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Abstract
This work aims to estimate the execution time of data processing tasks (specific executions of a program or an algorithm)

before their execution. The paper focuses on the estimation of the average-case execution time (ACET). This metric can be

used to predict the approximate cost of computations, e.g. when resource consumption in a High-Performance Computing

system has to be known in advance. The presented approach proposes to create machine learning models using historical

data. The models use program metadata (properties of input data) and parameters of the run-time environment as their

explanatory variables. Moreover, the set of these variables can be easily expanded with additional parameters of the

specific programs. The program code itself is treated as a black box. The response variable of the model is the execution

time. The models have been validated within a Large-Scale Computing system that allows for a unified treatment of

programs as computation modules. We present the process of training and validation for several different computation

modules and discuss the suitability of the proposed models for ACET estimation in various computing environments.

Keywords Execution time � Algorithm performance � High-performance computing � Non-linear regression �
Machine learning

1 Introduction

1.1 Context

The demand for computation resources is constantly

growing. This is mostly due to the high computational

requirements of various machine learning models and other

tasks related to Big Data, such as the Internet of Things.

The role of High-Performance Computing (HPC) systems

is to perform an efficient execution of such highly

resource-consuming computations. One of the key ele-

ments in the usage of HPC is the capability to determine

the consumption of resources and the associated cost. An

important issue in this context is the capability to predict

this cost in advance. Such predictions can be used to

determine proper resource allocation, e.g. to institute a

prepaid computation model.

Cost prediction can be facilitated if the computation

algorithms are implemented in a modularized and stan-

dardized form. Such an approach is taken in the Baltic

Large Scale Computing system (BalticLSC [1, 2], https://

www.balticlsc.eu). It uses a visual language, called the

Computation Application Language (CAL), to define data-

driven computation applications. Each application consists

of several Computation Modules (CM) that can be exe-

cuted according to a graph of data flows. Every CM has to

implement a standard API and is run as a standard con-

tainer. Various CM instances can be executed in parallel on

a distributed system consisting of potentially many com-

putation clusters.

Figure 1 shows an example application that consists of a

few CM calls to perform face recognition on the input

video data. Input films are sent to the Video Splitter

module that extracts individual frames (images) from the

film. Then, each frame is sent to an instance of the Face

Recogniser module. This module detects and marks faces

on an input image. Then, all the individual frames are

joined by the Image Merger module and sent back to the

user as a film with marked faces.
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Note that this application has a significant capability of

parallelization. The run-time engine can create many

instances of the Face Recogniser to detect faces on many

film frames in parallel. In this case, the usage of resources

depends on how many frames have to be processed. In

general, when an application is executed, CM instances are

executed with some input data. This data can have different

sizes and types, e.g. consisting of data frames or images.

The execution of a specific module instance is handled by a

virtual machine with specific resources (RAM, CPUs,

GPUs). This, together with the properties of the input data,

determines execution time and associated computation

cost.

Standardized modules, like the Face Recogniser module,

can be shared in many different applications. They can be

optimized for working in a distributed environment with

parallel processing capabilities and with different data sets.

Application users would like to know in advance how long

and how costly would it be to apply the particular module

to their data. This leads us to the key problem of time and

cost estimation for such Computation Modules.

1.2 Problem to be solved

Frequently, the worst-case execution time (WCET) metric

is used for time estimations. This metric determines the

greatest number of operations needed to solve the problem

over input data of a given size. In this paper, we do not

strictly focus on the WCET because we do not consider

applications where strict maximum time estimations are

necessary. Instead, we concentrate on the average-case

execution time (ACET) metric which determines typical

and not maximal times. For a specific CM, these times

depend on certain execution parameters. In our models, we

use the properties of the input data and the execution

environment. Our goal is to be able to predict the execution

time and price of a particular CM, given the particular

input data set and the particular computational resources.

Our research can be situated in the field of algorithmic

complexity analysis that has emerged as a scientific topic

during the 1960s and has been quickly established as one of

the most active fields of study [3]. The most common way

to describe the complexity of an algorithm is the big O

notation (collectively called the Bachmann–Landau nota-

tion or the asymptotic notation) which is a universal for-

mula that describes how the execution time of an algorithm

grows as the input data size grows. This is usually related

to the worst-case execution of a given algorithm. Here we

do not need such strict analysis as we deal with average

execution times.

Since execution time estimation is a long-known issue,

various approaches have already been proposed. In the

analytical method, a task is broken down into basic com-

ponent operations or elements. If standard times are

available from some data source, they are applied to these

elements. Where no such times are available, they are

estimated based on certain selected features of the ele-

ments. In the statistical approaches, execution time is

estimated on the basis of past observations. In this work,

we analyze CM executions in order to extract appropriate

features that affect their execution times. Following this,

we use the statistical method to estimate the execution

times based on collected observations of these extracted

features.

In summary, we propose a method that takes input data

properties and run-time environment properties as its

arguments. We assume that the source code of a CM may

be unavailable (e.g. due to licensing). This assumption has

the consequences of treating a CM as a black box and does

not allow for the extraction of features from the source

code.

The models we introduce estimate computation execu-

tion time based on historical data. This can be contrasted

with the algorithm complexity formulas as in the big O

notation. To validate our method, we have used simple

machine learning algorithms: SVR, KNN and POL1. More

information about the algorithms and how they are suit-

able can be found in Sect. 3. The conducted experiment

Fig. 1 The Face Recogniser application written in the CAL language

1 POL—Polynomial Regression.
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shows the suitability and drawbacks of the listed algo-

rithms to estimate the average execution times.

1.3 Contribution and related work

Our approach to estimation of program execution times is

based on the creation of individual estimation models for

specific computation programs. As a set of explanatory

variables for our models, we take basic properties of the

input data (the metadata) together with the properties of the

applied run-time environment. Our approach allows the set

of explanatory variables to be extended by specific

parameters of a program. What is important, no knowledge

of the program code is needed. Moreover, creating a sep-

arate model for each program instead of embedding the

program structure to a vector of features or control flow

graphs (CFGs) allows for focusing on each module sepa-

rately. To our best knowledge, no previous method allows

for estimation of execution time based on available

resources and input data properties at the same time.

An overview of the execution time estimation problem

with the list of possible, known solutions is presented by

Kozyrev [4]. This work focuses on the WCET estimation

for the purpose of determining the upper limit for com-

putation execution that cannot be exceeded. By contrast,

our work attempts at estimating the ACET, which can be

used for estimating execution time in typical cases.

Phinjaroenphan et al. [5] note that it is unrealistic to

assume that the execution time of a task to be mapped on a

node can be precisely calculated before the actual execu-

tion. In their method, it is not necessary to know the

internal design and algorithm of the application. The esti-

mation is based upon past observations of the task execu-

tions. For each execution, they collect a vector of

predictors. Each predictor has an impact on the execution

time. The employed estimation technique is the K-Nearest-

Neighbours algorithm [6]. A similar method is proposed by

Iverson et al. [7]. The execution time is treated as a random

variable and is statistically estimated from past observa-

tions. The method predicts the execution time as a function

of several input data parameters. It does not require any

direct information about the algorithms used by the tasks or

the architecture of the machines. This method also uses the

KNN algorithm. Our work extends these approaches by

introducing new types of predictors: program parameters

and execution environment properties. Moreover, we use

the SVR [8] (Support Vector Regression, originally named

support-vector networks) and POL (Polynomial Regres-

sion) algorithms as an alternative to the KNN algorithm that

has certain drawbacks (see Fig. 6 and its description in

Subsect. 3.1) in the context of execution time estimation.

Ermedahl and Engblom have introduced another

approach to execution time estimation [9]. They propose to

use static timing analysis tools that work by statically

analyzing the properties of a program that affect its timing

behavior. These parameters are collected into a specific

structure like a vector or a graph. In our approach, we

propose to apply static timing analysis to the properties of

input data, the run-time environment resources, and the

program parameters. This allows focusing on the charac-

teristics of a specific program and its executions, thus

potentially receiving more accurate results. However, we

have to provide a sufficient amount of model input data for

each program, which is challenging. We use the fact that

the analyzed programs run in the uniform environment of

the BalticLSC system and are reusable. This allows us to

collect enough data through repeated executions of CM

under various conditions.

In Sect. 3.6 of the work by Haugli [10], we can find a

similar approach for carrying out regression by using the

features of input data. This method uses the number of

image pixels as the only explanatory variable2 to estimate

the response variable, which is the execution time of an

algorithm. A few different image processing algorithms

were analyzed. It is worth noting that the choice of model

input data properties can be crucial for the proper estima-

tion of execution time. In the estimation models we pro-

pose, the set of explanatory variables is fixed for all the

CMs. However, this set can easily be extended with other

variables for specific types of modules, thus potentially

improving the prediction results.

To get more precise results of execution time estimation,

one can study the program with similar input data. Shah

et al. [11] have done an experiment by generating random

lists of data with the same properties (the same metadata)

and then training an artificial neural network to predict the

WCET. They used the Gem5 system [12] to simulate the

run-time environment. By contrast, we have used a real-life

container execution environment to receive more realistic

data with natural noise introduced to the response variable

(execution time). Shah et al. extend their work in the next

paper [13], using the concept of surrogate models as a

solution to the problem of generating training data. Such

generation can increase overheads of the execution time

estimation for processing algorithms with heavy input data.

It is worth considering as an extension of our approach to

generate some input data when the module is new and does

not have any executions yet.

Another approach is presented by Meng et al. [14]. They

estimate the WCET by extracting the program features

from object code. Estimation is started when the source

code of a program is successfully compiled into the object

2 An explanatory variable is a variable that one can manipulate to

observe changes, while a response variable is a variable that changes

as the result of these manipulations.
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code. Then, the extracted features are used for subsequent

sample optimization and WCET estimation. The authors

use the SVR algorithm with the RBF kernel [15] which is

similar to what we did in the current research. Having a set

of features for each program, we can unify the estimation

model to a single instance and provide the features as the

explanatory variables for the model. Another solution to

the problem of the unsatisfying amount of input data for a

model is described by Jenkins and Quintana-Ascencio [16].

The authors explore the problem of a small amount of

training data which also affects the results of our work.

Generation of testing data and simple algorithms for the

execution time estimation is used to reduce the impact of

the ‘‘small n’’ problem on the final results.

Huang et al. [17] present a more complex approach.

They generate a set of features based on the program code

(e.g. the number of loops in the source code along with

their depth) end include them in the models. In our work,

the program code itself is treated as a black box. We stick

to the lack of possibility to reach the source code (e.g. for

license reasons). Moreover, we use more extensive pro-

grams compared to those analyzed by Huang et al. [17].

Extending our models with such features would make the

models very complicated and the extension could be rather

the subject of whole new research.

2 Data acquisition from past observations

The approach for estimating the execution time of a

specific Computation Module (CM) is to create a separate

machine learning model. Training data consists of data

points (observations) collected during several executions of

the CM within some applications inside the BalticLSC

system. Each data point consists of a set of explanatory

variable values and a response variable value. The col-

lected set of data points makes up the input data3 for the

machine learning model. To unify the data acquisition

process for the modules analyzed in the article, we have

established the following set of explanatory variables.

1. CPUS (or mCPUs, called mili-cores) limit The fraction

of a physical CPU used to carry out a CM execution,

2. OVER The total size of CM input data in bytes,

3. PART The number of input data elements,

4. AVG The average size of a CM input element,

5. MAX The largest element size in model input data (if a

CM input data is a set of files, it is the largest size of a

file within the set).

Figure 2 illustrates the process of extracting a data point

from an execution of a CM. Some of the variables are

collected only if the input data for a specific CM is a set (of

files, database entries, etc.). Otherwise, these variables can

be treated as metadata carrying more detailed information

about input data of the CM than only the total size. For the

data frame type, the number of input elements can be equal

to the number of columns. The maximum element size will

be a quotient of the total size and the number of columns,

and the average size will be equal to that quotient. In other

cases (other kinds of CM input data), one can prepare

specific, additional features and store their values for each

execution to enable their use for training in the future.

Figure 3 shows an example of data point acquisition from a

specific execution of a module. As one can see, the set of

explanatory variables can be extended with specific

parameters of a module. In this work, we simplified the

input data of a model to the explanatory variables men-

tioned above. Our dependent value (response variable),

which we will estimate, is the execution time of a CM.

We have created two CAL applications based on four

CMs with different types of module input data. The first

application consists of three modules. It takes the movie as

an input, marks people’s faces on each frame, and then

returns the movie with marked people’s faces as an output.

The second one consists of just a single module, and it

searches for the best hyperparameters of the XGBoost

algorithm [18] within the parameters grid.

Table 1 describes the modules that we used in the

research. For each CM, we have created a set of 20 dif-

ferent module input data sets. Next, we ran the modules

with all the mentioned data sets using various CPU

resources (from 0.5 CPUs up to 4.0 CPUs with the 0.5

step). Finally, we have received a data frame with the

number of 4 (number of modules)*8 (different CPUS

resources)*20 (number of module input data sets) = 640

rows (160 per module) that we used to train and validate

our models. Part of the model input data is presented in

Table 2. The complete data is publicly available on Men-

deley Data [19].

To make the input data for our models more under-

standable, we present two figures that show interactions

between the explanatory variables and the response vari-

able. Figure 4 shows how much each variable is correlated

with the other ones (green indicates positive correlation,

red indicates negative correlation). As a correlation coef-

ficient between two variables, we have used Spearman’s

rank correlation coefficient [20]. As we can see, the fea-

tures of the module input data are mostly positively cor-

related with each other to some extent. They are positively

correlated with the execution time as well. The CPUS

variable is negatively correlated with the execution time for

each module (highest correlation for the face_recogniser).

3 Under the expression Input data, we mean the data forming the

input to the machine learning model. Not to be confused with the data

input to the CM for data processing (module input data).
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As the input data features are strongly correlated with each

other, we have performed the PCA analysis [21] to deter-

mine how specific variables affect the variation of the input

data set for a model. Figure 5 shows the results. The x-axis

denotes PCA components (starting from the left with the

component having the highest impact on the data set

variance). The colors in Fig. 5 show the share of

explanatory variables in each of the PCA components.

CPUS, the only environment-based variable, is not

Fig. 2 Visualization of data point acquisition (the same explanatory variables for each module)

Fig. 3 Extracting a data point from a module execution

Table 1 Modules used in this work

CM ID (application ID) Name Input data type

1(1) Video_splitter Video file

2(1) Face_recogniser Image files

3(1) Images_merger Image files

4(2) XGB_grid_search CSV file

Table 2 Part of the data frame

for model training and

validation

CM ID CPU Total size (B) Avg Max size (B) Max size (B) Time (s)

1 4.0 1703379 544 3131 3131 3.909

1 4.0 809881 548 1477 1477 1.981

1 4.0 1711796 1392 1229 1229 11.371

... ... ... ... ... ... ...
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correlated with the other ones and impacts the data varia-

tion with a value equal to 1/(number of explanatory vari-

ables) = 0.2 for each module. The rest of the variance falls

onto variables that represent features of the module input

data. The PCA analysis shows that we could compress our

input data to only three components and still keep almost

all the variance (the same situation for each module). We

kept the original input data for more clarity, but one should

consider the reduction of dimensions in the case where

more explanatory variables are involved.

3 Choice of the machine learning algorithms

3.1 Selection rationale

The problem we are trying to solve is a small-p regression

type. This means that we operate on a low-dimensional

space, and our models are based only on a few explanatory

variables. Moreover, in most cases, the problem can be

classified as a small-n type because of the small number of

data points for model training. We do not need complex

Fig. 4 Spearman’s correlation

between the explanatory

variables and the response

variable (Color figure online)

Fig. 5 Importance of PCA

variables (Color figure online)
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machine learning tools like XGBoost [18] or neural net-

works to receive satisfactory results. The algorithms

described in the following two subsections were selected

because of their properties and simplicity.

We assume that most of the modules have polynomial

time complexity. Following the given assumption, Poly-

nomial Regression (POL) algorithm is a natural choice for

the type of problem we are trying to solve. For the same

reason, we also chose to investigate the Epsilon-Support

Vector Regression (SVR) algorithm [22]. SVR has the

flexibility to model any function that is a combination of

different polynomials. Moreover, SVR can have a better

performance when it comes to the regulation of a model.

We have also decided to use the KNN algorithm for

comparison. The simplest way to predict the execution

time is to look at the historical executions of a CM with the

model input data that have similar properties to the exe-

cuting one. That is what the KNN algorithm does. A huge

disadvantage of the algorithm is the lack of ability to

provide acceptable estimations for outstanding data points

(data points that fall outside of the range of the training

data set). The problem is visualized in Fig. 6 which pre-

sents regression on some example input data. As we can

see, KNN is not able to generalize the estimation for the

range above the last training point. At the same time, it can

still provide acceptable results for the points within the

training range.

Vural and Guillemot [23] study the performance of

different machine learning algorithms in low-dimensional

space. They compare various algorithms using five differ-

ent, low-dimensional space data sets. The results of their

evaluation show that the KNN and the SVR perform well in

this comparison, at the same time being relatively simple to

apply.

3.2 Polynomial regression

In order to perform model training with the use of the POL

algorithm, we have introduced the following pipeline:

1. Create the polynomial features.

2. Scale the features.

3. Perform the linear regression.

The following hyperparameters have to be established:

1. Degree The maximal degree of the polynomial

features,

2. Interaction_only If True, only interaction features for

the larger degree are produced,

3. Include_bias If True, then include a bias column

(feature in which all polynomial powers are zero).

All of the hyperparameters concern the creation of the

polynomial features.

3.3 Support vector regression

We have used the SVR model with the RBF kernel [15]

which is the most known flexible kernel, and it could

project the vectors of explanatory variables into infinite

dimensions. It uses Taylor expansion [24] which is

equivalent to the use of an infinite sum over polynomial

kernels. It allows the modeling of any function that is a

sum of unknown degree polynomials.

When using the kernel, the resulting algorithm is for-

mally similar to the base one, except that every dot product

is replaced by a non-linear kernel function. This allows the

algorithm to fit the maximum-margin hyperplane in a

transformed variables space. The RBF kernel has the fol-

lowing form:

Fig. 6 Using SVR and KNN for regression on the same example data
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KRBF x!; x0
!� �

¼ exp �c x!� x0
!���
���

2
� �

; ð1Þ

where x!� x0
!

euclidean distance between the two vectors

of explanatory variables, c-gamma hyperparameter (see

below).

In the SVR algorithm we look for a hyperplane y in the

following form:

y ¼ w! x!þ b; ð2Þ

where x! is the vector of explanatory variables, w! is the

vector normal to the hyperplane y; when using a kernel, the

w! vector is also in the transformed space.

Training the original SVR means solving:

1

2
w2 þ C

XN
i

ni þ n�i
� �

ð3Þ

with the following constraints:

yi � w!xi � b� �þ ni � yi þ w!xi þ b� �þ n�i nin
�
i � 0

ð4Þ

Figure 7 shows an example of a hyperplane with marked

n and � parameters. As we have already chosen the RBF

kernel for the SVR algorithm, our modeling is simplified

just to find the best values of the following

hyperparameters:

1. C The weight of an error cost. The regularization4

hyperparameters have to be strictly positive. The

example from the Fig. 7 has l1 penalty applied (the

used modeling library has the squared epsilon-insen-

sitive loss with l2 penalty applied). The strength of the

regularization is inversely proportional to C. The larger

the value of C, the more variance is introduced into the

model. A module’s execution time can depend on

variables that we do not consider and would introduce

noise to the final result. The machine learning

algorithm should be able to generalize the result to

eliminate the noise impact. It can be done by well-

selected regularization parameters.

2. Epsilon It specifies the epsilon-tube where no penalty

is associated with the training loss function. In other

words, the penalty is equal to zero for points predicted

within a distance � from the actual value of prediction.

As it is shown in Fig. 7 the green data points do not

provide any penalty to the loss function because they

are within the allowed epsilon range around the

approximation5.

3. Gamma The gamma hyperparameter can be seen as the

inverse of the radius of influence of samples selected

by the model as support vectors. Increasing the value

of gamma hyperparameter causes the variance increase

what is shown in Fig. 86.

To implement the algorithm we have used the scikit-learn

library. Its documentation [25] presents more details on

implementing the SVR-class algorithms. We refer to the

documentation which provides detailed information about

the C and gamma hyperparameters [26].

3.4 K-nearest neighbors regression

In the KNN algorithm, the target is predicted by local

interpolation of the targets associated with the nearest

neighbors in the training set [27]. In other words, the target

assigned to a query point is computed based on the mean of

the targets of its nearest neighbors.

To use the algorithm, we have to define the values of the

following hyperparameters:

1. k Number of the nearest neighbors,

2. Weights Weight function used in prediction. The basic

nearest neighbors regression uses uniform weights:

each point in the local neighborhood contributes

uniformly to the classification of a query point. Under

some circumstances, it can be advantageous to weight

points such that nearby points contribute more to the

regression than faraway points. The weights can be

calculated from the distances using any function, a

linear one, for example.

3. Procedure The algorithm to calculate k-nearest neigh-

bors for the query point. It does not directly impact the

Fig. 7 Visualization of the SVR’s epsilon hyperparameter (Color

figure online)

4 Regularization is a way to give a penalty to certain models (usually

overly complex ones).

5 The figure is based on some example data and it only shows the

hyperparameter influence on a model.
6 See footnote 5.
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final regression result, but the algorithm’s parameters

do. For example, using the BallTree algorithm, we

have to choose the metric parameter that will be used

to calculate the distance between data points. For

example, this could be the Minkowski [28] metric with

the l2 (standard Euclidean [29]) distance metric or any

function that will calculate the distance between two

points.

4 Training and validation

4.1 Training

The training pipeline for each module contains the fol-

lowing steps:

1. Having the 160 data points (see the description of data

acquisition in Sect. 2), we divide them into training and

test data sets with the 120:40 proportion. We set aside

the test data to use it only for the validation of the final

models.

2. Standardization of a data set is a common requirement

for many machine learning estimators: they might

behave badly if the individual explanatory variables do

not approximately look like standard normally dis-

tributed data (e.g. Gaussian with 0 mean and unit

variance) [30]. We scale each column (explanatory

variable) of the data set using the following formula:

x0
!

f ¼ x!f � lf
� �	

rf ; ð5Þ

where x0
!

f vector with values from the column f, lf
mean of the column f, rf standard deviation of the

column f.

3. Each algorithm has several hyperparameters that

should be chosen wisely to achieve satisfactory results.

It is hard to predict the best value of a continuous

parameter. What we did is an exhaustive search over

specified parameter values. For each combination of

the parameter values, we validate the model using

fivefold cross-validation on the training data set. This

procedure is called the grid search [31]. The hyperpa-

rameter grids for the algorithms are included in

Table 3. The ranges were chosen based on several test

runs of the learning pipeline. Then, we have estab-

lished a few values from the given ranges ensuring

proper distribution of the values.

4. Finally, we have re-trained our model using the entire

training data set and the hyperparameters that have

been found in the previous step.

In the grid search procedure the determination coeffi-

cient R2 has been used as the performance metric of the

prediction.

We assume that each BalticLSC module will be exe-

cuted many times. This assumption entails many training

data points for each model. However, there will be diver-

sities between the number of executions per module.

Moreover, the execution time of new modules cannot be

predicted due to the lack of training sets. To investigate

how the number of training samples affects the relative

error of the regression, we have calculated the learning

curves. The results are shown in Fig. 9. In line with what

could be expected, the relative error decreases (with some

hesitations) as the amount of training data increases for

each module.

4.2 Validation

Since our models were trained only on the training data

sets, we had the possibility to use the test data set as

completely new data to validate our models. The separated

test data guarantees that the validation results will not be

distorted. Training with cross-validation secures the model

from overfitting thereby increasing the overall accuracy. In

the BalticLSC system, we would like to conduct the pre-

diction process even with data from a small number of

historical executions. The formula of relative error is the

average from the errors of models trained with a different

number of samples. Such metrics indicate that models

should perform well even for a small number of training

samples. The relative error is described by the following

equation:

Fig. 8 Influence of the SVR gamma hyperparameter on the model

variance
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where F number of test data fractions = 10,

f fraction identifier,

Nf-number of training data points for the fraction f,

where f [ {q *12, q [ [1, 10] ^ q [ I}

y - original execution time of a module,,

ȳi-predicted execution time.

Table 4 shows the final results of the estimation error for

each module and algorithm. The so-called reference model

is a model trained only on the two basic explanatory

variables: CPUS and OVER. We did research on such

reduced models to check if the additional features of input

data had any positive influence on the final models.

One could ask how adding the additional features will

affect the training time of a model. When it comes to using

POL or KNN algorithm, training is quite fast due to the low

complexity of the algorithms. The training was conducted

on an average machine with eight cores. It takes less than a

second for every model when using full training data (120

samples). However, training a model based on the SVR is

more computationally demanding. On average, for a single

model, using the full training data, training times are

around 137 s and 594 s for the reference and the original

method, respectively.

Additionally, we have conducted the Kolmogorov–

Smirnov test to check if the differences between the results

of models are statistically significant. In the Subsect. 5.1,

one can find the conclusions from the comparison between

reference model and the original one.

Figures 10 and 11 show the comparisons of regression

surfaces7 for chosen modules and algorithms. One can see

that the KNN algorithm created a more irregular surface

than the SVR. The mentioned irregularity also applies to

other modules, the surfaces of which are not attached in the

article. This indicates better generalization when using the

SVR algorithm. Besides the surfaces, the figures show

training and test data points as green and red dots respec-

tively. The input data set was split randomly for each

module in the same way for each algorithm. One can see

that the data points for the face_recogniser module have a

more uniform distribution for the overall size variable. It

leads to a more smooth regression surface and smaller

Fig. 9 Learning curve per

computational module

Table 3 Hyperparameter grid for each algorithm

Algorithm Hyperparameter Set of values

SVR C f2ne�04 2 ½0; 7� ^ n 2 Ig
� f2ne�06 2 ½0; 10� ^ n 2 Ig
C f2ne03 2 ½0; 11� ^ n 2 Ig

KNN n_neighbors fn 2 ½1; 11� ^ n 2 Ig
Weights {‘uniform’, ‘distance’}

p {1, 2}

POL Degree fn 2 ½1; 5� ^ n 2 Ig
Interaction_only {‘False’, ‘True’}

Include_bias {‘False’, ‘True’}

7 To illustrate the surface on 3D plot, only the CPUS and OVER

features are plotted. The z-axis (t label) represents the execution time.
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relative error (see the final results in Table 4, model

original).

5 Conclusion

5.1 Observations

As the PCA analysis shows (see Fig. 5 and its description),

the input data for our models have approximately three

independent components that contain all variations of the

data. This means that by using these components, we will

reduce the model to only a three-dimensional space of

explanatory variables. We did not decide to use the reduced

space, but one can use the reduction to more complex cases

because each set of explanatory variables of a model can be

extended with additional features for the specific module.

For example, there could be some additional parameters

required to run a module, and the parameters have an

impact on the execution time. These parameters should be

included in the set of input data for the model of the

module.

Each module has its own model. Every module execu-

tion in the BalticLSC system will be the next training data

point (observation) for a model. If a module has many

properties that have an impact on the execution time then it

will be harder to train the model because of the high-di-

mensional space of the explanatory variables. Moreover,

without executions of a module, there is no training data at

all, which can be solved by introducing testing executions.

However, one should have in mind, that these testing

executions use resources that generate costs. In this con-

text, it is desirable to establish the minimum number of

testing executions. Our work shows that several dozen

executions per module guarantee an estimation error of an

acceptable value (see the learning curves in Fig. 9).

Additionally, we have researched models with a reduced

set of explanatory variables. We call the model as refer-

ence since it represents the model with the most basic set of

features required to conduct the experiment. Such a

reduced set consists of only two variables: CPUS (the

fraction of a physical CPU used to carry out the execution)

and OVER (the total size of a CM input data in bytes).

When it comes to analyzing the results of the POL algo-

rithm (Table 4), one can see that the reference model has

significantly better results. The reason for this is probably

the large number of polynomial features generated along

with the creation of the original model. Since the reference

model has fewer explanatory variables, it has fewer poly-

nomial features as well. More features, along with a small

number of training samples, can lead to a decrease in the

overall performance of a model. Both SVR and KNN

algorithms have slightly better results when the extended

set of features is used. However, since the p-values of

Kolmogorov–Smirnov tests are high, one should deduce

that the differences cannot be described as statistically

significant.

Using the POL algorithm leads to significantly worse

results when compared to KNN or SVR. One can find the

reason for that in the previous paragraph of the current

subsection. Both KNN and SVR algorithms give relatively

similar results with a bit of advantage for the SVR (average,

the relative error of 40.8%, comparing to 43.7% for the

KNN). The more critical characteristic which makes the

SVR algorithm more promising in use is the possibility to

estimate the execution time in a more general way for the

inputs that are out of the training range (see Fig. 6 and its

description in Sect. 3).

In the context of a real-life environment, a single model

can initially have a small number of training samples

according to the small number of module executions. We

have measured relative error for different sizes of training

sets and computed an average according to Eq. 6. Though,

it should be noted that this error is a few points lower when

we only consider the model trained on the full training set

(120 samples). For example, in the case of the SVR algo-

rithm, we end up with an error equaling 40.8% on average.

For a full training set, the error equals 34.8%.

The error could be potentially reduced by using well-

chosen and representative training samples. This way, we

Table 4 Comparison of relative errors between original and reference models

method: original reference
algorithm SVR KNN POL SVR KNN POL SVR KNN POL
CM ID relative error [%] p-value [%]

1 41.8 45.7 91.4 37.2 33.0 44.0 70.0 18.0 0.0
2 42.2 45.3 56.3 51.0 48.9 53.7 0.1 21.1 36.7
3 42.0 51.3 55.8 50.7 51.7 45.8 90.7 1.0 36.7
4 37.1 32.5 57.7 41.4 45.9 50.2 0.0 0.0 1.3

average 40.8 43.7 65.3 45.1 44.9 48.4 40.2 10.0 18.7
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could reduce the probability of missing information about

subspaces where the variability of a mapping function is

significant. However, in a real-life context, the training

samples are created during the actual runs of the modules.

Thus, to be more tied with the real-life environment, we did

not strongly focus on providing representative samples. By

providing random rather than representative samples, we

ended up with slightly worse (but more adequate for real-

life use) results.

When using the additional features (the original

method), there is an evident increase in the training time of

the model based on the SVR algorithm (594 s as compared

to 137 s using the reference model). Despite the increase,

the training time for models using the original method is

still acceptable. However, when significantly increasing the

number of features or/and the number of training samples,

attention should be paid to the training time of models

based on the SVR algorithm.

5.2 Future work

Considering the obtained accuracy of the proposed method

we can see that there is still significant room for

improvement. Thus, our future work will concentrate on

further improvement of the presented models. Explanatory

variables should explain the input object as much as pos-

sible in the context of estimating the response variable.

One could determine a different set of explanatory vari-

ables for each input data type or even for each computation

module. Currently, we use the same set of explanatory

variables for every module to simplify the process of ver-

ifying the general idea. Future work can extend this

Fig. 10 Regression surfaces for images_merger module

Fig. 11 Regression surfaces for face_recogniser module
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through researching more specific explanatory variables for

particular modules or module types.

We are going to build one model for all the modules,

based on the control flow graphs embedded in vectors. In

such a case, we will leave the assumption of treating the

source code of a module as a black box.

Moreover, it should be noticed that our method works

for single modules only. Still, we would expect to be able

to predict execution times for applications consisting of

several connected modules (see, e.g. Fig. 1). In this case,

we need to predict input data properties for consecutive

modules. This is not an easy problem because we do not

know the exact characteristics of data passed between

modules (produced on output by one module and treated as

input to another module). One idea for estimating the

execution time of whole applications is to create predictive

models. The input data for the models should contain the

metadata of the input data for the entire application and the

encoded application structure. The output of the models

will provide full metadata of consecutive input data sets for

each execution of a module within the execution of the

application. This forms an interesting research agenda that

we plan to undertake as future work.
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