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Abstract
Due to its automatic feature learning ability and high performance, deep learning has gradually become the mainstream of

artificial intelligence in recent years, playing a role in many fields. Especially in the medical field, the accuracy rate of deep

learning even exceeds that of doctors. This paper introduces several deep learning algorithms: Artificial Neural Network

(NN), FM-Deep Learning, Convolutional NN and Recurrent NN, and expounds their theory, development history and

applications in disease prediction; we analyze the defects in the current disease prediction field and give some current

solutions; our paper expounds the two major trends in the future disease prediction and medical field—integrating Digital

Twins and promoting precision medicine. This study can better inspire relevant researchers, so that they can use this article

to understand related disease prediction algorithms and then make better related research.

Keywords Artificial neural network � Factorization machine � Convolutional neural network � Recurrent neural network

1 Introduction

In recent years, with the development of medical detection

technology, a large amount of health data has been gen-

erated, which requires corresponding big data analysis

methods to process these data and generate valuable

information, which is helpful for disease diagnosis, per-

sonalized medicine and other medicine activities. Artificial

intelligence (AI) and machine learning can be used to

identify, analyze, predict and classify medical data [1], so

in the past 10 years various AI algorithms have been

effectively applied to process data generated in healthcare

[2, 3], such as applying logistic regression to heart disease

prediction to achieve early detection of heart disease [4].

However, when the data reaches a certain level, the effi-

ciency of traditional Machine Learning algorithms will be

significantly reduced, that is, these Machine Learning

algorithms lack certain big data analysis capabilities. And

deep learning algorithms, namely deep neural networks

(DNNs), can solve this problem. The DNN simulates the

conduction of the human brain neural network (NN), and

defines the input and output through complex layers com-

position. Each layer composition includes corresponding

neurons and nonlinear functions (activation functions) [5].

Compared with traditional machine learning, the advantage

of deep learning is that it can learn from the original data

and has multiple hidden layers. It can learn abstract

information based on input, process massive data and

obtain high accuracy and performance. Therefore, it has

been applied to the medical field by many scholars.

This article will divide deep learning into two types

according to data types: structured data algorithms and

unstructured data algorithms. Structured data algorithms

include Artificial Neural Network (ANN) and Factorization

Machine-Deep Learning (FM-Deep Learning), which can

play a better role in processing structured medical record
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data. After the combination of FM and DNN, it can solve

many problems that ordinary DNN cannot solve. FM is

developed from the matrix factorization algorithm. Singu-

lar Value Decomposition (SVD), non-negative matrix

decomposition and probability matrix decomposition are

traditional matrix decomposition methods. They can

decompose high-dimensional matrices into two or more

low-dimensional matrices, which is convenient to study the

properties of high-dimensional data in a low-dimensional

space. These matrix factorization methods are widely used

in prediction, recommendation and other fields because of

their high scalability and good performance. However,

traditional matrix factorization methods lack the effective

use of context information. In this context, the FM model

was proposed and popularized. FM was proposed by

Rendle [6]. It is a supervised learning model [7], which

combines the advantages of matrix decomposition and

Support Vector Machine (SVM). Similar to SVM, the

difference is that FM models pairwise feature interaction as

the inner product of hidden vectors between features

through matrix decomposition, so as to better mine feature

interaction information, to reduce complexity, to solve

sparsity and improve performance. FM was first applied to

the Click-through Rate (CTR) predicton information

behind the user’s click behavior. But in real-life data are

often highly non-linear, so capture high-order feature

interaction information can significantly improve perfor-

mance. Although FM can theoretically model high-order

feature interaction, it will cause parameter explosion and

huge amount of calculation, resulting in significant increase

in time complexity and storage space consumption.

Therefore, only second-order feature interaction modeling

is usually considered. If the high-order feature combination

is performed manually, there are the following disadvan-

tages: (1) experts in related fields need to spend a lot of

time to study the correlation between features, which is

time-consuming and laborious; (2) for large-scale predic-

tion system, the amount of data is huge, and it is unrealistic

to extract features manually; (3) it is impossible to gener-

alize feature interactions that are not in the training set.

Deep learning can automatically perform various combi-

nations and nonlinear transformations on the input features,

so as to learn high-order feature interaction information.

Therefore, the combination of deep learning and FM can

capture low-order to high-order features, and can better

predict whether patients have diseases and disease types.

Unstructured data algorithms include Convolutional

NNs (CNN) and Recurrent NNs (RNN), etc. This article

will only explore the development of CNN and RNN and

their applications in the medical field. CNN [8] is a DNN

structure including convolutional computation, which has

the ability of representation learning and can realize

translation-invariant classification of input information

according to hierarchical structure. CNNs generally include

convolutional layers, batch-normalization layers, pooling

layers, fully connected layers, etc. The core of which is the

convolutional layer. The function of the convolution layer

is to perform feature extraction on the input image. The

convolution layer contains multiple convolution kernels.

Each element that constitutes the convolution kernel has a

corresponding weight coefficient and bias value, similar to

the neurons of a feed-forward NN. Convolution calculation

means that the convolution kernel slides on the image, and

its corresponding elements are multiplied and summed

with the covered image features. This process can achieve

the effect of extracting local features and reducing

parameters. Because the CNN can extract local features

and reduce parameters (through weight sharing), it is par-

ticularly suitable for the field of image processing. Because

there are a lot of image data in the medical field, the

application range of CNN in the medical field exceeds that

of other models. CNN can solve the problem of spatial

dimension, but cannot process data in time dimension. The

RNN [9] came into being, which consists of neurons and

feedback loops. RNN has unique advantages for scenarios

where the previous input and the next input have depen-

dencies. Specifically, the network will remember the pre-

vious information and apply it to the current output

calculation, that is, the nodes between the hidden layers are

connected, and the input of the hidden layer includes not

only the output of the input layer, but also the output of the

hidden layer at the previous time. RNN can process time

series data well, and is widely used in natural language

processing, machine translation, speech recognition, image

description generation, text similarity calculation and other

fields.

This paper will explore the theories, development and

disease application cases of these algorithms. Specifically,

the contributions and characteristics of this paper are as

follows:

(1) According to the type of main processing data, the

algorithm is divided into structured data algorithm

and unstructured data algorithm.

(2) CNN and RNN papers account for a high proportion

in the field of in-depth learning, and papers on

structured data processing methods are rare. There-

fore, readers can understand the processing algo-

rithms of structured data in detail through this article.

(3) Different from the summary of classification accord-

ing to disease types, this paper is classified according

to the characteristics of algorithms. For example, in

CNN’s disease application section, some paragraphs

focus on transfer learning, some paragraphs focus on

combinatorial algorithms, and some paragraphs

focus on combining attention mechanism.
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(4) This paper probes into the problems existing in the

current research of disease prediction, such as poor

interpretability, unbalanced data, poor data quality

and few samples in some cases, and gives the current

feasible solutions.

(5) The two major trends in future medical care,

integrating Digital Twins and promoting precision

medicine, are analyzed, indicating that deep learning

disease prediction has a bright future.

(6) This paper will help relevant researchers to under-

stand the characteristics and development trends of

related disease prediction algorithms, and ensure that

they can purposefully select the most appropriate

algorithm in the process of doing research.

Section 2 of this paper will introduce the theories, develop-

ment and disease application cases of two kinds of structured

data algorithms,ANNandFM-DeepLearning. Section 3will

introduce the theories, development and disease application

cases ofCNNandRNN.Section 4will respectively introduce

the current defects in the field of disease prediction algorithms

and the coping strategies. Section 5 analyzes the two major

trends of medical treatment in the future, that is, integrating

Digital Twins and promoting precise medical treatment.

Section 6 summarizes the full text.

2 Structured data algorithms

2.1 Artificial neural network

2.1.1 Theory

ANN consists of multiple layers, each layer has one or

more artificial neurons. Each neuron receives one or more

inputs. First, each input is multiplied by a network weight

(network parameter), which is generally randomly initial-

ized. Calculate the sum of all weighted inputs and devia-

tion values of each neuron, and then input this value into

the activation function (nonlinear variation function).

Activation function is the core of NN. It introduces non-

linearity into the network and makes it possible for the

network to learn more complex functions. The output of

the activation function is the output of neurons, and the

output of each layer of neurons is used as the input of the

next layer of neurons. In the iterative training process, the

whole network will find the optimal weight distribution,

and the loss function is used to measure whether the net-

work weight is optimal. Figure 1 is a schematic diagram of

a three-layer ANN. The whole network has an input layer,

hidden layers (generally multiple) and an output layer. In

practical application, the number of layers of the network

will reach dozens or even hundreds of layers.

2.1.2 Disease application

Because the structure of ANN is relatively simple, it does

not have the excellent characteristics of CNN and RNN, so

there are few researches in this area [10, 11]. Khanam and

Foo [12] implemented a NN model for diabetes prediction,

using 1, 2, and 3 hidden layers in the NN model and

changing their epochs to 200, 400, and 800, respectively.

Hidden layer 2 has 400 epochs and provides 88.6% accu-

racy, surpassing machine learning models such as Decision

Tree, K-Nearest Neighbor (KNN), Random Forest, Logis-

tic Regression, SVM, etc. In 2021, Soundarya et al. [13]

used ANN to compare with machine learning models to

detect Alzheimer’s Disease (AD) and found that ANN

achieved the highest accuracy with sufficient data. Pasha

et al. [14] used ANN to improve the prediction accuracy of

cardiovascular disease. When dealing with large datasets,

traditional machine learning models do not perform well,

while ANN can play an advantage. These all indicate that

ANN is one of the future trends, and deep learning repre-

sented by ANN will become the mainstream algorithm for

disease prediction.

2.2 FM-deep learning

2.2.1 Theory

To capture second-order interactions between features, a

second-order cross term is usually added to the linear

regression formula:

Fig. 1 Artificial neural network diagram
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yFM ¼ w0 þ
Xn

i¼1

wixi þ
Xn�1

i¼1

Xn

j¼iþ1

wijxixj: ð1Þ

There are nðn� 1Þ=2 parameters in the second-order

intersection part, but when finding wij, it is necessary that

the features xi and xj are not 0 at the same time, and the

sparse data (especially after one-hot code) satisfies that xi
and xj are not 0 at the same time There are few cases, so

there are fewer samples of corresponding feature interac-

tions in the training set, resulting in inaccurate learned wij

and over-fitting. In order to solve this problem, FM

decomposes wij into hidden vectors vi and vj, that is,

wij ¼ hvi; vji, where vi=(vi1, vi2; . . .; vik) (k is a hyper-pa-

rameter, indicating the length of the hidden vector). The

matrix W composed of wij can be expressed as follows:

W ¼

v1
v2
� � �
vk

0
BB@

1
CCA v1 v2 � � � vkð Þ: ð2Þ

Now there are n * k binomial parameters, far less than the

original number of wij.

Why do we say that hidden vectors can solve data

sparsity? Because all samples containing non-zero feature

combinations of xh can be used to learn vh. For example,

the parameters of xhxi and xhxj are hvh; vii and hvh; vji,
respectively. They have a common item vh, so the value of

vh can be estimated reasonably. This can greatly reduce the

impact of data sparsity.

The implicit vector mechanism can also increase the

generalization of the model. According to the principle that

FM can solve sparsity, when FM learns the embedded

hidden vector weight of a single feature, it does not depend

on whether a specific feature combination has occurred.

For the feature combination xixj that has never appeared

before, as long as FM learns the hidden vectors corre-

sponding to xi and xj, the weight of this feature combina-

tion can be calculated through the inner product, so FM has

strong generalization ability. The formula of FM is as

follows [15]:

yFM ¼ w0 þ
Xn

i¼1

wixi þ
Xn�1

i¼1

Xn

j¼iþ1

hvi; vjixixj: ð3Þ

It can be seen that the complexity of FM is O(n2kÞ, and its

complexity can be reduced to O(n * k) by the following

steps:
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The final FM equation is:

yFM ¼ w0 þ
Xn

i¼1

wixi þ
1

2

Xk

f¼1

Xn

i¼1

vif xi

 !2

�
Xn

i¼1

v2if x
2
i

0

@

1

A:

ð5Þ

In fact, the essence of FM is embedding plus interaction, by

assigning each feature xi (discrete features will be one-hot

encoded before) a implicit vector vi ¼ ðvi1; vi2; vi3, vi4)

(assuming here k = 4), change the original high-dimen-

sional data into a low-dimensional dense vector e through

the embedding layer, that is, multiply xi by the corre-

sponding hidden vector vi to obtain ei, as shown in Fig. 2.

The entire Embedding layer is shown in Fig. 3:

In summary, the overall structure of FM can be drawn,

as shown in Fig. 4, where yLinear ¼ w0 þ
Pn

i¼1 wixi,

yFM2 ¼ 1
2

Pk
f¼1

Pn
i¼1 vif xi

� �2�
Pn

i¼1 v
2
if x

2
i

� �
.

2.2.2 Development history

In 2016, Zhang et al. [16] proposed a FM Supported NN

(FNN). The model uses a DNN with embedded layers to

complete the CTR prediction, which obtains the dense

vector of each feature through pre training the FM model.

Then all embedded vectors of the sample are spliced and
Fig. 2 Embedding of feature xi
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input to DNN for training. The feature of FNN is that the

embedding vector of each feature is trained by FM model

in advance. Therefore, when training DNN model, the

overhead is reduced and the model can converge faster.

However, the performance of the whole network is limited

by the performance of FM. In the same year, Qu et al. [17]

introduced a product layer between the embedding layer

and the fully connected layer to propose Product-based

Neural Network (PNN). PNN finds the relationship

between features through inner product or outer product

between features, but it lacks low-order feature interaction,

so it may ignore the valuable information contained in the

original vector. He et al. studied the recommendation

problem in the case of sparse input data, and proposed

Fig. 3 Embedding layer of FM

Fig. 4 Overall structure diagram of FM
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Neural FM (NFM) [18]. NFM adopts a framework similar

to Wide&Deep [19], and it uses Bi-Interaction Layer (Bi-

linear interaction) structure to process the second-order

cross information, so that the information of the cross

features can be better learned by the DNN structure,

reducing the difficulty of the DNN learning higher-order

cross feature information. In order to learn low-level fea-

ture interaction, Guo et al. [20] proposed DeepFM, which

combined Deep and FM, used FM for low-level interaction

of features, and DNN for high-level feature interaction,

combining the two methods in parallel. And both parts

share the same input. The final first-order features and

second-order and higher-order feature interactions are

simultaneously input to the output layer, and the whole

process does not require pre-training and feature engi-

neering. He et al. proposed Attention FM (AFM) [21] by

extend NFM. They introduce the attention mechanism into

the Bi-Linear interactive pooling operation, which further

improved the representation ability and interpretability of

NFM. AFM only adds an attention mechanism on the basis

of FM, and the quadratic term does not enter the deeper

network, so AFM does not take advantage of DNN. Zhang

et al. [22] combined DeepFM and AFM, and proposed

Deep AFM (DeepAFM), which combined the AFM and

deep learning in a new NN structure for learning. Com-

pared with existing deep learning models, this method can

effectively learn the weighted interaction between features

without feature engineering by introducing the feature

domain structure. There are also many explorations of

attention mechanism. Zhang et al. [23] proposed a new

model FAT-DeepFFM, which dynamically captures the

importance of each feature before the explicit feature

interaction process by introducing CENet domain attention,

thus enhancing the DeepFFM. Tao et al. [24] proposed

Higher-order AFM (HoAFM), by explicitly considering the

interaction of high-order sparse features, they designed a

cross interaction layer, updated the representation of fea-

tures by aggregating the representation of other co-occur-

rence features, and implemented a bit by bit attention

mechanism to determine the different importance of co-

occurrence features in dimensional granularity. Yu et al.

[25] proposed Gated AFM (GAFM) based on dual factors

of accuracy and speed, using the structure of gates to

control speed and accuracy. Wen et al. [26] proposed

Neural Attention Model (NAM), which deepens the FM by

adding fully connected layers. Through the attention

mechanism, NAM can learn the different importance of

low-order feature interactions. By adding fully connected

layers on top of the attention component, NAM can model

higher-order feature interactions in a non-linear fashion. In

2019, Yang and colleagues [27] proposed Empirical Mode

Decomposition and FM based NN (EMD2FNN). Empirical

mode decomposition helps to overcome the non

stationarity of data, and the FM helps to master the non-

linear interaction between inputs. Zhang et al. [28] pro-

posed High-order Cross-Factor FM (HCFM). They

designed Cross-Weight Network (CWN) to achieve high-

order display interactions. The cross and compression

layers of CWN are designed to effectively learn important

feature combinations, and the weight pooling layer aims to

learn the weights of different interaction orders to balance

the different weights between high-order and low-order

feature interactions. Lu et al. [29] proposed Dual-Input

FMs (DIFM), which can efficiently and adaptively learn

different representations of a given feature according to

different input instances, and can efficiently learn input-

aware factors simultaneously at the bit-wise and vector

levels (using for re-weighting the original feature repre-

sentation). The DIFM strategically integrates various

components including multi-head self-attention, residual

networks, and DNN into a unified end-to-end model. Deng

et al. [30] proposed a new Deep Field-weighted FM

(DeepFwFM), which itself combines FwFM components

and ordinary DNN components, shows unique advantages

in structure pruning, using this combination can greatly

reduce inference time. Yu et al. [31] proposed Neural

Pairwise Ranking FM (NPRFM), which integrates a mul-

tilayer perceptual NN into Pairwise Ranking Factorization

Machine model. Specifically, to capture higher-order and

nonlinear interactions between features, a multi-layer per-

ceptual neural network is superimposed on a double-in-

teraction layer to encode the second-order interactions

between features. Pande [32] proposed Field Embedding

FM (FEFM) and Deep FEFM (DeepFEFM). FEFM learns

the symmetric matrix embedding of each field pair and the

single vector embedding of each feature. DeepFEFM

combines the FEFM interaction vector learned by FEFM

components with DNN to learn high-order feature inter-

action. Qi and Li [33] proposed Deep Field-Aware Inter-

action Machine (DeepFIM) to solve the ‘‘short expression’’

problem and better capture multi-density feature interac-

tions. They proposed a new feature interaction expression

based on field identifier, namely ‘‘hierarchy expression’’.

On this basis, they designed a cross interaction layer to

identify field and field interaction, and used attention

mechanism to distinguish the importance of different fea-

tures. A dynamic bi pool layer is introduced to enhance the

acquisition of high-order features.

There is also a combination of FM and CNN. Zhang

et al. [34] proposed Deep Generalized Field-aware FM

(DGFFM), which uses a wide-deep framework to jointly

train Generalized Field-aware FM (GFFM) and DenseNet.

It aims to combine the advantages of traditional machine

learning methods, including their faster learning speed for

low-rank features and the ability to extract high-dimen-

sional features, where GFFM can significantly reduce
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computation time by exploiting the corresponding posi-

tional relationship between field indices and feature indi-

ces. Chanaa and El Faddouli [35] proposed Latent Graph

Predictor FM (LGPFM), which utilizes CNN to capture

interaction weights for each pair of features. LGPFM

combines the advantages of FM and CNN, and CNN can

work efficiently in the grid topology, which will signifi-

cantly improve the accuracy of the results.

Metric learning canalsobe combinedwith theFMalgorithm.

Guoet al. [36] proposedanFMframeworkbasedongeneralized

metric learning technology. The metric method based on

Mahalanobis distance uses semi positive definite matrix to

project features into a new space, so that the features obey cer-

tain linear constraints. The distance function based on DNN is

designed to capture the nonlinear feature correlation, which can

benefit from the strong representation ability of metric learning

method and NN. At the same time, a learnable weight is intro-

duced for the interactionof each attribute pair,which cangreatly

improve the performance of the distance function.

2.2.3 Disease application

Chen andQian [37] proposedNN and FM for the diagnosis of

children’s sepsis. NN can better process the test index result

value of patients, and FM can better process the test index

state data of patients with sparse structure. Ronge et al. [38]

developed a deep FMmodel forADdiagnosis, which consists

of three parts: an embedding layer that handles sparse cate-

gorical data, Factorization Machine that efficiently learns

pairwise interactions, DNN that implicitly model higher-

order interactions. The above are simple combinations of NN

and FM, and the FM-Deep Learning algorithms with better

performance mentioned in Section 2.2.2 are not used. While

Fan et al. [39] applied DeepFM to predict the recurrence of

Cushing’s disease after transsphenoidal surgery, predicted

the recurrence of 354 patients with initial postoperative

remission in Peking Union Medical College Hospital, and

obtained the highest AUC value (0.869) and the lowest

logistic loss value (0.256), which exceeded other models.

3 Unstructured data algorithm

3.1 Convolutional neural network

3.1.1 Theory

CNN is particularly suitable for learning image features.

Before CNNwas proposed, the fully-connected networkwas

generally used to extract image features, but the entire fully-

connected network often had a particularly large number of

connections, which would lead to an explosive increase in

the number of parameters and training time. It can be noted

that it is not necessary for each neuron to perceive the entire

image, the image has a strong 2D local structure, that is,

spatially adjacent variables (or pixels) are highly correlated.

So people put forward the concept of CNN, which combines

three ideas: local receptive field, shared weight and down

sampling. The size of convolution kernel is called receptive

field. The convolution kernel slides on the image and extracts

the features of its coverage area, which can achieve the

purpose of forcibly extracting local features, and extract

visual features such as edges and corners. Because each

region of the image is scanned by a convolution kernel with

the same weight, the weight sharing is realized and the

number of parameters is greatly reduced. Therefore, the

convolution layer of CNN can extract local features well and

reduce the number of parameters.

CNN also includes batch-normalization layers, activa-

tion layers, and pooling layers. The batch-normalization

layer standardizes the small batch data to make it conform

to the standard normal distribution, and performs scaling

and migration operations, which effectively avoids the

disappearance of the gradient, speeds up the decline of the

gradient and accelerates the convergence. The activation

layer non-linearly processes the input through the activa-

tion function, which enables the whole NN to fit any

function. The formula is as follows:

y ¼ axþ b: ð6Þ

Here a is the activation function, x is the input, and both w

and b are weight parameters.

Figure 5 is a simple schematic diagram of CNN.

3.1.2 Development history

In 1989, LeCun et al. [40] designed CNN with two con-

volutional layers (with convolution kernel size of 5� 5),

trained on the handwritten zip code dataset of the United

States Post Office, and the generalization performance of

the model reached best at the time. This network is actually

the prototype of LeNet, but the whole network only has

convolution layer and full connection layer. In 1998,

LeCun et al. [41] formally put forward LeNet5, which

includes convolution layer, pooling layer and full connec-

tion layer. There are seven layers in total. The convolution

layer uses 5� 5 convolution kernels, and the activation

function uses sigmoid. LeNet-5 has a total of 340,908

connections, but the number of trainable parameters is

reduced to 60,000 due to weight sharing. After LeNet-5

was proposed, the research of CNN in speech recognition,

object detection, face recognition and other application

fields has gradually been carried out. After 2012, the CNN

entered the stage of large-scale application and in-depth

research. The sign was that Krizhevsky et al. [42] proposed

AlexNet-8, and its ImageNet Top5 error rate reached
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15.3% in the 2012 ILSVRC competition. AlexNet-8 con-

sists of five convolutional layers, which are filled with all

zeros and use ReLU as the activation function. Some

convolutional layers are followed by a maximum pooling

layer, which can better extract feature textures.

AlexNet also uses Dropout to prevent over-fitting.

Simonyan and Zisserman [43] proposed VGGNet-16 and

VGGNet-19, which used a small convolution kernel (3� 3

receptive field), which improved the recognition accuracy

while reducing parameters. VGGNet also adds a batch-

normalization layer to speed up the training process, and its

number of layers exceeds the previous network, reaching

16–19 layers, which can better learn sample features. The

entire network structure is regular and suitable for parallel

acceleration. In the 2014 ILSVRC competition, VGGNet

reduced the ImageNet Top5 error rate to 7.3%. In the same

year, InceptionNet, that is, GoogleNet, was proposed [44],

with a depth of 22 layers, and using convolution kernels of

different sizes in one layer to improve the perception of the

model. InceptionNet uses a 1� 1 convolution kernel to

change l output features. The number of channels of the

graph (can reduce network parameters). Its ImageNet Top5

error rate was reduced to 6.7%.

Although the depth increase is the development trend of

CNN, the gradient will disappear as the number of layers

increases to a certain extent. At this time, the accuracy of

the depth learning model reaches saturation, and then the

training error and test error will decrease significantly,

resulting in the inability of the model to converge. So in

2015, the Kaiming He team [45] proposed Residual NN

(ResNet), which is connected by residual skip connections

between layers, which is mainly to add several identity

mapping layers (input equal to output) after some layers, In

this way, the forward information can be introduced, which

can suppress the disappearance of the gradient, which

enables the number of layers of the NN to exceed the

previous constraints, reaching hundreds of layers and

improving the accuracy. ResNet evaluated on the ImageNet

dataset are 152 layers deep-8 times deeper than VGGNet,

but still less complex. In addition, the model also uses a

global pooling layer to replace the fully connected layers,

which can also achieve the purpose of reducing parameters.

3.1.3 Disease application

Acharya et al. [46] were the first to use CNN for Elec-

troencephalogram (EEG) signal analysis. In this work, the

authors implement a 13-layer CNN to detect normal, pre-

ictal and epileptic seizure categories without separate fea-

ture extraction and feature selection steps. Muhammad

et al. [47] proposed CNN-based fusion model for EEG

pathology detection. Hossain et al. [48] uses Deep Learn-

ing techniques for Epilepsy Seizure Detection. Chanu and

Thongam [49] proposed a computer-aided 2D cellular

neural network classification technique to classify MR

images into two categories: normal and tumor. This method

is suitable for inclusion in clinical decision support systems

for the initial diagnosis of brain tumors by clinical experts.

In 2022, Seven et al. [50] used the deep learning of

Endoscopic Ultrasonography (EUS) images to predict

whether the malignant potential of gastrointestinal stromal

tumors. First let the EUS image be resized in 28� 28� 1

format through Lanczos interpolation. The deep learning

part uses 20 CNN kernels for the first layer and 50 for the

second layer. After each kernel layer, the image resolution

is halved. After these convolutional processes, the feature

image information is put into the ANN model to train the

AI system. The results show that the AI of deep learning

based on EUS images can predict the malignant potential

of gastric stromal tumors with high accuracy. Yin [51]

constructed two 50-layer ResNets based on different

building blocks to classify skin lesion images. Although

these studies have no major innovations, they have exerted

the unique image feature extraction ability of CNN and

achieved good results. Rahman et al. uses CNN with rel-

evant adversarial examples (AEs) for COVID-19 diagnosis

[52].

Transfer learning refers to transferring the parameters of

the trained model (pre training model) to a new model to

help train the new model. Because transfer learning can

ensure that the model has a higher starting point (before

Fig. 5 Convolutional neural network diagram
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fine tuning, the initial performance of the model is higher),

a higher slope (during the training process, the promotion

rate of the model is faster) Higher asymptotic (the model

converges better after training), so it often plays a role in

the field of disease prediction in combination with CNN. In

2019, Amin et al. [53] proposed a new method to classify

tumor/non-tumor Magnetic Resonance Images (MRI),

where the segmented images are fed to a pre-trained CNN

model where feature learning is performed by AlexNet and

GoogleNet. Fully connected layer are used for feature

mapping and score vectors are obtained from each trained

model. In addition, the score vector is provided to the

softmax layer and multiple classifiers. In 2020, Wang et al.

[54] proposed two CNN models, which can automatically

distinguish benign and malignant masses, lipomas, benign

schwannomas and vascular malformations by learning

image features. The author chose VGGNet-16 architecture

pre-trained on ImageNet dataset to build two CNN models,

so as to improve performance by using transfer learning

and DNN architecture. Chelghoum et al. [55] used nine

pre-trained deep networks, including AlexNet, GoogleNet,

VGG-16, VGG-19, ResNet-18, ResNet-50, ResNet-101,

ResNet-Inception-V2, and SENET to solve the problem of

brain tumor classification by using transfer learning

method. The results show that when the number of training

samples is small and the number of iterations is small, the

performance of the model is still good and the time con-

sumption can be reduced. Similar to the research of

Chelghoum et al., Kaur and Gandhi [56] also explored

different pre trained classical CNN models to explore the

transfer learning ability in pathological brain image clas-

sification. The author uses various pre trained DCNN,

namely AlexNet, ResNet-50, GoogleNet, VGGNet-16,

ResNet-101, VGGNet-19, Inception V3 and Inception

ResNet V2. The last layers of these models are replaced to

adapt to the training set. Compared with other models,

AlexNet shows the best performance in a shorter time.

Rehman et al. [57] also aimed at the problem of brain

tumors, combined with the traditional machine learning

model, adopted three classical CNNs (AlexNet, GoogleNet

and VGGNet) to classify brain tumors such as menin-

gioma, glioma and pituitary tumor. The author took these

three CNNs as pre-training models and used their different

freezing layers respectively. Finally, SVM is used for

classification. The results show that the fine tuned

VGGNet-16 architecture achieves the highest accuracy in

classification and detection, reaching 98.69%. Kumar and

Nandhini [58] adopted the entropy image slicing method to

select the most informative MRI slices during the training

phase. Transfer learning training was performed on the

ADNI dataset, and the VGGNet-16 network was used to

classify AD of normal individuals. By introducing the MRI

slice method, the model can effectively reduce the

preprocessing complexity, and use the VGG-16 network

transfer learning technique to solve the unreliability prob-

lem. Extracting the parameters of the pre-training model

for processing is also one of the methods of transfer

learning. Tsai and Tao [59] trained the deep Convolution

NN model, and extracted the modified parameters in the

network layer to identify the abundant different tissue types

in the histological images of colorectal cancer. Eweje et al.

[60] utilized a deep learning approach combining conven-

tional MRI images and clinical features to develop a model

to classify the malignancy of bone lesions. The method

consists of three parts: (1) Imaging data model: By

adopting the EfficientNet deep learning architecture, an

image classification model is developed. EfficientNet

models initialized with weights pre-trained on the Ima-

geNet database can extract features from imaging data. (2)

Clinical data model: logistic regression model using clin-

ical variables. Inputs are patient age, gender, and lesion

location. For 21 locations (clavicular, skull, proximal

femur, distal femur, foot, proximal radius, distal radius,

proximal ulna, distal ulna, hand, hip, proximal humerus,

distal humerus, proximal tibia end, distal tibia, proximal

fibula, distal fibula, mandible, rib/chest wall, scapula, or

spine) were one-hot encoded so that the model received 23

different input variables for data quantification. (3)

Ensemble model: (1) and (2) are combined using a stacking

ensemble approach, where the voting ensemble receives as

input the malignancy probability from the imaging and

clinical feature models and creates an output based on the

sum of the predicted probabilities.

Previously, Rehman et al. combined AlexNet, Google-

Net, and VGGNet with traditional machine learning mod-

els, and achieved good results, but if two different deep

learning models can be combined, better results can be

achieved. In 2021, Kokkalla et al. [61] proposed a deep

dense initial residual network model for the three-class

classification of brain tumors, which customized the output

layer of inception ResNet V2 with fully connected net-

works and softmax layer. In the same year, Ning et al. [62]

proposed an automatic Congestive Heart Failure (CHF)

detection model based on a hybrid deep learning algorithm

of CNN and Recursive Neural Network. Normal sinus

heart rate signals and CHF signals were classified accord-

ing to ECG and time spectrum. The author carries out

feature extraction of ECG signal, mainly extracts RR

interval sequence, calculates the time spectrum of ECG

signal, and uses CNN to automatically identify the spec-

trum and related features crossed with time domain.

Srinivasu et al. [63] introduced MobileNet V2 with LSTM

components to accurately classify skin diseases from

images captured from mobile devices. MobileNet V2 is

used to classify skin disease types, and LSTM is used to

enhance the performance of the model by maintaining state
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information of features encountered in previous generation

image classification.

The attention mechanism can assign different weights to

the input features, so that the model can focus on more

important features and information. Therefore, some

scholars combine the attention mechanism with CNN for

disease prediction. Toğaçar et al. [64] proposed a deep

learning model BrainMRNet for brain cancer detection.

BrainMRNet is a feedforward end-to-end convolution

model, including super column technology, attention

module and residual block. Using the super column tech-

nology, the features of the input image extracted through

the convolution layer of each pixel are combined through

the super vector, and the most effective features in the

vector are selected and transferred to the next layer;

Through the attention module, BrainMRNet attracts

attention to the important areas of input data, while

unnecessary areas are ignored, which can increase the

verification success rate of BrainMRNet; the whole model

is composed of residual blocks, which can improve the

performance of the model by updating the weight param-

eters of back propagation. Metric learning is also called

similarity learning, which is to classify by comparing the

similarity between samples. Some scholars combine CNN

with metric learning. Jiao et al. [65] adopted a deep dis-

tance metric to learn breast mass classification. The model

contains convolutional layers and metric layers. Firstly, the

model trains and fine tunes the level of CNN. The CNN

structure can provide a good depth feature extraction net-

work and a baseline for breast mass classification. Then,

the large edge metric learning method with hinge loss is

used to initialize the ensemble learning layer, and the

ensemble learning layer is trained to make the character-

istics of different breast masses more separable. The metric

layers benefits from the representative characteristics of the

convolutional layers, and the data flow between them is

limited by one-way transmission. The relationship between

the two layers is similar to the parasitic relationship in

biology/ecology. Therefore, the proposed method is called

parasitic metric learning network.

Shallow CNNs can reduce spatial and temporal con-

straints. Tripathi and Singh [66] proposed a hybrid, flexible

deep learning architecture, OLConvNet, which combines

the interpretability and depth of traditional object-level

features by using a shallower CNN named CNN3L. Extract

DL features from the original input image. Then the two

sets of features are fused together to generate the final

feature set. Multilayer perceptron uses the final fused fea-

ture set as input to classify the histopathological nuclei into

one of four categories.

Although CNN is mainly used in the image field, some

scholars also apply it to structured medical record data and

speech data. In 2016, Cheng et al. [67] proposed a deep

learning method for phenotypic analysis from patients’

Electronic Medical Records (EHR). Firstly, the EHR of

each patient is expressed as a time matrix, with time in one

dimension and events in another dimension. Then a four

layer Convolution NN model is established for phenotypic

extraction and prediction. The first layer consists of these

EHR matrices. The second layer is a unilateral convolution

layer from which the phenotype can be extracted. The third

layer is the largest aggregation layer that introduces spar-

sity to the detected phenotypes, so as to retain only those

significant phenotypes. The fourth layer is the fully con-

nected softmax prediction layer. In order to integrate the

temporal smoothness of patients’ EHR, the author also

studied three different temporal fusion mechanisms in the

model: early fusion, late fusion and slow fusion.

In 2019, Gunduz [68] proposed two frameworks based

on CNNs to classify Parkinson’s Disease (PD) using sound

(speech) feature sets. Although the two frameworks are

used to combine various feature sets, they are different in

combining feature sets. The first framework combines

different feature sets and provides them as input to 9-layer

CNN, while the second framework transfers the feature sets

to the parallel convolution layer. The second framework

can learn deep features from each feature set through

parallel convolution layer. The extracted deep features can

not only successfully distinguish patients with PD from

healthy people, but also effectively enhance the discrimi-

nation ability of the classifier.

In 2020, Sajja and Kalluri [69] proposed a CNN to

predict whether a patient has heart disease. The convolu-

tional architecture adopted by the authors consists of two

convolutional layers, two Dropout layers, and an output

layer. The model predicts disease with 94.78% accuracy on

the UCI-ML Cleveland dataset, outperforming logistic

regression, KNN, Naive Bayes, SVMs, and NNs. This is

also an application of CNN to structured data.

3.2 Recurrent neural network

3.2.1 Theory and development

RNN [70] is used for pattern recognition of streaming or

sequential data such as speech, handwriting and text. There

is a circular connection in the hidden layer of RNN. The

RNN performs cyclic calculation in the cyclic connection

of these hidden units to process the input data in sequence.

Each previous input data is stored in a state vector in the

hidden unit, and these state vectors are used to compute the

output. In summary, RNN calculates a new output con-

sidering the current input and the previous input. Although

RNN has good performance, in the back-propagation of

RNN, when calculating the gradient adjustment weight

matrix, due to many partial derivatives multiplied
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continuously, the gradient in the network will become very

small and gradually disappear, or become too large, which

makes it difficult for RNN to learn long-distance infor-

mation. In order to solve this problem, some scholars

proposed long short-term memory (LSTM) network [71],

which can store sequence data for a long time and solve the

problem of gradient disappearance. As shown in the upper

part of Fig. 6, LSTM uses a gating mechanism and intro-

duces an input gate, a forget gate and an output gate. When

the gate is closed, it will prevent changes to the current

information, so that the previous dependency information

will be learned; when the door is open, it does not com-

pletely replace the previous information, but makes a

weighted average between the previous information and

the current information. Therefore, no matter how deep the

network is and how long the input sequence is, as long as

the door is open, the network will remember these input

information. The input gate controls the information of the

current word to be integrated into the cell state. The current

cell state integrates the information of the current word and

Fig. 6 LSTM and GRU structure diagram. upper: LSTM; lower: GRU

Cluster Computing (2023) 26:1231–1251 1241

123



the cell state of the previous moment, and represents the

long-term memory. The input gate determines how much

information about the current word will be stored in the

current cell state. The forget gate controls the information

of the cell state at the previous moment to be integrated

into the current cell state. When understanding a sentence,

the current word may continue to describe the meaning

above, or it may start to describe new content from the

current word, which has nothing to do with the above, so it

is necessary to do the corresponding forgetting operation.

The forget gate is responsible for selectively forgetting the

information of the cell state. The output gate is responsible

for selectively outputting the cell state information. Gated

Recurrent Unit, GRU [72] is a simplified version of LSTM.

As shown in the lower part of Fig. 6, GRU changes the

original three gates into two gates—update gate and reset

gate. The reset gate is used to control the influence of the

hidden layer state at the previous moment (representing the

past information) on the current word. The update gate is a

merger of the forget gate and the input gate in LSTM, and

is responsible for assigning the importance of past and

present information. In this way, the structure of GRU is

simpler and matrix operations are less in calculation.

Therefore, GRU can save more time than LSTM in the case

of large training data.

3.2.2 Disease application

RNNs with LSTM hidden units, pooling, and word

embeddings are used in DeepCare [73], an end-to-end deep

dynamic network that infers current disease states and

predicts future medical outcomes, the authors also condi-

tioned LSTM cell with decay effect to handle irregularly

timed events. In 2018, Chu et al. [74] proposed a new

context-aware attention mechanism for detecting Adverse

Medical Events (AME) of cardiovascular diseases to learn

the local context information of words in medical texts.

The attention mechanism enables the keywords related to

the target AME to get more attention signals, and then

drives the model to locate prominent parts of medical texts.

The proposed neural attention network is combined with

the standard Bi-LSTM model to detect AMEs from a large

number of EHR data. The combination of global order-

dependent signals of words captured by standard Bi-LSTM

and local context signals of words captured by context

attention mechanism can significantly improve the perfor-

mance of AME detection in medical texts.

Some scholars use LSTM for Electrocardiogram (ECG)

signal processing. In 2018, Tran et al. [75] proposed a

feature extraction-based method to process ECG signals

from Internet of Things (IoTs)-specific devices, employing

an Auto-Encoder (AE) model to reduce data dimensional-

ity, by combining LSTM extracts top ECG features.

Finally, the full connection layers were used to distinguish

normal ECG from abnormal ECG.

Some medical record data with time characteristics (i.e.

serialized data) can also be analyzed by LSTM. In 2018,

Reddy and Delen [76] used RNN–LSTM method to predict

the readmission probability of lupus patients within 30

days by extracting the time relationship from longitudinal

EHR clinical data. RNN–LSTM method can make use of

the relationship between patients’ disease state and time,

which makes the model have higher performance. In 2019,

Wang et al. [77] used LSTM to predict 6-month, 1-year and

2-year mortality in dementia patients. The deep learning

model proposed by the authors consists of two stacked

LSTM layers and two attention layers: one between the

input layer and the LSTM layer, and the other between the

LSTM layer and the output layer. Stacked LSTM layers

support hierarchical abstraction of the input data. Attention

layers are used to improve model performance as well as

keep track of the importance of temporal inputs as the

model makes predictions.

There are also several examples of GRU applications.

There are also several application cases of GRU. In 2017,

Choi et al. [78] used GRU for heart failure diagnosis.

Compared with popular methods such as logistic regres-

sion, Multi-Layer Perception (MLP), SVM and KNN, GRU

performed well in heart failure diagnosis. The results show

that the deep learning model suitable for using time rela-

tionship improves the performance of the model for

detecting sudden heart failure in a short observation win-

dow of 12–18 months. Choi et al. [79] used RNN with

GRU to develop doctor AI, an end-to-end model that uses

patient history to predict subsequent diagnosis and drug

treatment.

Some scholars have proposed that RNN is lighter than

CNN and it can also be used for image processing. In 2020,

Amin et al. [80] proposed an automatic classification

method for brain tumors based on LSTM of MRI. First,

N4ITK of size 595 and Gaussian filter are used to improve

the quality of multi-sequence MRI. The classification is

performed using the proposed four-layer deep LSTM

model. In each layer, 200, 225, 200 and 225 are selected as

the optimal number of hidden units, respectively. The

lightweight four layer LSTM model proposed by the author

has achieved better results in temporal data processing,

which is conducive to the learning of multi sequence MRI.

4 Existing defects and solutions

Here we list several problems in current disease research,

which will correspondingly affect the diagnosis rate of

disease prediction algorithms. These problems are: Poor

Interpretability, Data Imbalance, Data Quality Issues, Too
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Little Data. Among them, Poor Interpretability is about

deep learning algorithms. Poor interpretability leads to low

reliability of deep learning disease prediction algorithms,

which is not good for helping doctors analyze pathological

causes. The remaining three problems are related to the

data. Data Imbalance will cause the classifier to lose its

classification ability. Data Quality Issues, poor quality

datasets will lower the performance limit of deep learning

algorithms on specific problems. Too Little Data, a small

amount of data will lead to over-fitting and seriously

reduce the quality of deep learning algorithms. In addition

to enumerating these problems, this section also presents

the current corresponding solutions.

4.1 Poor interpretability

Traditional statistical methods are usually based on manual

feature engineering of medical related domain knowledge.

These methods are closely combined with medical

knowledge. Although the effect is not very outstanding,

they give doctors reliable interpretability. Deep learning

algorithms are like a black box and are driven by data

which we cannot see the feature extraction and screening

process. Therefore, although deep learning improves the

feature extraction ability and classification ability of the

model, its interpretability is very poor, which is easy to

lead to the unreliability of the results and bring risks. Only

by solving the interpretability problem of the model, deep

learning can be more widely used in the actual disease

prediction, better serve doctors and patients, and make

them have confidence in the diagnosis results of the model.

The general solution is to add attention mechanism,

which is suitable for both structured and unstructured data.

Attention mechanism was first applied to the field of nat-

ural language processing, which can better find the rela-

tionship between words in sentences and better predict the

next words. AFM and DeepAFM are the application of

attention mechanism in FM algorithm; Woo et al. [81]

proposed the Convolutional Block Attention Module

(CBAM) in 2018. Woo et al. [81] proposed convolutional

attention module (CBAM) in 2018. Given an intermediate

feature map, CBAM module will infer the attention map

along two independent dimensions (channel and space),

and then multiply the attention map with the input feature

map. CBAM is a lightweight general module, which can be

seamlessly integrated into any CNN architecture for end-

to-end training with basic CNN without excessive addi-

tional over-head.

The Local Interpretable Model Agnostic Explanations

(LIME) can also be adopted to solve the problem of poor

interpretability. LIME establishes a linear separable model

locally in the model through local disturbance sampling

and linear approximation, and estimates the importance of

each feature through the feature weight of the linear model

[82, 83].

For images, interpretability methods based on activation

mapping can be adopted, such as Class Activation Mapping

(CAM) [84], Grad-CAM [85], Grad-CAM?? [86], and

Score-CAM [87], etc. This method generates saliency map

by linear weighted combination of activation mapping to

highlight important areas in image space. The saliency map

is used to highlight the features in the input considered to

be related to the prediction of the learning model, which

does not need training data or modify the model.

4.2 Data imbalance

There is always an imbalance in medical data because there

are fewer people who are sick than those who are not.

When the data is severely unbalanced, the model always

classifies the samples into the majority class, for example if

a model is trained to predict whether a patient has a tumor,

when the number of negative samples (patients without a

tumor) in the training set is much higher than When the

number of positive samples is positive, when predicting

whether a new patient has a tumor, the model always

diagnoses the patient as not having a tumor, which is

obviously not what we want.

For image data, Generative Adversarial Networks

(GAN) [88] can be used. GAN can generate minority class

samples that are close to real samples and solve the prob-

lem of data imbalance. For binary classification problems,

the method of Synthetic Minority Oversampling Tech-

nique, SMOTE [89] can also be used. SMOTE can up-

sample or down-sample the training set, so that the pro-

portion of positive and negative samples reaches a bal-

anced state.

Structured data can also use the SMOTE method, but

up-sampling will destroy the discreteness of the data,

making discrete features into continuous features, resulting

in inconsistent data types in the training and test sets,

which is not conducive to the learning of FM algorithms. If

the number of minority class samples is too small, using

down-sampling will lead to a serious shortage of training

samples. These are questions to be studied in the future.

4.3 Data quality issues

Data quality remains the biggest challenge in model

training. The excellent performance of deep learning

models in disease prediction relies on high-quality medical

data. While medical data is readily available under existing

conditions, the quality of the data remains low. Moreover,

there may be problems such as the mismatch between the

training samples and the real samples and the existence of

some abnormal features, which will affect the model effect.
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There is also a lot of medical data that requires experienced

medical experts to give sample labels.

For image, speech and other types of data, the quality

can be improved by using GAN, up-sampling, Fourier

transform and other methods. For structured data, methods

such as filling in missing values, deleting duplicate values,

and outliers are often used for data cleaning, and methods

such as discretization, filter, wrapper, and Principal Com-

ponent Analysis (PCA) are used for feature selection to

obtain higher-quality samples. Since we are talking about

deep learning algorithms, it is possible to build end-to-end

deep learning algorithms like DeepFM, without feature

engineering, and let deep learning exert automatic feature

learning capabilities to overcome data quality issues. The

automatic learning ability of deep learning can also be

applied to sample label processing, which involves unsu-

pervised learning and is beyond the scope of this article.

4.4 Too little data

Although a large amount of health data has been generated

at present, many medical data sets involve privacy issues,

which are stored in independent institutions and are not

made public. Therefore, a large number of data sets can’t

be used for practical research, so the model can’t be fully

trained, and it’s hard to exert its real effect. Here we only

discuss how to solve the problem from the aspect of

algorithms.

For images, the method of Few-shot Learning [90–92]

can be used, that is, the model is trained through a large

number of tasks to improve the generalization ability of the

model. When faced with similar new tasks, the model can

be trained after a small number of iterations. achieve better

results. Few-shot Learning includes the following methods

in total: (1) model fine-tuning [93, 94], obtaining a pre-

trained model on a source dataset with a large number of

samples, and then fine-tuning the pre-trained model on a

target dataset with a small number of samples. This method

is more suitable for scenarios where the source dataset and

target dataset are similar, but in practical scenarios, the two

datasets are usually dissimilar, which often leads to over-

fitting. (2) Data augmentation refers to the use of some

additional datasets or information to expand the target data

set or enhance the characteristics of the samples in the

target data set [95, 96]. In the early stage, the data set was

expanded through spatial transformation, but this could not

expand the types of samples. Later, people used methods

such as GANs for data augmentation. Meta learning refers

to letting the model learn meta-knowledge from a large

number of tasks, and use this meta-knowledge to quickly

adapt to different new tasks. Meta learning includes

Memory NN [97, 98], Meta Network [99], Model-Agnostic

Meta-Learning (MAML) [100] and other algorithms.

Metric learning, also known as similarity learning, calcu-

lates the distance between two samples through a distance

function, so as to measure the similarity between them and

determine whether they belong to the same category. The

metric learning algorithm consists of an embedding module

and a measurement module. The embedding module con-

verts the samples into vectors in a low-dimensional vector

space, and the measurement module gives the similarity

between samples. Metric learning is divided into fixed

distance based metric learning [101] and learnable network

based metric learning [102].

However, few-shot learning is mainly applied to images,

and it is often ineffective in structured data. Because the

idea of Few-shot Learning is similar to that of a child

distinguishing animals, after seeing a lot of animal pictures,

give him a picture of a rhino, and he can find a rhino among

many animals. Images have certain similarity and have a

general large data set, so they can meet the requirements of

a large number of similar tasks. However, different dis-

eases have different features, and these features have dif-

ferent characteristics. Therefore, there is no general large

data set, which is difficult to meet the requirements of a

large number of similar tasks. At present, there are tradi-

tional machine learning algorithms (low complexity),

Boosting sampling algorithms, and feature selection to

solve the problem of small amount of structured data.

Among them, traditional machine learning algorithms and

feature selection make up for the overfitting problem

caused by the small amount of data by reducing the com-

plexity (model complexity or feature complexity). There is

no more effective way to solve this problem.

5 Future works and prospects

5.1 Incorporating Digital Twins

Digital Twins refers to building the same entity in the

digital world through digital means to realize the under-

standing, analysis and optimization of the physical entity.

With the development of technologies such as AI, Big

Data, Virtual reality, IoT, and cloud computing [103, 104].

Digital Twins have begun to shine in industrial, medical

and other fields. The application of Digital Twins in

medical care is usually to create a model based on real

medical data in the virtual world, and then observe and

analyze the stimulus changes of the model to various

conditions, such as the feedback generated by the inter-

vention of new drugs or new treatment regimens. These

real medical data come from EHRs, daily behavior data-

bases, medical wearable devices, and more. Therefore,

through Digital Twins, medical activities such as health

detection, telemedicine, early disease diagnosis, and
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disease treatment can be realized [105, 106], providing

revolutionary solutions in the field of healthcare [107].

Health monitoring is an important means in modern med-

icine. The use of various wearable sensors in the Digital

Twins can realize ubiquitous monitoring of the health

status of patients [108], and can also reduce medical costs,

reduce the number of hospitalizations, and improve the

quality of life of patients [109, 110].

Digital Twins can be combined with deep learning

algorithm of disease prediction to realize faster and more

developed electronic medical treatment and automated

medical treatment. The general realization methods are as

follows: firstly, collect data, and use various sensors,

especially various convenient wearable sensors to collect

various health information [111, 112], and transmit these

data to the cloud. It can also collect various electronic

medical record data and daily behavior database data.

Then, using these collected medical data, a digital model of

disease prediction is established in the cloud by deep

learning algorithm. Finally, the digital model is used to

process and analyze the health data, so as to predict the

patient’s physical condition, whether he is ill or not, the

probability of illness, etc. In the process of analysis, new

knowledge and new information will be generated [113],

which will help to adjust and upgrade the model, and help

related researchers to better understand the mechanism

behind the disease, so as to find a better treatment.

Many scholars have proposed a combination of Digital

Twins and deep learning. For example, Chakshu et al.

[114] proposed a method to achieve cardiovascular Digital

Twins using reverse analysis, which uses a virtual patient

database. By inputting pressure waveforms from three non-

invasively accessible blood vessels (carotid, femoral, and

brachial), the blood pressure waveforms in various blood

vessels of the body are calculated backwards with the help

of LSTM cells. The reverse analysis system established by

this method is mainly used for the detection of abdominal

aortic aneurysm and its severity. Quilodrán-Casas et al.

[115] created two Digital Twins systems of SEIRS models

and applied them to simulate the spatial and temporal

propagation of COVID-19, and compared their prediction

results with real data. They compared the performance of

the two digital twin models [also known as Non-invasive

Reduced Order Model (NIROM)]. The first method is to

use PCA for dimensionality reduction and Bi-LSTM with

data correction (through optimal interpolation) for predic-

tion. The second NIROM uses PCA for dimensionality

reduction again and GAN for prediction. In addition, there

are many related studies.

In the future, we should realize a more intelligent pro-

cessing mode through Digital Twins and deep learning

model, realize a truly automatic and intelligent medical

system, and greatly reduce the workload of doctors. At the

same time, more Digital Twins medical system platforms

need to be developed to achieve a wider range of intelligent

medical treatment. Intelligent medical treatment is one of

the important links of smart city, and intelligent medical

treatment is indispensable to the realization of smart city.

Therefore, on the basis of ensuring the security of Digital

Twins medical platform, we should further broaden the

scope of application and serve the user group more com-

prehensively. Intelligence is one of the core elements of

future medical and urban development. To truly realize

comprehensive medical intelligence, we must better inte-

grate medical Digital Twins and deep learning algorithm

technology.

5.2 Promoting precision medicine

Precision medicine is the principle and practice of inte-

grating modern medical technology and traditional medical

methods, scientifically understanding human body func-

tions and the nature of diseases, systematically optimizing

the principles and practices of human disease prevention

and control, and maximizing individual and social health

benefits with efficient, safe and economical health care

services. In clinical practice, precision medicine pursues

accurate and reasonable diagnosis and treatment methods

for each patient in order to minimize iatrogenic damage,

minimize medical costs and maximize patient benefits.

Compared with traditional medicine, it can provide patients

with more effective, cheaper and more timely medical

services. Since it was proposed in 2015, it has been the key

to global healthcare and one of the important goals of many

sustainable development plans around the world

[116, 117]. The concept of precision medicine opens up

new ideas for human health and healthcare [118, 119].

Like personalized medicine, precision medicine focuses

on individual differences [120], exploring the impact of

individual factors on disease [121]. Assessment of personal

health from genomics, living environment, etc., coupled

with clinical data analysis, will have higher performance.

For example, Panayides et al. [122] proposed that starting

from the methods of radiomics and radiogenomics, com-

bined with precision medicine, some abnormal diseases can

be found more quickly when dealing with disease prob-

lems. Precision medicine also has good performance in

preventing malignant diseases, such as cancer [123, 124],

tumor [125] and so on. It can be said that disease prediction

and disease treatment are moving towards the era of pre-

cision medicine [126].

At present, there are many researches on precision

medicine in Western countries, but the research on preci-

sion medicine in the Asia–Pacific region is still in the

initial stage. On the one hand, it is necessary to ensure the

diversity and high quality of gene collection. On the other
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hand, it is necessary to extract the genetic characteristics

consistent with the population of the Asia–Pacific region.

These two are both urgent problems to be solved at present,

and they are also the reasons that hinder development.

In the next era, precision medicine will be combined

with multi-field applications. Realize the systematic oper-

ation of medical diagnosis and promote the development of

medical care in a more intelligent direction. For example,

Lu and Harrison [127] pointed out that CNN can realize

large-scale medical image analysis and labeling, and can

accurately obtain pathological information of different

patients. Laplante and Akhloufi [128] proposed a deep NN

classifier to identify the anatomical location of tumors.

Using the 27 TCGA miRNA stem cell ring cohort, tumors

at 20 anatomical sites were classified with 96.9% accuracy.

Therefore, deep learning can be combined with precision

medicine [129] to better process big data and fundamen-

tally promote the development of precision medicine [130].

As part of precision medicine, accurate prediction of dis-

ease embodies enormous advantages and value, and can

advance the development of modern medical technology.

However, the current precision medicine is still in the stage

of exploration and development [131–133], the research

situation of different diseases is very different, and the

application of deep learning technology is still in the

development stage. In the future, AI-related researchers

should focus more on precision medicine and build deep

learning models that better meet the requirements of pre-

cision medicine in combination with the research on

radiomics and genomics in the medical field. While pro-

moting the progress of precision medicine, it also drives

the multi-faceted development of deep learning, which is

more in line with social needs.

6 Conclusion

This paper reviews the deep learning algorithms in the field

of disease prediction. According to the type of data pro-

cessed, the algorithms are divided into structured data

algorithms and unstructured data algorithms. Structured

data algorithms include ANN and FM-Deep Learning

algorithms. Unstructured data algorithms include CNN,

RNN, etc. This paper expounds the principle, development

history and application of these algorithms in disease pre-

diction. In the application part of disease prediction of each

algorithm, try to analyze the literature according to the

characteristics of the algorithm. Although these algorithms

are the mainstream algorithms at present and in the future,

there will be some problems in the current research, such as

poor interpretability, sample imbalance, data quality, few

samples in some cases, etc. This paper gives some tem-

porary solutions, hoping to have better solutions in the

future. At the end of the article, we elaborate and analyze

the two development trends of disease prediction in the

future. The future medical technology should be combined

with Digital Twins to realize real intelligent medical

treatment, pay more attention to personalized medical

treatment, integrate with precision medical treatment, and

serve individuals more conveniently. This paper can

enlighten relevant researchers, help them understand the

current development, existing problems and future devel-

opment trend of disease prediction algorithms, and let them

focus on hot spot algorithms, combine current advanced

technologies and concepts, and make more efficient,

effective and reasonable research with the goal of medical

development trend.
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