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Abstract
Cloud computing is a commercial and economic paradigm that has gained traction since 2006 and is presently the most

significant technology in IT sector. From the notion of cloud computing to its energy efficiency, cloud has been the subject

of much discussion. The energy consumption of data centres alone will rise from 200 TWh in 2016 to 2967 TWh in 2030.

The data centres require a lot of power to provide services, which increases CO2 emissions. In this survey paper, software-

based technologies that can be used for building green data centers and include power management at individual software

level has been discussed. The paper discusses the energy efficiency in containers and problem-solving approaches used for

reducing power consumption in data centers. Further, the paper also gives details about the impact of data centers on

environment that includes the e-waste and the various standards opted by different countries for giving rating to the data

centers. This article goes beyond just demonstrating new green cloud computing possibilities. Instead, it focuses the

attention and resources of academia and society on a critical issue: long-term technological advancement. The article

covers the new technologies that can be applied at the individual software level that includes techniques applied at

virtualization level, operating system level and application level. It clearly defines different measures at each level to

reduce the energy consumption that clearly adds value to the current environmental problem of pollution reduction. This

article also addresses the difficulties, concerns, and needs that cloud data centres and cloud organisations must grasp, as

well as some of the factors and case studies that influence green cloud usage.

Keywords Cloud Computing � Containerization � Data center � Load balancing � Workload categorization

1 Introduction

The last decade internet services like cloud computing and

web 2.0 have changed the entire architecture of the internet

ecosystem. The web, which began as a worldwide hyper-

text system, has developed into a distributed application

platform with distinct entities for application logic and user

interface. The web is the principal interface (medium) via

which cloud computing distributes or makes its services

available to everyone. Since time immemorial, the defini-

tion of the term web has evolved. Now web encompasses a

slew of technologies and services that enable interactive

sharing, collaboration, user-centred design, and application

development. As a result, web 2.0 refers to the current state

of internet technology in relation to the early days of the

web, and it includes increased user involvement and

cooperation, as well as improved communication channels.

In recent years, a new computer paradigm known as cloud

computing has begun to emerge. As we transitioned from

web content to web of apps on the next generation web

platform, web 2.0, the network cloud housed the vast bulk

of user data and applications. Cloud computing is also

gaining prominence as a low-cost way of software storage

and distribution. Data, software and applications no longer

exist on the client side in this environment; instead, they
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are viewed as abstract services and live in cloud. A cloud

may be defined as a network of server-side nodes. Many

underlying technologies like utility computing, Service-

oriented architecture (SOA) had a direct impact on cloud

computing. SOA made it possible for several services to

connect with one other via a loose coupling technique in

order to exchange data or organize an activity. In contrast,

utility computing is a service delivery model in which a

service provider makes computational resources, network

administration accessible to clients on as need basis, and

pays them for the usage patterns rather than a set fee. The

utility model, like other types of on demand computing

(such as grid computing), seeks to optimize operational

efficiencies while minimising associated costs.

The word ‘‘data centre’’ is, by definition, an assumption.

It harkens back to a time when a company’s back-office

computer systems were mainly devoted to data storage and

were cobbled together in a basement or closet. Nobody was

meant to see or notice ‘‘infrastructure,‘‘ such as a sewage

system or the foundation of a roadway beneath the pot-

holes. All of these assumptions have now been debunked.

The IT infrastructure of a business includes computer

power, networking, and data storage. In addition, like the

enterprise, it has a natural propensity to become dispersed.

As with many novel notions in the IT industry, there is no

universally accepted definition of what constitutes a

hyperscale data centre. Hyperscale data centres are much

larger than corporate data centres, and they outperform

them greatly as well, owing to the benefits of economies of

scale and custom engineering. The International Data

Corporation (IDC), that offers new tech sector design and

consultancy assistance, defines hyperscale as any data-

centre with at least 5000 servers and 10,000 square feet of

open field. Nevertheless, Synergy Research Group focuses

on ‘‘scale-of-business criteria,‘‘ that also assess a com-

pany’s cloud, e-commerce, and social networking proce-

dures instead of physical features [1]. Traditionally, data

centres have used one of two techniques to provide this

additional computing capacity. Horizontal scaling is inef-

ficient in terms of energy consumption, particularly for

complicated workloads. It also introduces a new issue in

that each storage unit added necessitates the inclusion of

the appropriate compute and network resources required to

use them. Data centers require proper cooling systems to

work properly which leads to increase in expenses.

Hyperscale computing aids in lowering the cost of data

disruptions. Systems that fail due to a lack of hyperscale

computing lose money, goodwill, and the services of their

IT employees who must find out why the services failed

among other business operations losses. Before the system

can be used again, they may need to fix compliance con-

cerns and alert consumers. Companies might lose data for

hundreds of thousands or millions of dollars. Hype scaling

enables businesses to reduce downtime caused by high

demand or other problems. Hyper scaling also allows IT

systems to be restored considerably more quickly. The cost

of cooling and maintaining the facility’s temperature is one

of the most significant operating expenditures a data centre

confronts. A hyperscale data center optimizes airflow

throughout the structure. The combination of vertical and

horizontal scaling increases the utilization of energy by

hyperscale data centres dramatically. Although these

facilities are generally highly energy efficient, their sheer

scale exerts huge power demands on the world’s energy

supplies. From 2015 to 2023, hyperscale data center’s

energy usage is anticipated to nearly quadruple, making it

the world’s highest proportion of data centre energy con-

sumption [1].

The architecture of the current services of cloud is

highly centralized meaning that the different types of ser-

vices can be run through a single site called data centers.

The data centers are increasing rapidly due to rapid

advancement in cloud computing. The energy consumption

of data centres alone will rise from 200 TWh in 2016 to

2967 TWh in 2030 [2]. Despite the COVID-19 problem,

the worldwide market for Internet Data Centers, which was

predicted at US$59.3 billion in 2020, is expected to reach

US$143.4 billion by 2027, increasing at a CAGR of 13.4%

between 2020 and 2027 [3]. In the United States, the

Internet Data Centers business is estimated to be valued

US$16 billion by 2020. China, the world ‘s second biggest

industry, is expected to have a data centre industry of

US$32 billion by 2027, with a 17.5% CAGR between 2020

and 2027 [3].

Power Usage Effectiveness (PUE), a unit of analysis for

data centre power consumption efficiency, is a real-time

and annual study of total facility power split by IT hard-

ware power, or a measurement of power ‘loss’ flowing to

non-IT devices. The ideal PUE is 1.0, which corresponds to

100% effectiveness [4]. However, it is nearly difficult to

achieve. The average yearly data centre PUE in 2021 was

1.57, a small increase with the average of 1.59 in 2020, and

keeping with the overall trend of PUE stagnation over the

previous five years. The bulk of the energy consumed is

used to power the servers; however, they generate heat and

must be cooled [5]. The need for data centres is increasing

due to the exponential rise in data gathering and con-

sumption. In general, cloud computing uses a large number

of data centers and servers to service a big number of

clients using a pay-per-use model. Such resources cover a

big area and demand a considerable amount of electricity

for networking devices, cooling technologies, displays, and

server farms, among other things. Making the resources

green using green technology has thus become a main goal

of several government and industry organizations. Green

IT, from an environmental standpoint, and to deal with IT-
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related environmental challenges, offers a broad number of

approaches and practices through several green initia-

tives.Using energy more effectively is one of the most

straightforward and cost-effective method to save money,

decrease greenhouse gas pollutants, generate employment,

and satisfy rising power demands. Improved efficiency has

the potential to reduce greenhouse gas (GHG) emissions,

other contaminants, and water usage. Energy efficiency can

bring long-term advantages by lowering total power con-

sumption, minimising the need for new energy generation

and distribution infrastructure investment.

Cloud providers that host a range of applications must

follow service-level agreements (SLAs), achieve low

access latencies, meet task deadlines, and provide secure,

dependable, and effective data management. Low-cost

hardware designs and capacity planning tactics employed

in back-end data centres for energy savings might often

conflict with the commercial objectives of cloud providers.

Due to the online assessment of dynamic elements such as

workload allocation, resource allocation, cooling plan, inter

process communication, and traffic conditions, data centre

energy management is a challenging operation. Moreover,

as energy prices rise and the cloud service pricing market

becomes more competitive, cloud providers are being

obliged to investigate energy-saving alternatives for back-

end data centres [6]. Typical workload on the data center is

usually about 30% and does not necessitate the use of all

computer resources [7]. As a result, certain unused equip-

ment can be turned off to achieve energy savings while

meeting data center workload expectations. However,

scheduling data centre resources necessitates careful con-

sideration of data center traffic patterns [8], client SLAs

[9], latency and performance concerns [7], and data repli-

cation [10].

Software level modelling is very important for energy

efficiency in data centers because the different software

components require power to process the tasks. The soft-

ware developed should be able to benefit from advance-

ments achieved at the hardware component level. If the

software generated is not as efficient as hardware technical

advances and consumes a large number of resources,

overall energy consumption will remain high, negating the

entire goal of building green data centres. The survey

papers published until date do not include the complete

details of energy efficiency techniques employed at each

software layer in the data center. They do not include

different mechanisms employed for modelling the con-

tainers energy consumption that is one of the emerging

areas in cloud computing domain. This paper explains the

various techniques employed for energy efficiency in

container technology that is first a kind of effort in this

direction as per author’s knowledge. This paper also pro-

vides information about the environmental effect, as well

as the policies/standards available for assessing energy

efficiency in data centers. This survey report serves as a

foundation for academics working in the field of green

computing, as it covers layer-by-layer software modelling

of data centres, as well as an emphasis on the many

research issues to which researchers should target their

efforts.

Thus, four research queries have been answered:

RQ1 What are the numerous options used at the software

level like operating system, virtualization and application

to reduce the usage of power by data centers?

RQ2 What are the various strategies utilised in data cen-

tres, both virtualized and non-virtualized systems, to min-

imise power usage?

RQ3 What are the major impacts of a data center on the

environment?

RQ4 What are the major software academic difficulties for

developing green data centres?

2 Related work

Despite the fact that there has been a substantial quantity of

research on data centre energy usage estimation and fore-

casting, there have been comparatively few studies in this

sector. The following papers describe software-based

technologies for developing energy-efficient green data

centres.

The authors of [11] presented an analysis on cloud

computing energy usage. The research considered both

public and private clouds, as well as the energy consumed

in switching and communication, information computation,

and storage. They demonstrated that power usage in transit

and switching may account for a sizable portion of total

energy demand in cloud computing. Their proposed

method regards Cloud Computing (CC) as an equivalent of

a classic logistics and supply chain issue that takes into

account the power usage or expense of computing, keep-

ing, and transporting physical goods. The authors in [12]

highlighted the reasons and difficulties associated with

excessive power / energy usage, as well as presented a

taxonomy of energy-efficient computing system architec-

ture at the OS, hardware, virtualization, and data centre

levels. They evaluated important contributions in the area

and linked them to their classification to guide future

development and research initiatives. They investigated

and categorised numerous ways to controlling a system’s

power usage from the OS level using DVFS and other

power-saving strategies and algorithms. Many research

efforts targeted at developing efficient algorithms for reg-

ulating CPU power usage have culminated in the

Cluster Computing (2023) 26:1845–1875 1847

123



widespread acceptance of DVFS in the form of an imple-

mentation in a kernel module of the Linux operating sys-

tem. In addition, the authors in [13] highlighted research

difficulties connected to the competing needs of enhancing

the quality of services (QoSs) supplied by cloud services

while lowering energy consumption of data centre resour-

ces. They addressed the idea of creating an energy-efficient

data centre controller suitable of combining data centre

capabilities while reducing the effect on QoS objectives.

They investigated strategies for controlling and coordinat-

ing data centre resources in order to achieve energy-effi-

cient operations. They also offered a central controller

concept and proposed resource controller cooperation.

Energy-saving hardware ideas for data centre resources

were also thoroughly examined. The authors in [14] dis-

cussed the different mechanism and architectures for the

design of energy efficient data centers. They investigated

the different power models for virtual machines, operating

systems and software applications. Their systematic tech-

nique enables them to investigate a variety of challenges

typical in power simulation at different stages of data

centre systems, such as: (i) few modelling efforts devoted

at overall data centre power consumption (ii) many cutting-

edge power models rely on a few CPU or server specs; (iii)

the efficacy and accuracy of these power models is still

unknown. They completed the study by identifying

important obstacles for future studies on building efficient

and optimum data centre power models based on their

findings. The authors in [15] conducted research and cre-

ated a taxonomy based on pre-existing energy efficiency

related surveys, i.e., research on energy saving surveys.

Existing surveys were classified into five categories: those

on the power consumption of all cloud-related processes,

that on a particular level or component of the cloud, those

on all energy-efficient methodologies, that on a specific

energy-efficiency technique, and those on other energy-

efficiency-related studies. A taxonomy and survey on sur-

veys are conducted from the viewpoints of foci, views,

target system, and years. The survey findings on energy

consumption savings measures are then examined, laying

the groundwork for their future work in the subject of

energy consumption.

The survey articles described above are either incom-

plete or having limitations. They have not gone into length

on the issues of power usage at the application, virtual-

ization, and operating system layers of software. Further-

more, these survey studies did not give comprehensive

information on the solutions that may be deployed at the

data centre level and containers (operating system virtu-

alization). These survey reports also did not get into spe-

cifics concerning environmental variables or case studies.

This article is an extension of the authors’ earlier work,

which provides a study of hardware solutions for

establishing green data centres [16]. This paper provides

the detailed information about the different techniques that

can be applied at the individual software levels and in-

depth information about the power modelling at operating

system virtualization and data center level along with the

work done in different problem-solving approaches like

VM migration, workload categorization, load balancing

and VM placement. The article also addresses the envi-

ronmental impact of data centers and ends with a discus-

sion of the recent research challenges in the construction of

green data centres.

The articles in this study were obtained from several

sources, including IEEE, Springer, and Elsevier. Web of

Science and Scopus are the databases used to collect

publications. All of the publications included have been

peer reviewed, and the bulk of them were published and

2015 and 2020. This research includes publications that

focus on software-based methods for energy efficiency in

data centres. This analysis excludes publications that were

not peer reviewed and were published before to 2015.

Studies that are not published in English and do not provide

details about software innovations for energy savings in

data centres are not evaluated for inclusion.

3 Motivation

Data centres are critical, energy-intensive infrastructure

that provide large-scale Internet-based services. Power

utilization models are essential for creating and enhancing

energy-efficient processes in data centres in order to

decrease excessive energy use. In recent years, the neces-

sity of energy efficiency in data centres has increased

substantially and has become more complicated. To guar-

antee high availability of data, all elements of the data

centre design must perform their given tasks to minimise

data centre downtime that requires appropriate energy

support. Power supply, technical cooling, and technical

security are all part of the technical infrastructure, which is

the foundation of all information technology (IT) infras-

tructures. Any physical infrastructure outage, no matter

how slight, has a major impact on the functioning of IT

services. The essential qualities of a green data centre are

energy efficiency and low global impact. A green or sus-

tainable data centre is a data storage, management, and

dissemination facility in which all systems, especially

mechanical and electrical frameworks, improve energy

efficiency. It produces less carbon footprints, saves money

and increases efficiency. These eco-friendly data centres

help modern enterprises save power and reduce carbon

emissions. Globally, their use is rising among both major

organisations and small and medium-sized businesses

(SMBs). From data collection through processing,
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assessment, and distribution, such data centres can effi-

ciently fulfil the objectives for a plethora of corporate data.

The objective of this manuscript is to look at the current

research on green cloud computing and outline the major

concerns that have been raised which consumes more

power in data centers.

The software components require a large amount of

power to perform their operations in the data centers. To

reduce the energy usage of data center in respect to the

software layer, different techniques can be applied at

individual software level. The CPU core is the primary

resource consumer in computation-intensive tasks (s) and

cloud system’s storage resources in data-intensive opera-

tions. Connected devices such as network cards, routers,

switches, and others require a substantial amount of energy

when performing communication-intensive operations. The

operating system (OS) resides between the physical hard-

ware and the applications layers of the data centre archi-

tecture. Most of the research is done on the hardware level

for power consumption in data centers but the software

level is equally important in order to reduce the power

usage. Software developed should be able to exploit the

advancements done at the hardware components level. If

software developed is not as efficient as the hardware

technology advancements and consumes a large number of

resources then overall energy consumption still remains

high defying the whole purpose of developing green data

centers. Physical hardware is the component that consumes

the IT power, while applications produce the demand for

resources. Hence, looking into the details of power mod-

elling /energy consumption at the software layer becomes

equally important. Apart from the various techniques that

are applied at the OS, virtualization and the application

level, problem solving approaches like load balancing,

workload categorization, VM placement and VM migration

helps in minimizing the energy usage by consolidating the

physical servers and dynamically modifying operations.

These approaches prove to be effective in lowering energy

usage in high performance cloud data centers.

In this article, the analysis is performed at many levels

such as OS, virtualization, application and data centre to

determine the energy usage by different software layers in

data centers. The case studies are also included for better

understanding the importance of green cloud data centers.

The research challenges are discussed along with their

solutions for reducing energy consumption in data centres.

4 Energy usage in data centres: a system’s
perspective

This segment analyses the whole data centre to the required

levels based on electricity use. The data centre model uti-

lised in this study is depicted in Fig. 1 below. Every

computer system is made up of two components: hardware

and software. A data centre also has two primary compo-

nents: software and hardware.

These layers can be enhanced or optimized so that the

power usage by data centers can be minimized. The soft-

ware layer is categorized into three sublevels: OS layer,

virtualization layer, application layer. For establishing the

green data centre, a taxonomical method for software

approaches is offered, as illustrated in Fig. 2. To fulfil the

aims of green cloud computing, many strategies at the

individual programme level might be used. Aside from

software approaches, external factors to the data centre

such as government-imposed laws and policies, organisa-

tions, and renewable energy are also considered to fulfil the

goals of green cloud computing.

5 Data center power modelling at individual
software level

RQ1 What are the various approaches used at the soft-

ware level like operating system, virtualization and appli-

cation to reduce the usage of power by data centers?

5.1 Operating system level

The operating system is placed between the two layers: the

application and the hardware. The main role of applications

is to create the resource demand and the OS job is to

manage the resources for all these applications. The main

component that consumes power is the physical hardware

but it is very essential to keep a check on the events that

consume power at the operating system level if energy

usage optimization at data centre is to be done at the

software levels too. The power usage breakdown of the

operating system functions is shown in Fig. 3. Data-path

and pipeline topologies that allow for numerous problems

and out-of-order execution were found to squander 50% of

the total power of the OS processes investigated. Further-

more, the clock consumes 34% power and different levels

of cache consumes the remaining power.

Operating System Power Management (OSPM) is a

mechanism utilized by OS to manage the power of the

underlying platform and transition of it between different

power modes. OSPM allows a platform or system to adopt

the most efficient power mode and is applicable to all
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devices and components inside the platform/system. OSPM

is also known as OS-directed configuration and Power

Management.

The trade-off between quality and power efficiency has

been intensively examined and analysed, since control over

running voltage and energy management has been largely

shifted from the hardware and firmware level to the oper-

ating system. Herzog et al. [18] offers PolaR, a method for

automatically determining energy-efficient setups, as well

as a Linux implementation. PolaR proactively chooses

optimal settings by integrating application profiles and

system level data, and no application adjustments are

required. They take into account bank shots (configuration

settings unrelated to power management) in addition to

controlling the system in the proper manner. OS develop-

ment teams recognised the value of energy as a resource on

par with time. With energy seen as just another resource

available to the operating system, operating system inter-

nals (such as locking mechanisms) were changed to

accommodate for this new perspective in order to produce

energy-aware operating systems. Scordino et al. [19]

illustrates how the deadline scheduler and the cpufreq

subsystem may be changed to relax the restriction that the

frequency scaling technique used only when no real-time

processes are running and to create an energy-aware real-

time scheduling approach. They described the architectural

issues they encountered when trying to deploy the GRUB-

PA algorithm on a real OS like Linux. Experiment findings

on a multi-core ARM architecture demonstrated the effi-

cacy of their suggested solution.

With the advancement of semiconductor and software

technologies, the capabilities of an embedded system have

grown by incorporating new features and performance. In

recent years, the network has also advanced as communi-

cation infrastructure and contact with server systems has

become essential. So far, TCP / IP connections between

servers and embedded devices have been established by

two methods. The first is a technique that includes a TCP/

IP stack in embedded devices. The second is a technique of

communicating via a ‘‘gateway’’ (to translate end-device

communications). There are several server system com-

position options, such as putting a server in-house, estab-

lishing a server at a data centre outside of town, and

utilising cloud computing. Smaller, more widespread and

less well known ‘‘embedded data centres’’ consume half of

all data centre energy, or about 1% of all energy generated

in the United States. In general, embedded data centres are

data centre facilities that have less than 50 kW of IT

demand [20]. Server rooms, server closets, localised data

centres, and several mid-tier data centres are among them.

Energy harvesting technologies based on rechargeable

batteries are a popular option for addressing the issue of

Fig. 1 A comprehensive

picture of data centre energy

usage modelling
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delivering continuous power to deeply implanted devices

such as wireless sensor nodes. However, if the use of a

node is not carefully planned, the battery may be depleted

too quickly, making continuous operation of such a device

unfeasible. To regulate the flow of energy, an energy-

management solution is necessary. Buschhof et al. [21]

presented an idea that enables the modelling of hardware

energy usage and the creation of energy-aware device

drivers for the embedded OS. Their drivers can account for

the energy usage of each driver function call with greater

than 90% accuracy. Similarly Levy et al. [22] presented

Tock, a unique embedded OS for low-power systems that

utilises the limited hardware-protection processes accessi-

ble on latest microcontrollers and type-safety functionali-

ties of the Rust programming language to offer a

multiprogramming ecosystem that provides software fault

separation, memory protection, and efficient memory

governance for dynamic applications and services written

in Rust. Low-power embedded operating systems fre-

quently use the same memory areas for both applications

and the operating system. Merging applications and the

kernel allows them to easily exchange references and gives

efficient procedure call access to low-level functionality.

This monolithic method often necessitates building and

installing or upgrading a device’s apps and operating sys-

tem as a single unit.

5.2 Virtualization level

Virtualization uses software to construct a layer of

abstraction above computer equipment, enabling the actual

features of a single computer, storage, disk, and so on—to

be separated into numerous virtual computers, also called

as virtual machines (VMs). Each virtual machine created

for a user can be allocated an individual operating system

on a single physical machine that makes sure of the per-

formance of the virtual machines and failure isolation

among them. Hence, a Virtual Machine Monitor (VMM) /

Hypervisor is responsible for multiplexing of resources to

the virtual machine and helps in the management of the

power to perform efficient operations. The two ways in

which a virtual machine monitor can take part in the

management of power:

• A VMM acts as a power-aware operating system. It

verifies the entire performance of the system and

applies the DVFS (Dynamic Voltage and Frequency

Scaling) or any DCD (Dynamic Component Deactiva-

tion) techniques to the components of the system.

• The other way is to leverage the policies for the

management of power and knowledge of applications at

OS level. Power management calls can be mapped from

different virtual machines. In addition, a coordinated

system wide limits on the power can be enforced.

Virtualization technology has regained prominence in

computer system architecture during the last few years.

Virtual machines (VMs) provide a development route for

adding new capabilities—for example, server consolida-

tion, transparent migration, and secure computing—into a

system while maintaining compatibility with existing

operating systems (OSs) and applications. Multiple VMs

executing on the same core in contemporary virtualized

settings must adhere to a single management of power

controlled by the hypervisor. These settings have different

limitations. It does not enable users to specify a desired

power control scheme for each virtual machine (or client).

Second, it frequently affects the energy efficacy of some or

all VMs, particularly when the VMs need competing

energy management strategies. For mitigating above

Fig. 2 A systematic summary of data centre power demand

prediction at the software level
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problems, Kang et al. [23] suggested a per-VM power

control method that enables each VM’s guest OS to utilise

its chosen energy administration strategy and avoiding

similar VMs from competing with each other’s energy

control strategy. When compared to the Xen hypervisor’s

default on demand governor, Virtual performance (VIP)

minimises power usage and enhances the completion time

of CPU-intensive applications by up to 27% and 32%,

respectively, without breaching the SLA of latency-sensi-

tive implementations. Furthermore, Xiao et al. [24]

examined the VM scheduling model and the I/O virtual-

ization paradigm in terms of energy-efficiency optimiza-

tion. They provided a power-fairness credit sequencing

approach with a novel I/O offset method to achieve speedy

I/O performance while simultaneously raising energy

conservation. Apart from this, Prabhakaran et al. [25]

introduced VM resource calibration. They created a system

to reduce the energy usage of virtual servers by utilising

controlled feedback architecture as well as power moni-

toring services.

5.3 Application level

Energy efficiency is always a major concern in cloud

computing and when it comes to the application level many

recommendations have been made to optimise energy

usage at the system level. However, the rising variety of

contemporary workloads necessitates a better analysis at

the application level to allow adaptive behaviours and to

minimise global energy consumption. For achieving energy

efficiency especially at the application level, Ho et al. [26]

concentrated on batch applications executing on VMs in

data centres. They investigate the application’s character-

istics, computed the energy spent on each job, and

estimated the application’s energy usage. The evaluation

focuses on assessing software efficiency in aspects of

performance and power consumption per job especially

when there exists shared resources and heterogeneous

environments based on profiles of energy, with the objec-

tive of determining the best resource configurations. The

applications were divided into two categories: data inten-

sive application and communication intensive application.

Data-intensive applications that generate, analyse, and

transmit enormous volumes of data had been executed with

minimal regard for energy efficiency. Large amounts of

energy may be consumed because of issues such as data

management, migration, and storage. A communication-

intensive application is made up of one or more interde-

pendent services, and the communication traffic between

them is typically distinct. The communication traffic

requires a large amount of power and various techniques

for dynamic power management that can be applied for

energy efficiency.

Cloud services are referred to as Software as a Service

(SaaS) on the uppermost layer of cloud computing archi-

tecture, which is a software delivery technique that offers

on-demand permissions. SaaS providers, in general, pro-

vide extra layers of cloud computing, and hence keep client

data and tailor apps to match customer demands. This

situation reduces the initial cost of obtaining new software

and infrastructure significantly. Customers are under no

obligation to maintain or build infrastructures on their sites.

They only need a fast network to access their apps rapidly.

SaaS providers service a variety of businesses by utilising

the same infrastructure and software [27]. This method is

clearly more power saving than installing several copies of

software on various infrastructure, which can reduce the

requirement for new equipment. The lower the volatility in

Fig. 3 Power dissipation of OS

routines [17]
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demand, the better the forecast and the bigger the energy

savings. SaaS companies must model and monitor the

energy efficiency of their software design, execution, and

deployment because they primarily sell software hosted on

their own data centers or resources from IaaS providers.

The SaaS provider selects data centres that are not only

power saving but also close to consumers. This is partic-

ularly crucial for social networking and gaming applica-

tions, because users are often ignorant of their impact on

environmental sustainability. SaaS companies can also

provide Green Software Services hosted in carbon-efficient

data centres with less replications.

The authors in [28] introduced a solution for dynamic

software consolidation in order to decrease the number of

VMs utilized. Software consolidation allows dynamically

collocating different software applications on the same

VM. The proposed method may be used with VM con-

solidation, which places several VMs on fewer actual

machines. The authors of [29] proposed an energy-aware

application element migration technique that calculates the

load of data centre servers by taking the number of com-

ponents connected to the servers, the number of rental

people attempting to access the software applications, the

component strike rate, and various other important factors

into account when trying to decide which elements to

migrate. To save energy, the server is turned off once all

components of the underused servers have been moved.

They used discrete event simulation to test their suggested

approach.

5.3.1 Data intensive applications

Energy and power consumption are becoming increasingly

significant in today’s high-performance computing (HPC)

systems. New cluster systems are planned to be no more

than 20 MW in power [30], with the goal of attaining

exascale performance as quickly as possible. The rise of

big data and cloud computing has given the globe with

huge opportunities as well as enormous challenges. How-

ever, the growing trend in cloud energy demand as a result

of the fast-expanding volume of data to be delivered and

analyzed has propelled cloud computing, along with the big

data phenomenon, to become the primary source of energy

consumptions and, hence, CO2 emissions. To decrease the

power usage of data intensive applications in cloud data

centers, the authors in [31] have presented an adoption

framework for the data intensive applications whose pri-

mary goal is to minimize energy usage. The proposed

framework is driven by the values of data gathered from

the data streams or data sets of the applications. The

authors looked at the data from different facets, from its

general to its domain-specific features, and then combined

them to provide a number indicating the data’s importance.

Furthermore, Malik et al. [32] have developed ECoST, a

method for optimising energy efficiency and self-tuning for

data-intensive workloads. They proved that fine-tuning

settings at the application, microarchitecture, and system

levels simultaneously opens up the possibility of co-lo-

cating applications at the node level and improving server

energy efficiency without compromising functionality.

Energy efficiency is a critical component in the devel-

opment of big supercomputers and low-cost data centers.

However, adjusting a system for energy efficiency is

challenging due to the competing needs of power and

performance. The authors in [33] utilized Bayesian opti-

mization (BO) to optimise a graphics processing unit

(GPU) cluster system for the Green500 list, a prominent

energy-efficiency rating of supercomputers. BO might

obtain an excellent configuration by defining the search

space beforehand with minimum information and prior

experiments. As a result, BO could remove time-consum-

ing manual tweaking and shorten the system’s occupancy

time for benchmarking. Furthermore, because of its influ-

ence on operating costs and processing system rate of

failure, energy efficiency became a crucial component of

high-performance computing. Processors are outfitted with

low-power methods such as DVFS and power capping to

increase the power effectiveness of such devices. These

approaches must be tightly managed in relation to the load;

otherwise, considerable productivity loss and/or energy

usage may occur because of system overhead expenditures.

The authors in [34] proposed a workload-aware runtime

power-control strategy for effective V-f control. The pro-

posed technique incorporates thread synchronisation con-

flict and delay due to Non-Uniform Memory Accesses to

find an acceptable V-f value (NUMAs).

MapReduce is used for data processing in modern data

centers. It is known as the programming model that can be

used for the processing and generation of large data items.

The MapReduce programming model processes huge

amounts of data by executing a series of data-parallel jobs

that work on distinct sections of the data set. MapReduce

platforms, which are runtime environments, allow cus-

tomers to scale up their programmes fast and easily. In

order to optimize the energy efficiency for MapReduce,

Tiwari et al. [35] have proposed a configurator based on

performance and energy models to enhance MapReduce

system energy efficiency. It considers the dependence of

the energy consumption and performance of a cluster on

MapReduce parameters. Their proposed solution improves

the energy efficiency of up to 50% in two structurally

distinct clusters of typical MapReduce applications.
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5.3.2 Communication intensive applications

Communication intensive application programs are made

up of a series of tasks that share a vast number of messages

over the process of computing. These applications are

designed by utilizing the Message Passing Interface (MPI).

Dynamic end-to-end request needs and uneven route power

effectiveness, as well as uneven and time-varying link

usage, throughput and delay limits for service needs, all

offer challenges to power effective connections. The

authors in [36] proposed a multi-constraint optimization

framework for improving energy efficiency in cloud com-

puting technology including geographically dispersed data

centres linked by cloud networks. Their technique

improves energy savings in both data centres and cloud

networks. An intelligent heuristic technique is provided to

handle this model for dynamic request demands among

data centres as well as among data centres and consumers.

Furthermore, the authors in [37] established a simultaneous

optimisation of server power usage, network connectivity,

and migration expense with workload and host hetero-

geneity constrained by resource and bandwidth restrictions

in VM placement. Although Integer Quadratic Program

(IQP) can only be addressed for relatively small systems

and but it has been decomposed into master and price sub

problems that can be solved using the column generation

approach for larger systems.

6 Power modelling at operating system
virtualization

Virtualization is regarded as the most important technique

for initiating modern clouds by sharing the physical

resources among applications and the users. Virtualization

allows the efficient use of resources like software, hard-

ware, energy, etc. by consolidating many underutilized

machines on to a single system. Virtualization is divided

into five categories: application, server, desktop, network,

storage and based on the execution environment. The

detailed classification of the virtualization techniques is

shown in Fig. 4.

The conventional virtualization can be further divided

into two different categories: Para and Full virtualization.

Full virtualization can be defined as the creation of virtual

processor, storage devices, memory and I/O devices in

order to run the various guest operating systems on a single

machine so that the guest OS is not aware about the

presence of virtualization. In case of full virtualization, the

goal is to run the unmodified binaries of the operating

system. The code of the operating system remains

unchanged, that is why it is not aware of the fact that it

does not have the required permissions to run privileged

instructions [38]. This gives rise to problems in certain

architectures(x86) as some privileged instructions may

silently fail. Hypervisor resorts to a binary translation

mechanism where validation is done on the set of

instructions that may fail silently to resolve the above-

mentioned problem. The other approach of conventional

virtualization is Paravirtualization (PV). Paravirtualization

is a kind of CPU virtualization in which instructions are

handled at compile time via hyper calls. Instead of trying to

imitate an entire hardware eco system, PV is a virtualiza-

tion technology advancement in which a guest OS is

reconfigured even before to setup within a VM to allow all

guest OS inside the scheme to share resources and effec-

tively cooperate.

The other approach to virtualization is containerization

that is also known as the virtualization at OS level. Vir-

tualization technology utilizes the hypervisor that helps in

emulating the hardware resources in order to run the guest

operating systems on top of it. The concept behind this was

that an application running on the hardware seldom makes

use of the entire resources. Virtualization creates copies of

the functionality of the physical resources that includes the

computational, storage, memory, networking resources that

run an application. Containerization, a new concept intro-

duced lately, is on the verge of development and growth.

Containers also aid in lowering administration expenses.

Since they use the same OS, just one needs to be monitored

and fed for security patches, and so on.

Virtualization allows several operating systems on a

single physical server’s hardware, while containerization

enables to install many programs that use the same OS on

the same virtual machine or host. The architectural dif-

ference between the virtualization and containerization is

as shown in Fig. 5.

Containerization is a lightweight virtualization solution

that facilitates the distribution and operation of application

services across platforms such as edge/fog, cloud, and IoT.

Containerization is changing the working of industries

because it is storage and resource efficient, performance

efficient, cost efficient, portable, energy efficient and

extremely quick during boot up. Although the traditional

VMs enhance the efficiency of the physical servers, they

incur a fair amount of overhead in costs and effort. A

container model enables the data center’s owners to simply

deliver the code they need to perform the function of the

application without all the extra dependencies. This leads

to the efficient use of the resources within the data center.

With the traditional virtual machines, the guest operating

system rather than the actual mission of the application

utilizes a major portion of the resources. The lighter foot-

print of the containers has many advantages throughout the

data center. A container model needs fewer racks, less

energy for cooling and power, less software licenses, less
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maintenance. Containers offer a higher level of service

quality than other virtualization technologies. Furthermore,

because they require fewer resources than virtual machines,

additional entries are anticipated and will be integrated on

the same server, decreasing energy usage because fewer

servers are planned to operate the same number of services.

Docker, when configured to a maximum latency of

3000ms, can operate up to 21% more services than KVM.

Docker provides this service in this setup while consuming

11.33% less energy than KVM [39].

In containerization, containers execute onto the shared

operating system kernel in isolation. One of the major

differences between containerization and hypervisor-based

virtualization is that in containerization, the objects that are

virtualized are limited to the resources of the global kernel

that enables containerization to start various virtual envi-

ronments onto the common host kernel. The created virtual

machines are resource intensive and do not allow individ-

ual application’s functionalities/components to run in iso-

lated environments. The execution of an individual

component or application in an isolated environment needs

a separate virtual machine.

Migration of applications running in virtual machines to

another data center or machine/server also needs the whole

OS to be migrated along with it. Virtualization technology

is developed to exploit the existing resources but the

operations of the workload in virtualization do not con-

sume all the resources available to them, which leads to a

significant wastage of resources also. In addition, the vir-

tual machines do not incorporate the leftover resources in

capacity planning and distribution across all the virtual

machines and workloads. On the other hand, container-

ization enables the individual functionality of an applica-

tion to run independently making it possible for different

workloads to run on the same physical resource. These can

execute on bare metals or on top of hypervisors or cloud

infrastructure too. Containers have the capability to create

isolated OS environments within the same host, different

functionalities of the same application run by sharing the

Linux Kernel in containerization [40]. Table 1 shows the

difference between Virtualization and Containerization.

The performance of containers and virtual machines is

compared in experimentation conducted by various

researchers. The experiments are performed on Docker and

KVM. Below are the results of the comparison of the

Fig. 4 Types of virtualizations

Fig. 5 Architectural difference

between virtualization and

containerization
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containers and virtual machines on the basis of different

parameters [41]:

Throughput metric is used to calculate the output of a

task when the CPU is exposed to a compression High

Performance Computing (HPC) test. It has been seen that

native and Docker compression performance is compara-

ble, but KVM is slower. HPC performance is comparable

on native and Docker but very sluggish on KVM due to

abstraction, which acts as negative in this scenario. The

CPU schedulers have no effect on the processor in either

the native or Docker arrangement; therefore, there is no

difference in performance. The parameter bandwidth is

used to measure the speed of memory access operations.

According to many benchmarks designed to test memory in

linear and random-access approaches, the efficiency of

native, Docker, and KVM systems is almost similar for a

variety of workloads with very little variation. The testing

was carried out on a single node using large datasets.

Container-based systems returned unused memory to the

host, resulting in more efficient memory utilisation. Vir-

tualization systems suffered from double cache since the

host and virtual computer used the same memory blocks.

Bandwidth is used to assess network communication per-

formance. Bulk data transfer using a single TCP connec-

tion, similar to the client-server architecture, is the

communication situation. Because the TCP/IP stack has

distinct regulations for sending and receiving data, the data

transfer rate is measured in both directions. The NIC,

which utilises CPU cycles to measure overhead, is the

primary component that causes a bottleneck in perfor-

mance. In terms of performance, Docker employs bridging

and Network Address Translation (NAT), which lengthens

the path. Dockers that do not utilise NAT operate similarly

to native systems. KVM performance can be increased if

the VM can interact directly with the host, bypassing the

in-between layers. Latency is another network metric that

may be used to assess performance. Throughput is also

used to assess the efficiency of disc operations. As previ-

ously stated, Docker and KVM add relatively little over-

head when compared to native; however, there is a

significant performance difference in KVM’s case due to a

potential bottleneck in fibre channel. Docker has no cost

for random read and write operations, while KVM’s per-

formance suffers considerably. The system’s I/O scheduler

has an impact on disc performance.

Containers are gaining popularity and will be a signifi-

cant deployment strategy in cloud computing. Consolida-

tion techniques are widely employed in the cloud

environment to maximise resource usage and minimise

power consumption. To minimize the power consumption

through container consolidation, Piraghaj et al. [42] have

presented the problem of container consolidation and have

compared the different algorithms. They evaluated their

performance against parameters like, SLA violations,

consumption of energy, average rate of transferring con-

tainers, and the typical number of VMs generated. The

consumption of power by data centers at time t can be

calculated as:

Pdc tð Þ ¼
XNS

i¼1

Pi tð Þ ð1Þ

Pdc(t) denotes the consumption of power by the data

center during t time, Ns denotes Number of servers and

Pi(t) denotes the consumption of power by Server i during

the time t. The metric for SLA is calculated as the fraction

of the difference among the allocated and the requested

CPU for each VM [43].

Table 1 Difference between virtualization and containerization

Parameters Virtual machine Container

Guest

operating

system

Hypervisor allows multiple and distinct OS to run on the same host.

Each VM is allocated with a specified amount of memory on which

the Kernel functions.

All the guests share the same base OS and its Kernel. The

image of the Kernel is loaded into the physical

memory.

Security Security of the VMs depends on how the hypervisor is implemented. Container software like Docker have built-in security

features that can be leveraged.

Performance The VMs have a small overhead when compared to containers as the

translation of machine instructions occurs from the host OS to guest

OS.

There is little to no overhead in using containers as the

applications are executed in the base OS itself.

Isolation Hypervisor isolates each VM from host OS as well as from other

VMs. This means files, libraries etc. cannot be shared between

guests and the host.

Each container has its own set of file systems that can be

shared between other applications.

Startup time VM takes sufficient time to boot. Containers take less time to boot as compared to VMs.

Storage VMs take ample storage as the whole Kernel and the secondary

programs associated with the OS need to be installed.

Since the base OS is shared, containers require less

storage.
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SLA ¼
XNS

i¼1

XNVM

j¼1

XNV

p¼1

CPUrðvmj;i; tpÞ � CPUaðvmj;i; tpÞ
CPUrðvmj;i; tpÞ

ð2Þ

Ns represents Number of servers, Nvm represents

Number of VMs, Nv represents Number of SLA Viola-

tions, CPUr(vmji, tp) represents the amount of CPU needed

by VM j on server i during tp time, CPUa(vmji, tp) rep-

resents the amount of CPU amount assigned to VM j

during tp time.

For the reduction of the consumption of power by data

center that consists of Nvm VMs, M containers, and Ns

servers, they designed the equation as:

min Pdcð ðtÞ ¼
XNS

i¼1

Pi tð ÞÞ ð3Þ

In the above equation, Pdc(t) denotes the consumption

of power by data center during the t time, the consumption

of power by server i at time t is denoted by Pi(t), and Ns

represents Number of servers.

Since container-based service aggregation is a tough

process, the cloud data centre consumes a lot of power due

to a lack of management over the data centre systems.

Because containers need a smaller resource footprint,

consolidating them in servers may result in limited

resource availability. Nath et al. [44] have designed an

energy efficient service based on the consolidation of the

containers. The authors have formulated a service consol-

idation problem as an optimization problem by considering

the minimizing the power usage by the data centers.

In data centers, there are n servers and m containers in

the system. They represent N = {Ni: i [ (1. . n)}as sets of

data center servers and Cn = {Cnj : j [ (1,. ., m)} as sets of

data center containers. They have defined the total con-

sumption of energy by a server as:

ENi ¼ Erev�data
Ni þ Ercv�frm�manager

Ni þ ð1þ aþ bÞ � Ecomp
Ni

þ b� ðErev�frm�node
Ni þ Esend�to�node

Ni Þ þ aðEoffl�node
Ni

þ Ercv�frm�node
Ni Þ þ Esend�to�client

Ni

ð4Þ

In the above equation a (0 B a\ 1) denotes the data

offload percentage to other server (worker) and b (0 B

b\ 1) denotes the data received percentage from another

server (worker).

Collecting and delivering bits in a host uses energy. It

can be defined as:

Eoffl�node
Ni ¼ Esend

Ni ¼ Ercv
Ni ¼ Ebit � B ð5Þ

In the above equation, Ebit denotes the energy con-

sumption by sending one bit of data and B denotes the bits

received or sent by the user.

The central processing unit (CPU) is the main compo-

nent that consumes the power in the data center. The

energy consumed for computation is [45]:-

Ecomp
Ni ¼ Emax�comp

Ni � Eidle�comp
Ni

� �
� UCPU

Ni þ Eidle�comp
Ni

ð6Þ

The container-based cloud-computing concept has

grown through time as a versatile and power efficient

resource-use approach. Cloud providers strive to enhance

utilisation of resources and resource use when executing

container aggregation, which includes VM selection and

placement. Shi et al. [46] have designed TMPSO, for

energy aware consolidation of containers. The proposed

algorithm integrates the heuristic and greedy optimization

mechanism to get the balance between the computation and

performance cost.

In a cloud, the authors have assumed a set of physical

machines PM = {PM1, …, PMm, …, PMc}, a set of virtual

machines VM = {VM1, VM2, …, VMi, …, VMv}. Each

virtual machine VMi has CPU Ci, memory Mi and oper-

ating system Oi, i.e., VMi (Ci, Mi, Oi). They have assumed

that the capacity of each virtual machine is the same so for

each PMm [ PM, it can be demonstrated as PMm(CC,

CM). A CSP first associates each of the applications to a

container that satisfies their needs of the resource that

includes CPU c, Memory m and operating system o. These

containers are demonstrated by triple Cj (cj, mj, oj). They

have assumed that each Cj is assigned to a VM. VMi [ VM

to satisfy the needs of the resources including CPU cj,

Memory mj and operating system oj. They represent allo-

cation kj : Cj ? VMi.

Finally, each VMi is allocated to a PMm, the allocation

can be denoted as ci : VMi ? PMm.

For the reduction in the consumption of power by data

center, the authors have designed objective function for the

consolidation of containers as:

minimizeE ¼
Xc

m¼1

Pm:z
m ð7Þ

In the above equation, Pm represents the consumption of

energy by physical machine PMm and zm represents the

binary variable, zm [ {0, 1}, indicating whether PMm is

active.

The below equation shows the connection among the

consumption of energy and CPU utilization.

Pm ¼ Pidle þ Pbusy � Pidle
� �

:umcpu; ifNvm [ 0

0; ifNvm ¼ 0

�
ð8Þ

where the CPU utilization is, umcpuPidle and Pbusy are the

consumption of power by PM during the utilization is 0%

and 100% respectively, Nvm denotes all the VMs allocated

to the PM.
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The utilization of memory by PMm is calculated by

Eq. 10, OMi denotes the overhead of memory of VMi.

umcpu ¼
XNvm

i¼1

ðOCi þ CiÞ:ymi ð9Þ

ummem ¼
XNvm

i¼1

ðOMi þMiÞ:ymi ð10Þ

Apart from the literature that is mentioned above, there

are various other works that help in the placement of

containers, the placement of virtual machines so that the

power consumed is less, and resource utilization is efficient

in the container as a service environment. The authors in

[47] have addressed the issues of container placement and

VM placement in the two stages. To solve the container

placement problem, they merged the two strategies. The

proposed solution is divided into four decision-making

processes: VM selection and creation, PM selection and

creation. A hybrid technique, genetic programming-based

hyper-heuristics (GPHH) and human-designed rules was

used to tackle the two-level container allocation problem.

To assess container allocation, they took into account

accumulated power. The energy consumed Pt
d of all active

PMs over the time period t1, t2 is added to calculate the

accumulated energy (see Eq. 11). In other words, the

authors add the energy usage of all PMs at each time

interval ti. Fan’s [48] energy model of a PM (Eq. 12) is a

commonly used model. In their energy model, Pidle and

Pmax represent the energy use while a PM is idle and fully

utilized. However, cpu(d) indicates a PMd’s CPU use at

time t. The purpose of container assignment is to decrease

net power consumption, i.e., M in Accumulated Energy

(AE).

AE ¼
Z t¼t2

t¼t1

XD

d¼1

Pt
d ð11Þ

Pt
d ¼ Pidle

d þ Pmax
d � Pidle

d

� �
:utcpu dð Þ ð12Þ

In the problem, they examined three sorts of restrictions.

To start, the total capacity use of containers need not sur-

pass the threshold of the target VM. The aggregated energy

needs of VMs must not surpass the target PM’s capacity.

Second, a container may only be assigned once. Third, they

use an affinity restriction to limit container deployment to

OS-compatible VMs alone.

Furthermore, Chen et al. [49] presented many-to-one

stable matching method and a container placement tech-

nique MLSM. They started with an early container hosting

technology to shorten migration durations by the use of a

trustworthy matching mechanism. This programme utilises

resemblance algorithms as a finding choice strategy for

containers and VMs. The resource usage rate is used to

order the virtual machine preference list. According to the

simulation findings, the algorithm may cut energy usage by

an average of 12.8% when compared to the First Fit

method.

In the technique proposed by Chen et al. [49], the energy

usage is by Eq. 1:

They often assess server power utilization utilizing the

CPU efficiency ratio, as the CPU is the most commonly

utilised element of energy expenditures in terms of server

utilisation. The CPU utilization ratio of each server is equal

to the

XNvm

j¼1

XNc

k¼1

Ucðk; j; tÞ tð Þ ð13Þ

The server energy consumption is estimated using the

Eq. 8:

They assume M containers, Nvm VMs, and Ns servers

in the containerized cloud computing paradigm, and the

energy consumption problem may be stated as Eq. 3.

They assume M containers, N VMs, and K servers in the

containerized cloud computing paradigm, and the energy

consumption problem may be stated as Eq. 1:

Apart from this, Al-Moalmi et al. [50] have addressed

the issues related to the placement of container and VM in

Container as a Service (CaaS) environment by considering

the optimization of the power consumption and resource

utilization. They proposed an algorithm based on the

Whale Optimization Algorithm (WOA) to solve the two

problems that are container placement and VM placement.

Each VM and PM in this cloud data centre may be assigned

to any single type of container and VM. To put it different

way, every type of container may be hosted by a single

VM, and any type of VM can be hosted by a single PM,

according to the constraints stated below:

8 Conta;Vbð Þand Contc;Vdð ÞifConta ¼ Contc; thenVb ¼ Vc

ð14Þ

where Contaand Contc are container identifiers and Va and

Vd are VM identifier.

8 Va;Pbð Þand Vc;Pdð ÞifVa ¼ Vc; thenPb ¼ Pc ð15Þ

where Vaand Vc are VM identifiers and Pa and Pd are PM

identifier

XL

l¼1

Contcpul �Vcpul ; 8cpul 2 C; andVi 2 VÞ ð16Þ

XL

l¼1

Contraml
�Vraml

; 8Contl 2 C; andVi 2 VÞ ð17Þ
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XM

i¼1

Vcpui �Pcpucapacityj
; 8Vi 2 V; andPj 2 PÞ ð18Þ

XM

i¼1

Vrami
�Pramcapacityj

; 8Vi 2 V ; andPj 2 PÞ ð19Þ

Equations (14) and (15) specify the prerequisites for

presenting containers to VMs and VMs to PMs, respec-

tively, while Eqs. (16)–(19) ensure that a collection of

containers’ total consumed capacity does not surpass the

host VM’s CPU and memory capacities. Similarly, the

overall resources used by a group of VMs should not

exceeding the host PM’s Memory and CPU capabilities.

7 Dynamic power management at data
center level

RQ2 What are the various strategies utilised in data

centres, both virtualized and non-virtualized systems, to

minimise power usage?

When developing higher-level power models for data

centres, it is important to understand the intricacies of the

lower-level elements that account for the total power use of

the data centre. A technique is often focused on workload

reduction among physical nodes in data centres. The goal is

to assign as little physical resources as feasible to requests /

virtual machines while shutting off or placing unused

resources to sleep / hibernate. The allocation difficulty is

twofold: first, new requests must be allotted; second, the

performance of present services / VMs must be constantly

checked, and if required, the allocation must be altered to

give the best possible power-performance trade-off con-

cerning stated QoS. This section delves into data centre

power models.

7.1 Non-Virtualized

Power consumption is increasing in large-scale systems

such as data centers and supercomputers. These systems

are typically measured based on peak demand. Since the

power consumption of these devices is not proportional,

their energy usage stays high even when the workload is

low. Shutdown processes have been established to match

the number of servers that are actively engaged in the

workload processing. However, because of the potential

influence on performance and hardware concerns, data

centre administrators are cautious to utilise such tactics.

Furthermore, the energy advantage is usually overesti-

mated. The authors in [51] have evaluated the potential

benefits of shutdown procedures by accounting for shut-

down and boot up costs in terms of both time and energy.

They investigated the energy savings provided by suspend-

to-disk and suspend-to-RAM approaches, as well as the

influence of shutdown processes on the energy consump-

tion of future models with various CPUs. Furthermore, the

authors in [52] presented different shutdown models that

may be utilised under current and future supercomputer

limitations, considering the impact of closing down and

waking up networks as well as the idle and off states seen

after such procedures as they influence power usage of the

resources.

7.2 Virtualized systems

Virtualization and Cloud computing are enabling innova-

tions for the creation of resource planning algorithms that

are energy-aware in virtualized data centres. Indeed, one of

the primary problems for large data centres is to reduce

power usage, both to save money and to reduce environ-

mental effects. The authors in [53] developed a one-of-a-

form of combined server and network reduction model that

considers the power consumption of both switches capable

of transmitting traffic and servers hosting virtual machines.

Under QoS constraints, it shuts access points and sends

information to the least energy-consuming host over the

most energy-efficient route. Due to the model’s complex-

ity, a quick Simulated Annealing-based Resource Consol-

idation (SARC) approach is provided. Furthermore, the

authors in [54] developed the energy-aware fault-tolerant

dynamic scheduling system (EFDTS), a dynamic task

assignment and scheduling method that uses a fault tolerant

mechanism to maximise resource usage and minimize

energy consumption. In the task assignment scheme, a task

classification approach is designed to divide incoming

tasks into separate classes and then redistribute them to the

most appropriate VMs based on their classes in order to

minimize mean response time while minimizing energy

usage. Apart from this, the authors in [55] presented an

energy-conscious management method for virtualized data

centres that is based on dynamically adjusting and scaling

computer capability to workload factors. They created a

new ontological model for describing the energy and per-

formance aspects of data center operations. To address the

issue of energy usage, the authors of [56] proposed the

Energy and Performance-Efficient Task Scheduling Algo-

rithm (EPETTS) in a heterogeneous virtualized cloud. The

proposed algorithm is divided into two stages: initial

scheduling, that aims to minimize completion time and

meet task deadlines while not keeping in account power

consumption. The second stage is task reassignment plan-

ning, which enables for the best execution location within

the timeline limit while using the least amount of energy.
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8 Problem solving approaches

Virtual machine migration, load balancing and workload

categorization are the various problem-solving techniques

that can be used for the reduction in the power consump-

tion. These techniques are used to migrate the virtual

machine when the threshold is attained for the particular

server, balance the load among the different VMs and

categorize workload type before placing them onto the

server. The various ML algorithms are used on top of these

approaches to efficiently manage the power consumption in

data centers.

8.1 Virtual machine Migration

Virtual machine migration can be defined as sending the

VM from one host to another by remaining connected with

the application or client. The Virtual Machine Migration

(VMM) can be categorized as live migration and non-live

migration of virtual machine as shown in Figs. 6 and 7.

Live VM migration refers to the moving of VMs from

one server to another when the host system stays active.

There are two forms of live virtual machine migration: pre-

copy live VMM and post-copy live VMM. Non-live virtual

machine migration is defined as migrating a VM from one

server to another by turning off the virtual machine on the

host server. Non-live migration stops or shuts down the

VM prior to transfer, depending on whether it wants to

continue running services after transfer. When a virtual

machine is terminated, its operating states are wrapped and

transferred to the destination location. Live migration is the

process of migrating a functioning VM or application

among PMs without interrupting the client or service.

Consolidation of virtual machines (VMs) is a typical

technique for lowering energy usage based on peak, off-

peak, or average CPU use of VMs in order to execute them

on the least number of servers while preserving service

quality (QoS). There are different techniques for the live

migration like pre copy migration [57], post copy migration

[58], hybrid VM migration [59], dynamic self-ballooning

[60], Adaptive Worst Fit Decreasing [61], Check pointing/

recovery and trace/replay technology [62], Composed

Image Cloning (CIC) methodology [63], Memory man-

agement based live migration [64], Stable Matching [65],

Matrix Bitmap Algorithm [66], Time Series based Pre-

Copy Approach [67], Memory Ballooning [68], WSClock

Replacement Algorithm [69], Live Migration using LRU

and Splay Tree [70]. Apart from these, the various

machine-learning approaches are also used to migrate the

VM from one host to other. The techniques like autore-

gressive integrated moving average [71], support vector

regression [72], linear regression, SVR with bootstrap

aggregation [73] were also used for VM migration. These

approaches are used to forecast and manage resources

effectively in the data center, as well as to calculate the

energy consumption. Moreover, metaheuristics are also

used for the migration of virtual machines. The techniques

like Firefly Optimization [74], Particle Swarm Optimiza-

tion [75], Ant Colony Optimization [76], Biogeography-

Based Optimisation [77], Discrete Bacterial Foraging

Algorithm [78] are also used for the migration of virtual

machines. These approaches optimise energy usage, QoS,

resource use, or all three.

The purple box in (8) represents a VM that has been shut

down or terminated on the originating host.

8.2 Load balancing

The practice of equally splitting workload in a distributed

environment such that no processor is overloaded, under

loaded, or idle is known as load balancing. Load balancing

assists in the acceleration of various constrained parame-

ters such as execution speed, response time, device relia-

bility, and so on. Load balancers are highly efficient where

huge workloads will quickly overload a single computer or

SLAs need high levels of service efficiency and response

times for certain business processes. The users deliver

multiple requests and load balancer that is installed prior to

the cloud server handles these requests. Load balancer

distributes the incoming workload to the different cloud

servers. Figure 8 shows the mechanism of load balancing.

Load balancing (LB) gives a well-organized solution to

a wide range of difficulties in a cloud environment. LB

plays an essential factor in the system’s efficiency andFig. 6 Non-Live VM migration
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robustness. LB in cloud computing is one of the most

difficult and valuable research topics for spreading work

across virtual machines in data centres. As a result, a

method for improving system efficiency by balancing

workload among VMs is required. Load balancing strate-

gies come in a variety of forms that balance the requests of

the resources. These are Round Robin [79], Equally Spread

Current Execution Algorithm [80], Throttled Load

Fig. 7 Live VM migration

Fig. 8 Load Balancing mechanism in cloud computing environment
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Balancing Algorithm [81], Biased Random Sampling [82],

Min-Min Algorithm [83], Max-Min Algorithm [84] and

Token Routing [85]. The above-mentioned techniques

were not able to dynamically balance the workload in a

cloud-computing environment; therefore, the machine

learning approaches were introduced. There are various

machine learning algorithms like K-Nearest Neighbors

[86], deep neural networks [87], multi-layer perceptron

[88], Simulated Annealing [89] that were used for LB in

cloud environments. These approaches enable accurate and

practical decision making the resource allotment to

inbound requests, resulting in the selection of the most

relevant applications to finish. There are two types of

metaheuristics algorithms: nature-inspired algorithms and

evolution-based algorithms. There are various nature

inspired algorithms like Swarm behaviour-based algorithm

[90]: Ant colony optimization [91], Particle Swarm Opti-

mization (PSO) [92], Artificial bee colony (ABC) opti-

mization [93], modified Particle swarm optimization

(MPSO) and improved Q-learning algorithm [94], Bat

Algorithm [95], Crow inspired metaheuristic algorithm

[96], Shuffled Frog Leaping Algorithm [97], Honey bee

behaviour [98]. Depending on task levels, these strategies

give tasks to VMs while guaranteeing equitable load

sharing and generate extra number of available slots in

series or parallel mode. Moreover, for complicated and

huge sample space issues with a hazy sample space various

evolution-based algorithms are employed. Techniques like

Genetic Algorithm (GA) [99] are also used for LB.

8.3 Workload categorization and prediction

Workload is the total amount of effort done by a targeted

server for a fixed period. Workload is classified before

being transferred to the virtual machines that minimizes the

probability of server overutilization, eliminates the need

for virtual machine relocation, and thereby improves

energy consumption. Web applications, web servers, dis-

tributed data storage, containerized microservices, and

other workloads that require broad processing capacity are

prevalent. In cloud data centers, workload classification

and characterisation are used for resource planning,

application performance management, capacity sizing, and

projecting future resource requirements. An accurate esti-

mate of future resource demand assists in meeting QoS

requirements and guaranteeing effective resource utilisa-

tion. Workloads are categorised based on computational

paradigms, technology stack, resources, and applications,

as seen in Fig. 9. Based on the processing methodology,

workloads are divided into two types: batch workloads and

interactive workloads. Based on resource requirement, the

workload is classified as Memory, CPU, IO and database.

These requirements include scalability, flexibility,

extensibility, and administration. Moreover, the cloud must

provide capabilities that meet the best-in-class demands of

the organisation, such as privacy, realistic reliability, and

economy. Computer equipment are organised differently in

different computing environments, and they share data

between themselves to analyze and solve problems. One

computing ecosystem is made up of different computa-

tional resources, software, and networks that help with

computation, sharing, and problem solving. Workload can

be classified into three types based on the generation:

Synthetic, Real and Cloud. Furthermore, based on the

application, the workload is classified into four categories:

Web, Social Network, Video Service etc.

The load-balancing problem falls under the category of

NP-complete. As a result, application developers fre-

quently employ heuristic or stochastic approaches to solve

it. Initially, the characterization of workload was done

using statistical methods like mean and standard deviation,

Auto Correlation Function, Pearson Coefficient of Corre-

lation, Coefficient of Variation, and Peak to Mean Ratio

[100]. These approaches were utilised for a thorough

characterisation of both requested and actually used

resources, including data relating to CPU, memory, disc,

and network resources. Parameters like, CPU usage,

memory consumption, network bandwidth, storage band-

width, and job length were frequently included in data

center traces. Not all qualities are equally significant in

workload categorization and characterization. When all of

the features are considered, the model’s complexity

increases. This being one of the drawbacks of statistical

methods, clustering (unsupervised learning) was used to

classify the workloads. For better categorization of work-

load, different types of clustering like Hierarchical clus-

tering [101], Density based clustering [102] etc. were used.

Apart from the unsupervised clustering techniques there

are various other supervised learning techniques like Sup-

port Vector Machine (SVM) [103], Stochastic Gradient

Descent (SGD) [104], Logistic Regression (LR) [105],

Random Forest (RF) [106], Multi-Layer Perceptron (MLP)

[107], Backpropagation neural network [108] were used.

After categorising the workload, the prediction is per-

formed in order to forecast the future workload. Forecast-

ing of workload, management of resources dynamically

and scaling proactively may all aid in the achievement of a

variety of essential objectives. Accurate forecasting of

near-term workload, for example, has a direct influence on

response time, SLA violations over-provisioning, and

under-provisioning concerns. Effective workload manage-

ment improves system scalability and throughput. Fur-

thermore, by limiting over-provisioning of virtual

resources, cloud DC power consumption, cost, and the

number of unsuccessful requests may be reduced, and

satisfaction of customer can be enhanced.
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There are many techniques that can be utilized to predict

the future workload. These include: regression-based

schemes that includes ARIMA-based schemes [109],

Support vector regression-based schemes [110]; Classifier-

based schemes that includes SVM-based schemes [111],

Random forest-based schemes [106], Artificial neural net-

work-based schemes [112], Bayesian-based schemes [113],

Deep learning-based schemes [114]; Stochastic-based

workload prediction schemes that includes Hidden Markov

model-based schemes [115], Queuing model-based

schemes [116]. Apart from this there are various other

approaches like Grey predicting-based schemes [117],

Autocorrelation clustering-based schemes [118], Chaos-

based schemes [119], Kalman filter model-based schemes

[120], Wavelet-based schemes [121], Collaborative filter-

ing-based schemes [122] and Ensemble-based schemes

[123] that can be used to predict the workload. The com-

bination of the above-mentioned techniques are also used

to predict the future workload. These include SVR and

Kalman filter [124], ARIMA and RNN [125], ARIMA and

wavelet decomposition [126] (Fig. 9).

8.4 VM placement

Virtual machine placement refers to the process of deter-

mining the appropriate PM for a certain VM. As a conse-

quence, a VM placement algorithm finds the ideal VM to

PM connection, whether it is a new VM placement or a VM

migration for placement re-optimization. A VM placement

method may be roughly classified into two categories based

on the aim of placement: Power-based [127] and QoS-

based [127]. VM Placement strategies are primarily cate-

gorised as under, based on the type of principal strategy

employed to achieve a suitable VM-PM mapping: Con-

straint Programming [128], Stochastic Integer Program-

ming [129]. The above-mentioned approaches are not

suitable for today’s scenario, as these approaches cannot

predict the future based on the previous history. For the

suitable placement, machine-learning approaches can be

used for the placement of virtual machines. Reinforcement

Learning [130], Artificial Neural Network [131], and Fuzzy

reinforcement learning [132] are some of them. Population

based techniques begin with a collection of single solutions

that grow from one generation to another. This category is

centred on exploration and provides for greater variety in

the search process. In order to discover the Pareto optimum

solutions, population-based techniques employ the idea of

dominance in their screening process. The techniques used

are Genetic [133], Ant Colony Optimization (ACO) [134],

Memetic [135], Firefly [136], Whale optimization [137],

Sine-Cosine Algorithm and the Salp Swarm Algorithm

[138]. Single solution–based algorithms begin with a single

solution, which is then modified and transformed

throughout the optimization process. These algorithms are

exploitation-focused, which means they try to enhance the

search strength in certain locations. The techniques include

EAGLE algorithm [139], Imperialist competitive algorithm

[140], Krill herd algorithm [141].

9 Environment

RQ3 What are the major impacts of a data center on the

environment?

Fig. 9 Classification of workload
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9.1 Renewable energy

In the last few years, it can be seen that there is an expo-

nential rise in data centers developed by different compa-

nies to provide services like cloud computing. They

consume very large amounts of electricity for normal

functioning. Apart from the high consumption of electric-

ity, the increase in the consumption of energy by cloud data

centers results in adverse effects on the environment. In

many parts of the world, the electricity is produced by

burning coal that leads to negative results like increased

carbon dioxide emission and increase in pollution.

The growing use of renewable energy plants, in partic-

ular, presents a tremendous potential for more effective

administration of dispersed data centres. Dynamic work-

load allocation and migration across data centres might

help to save costs by shifting workload to regions where

energy is cleaner or cooling costs are lesser. After

obtaining the user’s query, the cloud hosting has the option

of selecting the target region depending on a variety of

factors. The authors in [142] have worked upon the already

proposed technique called EcoMultiCloud. They looked at

the example of a complex network made up of data centres

(DCs) spread around the country, with renewable energy

producers co-located with cloud services to reduce the

amount of electricity purchased by the power grid. Since

renewable energy sources are infrequent, infrastructure

load control solutions must be customised to the intermit-

tent nature of the sources. Furthermore, the authors in [143]

have addressed the problem of reducing energy costs for

geographically distant data centres while maintaining

assured service quality (i.e., service latency) under time-

varying system dynamics. They proposed a green geo-

graphical load balancing (GreenGLB) online solution for

interactive and indivisible work distribution based on the

greedy algorithm design approach. An indivisible job is

something that cannot be divided further and must be

allocated to a single data centre.

9.2 E-Waste

The rapid escalation in the use of electronic devices at the

consumer level along with the growth of enterprise-class

and hyperscale computing has added to the issue of

e-waste. It is a combined responsibility of consumers,

manufacturers, enterprises and governments to ensure that

this waste is being minimized, reused and recycled prop-

erly. Waste Electrical and Electronic Component (WEEE)

passes regulations at country, state or province level aiming

to promote the reuse and recycling of e waste leading to

reduction of consumption of such resources and the amount

of e-waste going to landfill.

Most common e-waste includes LCD monitors, LCD

and Plasma televisions, and computers with Cathode Ray

tubes. However, this does not mean that other electrical and

electronic equipment does not fall into this category.

Actually, any piece of electronic equipment is e-waste.

Almost all technology-based industries produce e waste.

However, the footprint of the data center in this domain is

relatively small. Data center consists of components like

generators, Uninterrupted Power Supply (UPS) etc. These

components have a long primary lifecycle of about 5–10

years and are also repurposed into non 24 9 7 roles before

they can be recycled.

9.3 Carbon footprint (Greenhouse gas
emissions)

Cloud data centers consist of a huge number of rows of

electricity consuming servers having network, storage,

power supply systems along with gigantic HVAC (heating,

ventilation and air conditioning) units that avoid over-

heating. However, these data centers appear to be clean but

they are not contributing to the green initiative.

Total Greenhouse Gas Emissions (GHG) attributed to

data centres in 2018 were 3.15 9 107 tons CO2-eq,

accounting for about 0.5% of total GHG emissions in the

United States [144]. A little more than half (52%) of total

data centre emissions is attributable to the Northeast,

Southeast, and Central United States, which have a high

concentration of thermoelectric power plants as well as a

big number of data centres. Almost 30% of the emissions

from the data centre sector occur in the Central United

States, which depends significantly on coal and natural gas

to satisfy its energy needs.

Looking at these estimates, it becomes quite evident that

companies need to reduce GHG emissions. Many compa-

nies and countries are already trying in this direction and

have introduced improvements to the existing data centers.

It is estimated that most of the company’s servers are

having a utilization of only 10–15% and 30% of these

corporate servers are zombies in the sense that they are

inactive yet use electricity while doing so (data centres

play a key role in reducing GHG emissions) [145].

9.4 Case studies

Zero carbon, zero emissions, and zero waste are the goals

of the next generation of sustainable data centers. It all

starts with sustainable energy. Solar energy has no carbon

impact, generates no pollutants, and may grow fast. Solar-

powered data centers are not only environmentally green,

but also financially effective. It reduces the energy expense

by about 70%, a benefit that is immediately passed on to

customers, resulting in significant cost savings [146]. The
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relative stability of solar power expenses vs the ever-in-

creasing cost of regular energy provides organisations with

significant headroom to engage in innovation. Scalability is

also not a problem. The below mentioned case studies uses

the renewable energy to power the data centers. The CtrilS

data center make use of the solar energy to power the data

center and it is the first data center in the world which is

awarded with the LEED Platinum’ certification from Uni-

ted States Green Building Council whereas the project

Natick by Microsoft is the first underwater data center

which is 100% powered by solar and wind. The project

proves that the underwater data center is feasible as well as

logistically, environmentally and economically practical.

9.4.1 CtrilS data center [146]

CtrilS data centre is one of the data centers in Mumbai that

has taken initiative in the building of green data centers and

has been awarded with the highest rating - platinum - under

LEED V4 existing Building (O ? M) category. It is the

first data centre in the entire world to get this recognition

from the U.S Green Building Council (USGBC).

CtrilS has identified and worked upon many key areas

like operations, design and technology. Some of them are

as:

• Many of the enhancements done like consumption of

power by cooling system, enhancing the pumping sys-

tems efficiency, cooling towers automation and effec-

tiveness, helped them to gain savings of 15 lakhs kWh/

annum which means saving of approximately 1.5 crore

rupees on the entire operations.

• Mercury free lights used resulted in saving of 0.5 lakh

kWh/annum (cost saving of 5 lakhs/year).

• Proper centralized monitoring system was used to

monitor the electricity utilization and report anomalies

when there is excessive use.

• Water saving fixtures were used leading to the saving of

5KL of water per day that was about 24% of water

reduction in the overall water requirement.

• Rainwater treatment for storing rainwater during the

rainy season was also used.

• Green seal products were used for cleaning purposes in

order to avoid toxic substances.

• CFC-Free Refrigerants in cooling systems were used to

minimize greenhouse gas emissions.

• Strategic ventilation points were introduced in order to

address the quality of indoor air and increase in

productivity. These were created to get the levels

above the baseline of Ashrae Standard 62.1 for the

needs of the fresh air.

• Extensive Training Programs were held to aware the

employees about the importance of incorporating the

green compliance features.

9.4.2 Project natick by microsoft [147]

Nearly 50% of the world’s people lives within a few miles

of the shore. By locating data centers near coastal cities,

data transit times to coastal towns would be reduced,

resulting in faster and smoother online surfing, video

streaming, and gaming. Furthermore, not only do the

obstacles connected with creating data centres on land

disappear, but the ocean also delivers a rather stable envi-

ronment for these underwater pods. Finally, even at inter-

mediate depths of 10–200 m, the water maintains a

temperature range of 14–18 degrees Celsius, making it

ideal for cooling data centres. As a result, cooling costs are

lowered.

Microsoft project Natick is a research project whose

main aim is to determine the credibility of the subsea data

centers that can be powered by offshore renewable energy.

On the seafloor off the coast of Scotland, Microsoft’s

underwater data centre project used wave energy and post-

quantum encryption. The concept of an underwater data

center was put forward at Microsoft in the year 2014 during

the ThinkWeek that is related to the employees to discuss

the extraordinary ideas. The project aims to provide the

lightning quick services of the cloud to the coastal popu-

lation and save energy. The cool surface of the sea enables

the energy efficient design of data centers. The experi-

mental green energy solutions under research at the Euro-

pean Marine Energy Centre and the wind and solar energy

used to power the grid are some of the main reasons for

Northern Isles installation by the Project Natick team at the

‘The Orkney Islands’.

9.5 Policies and standards

Energy is one of the most essential components of a data

center’s running expenses, yet rising energy costs and

associated operational costs pose hurdles to corporate

competitiveness. As a result, it is vital to minimise energy

consumption in data centres, and improved energy effi-

ciency has been identified as an acceptable tool for this

aim. There are several policies in place to address energy

usage in data centres [148]. Some of these are mentioned

below in Table 2 with their key features.

10 Research challenges

RQ4 What are the major software academic difficulties for

developing green data centres?

Green data centers have been an active area of research

and the major challenges to achieve green data center

includes the challenges in container technology, VM
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migration, virtualization, load balancing and workload

categorization.

Table 3 shows the research challenges in containers.

Although operating system virtualization is becoming

more popular, it commonly adds layers of inference and

abstraction beneath the application code to an already

intensively layered software stack that contains assistance

for legacy physical protocols and unimportant enhance-

ments. If the current rate of layer inclusion persists (due to

the distributed presence of logic across various software

elements written in different languages), the problem will

worsen in the coming years, as future software developers

will have to dig through multitudes of layers to debug even

the relatively simple applications. Developing a security-

aware scheduler to mitigate security concerns associated

with containers when distributed across cloud architectures

might be an intriguing future research topic.

Table 4 shows the research challenges in the domain of

VM Migration.

Another critical area of research is VM aggregation and

resource redistribution via VM migrations, with an

emphasis on both power monitoring and network overhead.

Considerations on VM placement that are purely focused

on increasing server resource usage and lowering power

usage may result in data centre designs that are neither

traffic-aware nor network efficient, resulting to more SLA

breaches. Consequently, VM allocation techniques that

take into account both VM resource demands and inter-VM

traffic load may be able to make more precise and eco-

nomical placement decisions [151].

Table 2 Key Features of various policies and standards for data centre energy consumption

Policy name Country Year Key features

ENERGY STAR Rating by Environment

Protection Agency (EPA)

USA 1992 The ENERGY STAR score for data centers is applicable to facilities that

are specially constructed and equipped to fulfil the demands of high-

density computer equipment, such as server racks, which are utilised for

data storage and processing. The goal of the ENERGY STAR score is to

offer a fair assessment of a facility’s power efficiency in compared to

peers, while considering climate, weather, and business operations at the

location into account. It entails measuring and optimizing energy usage

on a consistent basis.

American Society of Heating, Refrigerating

and Air-Conditioning Engineers (ASHRAE)

USA 1895 This standard establishes the minimal energy saving requirements for

structures such as data centres and telecommunications buildings, in

terms of architecture, development, service, and maintenance, as well as

the use of on-site or off-site renewable energy supplies.

National Australian Built Environment Rating

System (NABERS)

Australia 1998 This policy measures the performance related to the environment on a

scale of 1 to 6 stars. The three categories decide the final rating.

Green Mark Singapore 2005 This rating system is based in Singapore that gives points features like

efficiency of energy and best practices.

Green Building Index (GBI) Malaysia 2009 This is based on current ranking tools, such as the Green Mark, but it has

been heavily updated to account for Malaysia’s tropical weather,

environmental background, and cultural and social needs.

Certified Energy Efficient data center Audit

(CEEDA)

United

Kingdom

NR This rating system is based in UK that assesses the best practices that

should be followed for building energy efficient data centers.

Building Research Establishment

Environmental Assessment for Data Centers

(BREAM)

United

Kingdom

1990 This rating system is based in the UK which is also followed by Hong

Kong. It is based on the data center score across the ten categories.

European Code of Conduct by the European

Commission

Europe 2008 This aids in goal planning, monitoring energy use, creating attention, and

promoting energy-efficient best practises to improve data center energy

quality.

Blue Angel Eco-Label Germany 1978 This norm is provided to every environmentally aware organization that is

committed to implementing a long-term strategy to improve the resource

and energy usage of its data centre in relation to the IT services to be

distributed, as well as performing daily testing to improve data centre

operations.

International Standards Organization

50001:2011

Europe 2011 This international standard outlines the Energy Management Systems

(EMS) standards that data centers must meet in order to formulate and

enforce an energy strategy, as well as set goals, priorities, and action

plans that take legal requirements and facts into account.
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When apps like CPU and memory intensive are co-lo-

cated on the same physical server, resource competition for

some capabilities may occur, while others may be under-

utilised. Furthermore, such resource contention will have a

significant impact on application performance, resulting in

SLA breaches and economic loss. As a result, it is critical

to comprehend the host’s behaviour and resource utilisa-

tion patterns. Overhead for VM relocation and reconfigu-

ration might have a negative impact on scalability and data

centre bandwidth consumption, as well as performance of

the application. Because of this, VM strategies for place-

ment and scheduling that are uninformed about VM

migration and reconfiguration overhead may significantly

clog the network, induce unnoticed SLA breaches. Incor-

poration considering the expected migration overhead

using placement techniques and VM placement optimiza-

tion and migration by balancing utilisation in terms of

network resources, migration overhead, and so on, aspects

of energy consumption are still to be explored.

Table 5 shows the research challenges in virtualiza-

tion.The entire virtualization process increases the total

complexity of the machine, making testing, compilation,

and management difficult. This may be avoided by running

the emulated server solution on a desktop virtual machine

and utilising the host as the client. As there are many VMs

in virtualization, proper isolation is critical for security.

The isolation approach is commonly used in huge software

stacks. Under the direct supervision of cloud providers, it

may be vulnerable to VMM vulnerability exploitation and

insider assaults. Utilization of verified thin virtualization

instead of employing a conventional framework, a Trusted

Computing Base (TCB) can solve this challenge.

Table 6 shows the research challenges in the domain of

load balancing.

Due to the sheer exponential development in demand for

cloud services, efficient utilisation of energy and process-

ing resources has become a major challenge. Load bal-

ancing improves resource efficiency, quality, and energy

savings by optimally distributing the load in the data center

among diverse computing units. It has been observed that

the methods under consideration frequently function to

improve QoS, resource consumption, and energy conser-

vation. Current LB algorithms have a number of flaws,

such as energy and resource waste, inadequate frequencies

management, and static impediments. As a result, there is a

lot of space for growth. More efficient and adaptable LB

algorithms should be developed to offer clients with

excellent services at the lowest possible cost in order to

Table 3 Research challenges in containers

Domain Problems & Solutions

Containers Containers pose a number of security threats like attack through the untrusted images. These images may contain backdoors. In

addition, the images may have configuration defects that may provide them unnecessary privileges that will allow the application

to have control over the container. The DoS attack on the containers can also create a serious security threat in which a vulnerable

application attacks the neighbouring containers and uses the large number of resources that affects the performance of the

container.

Using the trusted images and verifying the images with the signatures is one such solution available to counter security threats.

Periodic scanning of applications/ images and running applications with minimum privileges are some other measures that can be

taken.

The industry requires a comprehensive container orchestration architecture. Aside from those, there are a few other issues to

consider when it comes to container deployment and orchestration: During stateful container deployment and orchestration,

dynamic life-cycle management is a major concern. This is because stateful distributed services often have many dependencies

and dynamic implementation stages (for example: Kubernetes deployment has 21 steps). Furthermore, orchestration operators

must handle the orchestrator in real time, as well as deal with numerous updates, crashes, interface adjustments, scaling, and

other issues. Because of the following basic issues, multitenancy becomes even more difficult when multiple tenants with their

own conditions, isolation, and protection are included. It is critical to keep an eye on/resist any single tenant from monopolizing a

cluster’s services.

Advanced automation and orchestration systems are the most significant technologies for aiding IT professionals in operating

large-scale cloud data centres. Many off-the-shelf solutions are already accessible as open-source software, but it has been seen

that almost every organisation is creating its own bespoke orchestration solution to meet its specific use cases. Because of this

strategy, the container orchestrator market is extremely fragmented, making it difficult for new small IT businesses to implement

them in production.

The container networking poses a number of problems. In the containerized environment, there is no static IP as containers spin up

and down continuously. Traditional IP networking is inefficient and difficult to automate. Static addresses need to be manually

configured. Use of DHCP or anything similar must be done in order to address the issues automatically but in this case, service

discovery and address assignment might take several seconds or even minutes. That is insufficient in a containerized environment

that is constantly changing. Overlay networks, service discovery, IDs, and labels enable traffic to be routed across containerized

networks without the need for traditional IP networking
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Table 4 Research challenges in the domain of VM Migration

Domain Problems & Solutions

VM

Migration

One of the important problems is to enhance the efficiency and effectiveness of the VM migration because it is widely used in the

enterprise environments. Most of the work done in this domain is application-oblivious. It could be possible to design more

flexible migration strategies that reduce migration costs by disclosing the application’s characteristics and efficiency goals.

Research should be done for the different types of resources and the different types of the workloads.

Virtualized servers are intended to separate the underlying hardware from the applications that run on it. Workload migration is

made possible by this concept. Although hardware interruptions between the source and destination servers are uncommon,

they can inhibit a successful transfer.

It is critical to begin troubleshooting by assessing the server hardware and configuration. For example, in order for a workload

transfer to be successful, the source and destination servers must have the same CPU.

One of the main issues that the virtualization architecture must overcome is security. While Xen lacks adequate protection

countermeasures against tampering and exploitation threats, several techniques exist, that can be used to mitigate these

problems [149]. To provide a more stable platform for supporting VM migration, more sophisticated and collaborative defences

are needed.

50% of all x86 data center workloads are in the form of virtual machine (Gartner research) [150], and this percentage will

continue to rise in the coming years. This would result in a growth in the number of virtual machines (VMs) housed in data

centers, which will increase operational complexity. In order to identify reasonable trade-offs between costs and advantages of

VM migration, multiple competing goals and criteria related to efficiency and energy usage should be taken into account.

Finding a flexible approach for tracking and determining appropriate policies to guide migration decisions is an issue that

should be overcome. To resolve the issues of complexity and scalability, automated VM migration management techniques

must be specified. Large-scale VM implementation necessitates the creation of sophisticated migration management techniques.

If a task lacks the appropriate computing capacity, it cannot be migrated to a destination server. When the destination node does

not have enough CPU cores, memory space, or NIC ports, or when storage is limited, and cannot reserve resources for the new

demand, migration issues might arise. This is becoming a more prevalent issue as physical server numbers are decreasing and

workload consolidation levels are rising.

Workload migration between physical servers is a necessary element of a virtualized system, but the procedure is laden with

potential pitfalls. Factors such as hypervisor flaws, migration settings, unanticipated hardware requirements, network

connectivity difficulties and configuration errors, resource limitations, and SAN configurations can all work together to hinder

effective workload transfers.

Table 5 Research challenges in virtualization

Domain Problems & Solutions

Virtualization Virtualization consolidates multiple clients on a single physical machine making it a Single Point of Failure (SPOF). However,

along with this, the hypervisor supporting these multiple clients also becomes a SPOF. A bug in the hypervisor may affect

some or all of the clients. To ensure that individual component failures do not result in service loss, highly available systems

are configured without Single Points of Failure (SPOF). The basic approach to avoiding SPOFs is to offer duplicate

components for each required resource, allowing service to continue even if a component fails.

As multiple clients are on the same machine, side channel attacks are common between VMs. Attacks can be performed to

extract sensitive information. Performance degradation by resource exhaustion is some of the common security attacks seen in

this domain. Many solutions have been provided which can work at hardware or application level. Mitigation at the hypervisor

level, on the other hand, may be more advantageous because it covers all clients and needs no interaction between them.

The capacity to create as many virtual machines as needed may result in the development of more VMs than the business

requires. VM sprawl may appear to be innocuous, but it can worsen resource distribution issues by diverting resources to VMs

that aren’t even being utilised, while those that are being used and required suffer from reduced functionality. Businesses may

avoid VM sprawl by restricting the number of VMs that are genuinely needed and adding more as needed.

Nested Virtualization refers to running a hypervisor inside another. It finds many applications in the domain of testing, security

and fault tolerance. However, many of the hypervisors do not support this feature. The hypervisors face stability and

performance issues while supporting nested virtualization.

Congestion is a common and well-known problem with VMs. Prior to virtualization, a standalone executable on a central

computer would often only consume a small portion of the computer’s bandwidth usage. However, several VMs on a

virtualized server, each requiring network bandwidth, gradually exceeds the virtual environment’s NIC port (typically one in a

server). One way to resolve the congestion issue is by adding more NIC’s to the VM server. Another is by utilizing solutions

that balance VMs across multiple servers. One such example being VMware DRS cluster of ESXi hosts.
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optimise resource efficiency, energy conservation, and

production. Adaptive LB will enable for traffic control

between quick activities, efficient resource consumption,

and a combination of centralised and distributed control

mechanisms. Energy conservation is a key aspect in pro-

moting economic growth in situations when greater

resource demand results from decreased resource

acquisition.

Table 7 shows the research challenges in workload

categorization.

Workload characterisation is a trivial research issue due

to the prevalence of workloads with distinctive, nontrivial,

and poorly understood qualities. The workloads related to

fog and vehicular clouds, big data, anonymous social net-

works, and sensor networks, to mention a few, are

addressed in open research problems.

The practise of safeguarding workloads that migrate

among cloud environments is known as cloud workload

protection. For a cloud-based application to function cor-

rectly and without posing security problems, the entire

workload must be operational. As a result, cloud workload

security and app service workload security are essentially

different from desktop application safety. Workload safety

is especially challenging in hybrid data centre designs that

use any from physical on-premises desktops to various

public cloud infrastructure as a service (IaaS) setting to

container-based application architectures. Cloud workload

security is particularly difficult because, when workloads

travel between providers and hosts, responsibility for

securing the workload must be pooled. One of the signifi-

cant future research objectives is the integration of auto-

scaling techniques with IDS and IPS systems to better

manage Distributed Denial-of-Service (DDoS) and Yo–Yo

attacks. To deal with malicious behaviour, auto scaling

systems often transform DDoS attacks to Economic Denial

of Sustainability (EDoS) attacks. Recognizing DDoS

workload from user workload is an unresolved topic that

should be addressed in future study.

Table 6 Research challenges in the domain of load balancing

Domain Problems & Solutions

Load

balancing

One of the most difficult challenges in the load-balancing algorithm is determining which technique is utilised to assess the

workload of a certain node. The total number of processes operating on computer are used as a measurement of workload in the

majority of load balancing algorithms. Load depends on many parameters like: no of processes, demands of the processes

running, instruction mix, architecture/speed of the processor, CPU utilization etc. Research should focus on all the parameters

before proceeding in the direction of designing and developing load-balancing algorithms. Some other factors that play an

important role in research in this domain include location policy for load-balancing algorithms (Threshold based, bidding

based, pairing etc.), process transfer policy for load-balancing algorithms (static threshold vs. dynamic threshold) etc.

Many load balancing algorithms targeting a single and multiple objectives have been proposed by researchers. However, many

of these do not consider algorithm complexity. Similarly, the load balancing process in data centers requires VM migrations,

where migration cost is involved. Migration cost has not been considered as an important metric in many proposed load-

balancing algorithms. The following metrics have been considered more frequently: latency, resource efficiency, computation

time, interoperability, and communication cost. The less considered metrics include: throughput, overhead, fault tolerance,

degree of balance, migration time etc.

Table 7 Research challenges in workload categorization

Domain Problems & Solutions

Workload

categorization

Workload is categorised based on many factors such as submitting time, completion time, inter-session interval, and so

on, however there are several types of characteristics that need to be addressed during workload classification.

Due to the huge magnitude and complexity of the workload, in-depth statistical analysis and workload classification

inside a large-scale production cloud is difficult.

Due to the behavioural characteristics of workload in the setting of cloud computing, there is a shortage of techniques to

define the workload.
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11 Conclusion

Data centres’ energy usage is becoming a significant

problem. Advances in server equipment technologies and

growing demand for processing power have resulted in

higher workload and hence has resulted in higher data

centre power usage. Data centers are the core of today’s

Internet and cloud computing networks. Data centers’

growing demand for electrical energy necessitates

accounting for the immense amount of energy they con-

sume. In this context, data center energy modelling and

prediction are critical. This survey article conducted a

thorough examination of the present status of software

solutions that aids in data centre power consumption

reduction. The paper is divided into five separate sections.

First, approaches for applying software virtualization are

described, followed by ways for applying operating system

virtualization. Furthermore, methodologies used in data

centres as well as other problem-solving approaches for

energy saving have been examined. Environmental factors

have also been studied in order to reduce electricity use.

The article also covers the significance of containerization

in decreasing data centre power consumption and con-

cludes with research challenges for sustainable data centre

building. The container technology is rising and requires

more research in the domain of energy efficiency. Con-

tainers, when properly built, allow a host to utilise nearly

all available resources. Isolated containers can function

independently of other containers, allowing a single host to

perform many functions. The future work includes devel-

opment of an efficient technique for placement of con-

tainers/tasks onto physical machines considering: CPU

multicores, memory, storage & network together. Con-

tainer migration technique will also be developed to reduce

energy usage while preserving needed service quality

(QoS).
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