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Abstract
The agricultural crop productivity can be affected and reduced due to many factors such as weeds, pests, and diseases.

Traditional methods that are based on terrestrial engines, devices, and farmers’ naked eyes are facing many limitations in

terms of accuracy and the required time to cover large fields. Currently, precision agriculture that is based on the use of

deep learning algorithms and Unmanned Aerial Vehicles (UAVs) provides an effective solution to achieve agriculture

applications, including plant disease identification and treatment. In the last few years, plant disease monitoring using UAV

platforms is one of the most important agriculture applications that have gained increasing interest by researchers. Accurate

detection and treatment of plant diseases at early stages is crucial to improving agricultural production. To this end, in this

review, we analyze the recent advances in the use of computer vision techniques that are based on deep learning algorithms

and UAV technologies to identify and treat crop diseases.

Keywords Computer vision � Deep learning � Unmanned Aerial Vehicles � Precision agriculture � Plant disease �
Convolutional neural network

1 Introduction

Agriculture is one of the most important human activities

that plays a crucial role to improve the economy of any

country Thangaraj et al. [76]. However, several issues have

imposed additional challenges in the agriculture field in

terms of crop productivity and food security, including the

continuous population growth, climate change, shortage of

arable lands, plant diseases, and more recently the high

spread of the COVID-19 pandemic Bouguettaya et al. [18],

Rahman et al. [61].

Plant diseases have always been considered one of the

most significant threats to crops restricting food produc-

tivity Vishnoi et al. [78], Jiang et al. [41] and increasing

economic losses. They occur in agriculture fields due to

many factors, including climate change, water stress, and

insects Card et al. [21], Bondre and Sharma [16].

According to Thangaraj et al. [76], plant diseases are

causing losses of around 40% of food supplements every

year. Also, we are losing more than 5 million tons of wheat

every year due to the yellow rust disease Beddow et al.

[14]. Unfortunately, due to the Russian-Ukrainian war, the

amount of wheat losses are expected to be increased

because these two countries are considered among the main

sources of wheat production and export.

The reduced crop yields eventually result in starvation

and insufficient food supplies. Therefore, early and effi-

cient crop and plant diseases detection and diagnosis are

required to increase food productivity. Traditional methods

that are based on human experts and on-ground machines

scouting can be useful to monitor small crops, but it is very

difficult and can be impossible in some cases to cover large
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crops, which is time-consuming and very exhaustive

making them not suitable for early crop and plant diseases

identification Zhang et al. [84], Kerkech et al. [43], Guo

et al. [33].

To overcome the aforementioned issues sustainably with

low cost while not affecting the environment, we need an

agricultural revolution that is based on innovative ideas and

technologies. To this end, over the last few decades, agri-

culture has changed and still changing from being

accomplished by human workers to smart agricultural

machines and robots due to the continuous adoption of

recent advanced technologies, including Internet of Things

devices, intelligent algorithms, sophisticated sensors, and

modern machines Reddy Maddikunta et al. [63], Moysiadis

et al. [53], Ouhami et al. [55]. This new paradigm is called

Precision Agriculture or Smart Farming, where its main

role is to optimize the use of agricultural resources such as

water, agrochemical products, and drudgery to improve

crop quality and quantity while saving time and money

Neupane and Baysal-Gurel [54].

To detect crop diseases, several studies have adopted

satellite, airplane, on-ground machinery, and UAV plat-

forms to collect high-resolution images. However, airplane

and satellite technologies are facing several limitations in

terms of spatial/temporal resolutions and limited viewing

capacity due to weather conditions. Moreover, they provide

a very expensive solution. Similarly, on-ground technolo-

gies suffer from low area coverage and a long time to cover

large fields. As a result, UAVs equipped with intelligent

visual systems could be an effective low-cost solution to

achieve crop and plant diseases detection in small, med-

ium, and large agricultural fields allowing farmers to apply

the right treatment with the right amount and at the right

place at the right time.

To analyze the collected images, we require efficient

algorithms. Several studies have adopted traditional

machine learning techniques, including SVM and Random

Forest Sujatha et al. [73]. However, these techniques are

facing many limitations because they depend on manual

feature extraction methods making them inefficient, espe-

cially in the case of complex environments. Recently, deep

learning algorithms have emerged as a new effective

solution to improve computer vision-based systems for

automatic crop disease monitoring. They perform auto-

matic feature extraction without any human intervention

providing valuable information that could help farmers to

make the right decisions, while reducing crops treatment

costs and increasing their productivity. Therefore, the

combination of recent UAV camera sensor technologies

and deep learning algorithms could be an efficient solution

for the early detection of crop diseases.

Since the advance of AlexNet architecture in 2012,

Convolutional Neural Network (CNN) is considered one of

the most effective deep learning approaches in the com-

puter vision field. Currently, there is a wide range of CNN-

based deep learning algorithms and architectures that are

used to detect and classify different crop diseases

Bouguettaya et al. [18]. Nowadays, the application of

computer vision techniques, deep learning algorithms, and

crop diseases identification-based UAV platforms are an

active research field that can provide solutions to solve

some problems related to the early and effective identifi-

cation of different plant diseases. To make UAV platforms

able to achieve autonomous detection and treatment of crop

diseases, we need to address several disciplines, including

agriculture, electronic control, remote sensing technolo-

gies, computer vision, artificial intelligence, among others.

Therefore, in this review paper, we investigate the effec-

tiveness of UAV platforms, remote sensing technologies,

preprocessing techniques, and deep learning-based com-

puter vision models to detect and treat different crop dis-

eases at their early stages.

There are several review papers in the literature target-

ing crop and plant diseases identification through deep

learning methods. However, most of these studies have

targeted diseases recognition using datasets collected based

on on-ground technologies. For example, the authors in

Thangaraj et al. [76] provided a review on different

machine learning and deep learning algorithms targeting

tomato leaves diseases from non-aerial images. However,

in addition to the adoption of datasets collected from non-

aerial platforms, there is a lack of methods based on object

detection and image segmentation, where most of the

reviewed papers are based on image classification tech-

niques. Similarly, the authors in Sirohi et al. [68] provided

a short review of some recent deep learning algorithms to

identify and classify plant diseases from their leaves.

However, none of these studies have focused on the use of

UAVs as the main platform to collect data. Some other

reviews, like Zhang et al. [86] and Barbedo [12], provided

few studies targeting plant disease identification through

UAV technologies, but they did not investigate either the

use of UAVs or deep learning techniques in detail. To the

best of our knowledge, this is the first review study that

focuses on the combination of deep learning techniques

and UAV technologies to identify crop and plant diseases

in detail. The main contributions of the present paper are

summarized as follows:

• Presenting different UAV and remote sensing tech-

nologies adopted for crop and plant diseases recognition

from aerial images, while providing their important

characteristics and advantages over other available

technologies.

• Providing new and effective solutions that may improve

crop productivity, while reducing cost and drudgery.
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• Describing detailed investigation regarding the effec-

tiveness of different deep learning algorithms and

computer vision techniques employed to improve crop

diseases identifications, including image segmentation,

object detection, and image segmentation.

• Presenting challenges and limitations of UAV-based

plant diseases identification that face farmers, and the

potential solutions to overcome issues.

The rest of the paper is organized as follows. In Sect. 1, we

discuss the research methodology adopted in this study to

select the appropriate papers to be reviewed. A survey on

different agricultural UAV types and their applications is

presented in Sect. 3, while diverse UAV-based camera

sensors used to detect crop and plant diseases are presented

in Sect. 4. In Sect. 5, we present the effectiveness of dif-

ferent deep learning algorithms to identify crop and plant

diseases from UAV imagery, including image classifica-

tion, object detection, and image segmentation techniques.

In Sect. 6, we present the challenges, limitations, and

potential solutions to overcome some plant disease detec-

tion-related issues. A comparison study to analyze com-

putation offloading mechanisms in terms of evaluation

tools, case study, utilized techniques, and performance

metrics is presented in Sect. 6.2. Finally, Sect. 8 concludes

the paper and provides some future directions.

2 Research methodology

We adopted a step-by-step process to carefully select the

published papers that addressing the application of com-

puter vision-based deep learning algorithms for plant and

crop diseases recognition from UAV platforms. The overall

process of the used research methodology is shown in

Fig. 1.

The review process is carried out by observing the

existing UAV and deep learning-based solutions for the

following research questions.

• What are the targeted crop and disease types?

• What are the adopted UAV and sensor types?

• Which deep learning technique is adopted for diseases

recognition?

• Which model provides better results?

To achieve our goal, a keyword-based search is conducted

from different well-known scientific databases, including

IEEE Xplore, Google Scholar, ScienceDirect, MDPI, and

Taylor & Francis. To select the related papers, we used

different combinations of the following keywords for

journals and conferences papers search step: [‘‘crop dis-

ease’’ OR ‘‘plant disease’’] AND [‘‘detection’’ OR ‘‘iden-

tification’’ OR ‘‘diagnosis’’] AND [‘‘UAV’’ OR ‘‘drone’’]

AND ‘‘artificial intelligence’’ AND ‘‘deep learning’’ AND

‘‘computer vision’’.

Firstly, we downloaded papers relevant to crop and plant

diseases recognition, detection, or identification from UAV

imagery using different artificial intelligence techniques

from the aforementioned electronic databases. Only docu-

ments published between 2004 and 2021 were considered.

Thus, we collected more than 100 published scientific

papers related to our study. In the next step, we read each

paper and classify it according to the crop and plant types,

disease type, and deep learning models. Finally, by

applying the inclusion and exclusion techniques, we

reduced the number of papers to around 45 by keeping only

strongly related papers to our study, which is crop and plant

diseases detection from UAV imagery.

3 An overview on agricultural Unmanned
Aerial Vehicles and their applications

Unmanned Aerial Vehicles are flying robots without a

human pilot on board. These flying machines can be con-

trolled remotely using remote controller devices, or per-

form some missions autonomously through an onboard

computer that executes intelligent algorithms. Recently,

Fig. 1 Search strategy flowchart
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smart UAVs are widely applied to perform a wide range of

applications, including search and rescue operations Mar-

tinez-Alpiste et al. [52], wildfire detection Bouguettaya

et al. [20], vehicle detection Bouguettaya et al. [19], pre-

cision agriculture Di Nisio et al. [27], Delavarpour et al.

[26], package delivery Shahzaad et al. [64], smart cities

Abualigah et al. [5], to name a few.

The agriculture sector has largely changed over the past

few decades, and new technologies have played a signifi-

cant role in this transformation. Several spatial and aerial

platforms have been used to perform different agricultural

tasks, including satellites, airplanes, and UAVs. Satellites

and airplanes can cover very large areas in a very short

time compared to UAV platforms that take a longer time to

cover large fields. However, in addition to the huge budget

to accomplish missions through satellites and airplanes,

they also suffer from poor spatial and temporal image

resolutions compared to those provided by UAVs and

terrestrial technologies. Furthermore, they are very sensi-

tive to cloudy and rainy weathers that could affect the

overall performance of these systems.

The introduction of agricultural UAVs is one of the most

significant changes that lead to smart farming. Due to their

high flexibility and mobility, UAVs can perform flight

missions at different altitudes and viewing angles above

dangerous and difficult areas that was impossible to reach

through piloted airplanes or satellites. Recently, different

UAV types equipped with high-resolution camera sensors

have been widely adopted to perform different agriculture-

related activities, including crop diseases identification and

treatment. They could be categorized into three main

classes, which are fixed-wing, rotary-wing, and Hybrid

VTOL UAVs (Fig. 2). In this section, we focus on pre-

senting the various UAV types all along with their prop-

erties and agricultural operations purposes.

3.1 Rotary-wing UAVs

Multirotor UAVs, also called rotary-wing (Fig. 2), are the

most popular UAV types to achieve different agricultural

tasks. Their high flexibility and capability of hovering and

flying at low altitudes above the targeted crop provide

farmers with good images allowing them to detect crop

diseases at early stages through small visual symptoms at

the different parts of the plant, including leaf level

Bouguettaya et al. [18]. Multirotor UAVs depend on

multiple propellers to fly making them the best choice to

cover crops at difficult areas from different altitudes. We

can classify them according to the number of rotors

mounted on them. Some UAVs have three rotors, which

are called tri-copters. If there are four rotors, they are

called quad-copters. Also, there are hexacopters and octo-

copters with six and eight propellers, respectively. The

latter categories are mostly preferred for high payload

lifting making them more suitable for precise crop spraying

operations. For example, the authors in Pittu and Gorantla

[58] adopted a hexacopter to detect the exact diseased areas

and spray pesticides. However, UAVs with six and eight

rotors are facing a serious problem concerning high energy

consumption resulting in short flying time. Thus, quad-

copter UAVs are considered the most appropriate UAV

category for crop disease monitoring due to many factors,

including high flexibility, ease of use, and their higher

endurance compared to hexacopters and octocopters.

Another rotary-wing type similar to helicopters was

adopted in Théau et al. [77] for potato crops surveying to

reduce the impact of diseases and pests on crop produc-

tivity. This type of UAVs has a higher payload capacity

than the aforementioned rotary-wing UAVs.

3.2 Fixed-wings UAVs

Fixed-wing UAVs (Fig. 2) are other UAV types that are

capable of covering larger areas in less time compared to

rotary-wing UAVs due to their long endurance, high speed,

and high altitude Raeva et al. [60]. These properties make

them more suitable for forest and large crops surveillance.

Fixed-wing UAVs are already widely used for crop disease

monitoring. For example, the authors in Albetis et al. [10],

Albetis et al. [9] adopted the Long-range DT-18 Fixed-

Fig. 2 Different agricultural UAV types
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wing UAV to detect Flavescence dorée and Grapevine

Trunk Diseases within seven different vineyards. However,

in addition to their high cost, fixed-wing UAVs are suf-

fering from low flexibility making small crop monitoring

very difficult. Moreover, they require runways and space to

land and take off Zhang et al. [85].

3.3 Hybrid VTOL UAVs

More recently, hybrid Vertical Take-Off and Landing

(VTOL) UAVs (Fig. 2) have emerged as a new effective

solution to overcome multirotor and fixed-wing UAVs

problems Song and Park [70]. They combine multirotor

UAVs’ VTOL capability with fixed-wing UAVs’ cruise

flight Delavarpour et al. [26]. Unfortunately, this type of

UAV is still not largely used to monitor crop diseases.

In Table 1, we highlighted the most used agricultural

UAVs in the literature for various crop disease monitoring,

where we find that DJI UAVs are the most used ones.

Similarly, the pros and cons of the different agricultural

UAV categories are summarized in Table 2.

4 UAV-based visual remote sensing systems
used to identify crop diseases

Sensors represent one of the fundamental building blocs of

any UAV to perform different tasks autonomously with

little or no human intervention through intelligent algo-

rithms, including navigation, detect and geolocating

potential diseases in crops from visual data, and providing

a map of crops status that could be helpful to the farmers or

other machines working in coordination with the UAV

Dammer et al. [24], Lytridis et al. [51]. Remote sensing

systems that are based on camera sensors mounted on UAV

platforms can be classified according to two main factors,

which are the UAV type and the camera sensor type. UAV-

based aerial imaging is one of the most important and

useful data types that can help to improve the agricultural

field. Usually, the choice of UAV platforms and sensor

types depends on the purpose of the targeted application

and crop type. Therefore, UAVs can be equipped with

different types of cameras, including RGB, spectral, and

thermal. Fixed-wing and VTOL UAVs are capable of

carrying more sophisticated cameras than multirotor

UAVs, especially in the case of hyperspectral cameras that

have high weight. Also, UAVs equipped with sophisticated

cameras can help farmers to improve crop yield while

saving time and money by automating some processes that

require a group of persons working on them. However,

cameras mounted on multirotor UAVs provide better

Ground Sampling Distance resolution due to their ability to

fly at lower altitudes. To this end, in this section, we are

going to present the most used camera sensors for crop

disease monitoring.

4.1 RGB cameras

According to Table 3, the visible (or RGB) camera is one

of the most adopted sensor types to achieve different

Table 1 Most used UAVs in the literature for crop disease monitoring

UAV brand UAV category Product name References

DJI Quadcopter Phantom 3 Pro Tetila et al. [75]

Phantom 4 Huang et al. [39]

Sentinel 2 Pan et al. [56]

Phantom 4 RTK Wu et al. [82]

Phantom 4 Pro Gomez Selvaraj et al. [31], Hu et al. [38], Hu et al. [37],

Dang et al. [25], Heidarian Dehkordi et al. [35], Hu et al. [36]

Matrice 100 Su et al. [72], Zhang et al. [87]

Hexacopter Matrice 600 [ Wiesner-Hanks et al. [80], Bohnenkamp et al. [15],

Görlich et al. [32], Stewart et al. [71], Wu et al. [81]

Matrice 600 Pro Abdulridha et al. [3], Abdulridha et al. [2], Liu et al. [50]

Octocopter S1000 Zhang et al. [84]

3D Robotics Quadcopter 3DR SOLO Gomez Selvaraj et al. [31]

3DR IRIS? Duarte-Carvajalino et al. [28]

ING Robotic Aviation Helicopter Responder Théau et al. [77]

Italdron Quadcopter 4HSE EVO Di Nisio et al. [27]

Feima Robotics Quadcopter Feima D200 Qin et al. [59]

Delair-Tech Fixed-wing DT-18 Albetis et al. [10], Albetis et al. [9]
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agricultural tasks, including crop disease identification.

Their high adoption is due to many factors such as low

price, ease of use, low weight, and high spatial resolution

Heidarian Dehkordi et al. [35], Abdulridha et al. [3]. These

cameras represent the best choice for smallholders farmers

with low financial resources providing valuable visual

information to easily identify visual plant disease symp-

toms at the leaf level Kerkech et al. [43], Tetila et al. [75].

Several studies adopted this type of camera to detect

plant diseases from UAV imagery. For example, Tetila

et al. Tetila et al. [75] used a Sony EXMOR RGB camera

mounted on a DJI Phantom 3 Pro to recognize soybean leaf

diseases. Also, the authors in Wu et al. [82] used an RGB

camera mounted on a DJI Phantom 4 RTK UAV to diag-

nose pine wilt disease at an early stage. However, com-

pared to other available technologies, visible cameras

provide lower performance to detect diseases at their early

stages due to many factors. They are extremely susceptible

to environmental conditions such as sunlight angle and

shadows that could affect the crop disease identification

system causing false disease detection Ganchenko and

Doudkin [29]. The authors in Li et al. [49] used another

type of visible camera called RGB-D that is less sensitive

to light. This camera provides depth information that could

be used to improve the performance of targeted object

detection and localization in agricultural tasks.

To have more information about crop status, we need

other types of camera sensors that provide more details. For

example, a multispectral sensor operating in the Near-

InfraRed (NIR) wavelength is required to generate a Nor-

malized Difference Vegetation Index (NDVI) map. On the

other hand, multispectral cameras are more expensive than

conventional RGB cameras and require complex and time-

consuming calibration procedures. To this end, the authors

in Costa et al. [23] provide a solution to create an NDVI

map from RGB data, which is one of the most useful

vegetation indices to identify crop diseases. Genetic algo-

rithms have been used to achieve such objectives.

4.2 Multispectral and hyperspectral cameras

Depending on their spectral resolutions, spectral imaging

systems could be categorized into two main types, which

are multispectral and hyperspectral. They provide infor-

mation in the electromagnetic spectrum that ranges from

the visible to the Near-Infrared (NIR) allowing the calcu-

lation of different robust vegetation indices such as NDVI

Zhang et al. [84]. These characteristics make spectral

cameras one of the most adopted sensor types for crop and

plant disease identification from UAV platforms (Table 3).

The main differences between multispectral and hyper-

spectral imaging systems can be summarized as follow: 1)

the number of channels in hyperspectral cameras is much

more than those in multispectral ones, 2) hyperspectral

camera are more expensive. Multispectral and hyperspec-

tral cameras could be an effective tool for disease symp-

toms automatic detection. They are more robust than RGB

cameras against different illumination conditions making

them more reliable to distinguish between healthy and

stressed plants Zhang et al. [87]. According to Théau et al.

[77], it is difficult to distinguish between different crop

stress types from multispectral data. However, hyperspec-

tral cameras provide more details allowing the

Table 2 Pros and cons of

agricultural UAV types
UAV type Pros Cons

Rotary-wing Easy control and maneuver Limited flying time

Ability to hover Low area coverage

Take off and land vertically Small payload capabilities

Very stable High energy consumption

Better spatial/temporal resolutions

Low cost

Accessibility to difficult areas

Fixed-wing High payload capabilities Expensive

Long flying time Require a launcher to put in the air

Large area coverage Difficult to land

High speed Do not have hovering ability

Lower energy consumption

Hybrid VTOL Long flying time Expensive

Large area coverage Do not have hovering ability

High speed

Vertical take-off and landing ability

Relatively low energy consumption
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measurement of different Vegetation Indices (VIs) that

could be used to discriminate stress types accurately.

4.3 Thermal infrared cameras

Thermal infrared cameras are other available sensors that

could be used for crop diseases identification from aerial

images. InfraRed (IR) region consists of several spectral

bands, including Near InfraRed (NIR), Short-Wave Infra-

Red (SWIR), Mid-Wave InfraRed (MWIR), Long-Wave

InfraRed (LWIR), and Far InfraRed (FIR) Khalid et al.

[46]. Due to their characteristics, these types of cameras

can be used either during the day or night times. Recently,

UAV-based thermal cameras are widely used in several

agriculture-related tasks, including water stress and crop

disease monitoring providing valuable information. Unlike

RGB cameras that measure visible light, thermal cameras

are sensitive to infrared spectra providing more informa-

tion about the plant status, which are not achievable using

visible, multispectral, and hyperspectral cameras. They

provide a heatmap by measuring the emitted radiation from

the targeted crop. The measured energy could be used to

estimate the crop status through its temperature irregular-

ities and anomalies Sishodia et al. [69]. This information

can improve the visual inspection abilities of UAV-based

crop diseases identification systems. Therefore, thermal

remote sensing data could be used to identify crop diseases

even before being distinguished by the naked eyes Kerkech

et al. [43], Khanal et al. [47]. However, according to Raj

et al. [62], when employing thermal images, there are a few

concerns that must be handled, including images’ temporal

and spatial resolutions, environmental conditions, crop

species diversity and their growth stage, and the flight

altitude and viewing angle.

5 Deep learning algorithms to identify crop
diseases from UAV-based visual data

Over the last decade, deep learning-based computer vision

techniques achieved interesting results in many fields,

including agriculture. Crops affected by diseases show

several visual symptoms such as plant color, leaf winding,

leaf spots, fruit spots Thangaraj et al. [76], Kerkech et al.

[43]. This can make deep learning algorithms the best

choice to identify these diseases. To achieve plant diseases

identification, three main computer vision-based tasks can

be used to achieve better crop disease identification from

UAV imagery, which are image classification Tetila et al.

[75], object detection Wu et al. [82], and image segmen-

tation Pan et al. [56], Qin et al. [59]. The deep learning

algorithms workflow diagram used to detect and classify

crop diseases from UAV imagery is illustrated in Figure 3.

Recently, there has been considerable interest in crop

diseases diagnosis using deep learning algorithms to pro-

cess images acquired through UAV platforms. Several

recent studies on crop diseases detection from UAV ima-

gery are based on deep learning models to overcome the

limitations of traditional techniques, especially Convolu-

tional Neural Network (CNN) algorithms. Most of these

studies targeted subsistence crops such as wheat Pan et al.

[56], Su et al. [72], Zhang et al. [87], maize Wiesner-Hanks

et al. [80], Stewart et al. [71], potato Théau et al. [77],

Siebring et al. [66], and tomato Abdulridha et al. [3],

Abdulridha et al. [2].

5.1 Major grain crops diseases identification

Several recent studies have successfully used the combi-

nation of UAV-based images and deep learning algorithms

to identify different diseases that affect the major grain

crops, including wheat and maize. For example, the authors

in Pan et al. [56], Su et al. [72], Zhang et al. [87] targeted

the detection of yellow rust disease using different deep

learning-based computer vision models. The yellow rust

disease is one of the most dangerous diseases that causes

great wheat production losses each year estimated at more

than 5 million tonnes Beddow et al. [14]. To minimize the

impact of this disease, the authors in Zhang et al. [87],

proposed a novel semantic segmentation method derived

from the U-Net model to identify the infected wheat crop

regions with yellow rust disease using multispectral data

collected through a UAV platform. To improve the main

U-Net architecture, they embed three modules which are

Irregular Encoder Module (IEM), Irregular Decoder Mod-

ule (IDM), and Content-aware Channel Re-weight Module

(CCRM). They investigated the impact of the input data

type on the overall performance of the deep learning model

to detect yellow rust disease in wheat crops. They found

that the performance of the proposed Ir-Unet model pro-

vides good results using all the five bands information

gathered using the RedEdge multispectral camera achiev-

ing an overall accuracy of 96.95% and an F1-score of

94.66% exceeding the results obtained in Su et al. [72],

where they achieved an F1-score of only 92%. Further-

more, they achieved an even slightly better overall accu-

racy of 96.97% using a combination of all the raw bands

and their variant measured Selected Vegetation Indices

(SVIs). Also, by applying feature re-weight using the

CCRM, the Ir-Unet model provides an overall accuracy of

97.13%. Similarly, the authors in Pan et al. [56] investi-

gated the performance of different machine learning and

deep learning models to identify yellow rust disease in the

wheat crops from UAV-based RGB images. They found

that PSPNet (98%) and SVM (96) algorithms provide the

best accuracy among all the tested models, including
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Random Forest (73%), BPNN (86%), FCN (90%), and

U-Net (94%). Liu et al. Liu et al. [50], proposed a BPNN

model to monitor Fusarium Head Blight from aerial

hyperspectral imagery achieving the highest overall accu-

racy of 98% outperforming SVM and RF with 95% both.

Huang et al. Huang et al. [39] targeted another type of

wheat diseases from UAV-based RGB images, which is

Helminthosporium Leaf Blotch Disease. They proposed to

use a LeNet-based CNN model to classify HLBD accord-

ing to its severity at different disease progression stages.

The adopted CNN model achieved an overall accuracy of

91.43% outperforming the different techniques combined

with the SVM model (Table 3).

Other studies targeted one of the major maize crop

diseases, which is the Northern Leaf Blight (NLB). For

example, to achieve the NLB identification in maize crops,

they used the dataset created in Wiesner-Hanks et al. [79].

This type of disease caused annual production losses esti-

mated to be approximately 14 million tonnes between 2012

and 2015 only in the United States and Ontario. In Stewart

et al. [71], the authors adopted an instance segmentation

technique (Mask R-CNN) to detect NLB disease from low

altitude RGB aerial images collected using a DJI Matrice

600. The proposed approach was able to identify and

segment individual lesions with an average precision of

96%. In Wu et al. [81], a ResNet-based model was adopted

to classify healthy and diseased maize leaves from low

altitude UAV imagery providing an accuracy of 97.76%, a

recall rate of 97.85%, and a precision rate of 98.42%.

Similarly, Wiesner-Hanks et al. Wiesner-Hanks et al. [80],

combined crowdsourced ResNet-based CNN and Condi-

tional Random Field (CRF) techniques to segment UAV-

based RGB images into regions affected by the NLB dis-

ease or not, where the crowdsourced CNN is used to

generate heatmaps and the CRF to classify each pixel in the

image as lesion or non-lesion. Applying this approach, they

were able to identify the NLB disease in maize crops down

to the millimeter level achieving an impressive accuracy of

99.79% overcoming the approach adopted in Wu et al. [81]

by more than 2% (Table 3).

5.2 Vineyards diseases identification

Vines are other important crops that are susceptible to

different diseases. Therefore, several studies targeted

vineyards diseases from aerial images collected through

UAVs. In Kerkech et al. [43], the authors adopted LeNet-5

architecture to identify grapevine infected regions from

RGB aerial images gathered through a UAV flew at an

altitude of 25 meters above the ground. Combining YUV

color space and ExGR vegetation index as input to the used

CNN model, they achieved the best accuracy of 95.92%

Fig. 3 Deep learning-based plant disease identification workflow
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(using patches of 64 � 64 and a filter size of 5 � 5) among

all the adopted combinations, including YUV & ExG

(95.41%), YUV & ExR (95.70%), YUV & GRVI

(95.70%), YUV & NDI (95.52%), and YUV & RGI

(95.73%). In Kerkech et al. [45], a deep learning-based

semantic segmentation approach was developed to auto-

matically identify Mildew disease in vineyards from RGB

images, infrared images, and multispectral data by com-

bining the visible and infrared bands collected through a

UAV platform. They used the SegNet model to classify

each pixel in the image as diseased or not at both leaf-level

and grapevine-level. According to Table 3, the proposed

method achieved accuracies of 85.13%, 78.72%, 82.20%,

and 90.23% at leaf-level and 94.41%, 89.16%, 88.14%, and

95.02% at grapevine-level using visible, infrared, fusion

AND, and Fusion OR data. Also, Kerkech et al. Kerkech

et al. [44] developed VddNet which is a semantic seg-

mentation model inspired by VGGNet, SegNet, and U-Net

architectures. It consists of three parallel encoders based on

VGGNet architecture for each type of the used data (RGB,

Near InfraRed (NIR), and depth map) and one decoder to

generate a disease map at the pixel level. The proposed

model achieved an accuracy of 93.72% overcoming state-

of-the-art semantic segmentation algorithms, which are

SegNet (92.75%), U-Net (90.69%), DeepLab3? (88.58%),

and PSPNet (84.63%) (Table 3).

5.3 Pine tree crops diseases identification

Several studies targeted the detection of pine trees diseases

from UAV-based aerial imagery. For example, Qin et al.

Qin et al. [59] developed Spatial-Context-Attention Net-

work (SCANet) architecture to segment pine nematode

disease in multispectral aerial images of pine trees gathered

using UAV technology. SCANet architecture consists of

Spatial Information Retention Module (SIRM) and Context

Information Module (CIM), where SIRM was used to

obtain low-level features and CIM was designed to expand

the receptive field. Their approach provides better results

than state-of-the-art semantic segmentation algorithms

achieving a mean F1-score rate of more than 88% while

DeeoLabV3?, HRNet, and DenseNet provide only

72.22%, 72%, and 70%, respectively. Also, Hu et al. [37]

combined Deep Convolutional Neural Network (DCNN),

Deep Convolutional Generative Adversarial Network

(DCGAN), and AdaBoost classifier to improve the detec-

tion of diseased pinus trees from RGB UAV imagery. The

proposed approach overcomes traditional machine learning

methods providing an F1-score of 86.3% and a recall of

95.7% against recall rates of 78.3% and 65.2% for SVM

and AdaBoost classifiers, respectively (Table 3). Similarly,

in Hu et al. [38], a combination between MobileNet, Faster

R-CNN, Augmentor, and DCGAN architectures was

adopted to recognize diseased pinus trees from UAV.

DCGAN model was used to increase the number of images

used in the training process, while MobileNet architecture

was used to reduce the complex background information,

such as roads, soils, and shadows that have some feature

similarities with the targeted pine tree disease; then, Faster

R-CNN was used to detect diseased pine trees. According

to Table 3, the proposed method with DCGAN-based data

augmentation provides acceptable results achieving an F1-

score of 70.3%, a recall rate of 92.9%, and a precision rate

of 56.5% while it achieved only 61.9%, 92.9%, and 46.4%,

respectively, with Augmentor-based data augmentation.

Also, the authors in Wu et al. [82] focused on the detection

of Pine Wilt Disease (PWD) using UAV technology and

two state-of-the-art deep learning-based detectors. The first

detector is Faster R-CNN (a two-stage detector), while the

second is YOLOv3 (a one-stage detector). These detectors

are based on different backbone architectures for features

extraction, including ResNet-50, ResNet-101 for Faster

R-CNN and DarkNet-53, MobileNet for YOLOv3. They

achieved a mAP of 60,2%, 62,2%, 64%, and 63,2% using

Faster R-CNN (ResNet-50), Faster R-CNN (ResNet-101),

YOLOv3 (DarkNet-53), and YOLOv3 (MobileNet),

respectively (Table 3). According to Table 3, the DarkNet-

53-based YOLOv3 provides the best mAP among all the

tested detectors, but with the largest model size of 241 MB.

On the other hand, MobileNet-based YOLOv3 provides the

highest inference speed with around 1.4 FPS while keeping

a competitive mAP. Similarly, in another study Yu et al.

[83], the authors adopted a ResNet50-based Faster R-CNN

and DarkNet53-based YOLOv4 detectors to identify PWD

in pinus trees at different growing stages, including green,

early, middle, and late stages. According to Table 3, Faster

R-CNN provides a better mAP and (61%) smaller model

size (113M) than YOLOv4 achieving only an mAP of

around 57% and a model size of 224M. Compared with the

work of Wu et al. [82], YOLOv4 performs worse than

YOLOv3, which could be due to the dataset type, image

size, image preprocessing, and model configuration.

However, YOLOv4 provides real-time PWD detection

achieving an inference speed of more than 25 FPS.

Though, these results are still relatively low, which could

be due to many factors such as the flight altitude and the

small size of the targeted disease.

5.4 Other crops diseases identification

The use of deep learning and UAVs were adopted to

identify diseases in many other crop types, including

potato, tomato, soybean, banana, among others. For

example, the authors in Tetila et al. [75] proposed a com-

puter vision technique that combines the SLIC algorithm

and different CNN models to identify soybean diseases at
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leaf level from RGB images captured through a DJI

Phantom 3 Pro equipped with a Sony EXMOR camera. To

classify soybean leaf diseases, they adopted several deep

CNN architectures with different parameter fine-tuning,

including Inception-v3 Szegedy et al. [74], ResNet-50 He

et al. [34], VGG-19 Simonyan and Zisserman [67], and

Xception Chollet [22]. According to Table 3, Inception-v3

with a fine-tuning rate of 75% slightly overcomes the other

architectures in terms of accuracy and training time. It

achieved an accuracy of 99.04% against 99.02%, 99.02%,

and 98.56% achieved by Resnet-50, VGG-19, and Xcep-

tion, respectively. Moreover, it took less training time by 6,

31, and 42 hours than ResNet-50, VGG-19, and Xception

respectively. The authors in Gomez Selvaraj et al. [31]

used a RetinaNet detector based on ResNet-50 architecture

to detect banana plants from UAV-based RGB aerial

images achieving an F1-score of around 84% on the

training set and 70% on the test set, which is relatively low.

The banana plant’s small size from high altitudes could

explain the detector’s poor performance. Then, they

investigated the performance of two CNN models to clas-

sify each of the detected plants as healthy or diseased

achieving an accuracy of 85% for VGG-16 and 92% for the

proposed architecture. To determine the severity of potato

Late Blight disease from multispectral UAV imagery, the

authors in Duarte-Carvajalino et al. [28] used different

methods, including traditional machine learning approa-

ches (MLP, RF, and SVR) and a deep learning model

(CNN). According to Table 3, CNN and RF provide better

results than MLP and SVR achieving an R2 of 0.74 for

CNN and 0.75 for RF. Similarly, the authors in Shi et al.

[65] developed a 3D-CNN model called CropdocNet to

detect potato Late Blight disease from hyperspectral ima-

ges collected using a UAV platform. The proposed model

provided impressive results achieving an average accuracy

of around 98% and 96% on the training and independent

testing sets. However, in their study, they only targeted one

single potato disease type. The authors in Abdulridha et al.

[2] developed a system based on MLP and VIs to detect

Target Spot (TS) and Bacterial Spot (BS) diseases in

tomato crops from UAV-based hyperspectral images in

both laboratory and field conditions and at three different

diseases development stages, which are healthy, early, and

late. Applying MLP, they were able to identify TS and BS

diseases from UAV imagery with an accuracy of 97% and

98%, respectively. Dang et al. [25], proposed RadRGB

model to classify Fusarium Wilt Disease in radish crops.

Compared to VGG-16 and Inception-V3, the proposed

architecture provides the best results in terms of accuracy

and testing time of 96.4% and 0.043 s/image, respectively,

while VGG-16 and Inception-V3 achieved slightly lower

accuracies of 93.1% and 95.7%, respectively, and longer

testing time of 0.1 (VGG-16) and 0.22 (Inception-V3)

s/image (Table 3). Cercospora leaf spot detection from

UAV imagery of sugar beet crops was targeted in Görlich

et al. [32] using a sematic segmentation model (FCN)

based on fully convolutional DenseNet (FC-DenseNet)

proposed in Jégou et al. [40]. The proposed FCN approach

takes RGB images as input and provides a pixel-wise map.

The adopted method achieved an F1-score of 75.74% on

data under similar field conditions to the training data and a

similar F1-score of 75.55% under changing field

conditions.

6 Discussions

Early crop and plant disease identification is a crucial task

to improve crop productivity. The adoption of recent UAV-

based technologies and advanced deep learning algorithms

has emerged as a new effective solution, where their

adoption to detect crop diseases has gained high impor-

tance in several studies over the last few years. In this

review paper, we investigated the importance of several

UAV platforms, camera sensors technologies, and deep

learning algorithms to improve crop and plant disease

identification. These techniques and technologies provide

better performance than traditional ones that are based on

spatial and terrestrial technologies and machine learning-

based methods such as SVM and random forest classifiers.

In this section, we aim to provide readers and farmers with

the most challenging issues that could face them to detect

crop diseases from UAV-based aerial images and how they

can select the appropriate technology and algorithm to

achieve better results.

6.1 Challenges, limitations, and potential
solutions related to the UAV and camera
technologies

Even with all their high benefits, the UAV industry still

facing several challenges to achieve different agricultural

tasks, including large fields monitoring and pesticide

spraying. In addition to the regulations that could restrict

flying in several countries and areas across the world, the

short flight time is considered one of the most important

limitations of UAVs due to many factors, including battery

capacity, the computational power needed to run deep

learning algorithms, and the high payload. Unfortunately,

these issues could affect and limit the use of UAVs in the

modern smart agriculture. Several solutions were proposed

in many studies to minimize the impact of these factors on

the overall efficiency of UAV technology. For example, the

authors in Gao et al. [30] proposed to plan the UAV flight

route in advance to ensure that the entire crop is checked

following the shortest flight path to reduce energy
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consumption. However, this approach is not always

applicable due to many factors, including crop structure

and location. Similarly, to reduce energy consumption and

increase flight time, the adoption of lightweight models and

offboard processing could be other effective solutions

Bouguettaya et al. [17]. Furthermore, to cover larger fields,

the use of UAV swarms is an interesting solution Albani

et al. [8], Ju and Son [42]. However, it is still very chal-

lenging to control a large number of UAVs simultaneously.

Also, fixed-wing and Hybrid VTOL UAVs can be used for

large crops monitoring. However, they are suffering from

many limitations that could restrict and reduce the per-

formance of the system for early disease identification due

to the lower spatial resolution compared to multirotor

UAVs that can fly at lower altitudes and provide better

resolution allowing farmers to monitor crops even at leaf

level.

The camera type selection is a crucial task that we need

to consider. Multispectral, hyperspectral, and thermal

camera sensors provide richer information than visible

cameras making them more suitable for early crop diseases

identification from aerial images Wu et al. [82], Pineda

et al. [57]. Several studies have focused on calculating

different VIs using multispectral and hyperspectral data

allowing farmers to identify general crop stress, including

different diseases Kerkech et al. [43], Abdulridha et al. [1],

Bagheri [11]. However, UAVs equipped with visible

cameras are the most used in the agriculture field due to

their price, weight, and availability Bouguettaya et al. [18],

Wu et al. [82]. Also, the performance of the different

imaging systems depends on the flight altitudes and dif-

ferent viewing angles. For example, flying at high altitudes

could increase the scene complexity that may restrict the

deep learning model’s performance in the case of small-

scale visual symptoms. Also, flying at very low altitudes

can affect the detection performance due to the wind

generated by the rotation of propellers resulting in the

continuous movement of the plants’ leaves that can cause

hiding of some symptoms.

6.2 Challenges, limitations, and potential
solutions related to the deep learning
models

Recently, deep learning models have emerged as a novel

technology that has shown promising results in the visual

data processing. They provide significant benefits against

classical machine learning approaches. For example, deep

learning algorithms can extract relevant features automat-

ically instead of extracting them manually, which is a time-

consuming task. Generalization is another important

parameter that would favor deep learning models over

classical techniques. For example, the model in Görlich

et al. [32] provides similar results on both similar field

conditions to the training data and under changing field

conditions, such as varying illumination and orientation.

However, deep learning models are still facing several

challenges and limitations.

The use of deep learning methods requires a huge

amount of data, which is not always achievable in the case

of crop diseases identification from UAV imagery due to

the large variants of crops, plants, and diseases. Several

approaches were adopted in different studies to reduce the

impact of the low availability of datasets, including transfer

learning, fine-tuning, and techniques employed within the

deep learning architecture like dropout and normalization

techniques Tetila et al. [75], Gomez Selvaraj et al. [31],

Duarte-Carvajalino et al. [28]. Also, data augmentation

could be another effective solution to overcome this issue

by increasing artificially the training dataset size. This can

be done through image processing techniques like rotation,

zooming, mirroring, and adding some noises and brightness

to the images Stewart et al. [71], Kerkech et al. [44]. For

example, the authors in Stewart et al. [71], applied rota-

tions on each image to increase the number of images used

for the training process resulting in seven additional aug-

mented images per image. Similarly, the authors in Tetila

et al. [75] used a total of 3000 images for six different

classes to train the adopted CNN architectures. Each of the

six classes consists of 500 UAV-based imagery, which is

not sufficient to train deep learning models. To this end,

they applied different geometric transformations to

increase the number of image samples in each class,

including rotation, rescaling, scrolling, and zooming

operations. Another way of data augmentation is to use

deep learning algorithms to generate new unseen artificial

data, including different types of Generative Adversarial

Networks (GANs). For example, the authors in Hu et al.

[38], Hu et al. [37] used DCGAN architecture to increase

data size by generating new unseen data to improve the

model performance. Also, to overcome the lack of data to

train an efficient deep learning model, the authors in Tetila

et al. [75] applied dropout and data augmentation tech-

niques using the Keras module. Also, they investigated the

impact of transfer learning and fine-tuning techniques on

the overall performance of the CNN model, where various

pre-trained models on the ImageNet dataset were tested.

These techniques provide much better results than training

deep learning models from scratch with random weight

initialization. Data type and data preprocessing are other

fundamental factors we should consider to develop effi-

cient deep learning models, especially in the case of crop

diseases identification from UAV-based aerial images.

Thus, the data type selection may improve the performance

of the developed model. Several studies adopted different

data fusion approaches to improve the model performance.
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For example, the authors in Zhang et al. [84] proposed to

combine spectral and spatial information. Similarly, the

authors in Kerkech et al. [45] combined visible and infra-

red data to improve the model performance in identifying

diseases. Also, combining different vegetation indices and

color spaces were adopted in Kerkech et al. [43], where the

choice of the right vegetation index could affect the overall

performance of the crop disease identification systems as

shown in many studies, including Guo et al. [33], Abdul-

ridha et al. [2], and Bagheri [11].

Also, several studies focused on the deep learning model

architecture, such as the chosen backbone for features

extraction, the number of layers, the loss functions, to

name a few. The selected architecture is a fundamental

parameter that could affect the performance of the detec-

tion. As presented in Table 3, the authors in Gomez Sel-

varaj et al. [31], Wu et al. [82], and Kerkech et al. [45]

investigated the impact of the selected backbone architec-

ture on the effectiveness of the used algorithms. For

example, the authors in Wu et al. [82] showed that

YOLOv3 based on DarkNet architecture as the main fea-

ture extractor achieved a better mAP of 64% than the one

based on MobileNet achieving a relatively smaller mAP of

63.2%. However, the latter provides better processing

speed and model size making it more suitable for small

devices with limited computational resources.

7 Comparison

Regarding crop and plant diseases detection, the computer

vision-based methods are often varying among three main

tasks, which are image classification, object detection, and

image segmentation. However, the selection of the appro-

priate computer vision task depends on the targeted

objective. Therefore, in this section, we aim to provide a

detailed analysis of the most adopted deep learning-based

computer vision categories for crop diseases identification

to help researchers and farmers in selecting the appropriate

models and tools to achieve the most important study

cases. Also, different evaluation metrics for computer

vision tasks are presented.

7.1 Image classification case

Image classification is one of the first deep learning

approaches to be widely used in the field of crop disease

detection, where the classifier receives an image as input

and tries to assign a label to the entire image from a pre-

defined set of categories. According to Table 3, deep

learning-based image classification is the most used tech-

nique for crop and plant diseases from RGB images col-

lected from UAVs that fly at low altitudes.

Case study Deep learning-based image classification

models are widely used to recognize different plant and

crop diseases. In most cases, the image classification task is

utilized to recognize diseases at the leaf level. Thus, most

of the reviewed studies adopted image classification tech-

niques to identify plant diseases from UAV-based RGB

images collected from low altitudes (Table 3).

Adopted techniques Due to their high effectiveness in

the image classification task, CNNs are considered the

main deep learning architectures for plant and crop dis-

eases identification. According to the reviewed papers, in

addition to some custom CNN architectures, AlexNet,

VGGNet, ResNet, Inception, and Xception were among the

most employed CNN architectures for plant diseases clas-

sification. For example, the authors in Tetila et al. [75]

adopted four state-of-the-art CNN architectures to classify

soybean diseases, which are Inception-V3, ResNet-50,

VGG-19, and Xception. Other researchers developed their

own custom CNN architectures to classify diseases,

including the study of Dang et al. [25].

Performance The performance of plant diseases iden-

tification using image classification techniques is calcu-

lated using different evaluation metrics, including

accuracy, precision, recall, f1-score, learning error, training

time, and inference time. Image classification based on

deep learning models provides high recognition rates

compared to traditional machine learning models. For

example, the authors in Duarte-Carvajalino et al. [28]

showed that CNN achieved lower error rates than Random

Forest and MLP. Shallow CNN models are among the

preferred solutions for plant disease classification from

small-size images. For example, the authors in Dang et al.

[25] showed the effectiveness of using shallow CNN

architecture with only five convolution layers in identifying

fusarium wilt of radish from 64�64 images. Similarly, in

deeper networks, as shown in Gomez Selvaraj et al. [31],

where they adopted ResNet-50 as the main CNN classifier.

Using such deep architectures may result in losing signif-

icant information about small objects at the deeper layer

levels.

Image classification could be an effective and even

faster way when we target single disease identification per

image. However, in the case of multiple diseases in the

same image, we need more advanced and complicated

techniques such as object detection and image segmenta-

tion that can identify multiple diseases in the same image.

7.2 Object detection case

Object detection is another important computer vision task

adopted to identify crop and plant diseases from UAV

imagery. Unlike image classification, deep learning-based

object detection models can classify and localize multiple
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diseases that are present in the input image providing

bounding boxes around each detected disease with its

appropriate class.

Case study According to the studies available in the

literature, object detection-based techniques are mainly

adopted to identify diseases in tree crops, including pine

and banana (Table 3).

Adopted techniques There are two main object detec-

tion categories to detect plant and crop diseases from aerial

images, which are two-stage and single-stage algorithms.

Due to its high performance, compared to other region-

based models, Faster R-CNN is the most used two-stage

detector, which is adopted in several studies, including Wu

et al. [82] and Yu et al. [83], whereas, different YOLO

versions are used as the main single-stage detector.

YOLOv3 and YOLOv4 were adopted in Wu et al. [82] and

Yu et al. [83], respectively, to identify pine wilt disease.

Other studies combined object detection and image seg-

mentation techniques to improve the model performance.

The authors in Gomez Selvaraj et al. [31] used a RetinaNet

based on ResNet-50 architecture to detect banana plants

from high-altitude UAV imagery. Then, they cropped the

detected plants from the original image and fed it to VGG-

16 or a custom CNN architecture to classify the detected

plant as diseased or not.

Performance Compared to image classification and

image segmentation techniques, object detection-based

plant and crop diseases identification provides relatively

low performance. For example, the detection performance

achieved in Gomez Selvaraj et al. [31] using the RetinaNet

model (F1-score of around 84% on the training set and

70% on the test set) could be improved using a larger input

data size, but it comes with the cost of longer training time

and higher processing power. Thus, one of the major

drawbacks of object detection approaches is that their

overall performance depends on the flight altitude and also

on the adopted feature extractor.

According to Table 3, object detection-based methods

are the less adopted techniques for plant and crop diseases

identification from UAV imagery due to their relatively

low performances.

7.3 Image segmentation case

Image segmentation aims to classify each pixel in the

image according to its class. In the plant and crop diseases

identification field, deep learning-based image segmenta-

tion techniques provide a more precise location of the

detected disease by classifying each pixel in the image

according to the disease types. The problem of detecting

diseases that are in arbitrary poses and cluttered and/or

occluded environments using object detection algorithms

remains unsolved making image segmentation techniques

more appropriate in such cases.

Case study Image segmentation techniques based on

deep learning models are mostly used to identify plant and

crop diseases from multispectral and hyperspectral images

collected using UAV platforms that fly at different

altitudes.

Adopted techniques Image segmentation algorithms

are divided into two main categories, including semantic

segmentation and instance segmentation. Several studies

adopted image segmentation algorithms to identify crop

and plant diseases from UAV imagery. For example, the

authors in Stewart et al. [71] adopted an instance seg-

mentation algorithm called Mask R-CNN to identify the

Northern Leaf Blight in maize crops from images acquired

through a UAV achieving an average precision of 96%.

However, according to Table 3, semantic segmentation is

the most used image segmentation technique, which is

adopted in several studies. FCN, U-Net, SegNet, PSPNet,

and DeepLab-V3 are the most adopted semantic segmen-

tation, but their performances depend on several factors,

including data type, flight altitude, crop types, and diseases

types.

Performance In the case of plant and crop diseases

identification from high altitude UAV imagery, according

to Table 3, image segmentation models provide better

recognition rates compared to object detection-based

techniques. For example, using object detection models,

the authors in Wu et al. [82] achieved precision rates

varying between 60% and 64% to identify pine disease,

whereas adopting semantic segmentation techniques, the

authors in Qin et al. [59] were able to achieve a precision

rate between 68% and 86%. However, these results did not

only depend on the used model but also the disease type.

Object detection and image segmentation techniques

may require more computational power, where UAV

platforms do not have such a powerful processing system.

To overcome such a problem, several approaches were

adopted over the last few years, including online off-board

data processing Li et al. [48], Hu et al. [37], offline data

processing Bayraktar et al. [13], and lightweight deep

learning models implementation Bouguettaya et al. [17].

However, each of these techniques has its pros and cons.

For example, the online off-board processing method has

some issues in terms of data privacy and security because

we need to transmit the collected data in real-time using

different communications protocols, whereas offline data

processing does not provide real-time solutions in the case

of high-resolution data. Also, lightweight versions of deep

learning models have lower accuracy compared to large

and complex deep learning models.

Deep learning-based crop and plant diseases identifica-

tion through visual data acquired from UAVs may suffer in
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terms of performance due to many factors related to the

crop and diseases characteristics. Thus, several techniques

can be used to improve their performance. For example, the

choice of CNN architectures to extract effective features

play a crucial role in terms of accuracy and speed. Table 3

shows that the selected CNN has a significant impact on the

model accuracy. Using different model-related parameters,

like learning rate, optimizers, normalization, and the

number of epochs, may improve the recognition accuracy.

Also, various bio-inspired meta-heuristic optimization

techniques were proposed over the last few years to

improve the performance of developed models, including

Reptile Search Algorithm (RSA) Abualigah et al. [7],

Arithmetic Optimization Algorithm (AOA) Abualigah

et al. [4], and Aquila Optimizer (AO) Abualigah et al. [6].

7.4 Evaluation metrics

To evaluate the performance of deep learning models,

several evaluation metrics were proposed over the years,

including accuracy, precision, recall, f1-score, among

others. Table 4 summarizes the most used metrics to

evaluate the performance of the developed deep learning-

based computer vision models.

The abbreviations TP, TN, FP, FN in Table 4 denote: -

True Positives (represent the number of correctly identified

diseases); - True Negatives (represent the number of

identified diseases); - False Positives (represent the number

of incorrectly identified diseases); - False Negatives (rep-

resent the number of non-identified diseases). Also, p0 and

pe denote the observed proportional agreement and the

expected agreement by chance, respectively.

8 Conclusions and future directions

In the present paper, we reviewed the existing deep

learning-based computer vision methods to identify and

classify crop and plant diseases from UAV-based aerial

images. Firstly, we introduced the differet UAV types used

in the agricultural field, including rotary-wing, fixed-wing,

and hybrid VTOL UAVs. Secondly, we highlighted various

camera sensors that could be mounted on UAV platforms

adopted to identify crop diseases such as RGB, multi-

spectral, hyperspectral, and thermal cameras. Thirdly, dif-

ferent deep learning models used to identify crop and plant

diseases from aerial images were presented. Finally, we

investigated the most challenging issues that could face

farmers to detect crop diseases from UAV imagery and

Table 4 List of the most used metrics to evaluate deep learning-based computer vision models

Metric Formula Description

Accuracy Acc ¼ TPþTN
TPþTNþFPþFN

The accuracy is the most used evaluation technique that measures how many

times the developed model made the correct prediction in the classification

task.

Recall

(sensitivity)
R ¼ TP

TPþFN
The recall rate indicates how many misidentified plant disease types the

developed model can predict. A better recall rate means lower false-negative

predictions.

Precision P ¼ TP
TPþFP

The precision rate indicates how many of a certain disease class the developed

model incorrectly diagnosed as another disease type. A better precision rate

means lower false-positive predictions.

F1-score (F-

measure)
F1 ¼ 2�P�R

PþR
The F1-score metric represents the harmonic mean of precision and recall rates.

Average

Precision
AP ¼

R 1

0
PðRÞdðRÞ The AP is a metric to evaluate the performance of an object detection model,

which is calculated for each class.

Mean

Average

Precision

mAP ¼ 1
N

PN
i¼1 APi The mAP is the average of AP over all classes. In the case when we have a single

class, mAP and AP are the same metrics.

Kappa

coefficient
Kappa ¼ Po�Pe

1�Pe
The Kappa coefficient is a statistic that measures inter-annotator agreement.

Intersection

over Union

IoU ¼ Predicted area
T

Ground truth area

Predicted area
S

Ground truth area

The IoU measures the overlap between the ground truth area and the predicted

area.

FPS FPS ¼ Number of Frames
Current time�Start time

The FPS is used to compute the detection speed.
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how they can select the appropriate deep learning model

and technology to achieve better results.

Developing accurate, real-time, reliable, and autono-

mous UAV-based systems for plant and crop diseases

identification is becoming more and more essential in

modern agriculture. These systems require complex and

efficient algorithms that can overcome the encountered

problems and challenges, such as lighting condition chan-

ges, disease size, occlusion, and changes in viewpoints,

among others. In addition, it is necessary to combine recent

deep learning architectures and UAV platforms with

advanced technologies to build a system that works effi-

ciently to improve crop productivity. One other major

problem that we have to deal with is agricultural data

availability. Therefore, we need to collect more data or

develop sophisticated algorithms based on generative deep

learning architectures to generate realistic datasets.
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