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Abstract
With adverse industrial effects on the global landscape, climate change is imploring the global economy to adopt sus-

tainable solutions. The ongoing evolution of energy efficiency targets massive data collection and Artificial Intelligence

(AI) for big data analytics. Besides, emerging on the Internet of Energy (IoE) paradigm, edge computing is playing a rising

role in liberating private data from cloud centralization. In this direction, a creative visual approach to understanding

energy data is introduced. Building upon micro-moments, which are timeseries of small contextual data points, the power

of pictorial representations to encapsulate rich information in a small two-dimensional (2D) space is harnessed through a

novel Gramian Angular Fields (GAF) classifier for energy micro-moments. Designed with edge computing efficiency in

mind, current testing results on the ODROID-XU4 can classify up to 7 million GAF-converted datapoints with * 90%

accuracy in less than 30 s, paving the path towards industrial adoption of edge IoE.

Keywords Edge computing � Energy efficiency � Artificial intelligence � Deep learning � Gramian angular fields �
Internet of energy

1 Introduction

Energy efficiency has been considered a fundamental

theme to addressing global climate change caused by

uneconomical energy systems including heating, ventila-

tion, and air-conditioning [1]. Consequently, enormous

research contributions, as well as interactive studies, have

discussed the tools and methods to classify and analyze

power consumption data effectively and accurately [2].

Particularly, energy efficiency applications employ data

analytics to obtain useful insights on power usage patterns.

Moreover, sustainable behavioral adjustments have been

further motivated by employing eco-feedback systems for

less knowledgeable occupants [3].

On another aspect, cloud computing servers are con-

sidered as powerful computational platforms that can per-

form cost-efficient and scalable Machine Learning (ML)

and Deep Learning (DL) algorithms [4, 5]. Many chal-

lenges, however, arise when solely depending on cloud

computing for Artificial Intelligence (AI), such as data

privacy, networking latency, and energy efficiency [6–8].

Therefore, Edge AI has emerged as a solution in which ML

algorithms are run at high performance by securely lever-

aging local computational resources. Edge AI is generally

defined as the distributed implementation of ML and/or DL

algorithms on resource-constrained devices with special-

ized hardware that optimizes for computational perfor-

mance and efficiency for specific purposes. The name

‘edge’ is used to illustrate that the computations are con-

ducted on the network’s edge, i.e., on a local level near the

data collection site. Compared with cloud-computing, edge

computing and edge AI complement existing cloud-based

infrastructures by offloading some cloud computations to

local devices to optimize for a number of parameters

including data privacy, computational performance, etc.

Moreover, research has largely focused on Building

Energy Management Systems (BEMSs) in the state-of-the-

art technology, as buildings are a major energy-consuming
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sector reaching to around 40% of the world’s consumed

energy. Moreover, other research has indicated that heating

and cooling operations constitute 60% of the total build-

ing’s energy consumption [9]. Therefore, it is evident that

the impact of buildings’ energy consumption is highly

important on climate change and therefore is crucial to

study buildings energy efficiency [10, 11].

Consequently, in recent research, it has become widely

popular to recognize the significance of suppressing losses

and environmental impact when investigating BEMSs

aiming to develop a sustainable approach for building

energy consumption. For this purpose, the deployment of

Internet of Energy (IoE) has been investigated [12]. From

both IoE and Internet of things (IoT) perspectives, a ple-

thora smart objects are interconnected to communicate

services and data based on an Internet architecture that

enables such a framework. A variety of IoT applications

have been largely adopted in the literature, such as power

distribution, military applications, and weather forecasting

[13].

Similarly, adopting an Internet-based solution, many of

the IoT properties are largely involved in IoE. Several

applications are dependent on employing IoE, such as

buildings, electric vehicles, and distributed energy sources,

in which energy networks can be successfully monitored

and controlled based on the Internet [14]. Moreover, IoE-

facilitated BEMSs deliver useful information supported by

data processing and smart metering [15], and hence,

approaching reduced energy losses and sustainable energy

by influencing a certain acceptable energy consumption.

A wide range of research areas can be unraveled by

unlocking the potential of edge AI for IoE in the following

main sub-themes: (a) The collection of IoE data; (b) IoE

data analytics; and (c) IoE decision making and integration.

Throughout these processes, data are first collected using

sensors, wireless communication, and backend servers, and

then analyzed with edge AI by pre-processing, classifica-

tion, and data visualization. Finally, based on the cus-

tomized preferences, decision making is then performed by

using intelligent recommendation systems, such that a

suitable energy saving solution is constructed.

Speaking of data visualization, when integrated with

ML, pictorial representations can introduce impactful

results and insights [2, 3]. This brings us to the introduction

of one of the tools used to convert one-dimensional (1D)

data to higher dimensional realms, Gramian Angular Field

(GAF) [16]. To create a GAF representation, a 1D time-

series data is converted into polar coordinates [17, 18] as

follows: a time-series vector x ¼ x1; x2; x3; . . .; xNf g with N

samples is normalized to [0, 1] using Eq. (1).

exl ¼
xi �max xð Þð Þ þ xi þmax xð Þð Þ

max xð Þ �min xð Þ ð1Þ

where the time values are split up by a regularizing con-

stant factor, R, and the values for each element in this

series is encoded using angular cosine functions as shown

in Eq. (2).
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Evidently, two main types of GAF representations can

be generated: the Gramian Angular Summation Field

(GASF) using the cosine function, as in Eqs. (3) and (4),

and the Gramian Angular Difference Field (GADF), as in

Eqs. (5) and (6) using the sine function [19]:
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where x0 is the transformed image dataset. Combined with

DL image classification algorithms, it is believed that

complex ML algorithms involved with multidimensional

data can be dealt with more efficiently once converted into

2D GAF visualizations [16, 20].

In this work, a novel edge GAF classifier for energy

micro-moment data is presented for industrial IoE appli-

cations. Particularly, the contributions of the article can be

summarized as in the following:

1. The novel use of GAF representations to convert large

1D time series data into high-resolution images that

encapsulate rich information and enable further 2D

classification possibilities;

2. A GAF classifier is developed upon DNNs for

optimized edge computing performance; and

3. Implementation of the classifier on the ODROID-XU4

edge computing board along with a streamlined data

workflow that involves hybrid edge-cloud

infrastructure.

The general data workflow in this article is depicted in

Fig. 1.

The remainder of this paper is organized as follows.

Section 2 provides a concise summary of related literature.

Section 3 presents the general concept of the system the
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authors are endeavoring to conceive. Section 4 discusses

data collection and the novel GAF converter. Section 5

presents the employed intelligence scheme and perfor-

mance optimization considerations for edge devices. Sec-

tion 6 presents the study’s findings and discusses the

presented workflow’s performance and limitations. Sec-

tion 7 concludes the article.

2 Related work

To provide a concise background of the proposed work in

this research, this section overviews recent related litera-

ture in the field of (a) edge AI and (b) using GAF for data

processing applications. Starting with related work on edge

AI platforms, the production of edge AI platforms has been

gradually growing and adopted by international research

and industrial institutions [21]. While edge AI accelerators

share common functionalities with others, such as form

factor, compatible ML frameworks, and algorithm execu-

tion process, they are signified by their architecture, pro-

cessing power, memory, and overall cost.

Moreover, low power consumption and compact form

factor are features of which the Single-Board Computer

(SBC) platform ODROID-XU4 is commonly known for. It

supports a composite of Advanced RISC Machines (ARM)

Cortex-A15, Cortex-A7 big.LITTLE Central Processing

Unit (CPU), and ARM Mali-T628 Graphics Processing

Unit (GPU), in addition to several open-source operating

systems, such as Linux and Android. On the other hand, a

well-known AI accelerator, called Jetson Nano, was

developed by Nvidia supporting GPU cores of 128 Max-

well. It is used in a variety of edge AI applications with an

average of 5–10 W electric power consumption. For

instance, 4 ARM cores and 256 Compute Unified Device

Architecture (CUDA) Maxwell cores are supported by the

edge AI accelerator Nvidia Jetson-TX1, whereas 6 ARM

cores and 256 CUDA Pascal cores embedded in the Jetson-

TX2.

Speaking of which, by leveraging edge accelerators,

specialized System-on-Chip (SoC) is enabled allowing to

efficiently execute DL models on edge platforms, and

providing various desired qualities in an unlimited number

of opportunities for developing sensory systems in the real

world [5], such as ultra-low latency, responsive data

security, and high availability. In fact, with the deployment

of edge accelerators, the system building process of several

sensor-based applications including IoT, smart health, and

energy efficiency is restructured.

In the work of Gibson’s [22], and focusing on low-

power Mali-T628 GPU on ODROID-XU4, different opti-

mization solutions for improving the time execution effi-

ciency for Deep Neural Networks (DNNs) have been

technically presented. The operation of a MobileNet for-

ward transfer is discussed. It is a compact architecture of

lightweight deep CNNs that enables mobile and embedded

vision deployments on the ODROID-XU4 board. In addi-

tion, it enhances the performance by leveraging the archi-

tectural parameters of the platform.

To deploy low-cost SBC and IoT devices for smart

buildings infrastructures in the field of Building Energy

Management (BEM), the selection and evaluation of

embedded systems and software optimization are consid-

ered critical. For instance, building activity can be moni-

tored and traced by managing IoT devices in buildings

using ODROID-XU4, which is a low-cost and feasible

solution that enables preserving energy consumption.

From another perspective, Sánchez et al. [23] have

introduced the design of the Personal Protective Equipment

(PPE) with AI to be worn by staff during the Coronavirus

(COVID-19) pandemic. The PPE scheme is presented to

help the staff members remain protected by notifying them

with irregularities predicted in their environments. This is

achieved by the employment of AI with edge computing

and the Multi-Agent Device and a Robot Operating System

(ROS).

Furthermore, edge computing phenomenon has an

important responsibility in speeding up the adoption of DL

Fig. 1 General data flow
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in IoT applications. Zhu et al. propose the use of edge

computing to mitigate power consumption in computing AI

systems for Industrial Internet of Things (IIoT) [24]. The

authors propose to offload most AI workloads from servers

using novel scheduling scheme in order to enhance internal

energy efficiency. Simulation results signify that the pro-

posed online scheduling technique uses less than 80%

static scheduling techniques.

Related, the concept of data lakes is described in [25],

where an efficient IoT system is developed on a three-layer

architecture that incorporates an edge, cloud, and applica-

tion layers. To boost both computational performance and

energy efficiency, cloud-based data lakes are employed

into autoencoder running on an edge device with results

showing the performance increase when using edge com-

puting-based IoT frameworks along with the employed AI

approach.

Among both GASF and GADF [26], alternatives trans-

forms exist, including Markov transition matrix heatmaps

[27], and Markov transition fields encoding maps [28]. In

this work, authors have chosen GASF for this work due to

its balanced availability and support in literature coupled

with its untapped potential in enhancing energy data clas-

sification performance.

Moving towards more GAF application-oriented litera-

ture, Hong et al. [17] present research that employs GAF

for power system improvement by predicting day-ahead

solar irradiation. By transforming time-based datastreams

into GAF representation and then using Convolutional

Long Short-term Memory (LSTM) model to create next-

day predictions.

In the same context, Seon et al. [29] showcase a method

for categorizing appliances based on user consumption data

by integrating the GAF approach for transforming 1D data

to a 2D matrix with convolutional neural networks. The

authors utilize the Residential Energy Disaggregation

Dataset (REDD). The authors have used both GASF and

GADF transforms. According to simulation findings, both

models achieved 94 percent accuracy on appliances with

binary-state (i.e., on/off), while GASF achieved 93.5%

accuracy, which is 3% better than GADF on appliances

with multi-state.

Moreover, another study presents an automated abnor-

mality detection approach for excessive carrying-load

(DeTECLoad), which employs a GAF to transform sensor

data into picture form. Then the image form is analyzed

using a hybrid Convolutional Neural Networks (CNN)-

LSTM to identify load-carrying modes from the image

data, with load classification accuracy reaching up to 96%

[20].

From another perspective, a related research discussed

classifying power quality disturbances using GASF with a

CNN [30]. After GAF representations are generated, a

CNN is used to extract features and classify images

through 2-D convolutional, pooling, and batch-normaliza-

tion layers to capture multi-scale features of the power

quality disturbances problem and reduce overfitting. The

categorization analysis is further backed by experimental

data acquired on a PV system prototype configuration.

Finally, a rare work that employs Edge AI for Non-

Intrusive Load Monitoring (NILM) is presented by Tito

et al. [31]. The work provides two event detection algo-

rithms based on picture segmentation that are based on

K-Means clustering and the thresholding, which is input to

convert timeseries streams to pictures formed using GASF.

The suggested technique is evaluated and confirmed using

real-world load measurements from the Almanac of Min-

utely Power dataset, and extensive simulation have been

performed on the Raspberry Pi 3B ? edge computing

board. The accompanying event detection findings are

considered satisfactory, signifying potential for more

extended research in NILM and energy data classification.

3 The grand scheme: overview of the IoE
framework

In this section, an overview of the framework the authors

are developing in efforts to advance research on domestic

energy efficiency is presented with emphasis on edge AI

and IoE. As illustrated in Fig. 2, on the right side, the IoE

framework is comprised of an edge board connected to a

multitude of sensors collecting power consumption data

(e.g., aggregated via a smart meter or at appliance-level via

smart plugs) as well as contextual ambient environmental

conditions (e.g., temperature, humidity, light level, baro-

metric pressure, and occupancy). As data are collected,

they are mirrored to a cloud database, where further

operations are carried out. On the other side, a mobile

application is built to showcase descriptive and behavior

changing visualizations of power consumption patterns

along with energy-saving recommendations that aim to

Fig. 2 Overview of the energy efficiency framework
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gradually transform end-user behavior and contextually

raise awareness about the benefits of sustainability.

Data operations are distributed onto three categories:

(a) edge operations including data collection and storage

from sensors conducting pre-processing functions includ-

ing cleaning, normalization, filling missing data, etc., and

executing classification models on unseen data; (b) hybrid

edge-cloud operations that can be done on either the cloud

side or on the edge side, such as the conversion of 1D time

series data into 2D GAF pictorial representations; and

(c) cloud operations including the classification model

training and validation using large training datasets. It is

evident that the hybrid edge-cloud architecture is suit-

able when dealing with large sums of data that requires

intensive computation power for training an accurate DL

classification model in a cloud setting, where hardware

resources are readily and economically available. On the

flipside, the edge is used where it performs best, namely at

data collection, data processing, and model execution,

boosting overall data privacy. To add further, depending on

the size of data, GAF data generation can be carried out on

either the cloud or the edge permitting a hybrid flexibility

to the system.

To aid in revamping the understanding of collected data,

Energy Micro-Moments (EMMs) are introduced. Dubbed

as a marketing tool by Google [32, 33], it was recently

transformed into a benchmarking tool for energy con-

sumption by dissecting into five classes representing nor-

mal consumption (EMM 0) capturing appliance state

change (EMM 1) using an appliance while not occupying a

space (EMM 2), and excessive consumption while inside a

space (EMM 3) and extremely excessive power con-

sumption (EMM 4) as shown in Table 1. Together, EMMs

can be used to classify energy consumption and detect

abnormalities.

In terms of intelligence, DL is heavily employed to

classify big data as well as develop convincing recom-

mendations to the energy end-user. More importantly, the

hardware employed to run the algorithms must not only be

compatible, but highly performing. This is why hardware

selection is an instrumental part of the development of this

framework. In this work, the ODROID-XU4 board is

chosen as the edge computing device. It is equipped with

an ARM Cortex-A15 as well as the Cortex-A7 big.LITTLE

CPU, not to mention the ARM Mali-T628 GPU. Not only

as a DL module, the ODROID-XU4 is a data hub con-

nected to the IoE sensors and mirrors the data to the cloud.

Henceforth, in this article, we focus on the data pro-

cessing and classification of energy consumption data. It is

a multi-stage process that involves pre-processing, con-

verting time series data into pictorial representations,

known as GAF images, and classifying the GAF dataset

into their corresponding classes. For the purposes of this

article, a basic EMM scheme is suggested, known as the

Binary Energy Micro-Moments (BEMMs), which simpli-

fies micro-moments into only two classes: abnormal con-

sumption, and normal consumption. The BEMM scheme is

best used for abnormality detection applications and is used

in this study.

4 Data: collection and GAF representations

In this section, the workflow of data collection, pre-pro-

cessing, and the manifestation of GAF representations from

1D time series data are introduced. To begin, Table 2

describes the data collection sites and properties of the

datasets built on each site. At De Montfort University

(DMU), two testbeds have been installed, of which one is

located at the Energy Lab and another at the AI Lab. On

each of the two sites, an ODROID-XU4 is placed as the

edge computing device and data collection hub. At the AI

Lab, only environmental data are collected comprising of

temperature, humidity, light level, barometric pressure, and

carbon dioxide (CO2) level. On the other hand, the setup at

the Energy Lab comprises of the former plus power con-

sumption data through two smart plugs. Due to the Internet

connection instability, as well as the variability of the

different sensor data acquisition intervals, the data acqui-

sition frequency varies between 5 s and 2 min at the two

labs. Figure 3 depicts the AI Lab and Energy Lab data

collection sites, respectively.

As data is being collected, the ODROID-XU4 mirrors

the data to a cloud database, the Firebase Database in this

case, for further data processing. A cloud solution is chosen

as a high-performance computational platform for training

the deep learning model for big data. Given the sensitivity

of the collected information, it is notable to mention that an

anonymization script should be run to remove any personal

information from the collected data in efforts to protect the

end-user’s privacy.

Further, on the edge side, pre-processing operations are

conducted, such as cleaning, removing duplicates, filling

missing data points, and converting data to a compatible

format for further processing on the cloud, i.e., converting

Table 1 The EMM scheme

EMM Index Description

0 Normal consumption

1 Switch appliance on/off

2 No-presence normal consumption

3 Context-based excessive consumption

4 Extremely excessive consumption
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to either JavaScript Object Notation (JSON) or Comma-

Separated Values (CSV) format as necessary.

Speaking of the benefits of 2D classification over 1D

classification, when reviewing the literature, many contri-

butions usually proceed with the classification of the time

series data directly, using conventional ML methods, DL

algorithms, or other techniques, such as transfer learning or

genetic algorithms. Although this method is perfectly

applicable, processing 1D data directly can be limiting, not

to mention computationally intensive. On that account,

Table 2 Overview of data

collection sites and properties
Data collection site DMU AI lab DMU energy lab

Location DMU AI lab, gateway house DMU energy lab, queens building

Data contents Temperature (�C)
Humidity (%)

Barometric pressure (Pa)

Light level (lux)

All parameters in DMU AI Lab

Power consumption data (V, A, W)

Carbon dioxide (CO2) level (PPM)

Room occupancy (binary)

Data format JSON

Datastore location Stored in both edge computing device and cloud datastore

Frequency 5 s–2 min

Data duration Minimum 3–7 months

Data size 100–600 MB

Fig. 3 DMU Energy Lab (up)

and AI Lab (down) testbeds
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elevating dimensions to a higher level can unravel new

possibilities for classifying time series data. Enter GAFs,

when classifying 2D GAF representations, not only novel

insights can be revealed but in potentially faster and more

efficient manner. For example, new power consumption

patterns can be discerned from a pictorial representation of

a 24-h consumption summary over a 12-month period

indicating periods of excessive consumption (e.g., TV

consumption patterns during a given week considering

standby, normal, and elevated consumption levels corre-

lated with occupancy levels). Accordingly, a GAF con-

version scheme is employed to turn a large number of time

series data points (e.g., in the order of millions) to several

thousand images, which considerably accelerates process-

ing time.

As outlined in Fig. 4, the GAF dataset creation work-

flow is described. Following data acquisition and pre-pro-

cessing, the GAF conversion process commences, which

includes (a) converting the timeseries cartesian coordinates

into the polar coordinate system; (b) data points are nor-

malized; and (c) GAF images are produced using the newly

normalized polar data points [16]. In other words, the data

is sliced into multiple 24-h fragments of which its power

consumption is normalized, and then from the average

normalized value, a simple threshold (i.e., check whether

average normalized is more than 1) is selected to identify

abnormal segments from the normal counterparts. A red–

green–blue (RGB) map is used to provide colors to the

GAF images, where red indicates maximum consumption

levels, and blue indicates minimum consumption levels.

When the GAF pictorials are generated, a program that tags

each generated image as normal or abnormal, depending

on the average daily normalized value of each GAF image.

For example, if the daily average value is more than 1, the

GAF image is tagged as abnormal, otherwise it is consid-

ered normal. The theory behind the GAF conversion pro-

cess is thoroughly described in a prior publication [16]. A

sample of generated 24-h averaged GAF images for of

25 days is portrayed in Fig. 5. As mentioned earlier, it is

evident that images with more ‘red’ pixels are considered

abnormal, whiles one with more ‘blue’ or ‘green’ pixels are

tagged as normal.

The program created for GAF conversion was written in

Python and can be customized to work with any relevant

power consumption dataset of any considerable size. In this

implementation, single day data (i.e., 24 h) are summarized

into averaged and normalized 1-h snapshots to be used in

the conversion of GAF images. Hence, each GAF image in

this work represents a 1-h summary of a 24-h period.

5 Intelligence: deep learning on the hybrid
edge-cloud

To provide a concise exposition of the data processing

employed in this article, Fig. 6 is depicted. As described in

the previous sections, data collection and GAF generation

in the first two blocks of the flowchart. In this section,

classification model selection, training, validation, and

testing on the cloud and on the edge is described (i.e., the

third and fourth blocks in Fig. 6).

Firstly, the TensorFlow (TF) Python library is employed

for ML and DL model development.1 The library includes

a lightweight counterpart, known as TensorFlow Lite

(TFLite),2 designed to import and compute TFLite models

in a process known as inference. Using TF, a model is

created and trained on the provided data. It is then vali-

dated and exported as a TFLite model to be imported and

executed on a compatible edge computing device.

Secondly, the TFLite Model Maker companion library is

utilized for creating and exporting the TFLite model [34].

It is a recently developed library by the TF team and is

currently undergoing Beta testing. In this work, a modified

version of the EfficientNet-B0 model is utilized [35], which

is a computationally efficient model based on CNNs with

the ability to carry out transfer learning to a variety of

image datasets, capturing prominent features and building a

mature model accordingly. The EfficientNet-B0 is a

member of the EfficientNet model family and one of the

most computationally efficient versions. According to Tan

& Le, EfficientNets are sophisticated, multi-stage neural

Fig. 4 GAF conversion workflow

1 https://www.tensorflow.org
2 https://www.tensorflow.org/lite
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network consisting of a stem layer, a final layer, and a

number of intermediate layers in between depending on the

model used. In the case EfficienetNet-B0, Fig. 7 describes

its architecture. It spans seven blocks that carry out a dif-

ferent number of operations including convolution, nor-

malization, zero padding, rescaling, addition, etc. Also, the

EfficientNet-B0 model has been employed in this study due

to (a) its well-documented implementation for image

classification and (b) its edge-compatible architecture that

can used be for edge-based classification. Other models can

be used for this study; however, they may require elaborate

programmatic changes in order to be compatible with the

edge computing platform used in this work.

It is noteworthy to mention that the model training,

validation, and export are carried out on a cloud server in

order to train large sums of time series data economically

with sufficient speed.

After the model is chosen and configured, data is sup-

plied to the model instance for training. Data is split into

three sub-datasets: the training, validation, and test datasets

Fig. 5 Progression of a GAF image over time (left) and sample GAF representations generated by timeseries data (right). Labels generated by

GAF generator algorithm

Fig. 6 Data processing workflow, from collection to classification on the edge
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split as 80%, 10%, and 10% respectively. The model is

fitted for a specified number of epochs. During training,

high consumption snapshots are classified as abnormal and

otherwise classified is normal. Following training, the

model is validated using the validation dataset for a spec-

ified number of epochs. Then the model is exported as a

TFLite model, which is downloaded to the computing edge

device for inference.

On the edge side, the TFLite model is downloaded,

imported into a Python interface, where the test dataset is

run through the imported lightweight model and classified

accordingly. After testing, the TFLite can infer any input

image in near real-time performance.

6 Results and Discussion

In this section, implementation of the proposed GAF

classifier is described on a realistic case scenario. In this

workflow, for the purposes of illustrating the performance

of the model on a large scale, the UK Domestic Appliance-

Level Electricity (UK-DALE) dataset is employed due to

its large size and multi-year duration [36]. All data gen-

erated or analyzed during this study are included in [36].

However, the dataset described in Sect. 4 is richer in

parameters yet is still under construction. The UK-DALE

dataset keeps record of the power consumption data from

five houses in the UK, where in each household, aggre-

gated power consumption is collected along with appli-

ance-level data every six seconds. In our implementation,

we have used aggregated power consumption data from

one house. It is important to note that the BEMM

scheme (described in Sect. 3) has been utilized to classify

the input data either as abnormal or normal.

Table 3 describes the experimental dataset splits. As

outlined, the 70 million data points are converted into

1,630 GAF images with 1D-to-2D ratio of 42,945. Each

image has the resolution of 648 by 648 pixels. In this

implementation, TensorFlow 2.7.0 is used in cloud opera-

tions run on Google Colab (with GPU) and edge operations

on the ODROID-XU4 board. After multiple tests, 35

epochs was chosen as the optimum number of epochs for

the EfficientNet-B0 model, as overfitting is observed for

higher number of epochs. Model accuracy and loss curves

are plotted in Fig. 8. It can be commonly noted that

training accuracy is higher than the evaluation’s, due to the

use of a Dropout layer in the model, which is automatically

deactivated in evaluation, resulting a minor accuracy drop.

Following training and validation on the cloud, the

model is exported, downloaded, imported, and tested on the

ODROID-XU4. It also noteworthy to mention that the

TFLite model is also tested on the cloud for accuracy and

computation performance benchmarking purposes. Thus,

Table 4 compares the model testing performance between

the edge ODROID-XU4 running the TFLite model, Google

Colab running the TF model, and the TFLite cloud

implementation. In terms of computational speed, the cloud

implementation excels given its high performance GPU.

However, the performance of the ODROID-XU4 is con-

siderably high with 28.5 s, which is approximately 6.9

times faster the cloud TFLite implementation. In terms of

accuracy, the model scores evenly with an average of

89.4%. To provide more perspective, the ODROID-XU4

can classify a GAF image that represents - 42,000 data

points in less than 17.5 ms, which is very close to real-time

performance.

Emphasizing on ODROID-XU4 classification perfor-

mance, Table 5 and Fig. 9 show the model evaluation

metrics and confusion matrix respectively. As indicated in

the data, the model is providing adequate classification

accuracy without risking overfitting, thanks to the evalu-

ating the model over multiple epochs. For example, the

model’s F-score (F1), which can be considered as the

harmonic mean of precision and recall, have achieved an

average of - 91%, which can indicate excellent precision

and recall.

It is worthy to mention that the edge implementation

excels in terms of power consumption, with an average of

less than 10 W, which is considerably lower than most

conventional cloud clusters (e.g., a minimum of 350 W per

GPU) [37]. Also, Fig. 10 show examples of false positive,

Fig. 7 Architecture of the EfficientNet-B0 model
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false negative, true positive, and true negative classifica-

tions in light of GAF classification.

In terms of current limitations, the proposed work can be

improved in the following aspects:

1. Increase classification accuracy to more than 95%. This

can be achieved by further tuning the model or using a

high level version of the EfficientNet classifier;

2. Training the model with the multi-class EMM

scheme to classify for a larger variety of power

consumption patterns; and

3. Employing the data collected at DMU labs to incor-

porate ambient environmental data as well as appliance

level power consumption.

To summarize, the hybrid edge-cloud data pipeline

(Fig. 1) has proven to be a novel and efficient method of

collecting and classifying power consumption data. The

fine balance of delegating data collection and model exe-

cution to the edge while assigning GAF generation and

model training to the cloud is crucial to ensuring an effi-

cient data processing workflow that boasts high perfor-

mance, efficiency, and keeps end-user privacy in mind.

The outcomes of the classifier can be used as input to a

recommender system to be able to produce personalized,

Table 3 Experimental dataset

overview
Feature/sub-dataset Training Evaluation Test Total

Split 80% 10% 10% 100%

Number of 1D data points 56,000,000 7,000,000 7,000,000 70,000,000

1D to 2D GAF ratio 42,945 42,945 42,945 –

Number of images 1,304 163 163 1,630

Image resolution (pixels) 648 9 648 648 9 648 648 9 648 –

Fig. 8 Model accuracy and loss graphs

Table 4 Micro-moment classification performance comparison between edge and cloud implementations

ODROID-XU4 (Edge, TFLite) Cloud (Google Colab, TF) Cloud (Google Colab, TFLite)

Model performance on test dataset (sec) 28.51 19.10 196.62

Model accuracy 89.57% 89.65% 89.08%

Table 5 Edge micro-moment

classification model metrics on

ODROID-XU4 using TFLite

Metric Average score

Precision 89.47%

Recall 92.39%

F1 score 90.91%

Accuracy 89.57%
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context-driven suggestion that motivate sustainable energy

behavior along with using the data for novel and mean-

ingful visualizations that signify consumption patterns and

abnormalities. The source code of the proposed system is

uploaded on GitHub.3

7 Conclusions

This work proposed the use of a GAF classifier of EMM

data with a case study on a computing edge device. EMM

data is collected and pre-processed on the edge, while a

classification model is fitted and evaluated on a cloud

server to be exported and tested on the edge, namely the

ODROID-XU4. In this implementation, a novel cus-

tomizable 1D-to-2D GAF generator is presented and run on

the UK-DALE dataset to convert 70 million datapoints into

1630 GAF images. A DL classifier based on the Effi-

cientNet-B0 model is developed on TF and exported into a

lightweight version for execution on the ODROID-XU4,

showcasing adequate performance and impressive compu-

tational efficiency, as fast as 17.5 ms per classified GAF

image.

The current implementation can be further improved by

enhancing model’s accuracy, classifying multi-class micro-

moment data, and employing the richer multi-parameter

dataset described in Sect. 4.

To the best of the authors’ knowledge, this is first work

to introduce a 2D energy consumption lightweight classi-

fier running on the ODROID-XU4, and thusly paves a path

the towards deeper edge computing integration with

industrial IoE applications.
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