upload the tag ofm but upload the ciphertext ofm�

to the cloud server, it will make the tag inconsistent with the

ciphertext m�. As a result, the subsequent users who upload

the tag ofmwill download the ciphertext of error datam�. To
solve this problem, tag consistency is considered to ensure

data integrity [18, 29, 30]. Specifically, users verify tag

consistency after they decrypt the returned ciphertext. If the

verification fails, users cannot determine the cause of the

failure. It may be because the uploaded data is fake, or the

cloud server has destroyed the data. Li et al. [31] and Yang

et al. [32] proposed that the tag is generated directly from the

ciphertext, while the cloud server checks tag consistency in

the phase of data upload. As mentioned above, convergent

encryption (CE) cannot be against brute-force attacks for

predictable messages. Hence, data popularity is considered

to preserve the privacy of the data [16]. More specifically, a

data block is considered ‘‘popular’’ when it is owned bymore

than the popularity threshold number of users, otherwise it is

considered ‘‘unpopular’’. Data blocks with different popu-

larity are protected under encryption mechanisms with dif-

ferent security levels. Puzio et al. [33] proposed

PerfectDedup scheme which takes advantage of the char-

acteristics of perfect hash to ensure data confidentiality. In

addition, Li et al. [34] introduced the concept of transparent

integrity auditing which can keep the cloud server from

misbehaving. In order to audit the integrity of user’s data

without downloading them, Shao et al. [35] propose an

efficient TPA-based auditing scheme for secure cloud

storage.

As we all know, the electronic medical record is com-

posed of patient’s sensitive information and diagnostic

information. In general, the duplicate ratio of the sensitive

information is low, while the duplicate ratio of the diag-

nostic information is high. Based on this feature of the

electronic medical record, Zhang et al. [26] designed a

deduplication scheme that only performs deduplication for

diagnostic information. Nonetheless, the sensitive infor-

mation is all stored in the cloud server which increases the

storage costs of the cloud server. Furthermore, this

scheme doesn’t support data sharing. Shen et al. [36]

designed a scheme for data sharing with sensitive infor-

mation hiding. Although the sensitive information is hid-

den for researchers, the sensitive information is stored

repeatedly. Because this scheme does not support dedu-

plication, the storage efficiency of this scheme is not high.

As far as we know, all above schemes cannot achieve

secure data sharing supporting efficient deduplication and

sensitive information hiding. In this paper, we explore how

to achieve secure data sharing with sensitive information

hiding, meanwhile we try to improve the deduplication

efficiency.

3 Preliminaries

In this section, we introduce the basic knowledge needed in

this paper, including MLE, bilinear map, discrete logarithm

problem and computational Diffie-Hellman problem.

3.1 Message-locked encryption

Message-locked encryption (MLE) is a special symmetric

encryption, which is widely adopted in deduplication. The

encryption key and decryption key are computed from

messages themselves. The same message will correspond

the same key and the same ciphertext no matter who runs

this encryption method. MLE can be expressed as a tuple

MLE = (P, K, E, D) containing four algorithms:

P $P: It is parameter generation algorithm. It outputs

a public parameter P which is published to all users.

K  K P;Mð Þ : It is key generation algorithm. It inputs

the public parameter P and the message M, and outputs

the MLE key K. The same message M produces the same

MLE key K.

C  EðP;K;MÞ: It is encryption algorithm. It inputs the

public parameter P, the MLE key K and the message M,

and outputs the ciphertext C.

M  DðP;K;CÞ: It is decryption algorithm. It inputs the

public parameter P, the MLE key K and the ciphertext C,

and outputs the plaintext M.

Any attacker cannot distinguish between ciphertext

generated by MLE and random string of unpredictable in-

formation except with negligible possibility [15]. A special

manifestation of MLE is convergent encryption (CE), in

which the key is the hash value of the message.

3.2 Bilinear map

Let G and GT be an addictive cycle group and a multi-

plicative cycle group of large prime order p, respectively.

Let P be a generator of G. Bilinear Map is a map

e : G� G! GT , and its properties are as follows:

(1) Bilinearity: for all a; b 2 Z�p; and A;B 2 G; we have

e aA; bBð Þ ¼ eðA;BÞab.
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(2) Nondegeneracy: for all A;B 2 G; and

A 6¼ B; eðA;BÞ 6¼ 1.

(3) Computability: it is easy to calculate the map e.

3.3 Discrete logarithm (DL) problem

Let G be an addictive cycle group of large prime order p

and P be its generator. For an unknown x 2 Z�p; given xP as

input, the aim is to output x: The DL assumption is true

only if no algorithm can output x in polynomial time.

3.4 Computational Diffie–Hellman (CDH)
problem

Let G be an addictive cycle group of large prime order p

and P be its generator. For unknown x; y 2 Z�p, given

ðP; xP; yPÞ as input, the aim is to output xyP. The CDH

assumption is true only if no algorithm can output xyP in

polynomial time.

4 System model and secure model

4.1 System model

The system model involves four entities: hospital, cloud

server, key servers and researchers, as shown in Fig. 1.

• Hospital: The hospital is a fully trusted entity. The

hospital produces huge amounts of electronic medical

records every day that need to be moved to the cloud

server for sharing with researchers. To ensure the

security of the electronic medical records, the hospital

needs to interact with key servers to produce the MLE

key which is used to encrypt these electronic medical

records. To protect the electronic medical record, the

hospital will not collude with any attacker. If a

researcher wants to obtain the electronic medical

records, he/she firstly needs to get authorization from

the hospital.

• Cloud server: The cloud server owns huge storage space

and powerful computing ability. Meanwhile, the cloud

server has the functions of identifying identity and

performing deduplication. It also calculates and updates

the statistical information of electronic medical records

in real time. Besides, the hospital shares the electronic

medical records with researchers through the cloud

server under the condition of the privacy of patients

being protected.

• Key servers: Key servers are independent of the

hospital, researchers and the cloud server. They use

ðt; nÞ-threshold secret sharing to share a constant server-
side secret, which is used to compute the MLE key.

Each key server stores a share of the server-side secret.

The hospital needs to generate the MLE key by

interacting with the n key servers. These n key servers

Cloud

Key servers Researchers

Ge
ne

ra
te

ke
y

HospitalFig. 1 System model
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are not fully trusted, which means that one or more of

them may be compromised.

• Researchers: Researchers need to obtain authorization

from the hospital and then download electronic medical

records from the cloud server for their research.

4.2 Adversary model

We mainly consider two kinds of adversaries: internal

adversaries and external adversaries in the adversary

model.

4.2.1 Internal adversaries

• The cloud server: Similar to the existing literature for

cloud computing security [29, 37, 38], we assume that

the cloud server will perform its task honestly for the

sake of its reputation, but it is curious about the elec-

tronic medical records uploaded by the hospital and

tries to obtain the plaintext of the electronic medical

records.

• Researchers: We assume that authorized researchers

will not collude with the hospital, the cloud server,

unauthorized researchers and adversaries. Authorized

researchers can download electronic medical records

from the cloud server and obtain disease-related

information in electronic medical records. Meanwhile,

researchers are curious about sensitive information of

patients, such as the patient’s name and phone number.

• The compromised key servers: Adversaries may extract

the secret shares from the compromised key servers and

then launch brute-force attacks to guess the plaintext of

the electronic medical records. Once the server-side

secret is exposed, the security of electronic medical

records will be difficult to guarantee.

• The hospital: When the hospital uploads data to the

cloud server, data error may happen. For example, after

uploading a tag, the hospital uploads the incomplete

data or other non-corresponding data. It will lead to the

inconsistency between the data and the tag. If the cloud

server stores error data, it will not be able to rectify the

data in the future since the cloud server will perform

deduplication and only store one copy. As a result, the

error data will affect the reliability of data seriously and

further mislead the researchers.

4.2.2 External adversaries

We assume that external adversaries can obtain valuable

information by monitor the communication between vari-

ous entities. Based on this information, they try to recover

the plaintext of the electronic medical records.

4.3 Design goals

In order to resist the above adversaries, we list the goals the

proposed scheme should achieve.

• Data confidentiality: Data confidentiality is a funda-

mental requirement of the deduplication scheme. Due to

the particularity of electronic medical records, the cloud

server and unauthorized researchers cannot obtain the

plaintext of electronic medical records. Moreover, even

authorized researchers cannot obtain the sensitive

information of patients in electronic medical records.

• Resistance to brute-force attacks and single-point-of-

failure attack: Even if brute-force attacks are launched,

any adversary cannot obtain valuable information.

Moreover, if an adversary attacks a key server and

extracts the server-side secret share from this key

server, he/she also cannot recover the MLE key.

• Data integrity: Both the cloud server and authorized

researchers can check the integrity of data. Moreover, if

the data downloaded by the authorized researchers is

error, the researchers can determine if the error data is

from duplicate faking attacks or destroyed by the cloud

server.

• Downloading selectivity: The authorized researchers

can download electronic medical records selectively

according to duplicate ratio.

• Efficiency: On the premise of ensuring security, the

efficiency is our goal, including deduplication effi-

ciency, computing efficiency and storage efficiency.

5 The proposed scheme

5.1 Overview

Electronic medical records contain disease-related infor-

mation which is very helpful for researchers to do research

on the disease. Hence, it is necessary for hospital to share

electronic medical records with researchers. However,

electronic medical records also contain patient’s sensitive

information that should not be exposed to researchers. In

order to hide the patient’s sensitive information, we design

a secure data sharing scheme. Before uploading the elec-

tronic medical record, the hospital firstly blinds the sensi-

tive information of the electronic medical record with

wildcards. Then the hospital interacts with the key servers

to generate the MLE key. The hospital divides the elec-

tronic medical record into multiple data blocks, and then

encrypts them with the corresponding MLE keys to obtain

the ciphertexts. Compared with file-level deduplication,

chunk-level deduplication has higher deduplication
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efficiency. The hospital derives a tag from the ciphertext of

a data block, which can be used for duplicated data

detection and data integrity verification. The hospital sends

the tag to the cloud server. The cloud server checks whe-

ther the data block is duplicated with this tag. If the data

block is not duplicated, it means that the hospital needs to

upload the data block. In this way, anybody cannot obtain

patient’s sensitive information from the electronic medical

records downloaded from the cloud server. After receiving

the ciphertext of the data block, the cloud server makes

deduplication operation to save storage space. Since the

sensitive information of electronic medical records is uni-

formly blinded with wildcards, the duplicate ratio of the

sensitive information is higher in our scheme. In addition

to performing deduplication, the cloud server calculates

and updates the duplicate ratio of the diagnose information

of electronic medical records. We divide the diagnose

information of electronic medical records into three cate-

gories according to the duplicate ratio: high duplicate ratio,

intermediate duplicate ratio and low duplicate ratio. In this

way, the authorized researchers can download electronic

medical records selectively according to duplicate ratio.

For example, the COVID-19 electronic medical records

contain multiple clinical symptoms. Some symptoms like

fever and cough are very common but some symptoms like

hypoglycemia only appear in a few electronic medical

records. Symptoms with different duplicate ratio have

different research values for researchers. If researchers

want to research the common symptoms of COVID-19,

they can choose to only download the electronic medical

records with high duplicate ratio. On the one hand, it

reduces the interference of the electronic medical records

with low duplicate ratio to researchers. On the other hand,

it reduces communication costs since researchers do not

need to download all electronic medical records.

5.2 Construction of our scheme

5.2.1 System setup

a) The system chooses an additive cycle group G and a

multiplicative cycle group GT of prime order p. P is a

generator of G, and e : G� G! GT is a bilinear

map. The system publishes parameters

ðG;GT ; p;P; eÞ.
b) The hospital HP selects an anti-collision hash

function H : f0; 1g� ! G.

c) The hospital HP randomly chooses a master key msk:

d) The hospital HP chooses a symmetric encryption

algorithm Eð�Þ and a public-key encryption algo-

rithm Encð�Þ.

5.2.2 Sensitive information hiding

a) After generating an electronic medical record F, the

hospital HP firstly replaces patient’s sensitive infor-

mation in the electronic medical record F with

wildcards ‘‘*’’. We show an example for electronic

medical record in Fig. 2. We denote the new file after

this process as F�.
b) The hospital HP divides F� into multiple fixed size

blocks ðm�1;m�2; . . .;m�l Þ, where l represents the num-

ber of data blocks.

5.2.3 Key servers initialization

(a) Assume fKS1;KS2; . . .;KSng is the set of n mutually

independent key servers. We divide the total time

into multiple fixed length intervals called epochs.

(b) For k ¼ 1; 2; . . .; n;KSk randomly selects t elements

ak;0; ak;1; ak;2; . . .; ak;t�1 2 Z�p; and constructs a poly-

nomial Fk xð Þ ¼ ak;0 þ ak;1xþ ak;2x
2þ

. . .þ ak;t�1x
t�1modp:

(c) KSk calculates FkðjÞ and sends FkðjÞ to KSj secretly,

for j ¼ 1; 2; 3; . . .; nandj 6¼ k. KSk calculates commit

set fak;0P; ak;1P; ak;2P; . . .; ak;t�1Pg and publishes

them to all other key servers.

(d) After receiving Fk jð Þ; KSj needs to verify the validity
of FkðjÞ by checking whether Fk jð ÞP ¼

Pt�1
n¼0k

n �
ak;nP holds. If the equation holds, KSj accepts FkðjÞ,
otherwise rejects FjðkÞ.

(e) When receiving n� 1ð Þ correct Fk jð Þ from

KSk k ¼ 1; 2; 3; . . .; n; k 6¼ jð Þ; KSj calculates its secret
share sj ¼ F1 jð Þ þ F2 jð Þ þ F3 jð Þ þ . . .þ FnðjÞ.

(f) Let s ¼ a1;0 þ a2;0 þ a3;0 þ . . .þ an;0: According to

Lagrange interpolation, we know s ¼
Pt

1¼1x1 � s1;
where x1 ¼

Q
1� g� t
g 6¼ 1

g
g�1 :

(g) KSj calculates the commit Qj ¼ sj � P for share sj

and the public value Q ¼
Pn

�¼1a�;0 � P.
(h) Without loss of generality, we assume that the key

servers in the X -th epoch are KSðXÞ ¼

KS
ðXÞ
1 ;KS

ðX Þ
2 ;KS

ðXÞ
3 ; . . .;KSðXÞn

n o
; and the key ser-

vers in the X þ 1ð Þ-th epoch are KSðXþ1Þ ¼
fKSðXþ1Þ1 ;KS

ðXþ1Þ
2 ;KS

ðXþ1Þ
3 ; . . .;KSðXþ1Þn g. Firstly, t

honest and reliable key servers are selected from

KSðXÞ, expressed as fKSðXÞi1 ;KS
ðX Þ
i2 ;KS

ðXÞ
i3 ;

. . .;KS
ðXÞ
it g. The corresponding secret shares are

fsðXÞi1 ; s
ðXÞ
i2 ; s

ðXÞ
i3 ; . . .; s

ðXÞ
it g. For a ¼ 1; 2; 3; . . .; t;

Q
ðXÞ
ia ¼ s

ðXÞ
ia � P has been published.
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(i) KS
ðXÞ
ia randomly selects t � 1ð Þ elements

bia;1; bia;2; bia;3; . . .; bia;t�1; and constructs a function

g
ðXÞ
ia xð Þ ¼ sXia þ bia;1 � xþ bia;2 � x2 þ . . .þ bia;t�1

�xt�1modp: Here, KS
ðX Þ
ia computes and publishes

commits bia;1 � P; bia;2 � P; bia;3 � P; . . .; andbia;t�1 � P;
and computes s

ðXÞ
ia;b ¼ g

ðXÞ
ia ðbÞ for b ¼ 1; 2; 3; . . .; n:

(j) KS
ðXÞ
ia sends s

ðXÞ
ia;b to KS

ðXþ1Þ
b through a secure

channel. Then KS
ðXþ1Þ
b checks the validity of s

ðXÞ
ia;b

by verifying whether s
ðXÞ
ia;b � P ¼ s

ðXÞ
ia � Pþ

Pt�1
c¼1b

c �
bia;c � P holds. If the checking failed, KS

ðXþ1Þ
b aborts;

otherwise, KS
ðXþ1Þ
b sends ‘‘Accept’’ to all other key

servers in the X þ 1ð Þ-th epoch.

(k) After getting all ‘‘Accept’’ from other key servers,

KS
ðXþ1Þ
b has received all correct shares

s
ðXÞ
i1;b; s

ðX Þ
i2;b; s

ðXÞ
i3;b; . . .; s

ðXÞ
it;b : KS

ðXþ1Þ
b computes its secret

share s
ðXþ1Þ
b ¼

Pt
1¼1xi1 � sðX Þi1;b ; where

xi1 ¼
Q

1� g� t
g 6¼ i1

g
g�i1. Finally, KS

ðXþ1Þ
b computes

and publishes public commit Q
ðXþ1Þ
b ¼ s

ðXþ1Þ
b � P:

Remark 1 Although key servers have been replaced by

new key servers and the secret shares stored in the new key

servers have changed in the end of each epoch, the server-

side secret s shared by the new key servers has not chan-

ged. As we know, in the X -th epoch, s ¼
Pt

1¼1x1 � sðXÞ1 ¼
Pt

1¼1x1 �
Pt

b¼1x
0
b � s

Xð Þ
1;b ¼

Pt
b¼1

Pt
1¼1x1 � x0b � s

ðXÞ
1;b ¼

Pt
b¼1x

0
b � s

ðXþ1Þ
b , where x1 and x0b are Lagrange coeffi-

cients. In the ðX þ 1Þ-th epoch, s0 ¼
Pt

b¼1x
0
b � s

ðXþ1Þ
b . So,

s ¼ s0, which means that the server-side secret s has not

changed.

5.2.4 MLE key generation

(a) The hospital HP randomly selects an element r 2 Z�p;

and computes m0i ¼ r � Hðm�i Þ for i ¼ 1; 2; 3; . . .; n:

Then HP sends m0i to all key servers.

(b) For k ¼ 1; 2; 3; . . .; n; KSk computes rðkÞi ¼ sk � m0i
and returns rðkÞi to HP.

(c) HP checks the validity of rðkÞi by verifying whether

e r kð Þ
i ;P

� �
¼ eðm0i;QkÞ holds. If the equation doesn’t

hold, HP rejects rðkÞi .

(d) After receiving t effective fr i1ð Þ
i ; r i2ð Þ

i ; r i3ð Þ
i ; . . .; r itð Þ

i g,
where i1; i2; i3; . . .; it 2 1; n½ �; HP computes

ri ¼ r�1 �
Pit

d¼i1xd � rdi ¼ s � Hðm�i Þ.
(e) HP computes the MLE key of the data block m�i as

Ki ¼ HðriÞ.

Remark 2 Each hospital will select a different element r to

compute different m0i. Thus, the key server cannot deter-

mine whether the data block m�i is identical or not

according to m0i. Since ri ¼ s � Hðm�i Þ, ri is only related to

the server-side secret s and the data block m�i . As we know,

the server-side secret s is constant. If the data block m�i is

identical, each hospital will produce the same ri. Since
Ki ¼ HðriÞ, each hospital will obtain the same MLE key

Ki. Each hospital encrypts the same data block and com-

putes the data tag with the same MLE key to obtain the

same data ciphertext and the same data tag. Therefore, the

cloud server can perform data deduplication on the data

uploaded by different hospitals.

5.2.5 Data upload and deduplication

The sensitive information in electronic medical records has

high duplicate ratio after it is uniformly blinded with

wildcards. Hence, the category of sensitive information is

worthless for researchers. In order to exclude the influence

of the category of sensitive information, we design

* hospital

Name:***
Phone:*****
ID:*****

##################
##################
##################
############

A hospital

Name:Bob
Phone:12345
ID:54321

##################
##################
##################
############

Fig. 2 An example of the

processed electronic medical

record
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different upload processes for sensitive information and

diagnostic information.

5.2.5.1 Sensitive information

(a) After getting MLE keys, HP firstly encrypts the data

block m�i for i ¼ 1; 2; 3; . . .; n as Ci ¼ EðKi;m
�
i Þ.

Then HP computes si ¼ HðCiÞ as the tag of the data

block m�i . Finally, HP sends these si to the cloud

server CS.

(b) CS maintains a set sf g for data blocks of sensitive

information. After receiving the tag si, CS checks

whether si exists in the set sf g. If CS finds the tag si,
then aborts. Otherwise, goes to the next step.

(c) HP calculates the ciphertext CKi ¼ Eðmsk;KiÞ of the
MLE key, and then uploads ðCi;CKiÞ to CS.

(d) After receiving ðCi;CKiÞ, CS verifies the integrity of

Ci through checking H Cið Þ ¼ si. If the verification

passes, CS stores ðCi;CKiÞ, otherwise CS aborts.

5.2.5.2 Diagnostic information

(a) After getting MLE keys, HP firstly encrypts the data

block m�i for i ¼ 1; 2; 3; . . .; n as Ci ¼ EðKi;m
�
i Þ.

Then HP computes si ¼ HðCiÞ as the tag of the data

block m�i . Finally, HP sends these si to the cloud

server CS.

(b) CS maintains a tuple T ¼ s; q; k;uð Þ for each unique

data block of diagnostic information, where s is the

tag of the data block, q is the number of duplicates of

the data block, k is the duplicate ratio of the data

block in all files, and u is the category of the data

block. The data blocks are divided into three

categories: low duplicate ratio, intermediate dupli-

cate ratio and high duplicate ratio which are repre-

sented by - 1, 0, 1 respectively. CS maintains a

value f to record the number of files stored currently.

CS sets two thresholds t0 and t00 to distinguish the

categories of data blocks.

(c) After receiving the tag si, CS checks whether si
exists in the tuple set fTg. If CS doesn’t find si, HP
needs to perform the next step d). otherwise, the step

d) g) and h) will be skipped.

(d) CS constructs a tuple Ti ¼ ðsi; qi; ki;uiÞ for si and
sets si ¼ qi ¼ ki ¼ 0;ui ¼ �1.

(e) For each received tag si, CS sets qi ¼ qi þ 1. After

receiving all the tags of a file, CS sets f ¼ f þ 1 and

calculates the duplicate ratio of each data block

ki ¼ qi
f .

(f) CS updates the categories based on the duplicate

ratio of data blocks. If ki\t0; the cloud server sets

ui ¼ �1; if t0 � ki\t00, CS sets ui ¼ 0; if ki	 t00; CS
sets ui ¼ 1:

(g) HP calculates the ciphertext of the MLE key

CKi ¼ Eðmsk;KiÞ, and then uploads ðCi;CKiÞ to CS.

(h) After receiving ðCi;CKiÞ, CS checks the integrity of

Ci through verifying whether H Cið Þ ¼ si holds. If

the verification passes, CS stores ðCi;CKiÞ, other-
wise CS aborts.

5.2.6 Authorization and data download

The hospital HP randomly selects an element x 2 Z�p; cal-

culates and publishesxP. The researcher R randomly selects

an elementy 2 Z�p, calculates and publishes yP:

(a) R interacts with HP to obtain authorization to access

the electronic medical records. HP calculates HPR ¼
msk � x � yPð Þ and then sends ðHPR; fsgÞ to R.

(b) R calculates msk ¼ HPR � y � xPð Þ�1 and then sends

fsg and fug to CS where u is data category. For

example, if R wants to download the electronic

medical records with the category of very common,

R sets u ¼ 1 and sends u to CS.

(c) After receiving fsg and fug, CS firstly finds out the

tags sf g that match the categories fug according to

the tuple T . Then CS picks out the electronic medical

records that contain the tags sf g. Finally, CS returns

the ciphertexts f C;CKð Þg of the data blocks that

make up these electronic medical records to R:

(d) R verifies the integrity of C by checking H Cð Þ ¼ s. If
the verification fails, R aborts. Otherwise, R calcu-

lates K ¼ Dðmsk;CKÞ and m� ¼ DðK;CÞ.

6 Security analysis

We analyze the security of our proposed scheme from the

aspects including resistance to brute-force attacks and

single-point-of-failure attack, data confidentiality and data

integrity.

6.1 Resistance to Brute-force attacks and single-
point-of-failure attack

First, we analyze that attacker cannot launch brute-force

attacks to obtain the plaintext information of data.

Specifically, for a given ciphertext of data block Ci, the

attacker wants to determine which ciphertext of data block

C�k corresponds to the ciphertext Ci. More specifically, for

each candidate data block m�k , the attacker calculates its

corresponding ciphertext Ck, and then compares Ck with Ci

to determine which data block m�k is the plaintext of Ci.

However, as shown in Sect. 5.2.5, if the attacker wants to

encrypt the data block m�k , he/she must obtain the MLE key
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Ki, where Ki ¼ HðriÞ. Hence, the attacker must obtain the

secret ri stored in the key servers. Since the key servers are

independent and the attacker cannot collude with the key

servers, the attacker cannot obtain the server-side secret ri.
So, the attacker cannot obtain the MLE key Ki and cal-

culate the ciphertexts of the candidate data blocks. There-

fore, the attacker cannot launch brute-force attacks.

Next, we analyze that our scheme can remove the sin-

gle-point-of-failure problem. In order to obtain ri, the

attacker attacks one key server, and then finds the secret

share from the information stored in the compromised key

server. As shown in Sect. 3.2.3, the secret ri is stored in n

key servers in the form of ðt; nÞ-threshold blind tag. The

server-side secret ri can be recovered only after at least t

secret shares are obtained. If the number of compromised

key servers does not reach t, the attacker cannot obtain

enough information from these compromised key servers to

recover ri. In addition, our scheme divides the whole time

into segments of fixed duration, called epochs. At the end

of each epoch, we will select a batch of new key servers to

store the server-side secret ri, where the server-side secret

ri has not changed but the secret shares stored in new key

servers have changed. In other words, at the end of each

epoch, all secret shares stored by the compromise key

servers acquired by the attacker will expire, which further

enhances the security of the server-side secret ri. There-
fore, our scheme can remove single-point-of-failure

problem.

6.2 Data confidentiality

In this section, we show that no adversary, including the

Cloud Server Provider (CSP), unauthorized researchers and

external adversary, can get the plaintext of the data stored

in the cloud server.

Theorem 1 For the CSP, the proposed scheme satisfies

semantic security as long as the Discrete Logarithm (DL)

assumption holds.

Proof We define a polynomial-time adversary A to sim-

ulate the corrupted semi-trusted CSP.

Assume the adversary A can obtain the plaintext from

the ciphertext C with advantage � jð Þðj is a secure

parameterÞ. We construct an algorithmB, which can break

the DL assumption with the same advantage as the

adversaryA. The follows are the details of the security

game:

Init: Let ðG;GT ; p;P; eÞ be a tuple published by the

system, where p is the prime order of G and GT , and P is

the generator of G. B randomly chooses a server-side secret

s 2 Z�p and computes the public value Q ¼ s � P 2 G. B

generates a subgroup Gs ¼ fs1; s2; . . .g in G, where all

elements satisfy the equation Q ¼ si � Pði ¼ 1; 2; . . .Þ and
s 62 Gs. Given the parameters y, where y ¼ s or y 2 Gs, B

gives the parameters ðG;GT ; p;P; e;Q; yÞ to A.

Challenge A constructs two data blocks m0;m1 2 G, and

then sends them to B. B selects a uniformly random bit

b 2 f0; 1g, and then computes the encryption key

K ¼ Hðs � HðmbÞÞ. Finally, B outputs the ciphertext

Cb ¼ EðK;mbÞ.
Guess A generates a prediction b0 of b. If b0 ¼ b, B

returns 1 to denote that y ¼ s; otherwise, B returns 0 to

denote that y is a random element from the subgroup Gp.

Based on the assumption, A can obtain server-side

secret s from the public value Q ¼ s � P with advantage

� jð Þ when y ¼ s, and then A can obtain the encryption key

K ¼ Hðs � HðmbÞÞ. Finally, A can obtain mb with the

encryption key K by computing mb ¼ DðK;CbÞ. Hence, we
know Pr A b

0 ¼ b
� �� �

¼ 1
2
þ �ðjÞ. Since B returns 1 only

when the prediction b0 of A is equal to b, we know

Pr B G;GT ;P;Q; yð Þ ¼ 1 : y ¼ s½ � ¼
Pr A b0 ¼ bð Þ½ � ¼ 1

2
þ �ðjÞ.

When y is a random element from Gs, y is evenly dis-

tributed in Gs and is unaffected by b. Therefore, we have

Pr A b0 ¼ bð Þ½ � ¼ 1
2
, which indicates that

Pr B G;GT ;P;Q; yð Þ ¼½ 0 : y 2 Gs� ¼ Pr A b0 ¼ bð Þ½ � ¼ 1
2
. So

we can obtain that DL� AdvB ¼
jPr B G;GT ;P;Q; yð Þ ¼ 1 :½ y ¼ s� � Pr½B G;GT ;P;Q; yð Þ ¼
0 : y 2 Gs�j ¼ 1

2
�

�
� 1

2
þ � jð Þ

� �
j ¼ �ðjÞ, which implies the

advantage that polynomial-time algorithm B determines

whether y ¼ s is �ðjÞ. Based on the DL assumption, we can

find that the advantage �ðjÞ is negligible.
In our scheme, the hospital HP authorizes the

researchers through the master key msk. Hence, the only

way for unauthorized researchers to access electronic

medical records is to extract msk from

HPR ¼ msk � x � y � P. Next, we prove that our scheme is

semantically secure for unauthorized researchers.

Theorem 2 For unauthorized researchers, the proposed

scheme satisfies semantic security as long as the Compu-

tational Diffie-Hellman (CDH) assumption holds.

Proof We define a polynomial-time adversary A to sim-

ulate the corrupted unauthorized researchers. Assume the

adversary A can obtain the master key msk from the

ciphertext HPR with advantage � jð Þ. We construct an

algorithm B, which can break the CDH assumption with

Cluster Computing (2023) 26:3839–3854 3847

123



the same advantage as the adversary A. The follows are the

details of the security game:

Init Generate the parameters P; x � P; y � P;Wð Þ, where P
is the generator of G, unknown x; y 2 Z�p,

x � P; y � P 2 GTandW 2 GT . B gives the public parameters

ðG;GT ; p;P; e; x � P; y � PÞ to A.

Challenge A constructs two data blocks m0;m1 2 G, and

then sends them to B. B selects a uniformly random bit

b 2 f0; 1g, and returns the ciphertext HPR ¼ mb �W .

Guess: A generates a prediction b0 of b. If b0 ¼ b, B

returns 1 to denote that W ¼ x � y � P; otherwise, B returens

0 to denote that W is a random element from GT .

Based on the assumption, A can obtainW from the tuple

ðP; x � P; y � PÞ with advantage �ðjÞ if W ¼ x � y � P. Then
A can obtain mb with W by computing mb ¼ HPR �W�1.
Hence, we have Pr A b0 ¼ bð Þ½ � ¼ 1

2
þ �ðjÞ. Since B returns

1 only when the prediction b0 of A is equal to b, we know

Pr B G;GT ;P; x � P; y � P;Wð Þ ¼ 1½ � ¼
Pr A b0 ¼ bð Þ½ � ¼ 1

2
þ �ðjÞ.

When W is a random element from GT , mb �W is evenly

distributed in GT and is unaffected by b from A’s view.

Therefore, we have Pr A b0 ¼ bð Þ½ � ¼ 1
2
, which indicates that

Pr B G;GT ;P; x � P; y � P;Wð Þ ¼ 0½ � ¼ 1
2
. So we can obtain

that CDH � AdvB ¼ Pr B G;GT ;P; x � P; y � P;Wð Þ ¼½j 1� �
Pr B G;GT ;P; x � P; y � P;Wð Þ ¼ 0½ �j ¼ 1

2
þ

�
�

� jð Þ � 1
2
j ¼ � jð Þ, which implies that the advantage of

polynomial-time algorithm B to determine whether W ¼
x � y � P is �ðjÞ. Based on the CDH assumption described in

Sect. 3.4, we can find that the advantage �ðjÞ is negligible.

Theorem 3 For external adversaries, the proposed

scheme satisfies semantic security as long as the DL and

CDH assumptions hold.

Proof As we all know, external adversaries have less

relevant information than internal adversaries. Hence, there

is no doubt that external adversaries are unable to get the

plaintext of outsourced data.

6.3 Data integrity

We will prove that our scheme can ensure data integrity,

i.e., our scheme can ensure the integrity of both the

uploaded data and the downloaded data. Specifically,

assume that the hospital HP uploads the tag si of data block
m�i , and the cloud server does not find duplicate and

requires HP to upload data, while HP intentionally or

unintentionally uploads the ciphertext Ck of other data

block m�k . If the cloud server does not check data integrity,

it will store the error data Ck. When HP uploads the tag si
of data block m�i again, the cloud server will find duplicate

and will not require HP to upload data. So Ck stored in the

cloud server can never be corrected. When the researcher R

would like to download the data Ci, he/she actually

downloads the error data Ck. As a result, the researcher

cannot decrypt m�i from Ck. Similarly, assume that HP

uploads the data block Ci correctly. When the researcher R

wants to download the ciphertext Ci, the cloud server

returns the ciphertext Ck of other data blocks m
�
k to R. The

researcher cannot decrypt m�i from Ck. Fortunately, our

scheme can detect incomplete data. As shown in

Sect. 3.2.5, before uploading the data block m�i , HP

uploads its tag si to the cloud server, where si ¼ HðCiÞ.
When the cloud server receives the data block Ck, the cloud

server checks whether si ¼ HðCkÞ holds. If si 6¼ HðCkÞ,
then Ck 6¼ Ci. It indicates that the data is incomplete.

Similarly, in the process of data sharing, HP sends the tag

si to the researcher R who checks whether si ¼ HðCkÞ
holds after downloading Ck from the cloud server. If

si 6¼ HðCkÞ, the data is incomplete.

7 Performance evaluation

To demonstrate the efficiency of our scheme, we conduct

experiments using a real-world dataset [39]. This dataset

contains about 300 electronic medical records which are

divided into 6300 data blocks. Note that the electronic

medical records of the dataset exclude all patient’s sensi-

tive information. We pad the patient’s sensitive informa-

tion to these records to form intact electronic medical

records. The total sensitive information accounts for about

38% of whole electronic medical records. We do experi-

ments in java running on a desktop computer with Win-

dows OS system, a 2.10 GHz Inter Core i5 CPU and 8 GB

memory. The security level is set to 64 bits. In order to

intuitively show the efficiency of our scheme, we compare

our scheme with Zhang et al.’s scheme [26] and Bellare

et al.’s scheme [21] to evaluate the performance of these

schemes in terms of efficiency of deduplication, storage

costs, computational costs and computation delay. It should

be noted that we ignore related evaluation about the phase

of data download and data sharing since deduplication only

happens in the phase of data upload.

7.1 Deduplication efficiency

Firstly, we compare our scheme with DupLESS

scheme [21] and HealthDep scheme [26] with regard to the

deduplication efficiency. As shown in Fig. 3, the dedupli-

cation efficiency of our scheme is the best in these three

schemes, followed by DupLESS scheme, and the worst by

HealthDep scheme. In the HealthDep scheme, because of

the low duplicate ratio of patient’s sensitive information in
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electronic medical record, the cloud server only performs

deduplication on others except patient’s sensitive infor-

mation. The duplicate data in the sensitive information is

not deleted, so the deduplication efficiency of HealthDep is

the lowest. The DupLESS scheme does not consider pro-

tecting patients’ sensitive information. So it views sensitive

information and other information as equal, and performs

deduplication directly on whole electronic medical record.

The duplicate data in the sensitive information is deleted,

thus the deduplication efficiency of DupLESS scheme is

slightly higher than that of HealthDep scheme. In our

scheme, before uploading electronic medical records, the

Fig. 3 efficiency of

deduplication

Fig. 4 Comparison of storage

costs during the data upload

phase
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hospital firstly replaces patients’ sensitive information with

wildcards. After the sensitive information is converted to

wildcards with the same length, the cloud server performs

deduplication. Therefore, the duplicate ratio of sensitive

information remarkably increases so that the deduplication

efficiency also greatly increases.

7.2 Storage efficiency

Figure 4 shows the comparison results of storage effi-

ciency. The more data blocks the cloud server stores, the

lower the storage efficiency is. It can be seen clearly from

Fig. 4 that the storage efficiency of cloud server is influ-

enced by deduplication efficiency and the number of files.

As shown in Fig. 4, the storage efficiency of our scheme is

the best in these three schemes. Moreover, as the number of

files increases, the storage efficiency gap among these three

schemes becomes larger and larger. In these three schemes,

the deduplication efficiency of our scheme is the highest,

so the storage efficiency of our scheme is the highest.

HealthDep scheme and our scheme all introduce n key

servers to share a constant server-side secret like the

schemes [12]. This secret sharing scheme can improve the

security of the server-side secret, but it also needs addi-

tional storage space to store n secret shares. Fortunately,

this additional storage space is insignificant. On the one

hand, the secret share is derived from the server-side secret

s. Thus, the size of the secret share is much smaller than

that of the data. On the other hand, n secret shares are

stored in the key servers instead of the hospital and the

cloud server. In other words, the secret sharing

scheme does not increase the storage overhead of the

hospital and the cloud server.

7.3 Computational costs

We provide a comparison of computational costs in Fig. 5.

We randomly select 10, 150 and 300 files from the dataset

to do experiments. When the total number of files is rela-

tively small, the computational time of these three schemes

is shown in Fig. 5a. When the number of files is 0, the

computational time of DupLESS scheme is the shortest,

followed by HealthDep scheme and our scheme. The main

reason is that HealthDep scheme and our scheme use

multiple key servers to protect the server-side secret. In the

process of system setup, n key servers interact each other to

generate secret shares which consumes some time. In

contrast, DupLESS scheme employs single key server

which saves time for generating secret shares. As shown in

Fig. 5b, when the total number of files increases, the

computational costs of DupLESS scheme is the highest,

followed by HealthDep scheme and our scheme. The main

factor is that HealthDep scheme and our scheme adopt the

Fig. 5 Comparison of computational costs during the data upload

phase
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way of multiple key server interaction to ensure the secu-

rity of the server-side secret. But DupLESS scheme uses

only single key server. To ensure the security of the server-

side secret, DupLESS scheme adopts RSA-OPRF protocol

which contains some modular exponentiations of cycle

multiplicative group. Compared with Hash algorithm

adopted by HealthDep scheme and our scheme, RSA-

OPRF protocol consumes more time. Therefore, the com-

putational costs of DupLESS scheme are the highest. In

Fig. 5b, we can see that the computational time of

HealthDep scheme is similar to that of our scheme. In

Fig. 5a and c, the computational time of our scheme is

slightly longer than that of HealthDep scheme. The main

reason is that our scheme takes extra time to blind the

sensitive information compared with HealthDep scheme.

Although the computational cost of HealthDep scheme is

slightly better than that of our scheme, HealthDep

scheme needs to store more data blocks. In contrast, our

scheme needs reasonable computational cost while ensur-

ing storage efficiency.

7.4 Computation delay

In the Fig. 5a and c, we observe that the computational

time of our scheme is slightly higher than that of Health-

Dep scheme. In order to explore the influencing factors, we

compare the time for users to generate MLE keys in these

three schemes in Fig. 6. Note that we define the time for

users to generate MLE keys as the computation delay. As

shown in the Fig. 6, the computation delay of DupLESS

scheme is the highest, followed by our scheme, and the

lowest by HealthDep scheme. Just as we analyzed in

Sect. 7.3, DupLESS scheme spends a lot of time in key

generation, so the computation delay of DupLESS

scheme is much higher than that of HealthDep scheme and

our scheme. In addition, the main reason why the compu-

tation delay of HealthDep scheme is lower than that of our

scheme is that the sensitive information is handled in dif-

ferent ways. In the HealthDep scheme, the hospital ran-

domly selects a key which is used to encrypt the sensitive

information. In our scheme, the hospital replaces the sen-

sitive information with wildcards firstly, then interacts with

the key servers to produce the corresponding MLE keys.

Besides the time of blinding sensitive information, our

scheme also needs to spend time interacting with the key

servers. Although HealthDep scheme can reduce compu-

tation delay, it also reduces the deduplication efficiency

and storage efficiency of cloud server. In contrast, our

scheme achieves low computation delay while ensuring

high deduplication efficiency.

In conclusion, compared with schemes [21, 26], our

scheme has shown good efficiency in terms of data dedu-

plication, storage costs, computational costs and compu-

tation delay.

Fig. 6 Comparison of

computation delay during the

data upload phase
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8 Conclusion

In this paper, we propose a secure data sharing scheme with

data deduplication and sensitive information hiding. In our

scheme, multiple key servers are adopted to resist brute-

force attacks and single-point-of-failure attack. We replace

sensitive information of electronic medical record with

wildcards to ensure the privacy of the sensitive information

which also improves deduplication efficiency. We analyze

the characteristics of electronic medical records of the

same disease and divide data blocks into different cate-

gories based on their duplicate ratios, which helps

researchers choose the data according to duplicate ratios.

Performance evaluation shows that our scheme is indeed

efficient according to data deduplication, storage costs,

computational costs and computation delay.
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