
High-performance pseudo-anonymization of virtual power plant data
on a CPU cluster

Mahdi Abbasi1,2 • Azam Fazel Najafabadi1 • Seifeddine Ben Elghali2 • Mohamed Zerrougui2 •

Mohammad R. Khosravi1 • Habib Nasser3

Received: 12 April 2021 / Revised: 21 December 2021 / Accepted: 22 December 2021 / Published online: 15 January 2022
� The Author(s) 2022, corrected publication 2022

Abstract
The considerable move towards the use of renewable energy resources has been provided by the digitization of energy

systems with the help of virtual power plants (VPPs). However, due to the coincidence of this move with the introduction

of new technologies in information and communications, joining these systems raises concerns about the privacy of

personal data. The only real-world approach widely used in this case is to anonymize or pseudonymize the information

associated with individuals in data received from distributed measurement devices. In this paper, we propose the method of

classifying received data packets into different flows and assigning different access levels for each flow. This method

makes data pseudonymous. Before this step, the received data, which has a different format, is unionized. To implement

this idea, a tuple space flow classification algorithm is parallelized on a CPU cluster using MPI and OpenMP according to

different scenarios. The CPU cluster consists of one head node and two computational nodes for packet classification

operations. In this research, two scenarios have been used to run the CPU algorithm in parallel. The first scenario uses MPI

and the second scenario uses a combination of MPI and OpenMP libraries. Also, the Tuple Space algorithm has been

implemented on the computing systems using the mentioned libraries in the form of two scenarios using OpenMP and MPI.

According to our results, the increase in the number of processor cores is linearly correlated with the increase in the speed

of classification. Furthermore, while MPI uses more memory than OpenMP, it helps to achieve a higher speed of

classification. In the combined method, the maximum speed of flow classification can be achieved if the number of

processes and threads is equal to the number of processor cores. In other words, when the sum of processes and threads

does not outnumber CPU cores, the least classification time and memory usage can be achieved.

Keywords Virtual power plant (VPP) � Anonymization � Flow classification � Tuple space algorithm � CPU cluster �
MPI � OpenMP

1 Introduction

The energy crisis is on the rise. The rapid growth of

electricity demand, especially in industrial domains with

heavy energy consumption, has necessitated the use of

distributed renewable energy [1, 2]. Simultaneously, with

the introduction of controllable systems for energy storage,

new energies that are more than needed are imported into

electrical storage systems to compensate for uncertainty in

the power generation grid when necessary. Accordingly,

the concept of virtual power plant (VPP) as a successful

method has been proposed to meet the needs in the

aggregation of renewable and distributed energies, respond

to demands for electricity consumption and control elec-

trical energy storage systems to maximize daily income

from the electricity market [3].

The VPP is a set of physical devices producing or

consuming energy [4–6]. In this complex, generators,

storage units, and manageable or flexible loads, each of

which forms a virtual entity and interacts together. Along

with the centralized models for VPP, hierarchical models

& Mahdi Abbasi

abbasi@basu.ac.ir; mahdi-abbasi@lis-lab.fr

1 Department of Computer Engineering, Engineering Faculty,

Bu-Ali Sina University, Hamedan, Iran

2 Aix Marseille Univ, Université de Toulon, CNRS, LIS,

Marseille, France

3 RDI’UP (Innovative Research), 2 Rue Louis Blériot,

78130 Les Mureaux, France

123

Cluster Computing (2023) 26:495–512
https://doi.org/10.1007/s10586-021-03526-7(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-5373-5778
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03526-7&domain=pdf
https://doi.org/10.1007/s10586-021-03526-7

of VPP are also presented. In a typical hierarchical model,

as illustrated in Fig. 1, power generators, storage units, and

low-level flexible loads are used that can be controlled by a

remote terminal unit (RTU).

At the middle level is the VPP node. This node is the

main operator and decision-making and can be an inde-

pendent operator or distributed system operator. Such a

node is responsible for managing supervised RTU and

optimizing the performance of distributed resources as well

as coordinating with the market. The knowledge base

needed to virtualize resources controlled by RTUs is at the

disposal of the VPP node. The required data are collected

heterogeneously at specified time intervals from smart

electronic devices installed in RTUs and transferred to the

VPP node to control and optimize the VPP performance

through standard communication mechanisms [6, 7]. Since

the measurement data are collected from different instal-

lations with inhomogeneous scales and units, a unification

is performed on them to represent them with the same

units, labels, and scales [8]. These data are used for

strategic management of customer energy assets, optimal

planning of controllable and flexible loads, control of

renewable energy producers and storage units, as well as

strategic management of service quality provided to end-

users.

According to Global Data Protection Regulation

(GDPR), any data containing personal information must be

anonymized before going through any of the abovemen-

tioned interrelated processes in the VPP node [7, 9–12].

That is, to establish the required degree of trust in real

persons who join the VPP, a certain level of security and

privacy must be provided. Two common methods for this

objective are anonymization and pseudo-anonymization

[13]. The former is the changing of personal information so

that the individual information about personal or material

relationships can no longer be assigned to a certain person

or determinable natural person or only with an unreason-

ably great expense of time, costs, and effort. The latter is

the processing of personal data in such a way that the

personal data or enlistment of additional information can

no longer be traced to a specific person if this additional

information is to be stored separately and is subject to

technical and organizational measures which ensure that

the personal data cannot be assigned to an identified or

identifiable natural person. In pseudonymization, the data

that would allow for identification are replaced with a code,

for example. However, there is a separate key (e.g., in the

form of a table) between the subject and the pseudonym, so

that it is ultimately still possible to re-identify the subject if

one knows this key. In anonymization, however, all iden-

tifying characteristics are deleted. Due to the re-identifi-

cation possibility provided by pseudo-anonymization, it is

the more commonly accepted approach [9, 10].

Traffic flow classification is essential to a broad range of

network processes and management, e.g., privacy- pre-

serving, quality-of-service (QoS) provisioning, and intru-

sion detection [14, 15]. In this paper, we propose a novel

pseudo-anonymization method that can be parallelly

exploited for VPP data. In this method, the unionized data

are first classified into specific flows regarding their source

and destination addresses. At this step, a unique flow

number is associated with each installation. The corre-

sponding part of data that includes personal information is

VPP Node
(Optimization, Energy management System, Trading)

VPP supervisory platform on a private cloud
(Digital Twin, Market, Forecasting, Supervisory control)

Plant Level

Node
Level

Cloud Level

RTURTU

Fig. 1 The architecture of Information and Communication Technology (ICT) infrastructure of hierarchical VPP

496 Cluster Computing (2023) 26:495–512

123

encrypted and stored in a secure database with the flow

number as the key.

Our parallel flow classification method classifies the

Internet Packets (IPs) into certain flows according to the

address characteristics of their sender and receiver pro-

cesses. While normalizing them for each stream, providing

a certain level of access and confidentiality controls in the

knowledge base of the VPP node. Figure 2, illustrates this

idea. Our method is based on the classification of internet

flows. Also, we explain a method to accelerate our flow

classification on the cluster of CPUs and explain different

scenarios in implementing that method.

Methods of classification are either hardware-based or

software-based. The main disadvantage of hardware-based

methods is their restriction in using memories that can be

used in parallel searching. Moreover, they have high cost

and power consumption [6–8]. As a result, they are only

appropriate for classifications that have a small number of

filters. On the other hand, software-based methods have

recently come to the fore [7, 9, 10]. These methods are

highly flexible and more cost-effective. Software-based

methods have been widely researched. Many studies have

sought to reduce the time and frequency of memory access

by making use of certain techniques for developing algo-

rithms and data structures [16, 17].

Taylor has categorized classification methods. He

mentions four general categories including linear search,

decomposition, tuple space, and decision tree [18]. Each

algorithm is briefly described below.

Linear search In this algorithm, filters are arranged

according to their priority. Each incoming packet is com-

pared with all the filters. The algorithm performs quite

efficiently in terms of memory usage; however, the search

time increases linearly as the number of filters increases.

Decomposition The problem of multidimensional packet

classification can be decomposed into several one-dimen-

sional linear search problems on a single field to apply

proven techniques that could search according to a single

field. In these methods, the speed of searching the routing

table is relatively higher due to their hardware-based

implementation along with the parallel execution of the

algorithm. Their disadvantage, however, is that their

memory usage is remarkably high.

Tuple space This method quickly narrows down the

scope of the search by breaking the filter set into tuples. A

tuple shows the number of specified bits in the fields of the

filter. This group of algorithms is based on the fact that

unique tuples are significantly smaller in number than the

total number of filters in a filter set.

Decision tree It is a binary tree that is made of filter

prefixes. Its nodes hold filters or a subset of filters. Nec-

essary operations are conducted on encountering a single

node depending on the algorithm that uses a decision tree.

The advantage of this method lies in its parallel function-

ing. In decision tree-based algorithms, a decision tree is

produced based on several fields. In such a tree, the leaves

hold filters or subsets of filters. To search by using decision

trees, a search key is built from the fields of the packet

Co
m

m
un

ic
at

io
n

Pr
ot

oc
o

ls

Identifier
m

…Identifier
2

Identifier
1

Flow
Number
Flow 1
Flow 2
Flow 3

…

Flow n

Aggregation

◙◙◙◙ … … **◙◙ …

Unification

¤ ¤ ¤ ¤ ¤ ¤
¤ ¤ ¤ ¤ ¤ ¤
¤ ¤ ¤ ¤ ¤ ¤

ROCKS CPU-CLUSTER

Parallel Classification& Pseudo anonymization

¤ ¤ ¤ ¤ ¤ ¤
¤ ¤ ¤ ¤ ¤ ¤
¤ ¤ ¤ ¤ ¤ ¤

Flow n…Flow 3Flow 2Flow 1
¤¤¤
¤¤¤
¤¤¤
¤¤¤
¤¤¤
¤¤¤

Measurement/Control Data

Encrypted Personal data

RTU

R

◙◙ ◙◙ ◙◙

RTU

* * * * *
*

RTU

… … …

VPP Node

Application Server

Fig. 2 The parallel classification and anonymization of data received from different RTUs on a CPU-cluster

Cluster Computing (2023) 26:495–512 497

123

header. Afterward, the bits or subsets of the bits of the

search key are used to traverse the tree.

From among the four methods described above, the

tuple space algorithm will be investigated in the present

paper. The classification time can be significantly reduced

by parallelization of the algorithm, thus providing a com-

promise between classification time and memory usage.

There are multiple methods for the parallel implemen-

tation of algorithms [19–24]. One common method is to

use a CPU cluster. In the present study, the hierarchical trie

algorithm is parallelized for the first time on a CPU cluster.

The paper is organized as follows. Section 2 discusses

two tuple space algorithms as well as the classification

method in this kind of algorithm. Next, cluster systems and

their programming will be described. Then we will have a

brief review of the literature on computation clusters and

parallelization of packet classification. In Sect. 4, the

implementation of the proposed scenarios for paralleliza-

tion of the tuple space algorithm on a CPU cluster will be

described. The results of the implementations will also be

analyzed and evaluated in this section. The final section

offers some suggestions for further research and practice in

the field.

2 Related work

2.1 Algorithms and tools

This section describes the structure as well as the classifi-

cation method of the tuple space algorithm. Afterwards, we

shall explain cluster computation and the parallelization

tools used for this purpose.

2.1.1 Tuple space algorithm

The tuple space algorithm maps each k-dimensional rule to

a tuple with k elements. In such a way that the set of rules

mapped to regular tuples with k elements have fixed and

definite lengths.

The tuple space algorithm was first proposed by Sriv-

inasan et al. [25]. This method quickly narrows down the

search scope of the fields. The main reason for developing

a tuple space algorithm is the smaller number of separate

tuples compared with the total number of filters. This will

be done by breaking the filter sets into tuples. A tuple

shows the number of bits specified in each field of the filter.

For example, considering 2-dimensional filters, both

F1(01*,111*) and F2(10*,010*) map to the tuple [2, 3]. An

example of a tuple is presented in Table 1.

The execution of this algorithm on the input

(11100,11101,53,25,4) with the filter set of Table 2 is

described in the following. The input

(11100,11101,53,25,4) contains five fields of a packet

header including source IP, Destination IP, source port,

destination port, and protocol fields. These fields are shown

in order from left to right in Table 2

The binary trees produced based on the source and

destination address fields are shown in Fig. 3. The black

nodes represent the filters. The corresponding tuples are

shown next to these nodes.

In this example, the search is first performed on the

corresponding binary tree based on the source and desti-

nation address fields. The search paths are shown in the

dashed line in Fig. 3, respectively from left o right. The

filters corresponding to the tuples encountered on the tra-

versed path are extracted.

In the end, the best matching filter, if any, is specified by

a linear search on the filters extracted in the previous step.

In the above example, the best matching filter is R4.

The filters corresponding to the tuples encountered on

the traversed path are shown in Table 3. As can be seen, the

number of filters obtained is smaller than the total number

of initial filters. This technique can help to remove a sig-

nificant number of filters in large filter sets.

2.1.2 Cluster computing

As clusters are intended to increase the processing power

or the physical security of information and services, they

are more reliable and cost-effective than a single server. In

a cluster, the computers are not required to have the same

performance; they only have to have identical architec-

tures. The difference in architecture will cause problems in

the process of clustering [26, 27].

Some applications of clusters include High-Performance

Computing (HPC), High Throughput Computing (HTC),

High Availability (HA), and High-Performance Systems

(HPS). One of the most important of these is HPC clus-

tering services. In HPC, both the software and hardware

power of a computer is used in parallel to perform a large

amount of processing in a shorter time [28].

Cluster processing is counted as a kind of parallel or

distributed processing. The cluster refers to a set of inde-

pendent computers that are closely interrelated with the

whole system and act together as an integrated resource.

Table 1 Method of creating a tuple

Rule (Source address, destination address) Tuple

R1 (00*,00*) (2,2)

R2 (0*, 01*) (1,2)

R3 (1*, 0*) (1,1)

498 Cluster Computing (2023) 26:495–512

123

They can be indeed regarded as a single system. In most

cases, the components of a cluster connect through a local

network. There should be at least two components at work.

In such a structure, the systems need a mediator for

transferring messages and a scheduler for allocating

resources [26, 28–30].

One of the major services provided by cluster systems is

high-performance computing (HPC). As mentioned above,

this method of clustering is also known as parallel pro-

cessing [31]. What follows is a brief description of the

parallel programming models used in this study.

2.1.2.1 OpenMP OpenMP is an API that is widely used

for parallel programming with C, C??, or Fortran in

shared memory systems. A variety of architectures are

supported in this interface including Windows and Unix

platforms. This tool provides threads in a cluster system

with shared memory. The strength of OpenMP lies in the

fact that the parallel and serial versions of a piece of code

are remarkably similar. Thus, a serial program in OpenMP

can be converted into a parallel program simply by adding

several instructions. Other merits of OpenMP include its

simple and highly standard conventions, cross-platform

structure, and popularity among programmers [31–34].

2.1.2.2 MPI Message passing interface (MPI) is the most

widely used method of parallel programming. MPI deter-

mines the features of a general API to be used on shared-

memory systems such as clusters. MPI is not a tool as such;

it is a communication protocol that, as its name suggests,

specifies how parallel systems can exchange messages

[32–34]. Its major advantage over other methods of

Table 2 Example of a

classification rule set
Filter Source IP Destination IP Source Port Destination Port Protocol

R0 1010* 01* 0,65,536 25,25 6

R1 10,001* 0111* 53,53 443,443 4

R2 0* 1110* 53,53 1024,65,535 17

R3 0* 1100* 53,53 443,443 4

R4 111* 1110* 53,53 25,25 4

R5 1110* * 0,65,535 2788,2788 17

R6 1* 10* 153,53 5632,5632 6

R7 * 1* 53,53 25,25 6

R8 * 10* 0,65,536 2788,2788 17

Fig. 3 Binary trees of source

and destination addresses

Table 3 The selectional rules of

tuple space search based on the

rules in Table 2

Filter Source IP Destination IP Source port Destination port Protocol

R2 0* 1110* 53,53 1024,65,535 17

R4 111* 1110* 53,53 25,25 4

R5 1110* * 0,65,535 2788,2788 17

R6 1* 10* 53,53 5632,5632 6

R7 * 1* 53,53 25,25 6

R8 * 10* 0,65,535 2788,2788 17

Cluster Computing (2023) 26:495–512 499

123

message transfer is its portability and high speed. Its high

speed is explained by the fact that it can be optimized

during execution on any hardware configuration. More-

over, its functions can be called in C, C??, Fortran, Java,

C#, and Python [35–39].

MPI has various implementations for different operating

systems and hardware configurations. One of the imple-

mentations is MPICH that is an open-source Linux

implementation. The power of MPICH programs lies in

their ability to be executed on the majority of important

cluster architectures in the world. MPICH includes the C,

C??, and Fortran libraries required to use MPI-2. For

these reasons, we used MPICH as the message transfer

interface in our experiments.

2.1.2.3 Hybrid method The hybrid method makes

simultaneous use of OpenMP (for cores with shared

memory) and MPI (for those with separate memories).

However, MPI can also be used for the cores within a

single system. Figure 4 illustrates the structure of hybrid

architecture. In this study, we use all of the above three

methods for parallelization of the tuple space algorithm on

a CPU cluster.

2.1.2.4 Parallel packet classification This section first

addresses the algorithms so far parallelized on GPUs and

multi-processor systems and then reviews previous studies

of parallelization on GPU clusters.

Among the first studies of parallelization of packet

classification algorithms on GPUs is the research con-

ducted by Nottingham et al. in 2009. They theoretically

investigated the possibility of parallel implementation of

classification algorithms on GPUs [35].

Hung et al. conducted the first applied study in the field

in 2011 and investigated the parallelization of two classi-

fication algorithms, i.e., BitMap-RFC and BPF, on GPUs in

the framework of CUDA. They used three filters for

implementation, and evaluation of the classification of 65

random packets [22]. Simultaneously, Deng et al. paral-

lelized linear search algorithm with a combined method

that used both GPU and CPU. They confirmed that this

combination could increase processing power and decrease

the delay in comparison with GPU-based methods. Another

study was done in the same year by Pong et al. parallelizing

HaRP and HyperCuts algorithms on multi-core processors.

In their study, the maximum throughput rates obtained for

HaRP and HyperCuts were 30.14 and 4.07 packets per

second, respectively [36]. In 2011, Kang et al. imple-

mented the DBS algorithm (an algorithm based on hash

tables) along with linear search on both GPU and CPU. The

speedup rate of DBS was 11 [37]. In 2014, Varvello et al.

parallelized three algorithms on GPU, i.e., linear search,

tuple space search, and Bloom search. The maximum

speedup rate was 7 [38]. In 2016, Rafiee et al. implemented

the hierarchical trie algorithm on a multi-core processor

and GPU. For their implementation they used a GeForce

GTX 750 graphics card which has four SMs. They used an

Intel Core i7-3770L CPU and utilized CUDA and OpenMP

for parallelization on GPU and CPU, respectively. Among

their five scenarios for GPU and one scenario for CPU, the

scenario which used shared memory on GPU had the best

performance [39].

A major study of parallelization of packet classification

algorithms on multi-core systems is the Zhou et al. [40].

They utilized Pthread for parallel implementation of linear

search algorithm and area-based tree search algorithm on a

16-core processor. The maximum throughput achieved was

11.5 Gbps. Qu et al. conducted an influential study in 2015

and implemented a bit-vector decomposition algorithm on

multi-core processors. Their parallelization was based on

the OpenMP library. Their maximum throughput rate was

14/7 mega packets per second [41]. Tung et al. recently

implemented a new parallel packet classification algorithm

on an eight-core processor. According to their results, the

productivity of the algorithm increased 40 percent on

average. Also, the delay in addition and omission of filters

had an average reduction of 43 percent. Furthermore, they

improved the productivity of cache memory by setting the

parameter of the dependence of CPU on threads and [41].

Recent developments subject to change in the Internet of

Things (IoT), have motivated many researchers to look

solutions for subsequent challenges in energy management,

Processor0 Processor1 Processor2 Processor3

Computa�onal Domain
MPI

Thread0 Thread1 Thread2 Thread0 Thread1 Thread2

OpenMP OpenMP

Fig. 4 Combination of MPI and

OpenMP programming models

500 Cluster Computing (2023) 26:495–512

123

load balancing, security provisioning, and edge computing

[42]. Software Defined Networking (SDN) has provided a

suitable framework for secure processing of the network

flows with reasonable speeds [43, 44]. Recently, clusters of

network processors have been exploited to enhance the

speed of SDN networks. Jafarian et al., have fully analyzed

SDN anomaly detection mechanisms on clusters of com-

puting nodes [45]. Also, Mei-ling et al., have proposed a

novel load balancing algorithm that considers the real-time

processing of SDN loads on the cluster of SDN servers

[46]. It still has limitations concerning the number of its

cores. This is why there is a widespread tendency to cluster

systems. CPU clusters have great potential for develop-

ment. This means that a new computational node can be

simply added to it to use more cores simultaneously. Thus,

in this study, we use a CPU cluster and apply several dif-

ferent scenarios to classify network packets. In the fol-

lowing, we shall review some parallelized implementations

on CPU and GPU to explain the achievements of this type

of parallelization.

Henty et al. used MPI and OpenMP on a CPU cluster for

modeling purposes [19]. They concluded that the perfor-

mance of this combined method was lower than the MPI-

alone method due to its overload. They also indicated that

the OpenMP-alone method performed better than the

combined method in small-scale problems. As their results

suggest, this conclusion could not be generalized to all

parallelization problems, the outcome depending on the

structure of the code as well as on other circumstances.

J. Hutter et al. combined MPI with the shared-memory

method by using a 1024-core cluster. Their results showed

that a major cause of inefficient parallelization in the

combined method was connection delay [47]. Cappello

et al. applied two methods to numerical simulation prob-

lems of aerodynamics, namely, a combined method and an

MPI-alone method. According to their findings, the com-

putation efficiency of a cluster depends several parameters

such as memory access pattern and hardware performance

[48]. In 2018, M. Ferretti et al. implemented Cross Motif

search in a parallel form on a CPU cluster. Their study

indicated that MPI alone performed better than the com-

bination of MPI and OpenMP [49]. Q. Zhao et al. indicated

in 2019 that large-scale numerical simulation for analyzing

discrete spherical forms requires large amounts of time. A

major factor affecting the efficiency of this simulation is

the solving of linear equations in this problem. They used

OpenMP, MPI, and combined method for parallelized

implementation of this problem on the cluster Sugon

TC4600. Their results suggested that the combined method

performed better than the other two methods. According to

their speedup graph, an increase in the number of processes

and threads will increase efficiency as long as this number

is less than processor cores [50].

As this review shows, clusters could provide higher

parallelization capability for algorithms in different com-

binations of programming models. It also discloses that the

efficiency of a programming model is dependent both on

the type of the problem and on the implemented system. In

this line, the present study intends to parallelize the tuple

space algorithm for the first time on a CPU cluster. Below,

we will show that by using different scenarios we can

significantly increase packet processing speed and

throughput rate.

3 Implementation of tuple space algorithm

Here we first take a look at the specifications of the

implemented cluster and then describe the parallelization

of the tuple space algorithm on this cluster by using a

combined model.

3.1 Specifications of the implemented cluster

Our cluster was implemented on the distributed operating

system Rocks which is based on Centos. The typical

topology of the Rocks cluster is illustrated by Fig. 5.

Being an open-source operating system, Rocks has been

designed to simplify processing, development, and man-

agement as well as to enhance performance in parallel

cluster systems. Installation of Rocks on a master node

requires two network adapters. One adapter should be used

for internal communications (eth0) and the other for

external communications (eth1). The operating system

should be first installed on the master node and then on

other computers. Most packages needed for clusters such as

MPICH and OpenMPI are installed as default in Rocks

[51].

In a cluster, communication between systems is per-

formed through switches. We used a D-Link 100/1000

switch. Also, we used two homogeneous systems with

quad-core CPUs for performing computations. Figure 6

depicts the architecture of the systems as well as how they

are connected.

As shown in the figure, each system had a separate CPU

and memory (i.e., symmetric multiprocessing architecture).

The CPU specifications are listed in Table 4. The factors

affecting CPU speed include the number of cores, cache

memory, and bus speed, the most important one being the

number of cores. Increasing the cores allows the CPU to

perform more instructions simultaneously.

Cluster Computing (2023) 26:495–512 501

123

3.2 Implementation of hierarchical trie
algorithm on a CPU cluster

3.2.1 Using one system

The first scenario As described earlier, OpenMP uses

threads for parallelization. All of the systems used have

quad-core CPUs. Therefore, the number of required threads

in the program varies from 1 to 4.

The algorithm of this scenario is presented below. The

inputs of the algorithm are the filter set R, the tree structure

T, the packets H, and the number of threads N. First, by

using the parallelization commands of OpenMP, the for-

loop is split statically among the four input cores which

simultaneously process incoming packets in a parallel

manner (Lines 1 and 2). In the end, the index corre-

sponding to the best matching filter is stored in ruleIn-

dexArray and returned as output. The length of this array is

equal to the number of packets.

The second scenario As in the previous scenario, the

criterion is the number of CPU cores; however, processes

are used instead of threads. The MPI generates some pro-

cesses each of which is assigned a file to execute. MPI runs

the executable file simultaneously in all the cores. The rank

Fig. 5 Clustering in Rocks

D-Link10/100 switch

Head Node

ComputeNode 1ComputeNode 0

Fig. 6 The topology and configuration of the installed CPU Cluster

Table 4 Specifications of the CPU

Processor family Intel Core 2QuadQ6600

Status 56End of Interactive Support

Launch Date Q1007

Lithography 65 nm

of Cores 4

Processor Base Frequency 2.40 GHz

Cache 8 MB L2

Bus Speed 1066 MHz FSB

FSB Parity NO

Cache size 4096 KB

TDP 105 W

VID Voltage Range 0.8500 V-1.500 V

502 Cluster Computing (2023) 26:495–512

123

of each process which is a unique id can be used to separate

the packets corresponding to that process. This feature is

used in this study to divide the packets among different

processes. Figure 2 presents the pseudocode for the algo-

rithm which distributes packets among processes. The

inputs to the algorithm are the total number of processes

(S), the packets (H), and the rank of each process. By use

of the unique rank of each process, the function returns the

index of the first (starti) and the final (endið Þ) packet which
are to be classified by the i-th process. In this pseudocode,

Hi specifies the number of packets assigned to the i-th

process.

After distributing the packets among the processes and

finding the indexes (endi, starti) as well as the number of

the packets for each process, these values along with the

filter set R and the tree structure T are given as arguments

to the classification algorithm. As can be seen in Fig. 7, for

all the processes, the classification algorithm stores the best

matching filter for the i-th process in ruleIndexArrayi,

which corresponds to ruleIndexArray in the range

[starti;endi], and returns it as output.

3.2.2 Using two systems

The first scenario This scenario differs from the second

one-system scenario only in that it uses MPI processes

without making use of any OpenMP thread. In this sce-

nario, the algorithm is executed by a number of different

processes. As mentioned earlier, this CPU cluster consists

of two systems, each with four cores. Therefore, the

maximum number of processes that can be defined is 8.

The second scenario In this scenario, the algorithm is

executed by several processes and threads on the systems

of the CPU cluster. In fact, this scenario uses a combined

MPI-OpenMP method. As this cluster consists of two

4-core systems, for each packet volume the algorithm can

Fig. 7 The throughput of OpenMP and MPI scenarios in a system

Cluster Computing (2023) 26:495–512 503

123

be executed with 1–8 processes and 1–4 threads, giving a

total number of 32 threads. Due to a large number of

results, we have sufficed to only two states, i.e., 8 processes

with 2 and 4 threads.

4 Implementation and evaluation

In this section, first, a software suite is described for gen-

erating the filter sets of experimental headers. We will then

explain our criteria and evaluate the results of the scenarios

presented in Sect. 4.

4.1 ClassBench suite

ClassBench which is a simulator based on the C language

and Linux platform can generate the filters of classifiers as

well as their corresponding headers. This suite produces

filter sets that are similar to actual filter sets. It utilizes two

modules. The first module generates an arbitrary number of

filter sets while the second one generates a set of random

packets based on the statistical features of the filters pro-

duced by the first module [52]. ClassBench can generate

three types of filter sets: Firewall (FW), Access Control

(ACL), and Chain (IPC). This suite has been used in many

studies [53, 54] to generate filters in their evaluation of

packet classification methods.

We also used this suite to produce filter sets corre-

sponding to IPC2 with 1 k filters as well as 32 k, 64 k,

128 k, 256 k, 512 k, and 1024 k incoming packets in order

to evaluate our scenarios. The C?? programs written for

each scenario were executed with different numbers of

packets and the average results were recorded as the final

results of classification.

4.2 Evluation metrics

Various criteria exist for evaluating the efficiency of net-

work packet classification methods. These criteria are

briefly described below.

Throughput: One of the criteria is throughput. It is

defined as the number of packets classified in the unit of

time. It is measured in packets per second (PPS).

Throughput ¼ number of headers� 1024

TClassification=1000
ð1Þ

Classification time Classification time is the elapsed

time during which the classification of packets is per-

formed by the classifier system. It is denoted by Tcllasification
and calculated in two ways for different processes. The first

method is to take the maximum time from among the times

of all processes because it takes this amount of time to

perform all classifications completely. Equation (1) shows

how the time is calculated in this method.

T maxcllasification ¼ maxftcllasification1 ; tcllasification2 ; . . .:tcllasificationnp
ð2Þ

As with the second method, the average time is con-

sidered instead of the maximum time. This is calculated by

dividing the sum of the times by the total number of pro-

cesses. Equation (2) represents this method.

T avgcllasification ¼
Pnp�1

i¼0 tcllasification i

np
ð3Þ

Speedup Speedup is the result of the division of classi-

fication time in the serial mode by classification time in the

parallel mode.

S s; pð Þ ¼ T s,1ð Þ
T s,pð Þ ð4Þ

Here, T (s, p) is the time for parallel execution of the

algorithm, and T(s,1) is the time for serial execution of the

algorithm.

Transfer time Transfer time refers to the time needed for

copying the required data structures from the CPU memory

to the memory of classifier systems.

Processing delay of packets This criterion refers to how

long it takes on average to classify a packet.

Memory usage In this study, an IPC filter set was used.

The number of these filters is 634, for each of which there

exists a source and destination tree with 1648 and 861

nodes, respectively. In Linux, each of these nodes requires

40 bytes of memory, making up a total memory of

40*(1648 ? 861) bytes.

Moreover, a certain amount of memory should also be

allocated to packets, filters, and an output array used for

displaying the results. Given this, the total memory needed

is represented by Memoryi. It should be noted that pro-

cesses have a separate address space. Therefore, to obtain

the memory usage of np processes, this amount of memory

should be multiplied by np.

Total Memory ¼ np �Memoryi ð5Þ

4.3 Sequential implementation

Time Table 5 shows the classification time for different

packet volumes in the two scenarios. The table has three

columns that represent classification time in the sequential

mode as well as using MPI and OpenMP with different

numbers of cores. The results show that, in the sequential

mode, by doubling the number of packets the time will

approximately double. The reason is that the classification

time increases as the number of packets increase.

504 Cluster Computing (2023) 26:495–512

123

As the results indicate, in the OpenMP scenario, the

algorithm execution time decreases as the number of

threads increases. The reason is that the incoming packets

are processed by a larger number of threads and the pro-

cessing load of every single thread is reduced; therefore,

the time required for classification decreases. This finding

also holds for the MPI scenario because the incoming

packets are distributed among different processes and each

process performs independently and in parallel with other

processes. By comparing the execution time of the algo-

rithm in OpenMP and MPI it can be understood that MPI

has a shorter classification time. The packets are processed

with higher speed because MPI does the work through

several processes whereas OpenMP deals with one process

and several threads.

Throughput We defined throughput as the number of

classified packets in the unit of time. Figure 7 shows

throughput for volumes of 64 K, 256 K, and 1024 K as

well as for 2, 3, and 4 processes and threads in the first

scenario (using MPI) and the second scenario (using both

maximum and mean times).

The results show that in the classification of packets

with large volumes, the second mode of the MPI scenario

can classify more packets in the unit of time in comparison

with OpenMP. Also, in both methods, the maximum

number of packets are observed with 4 processes and

threads because all processor cores are involved. The

numbers below the graph denote the number of threads and

processes.

The throughput for 1024 K packets with 4 processes and

4 cores in the OpenMP scenario, the first mode of MPI

scenario, and the second mode of the MPI scenario is

0.079, 0.151, and 0.152. The second mode of the MPI

scenario classifies 0.07 million packets more than

OpenMP.

Memory usage Calculation of the required memory was

explained under 5–2. The memory used by the two pro-

posed scenarios is shown in Fig. 8.

Like the previous graph, this figure covers packet vol-

umes of 64 K, 256 K, and 1024 K as well as 2, 3, and 4

processes and threads. It should be noted in this figure that

memory usage in MPI increases with the number of pro-

cesses because each process has an independent address

space, but it does not increase with the number of threads

in OpenMP.

Table 5 Packet classification time in the sequential mode, in OpenMP, and in MPI on one of the systems

Number of

packets (K)

Sequential Cores OpenMP MPI

Classification time

(ms)

Process delay

(ls)
Classification time

(ms)

Process delay

(ls)
Classification time

(ms)

Process delay

(ls)

64 884.56 13.49 1 979.892 14.95 1694.67 25.85

2 491.732 7.50 850.417 12.97

3 487.796 7.44 570.429 8.70

4 388.963 5.93 430.919 6.57

128 1751.36 13.36 1 1944.89 14.83 3326.84 2.53

2 1039.64 7.93 1685.23 1.28

3 1067.81 8.14 1133.44 0.86

4 933.921 7.12 849.5 0.64

256 3741.95 14.27 1 4747.93 18.11 7054.79 26.91

2 3306.48 12.61 3630.25 13.84

3 3220.28 12.28 2428.54 9.26

4 2864.19 10.92 1785.08 6.80

512 7990.66 15.24 1 10,182.3 19.42 13,391.9 25.54

2 7100.45 13.54 6825.7 13.01

3 6776.84 12.92 4543.04 8.66

4 6223.98 11.87 343.72 6.54

1024 17,507.4 16.69 1 21,023.90 20.04 26,949 25.70

2 14,921.1 14.22 13,760.1 13.12

3 14,188.6 13.53 9066.17 8.64

4 13,115.3 12.5 6942.46 6.62

Cluster Computing (2023) 26:495–512 505

123

4.4 Parallelization on the CPU cluster

Speedup Fig. 9 shows the speedup of different scenarios

run on the CPU cluster concerning to the sequential exe-

cution of the algorithm for the size of 256 K. In this figure,

the combined MPI-OpenMP is illustrated with 8 processes

and 2 and 4 threads.

The figure shows that the speedup parameter has a rising

trend if MPI alone is used. The reason is that with an

increase in the number of cores, more processes are used

for classification. Therefore, the packets are distributed

among more cores, which results in increased speed of

execution and speedup. In the hybrid method, speedup has

an increasing trend, but this increase is not observed with

more than 4 cores. The reason is that the number of cores in

this cluster is 8 and, when using 4 and 2 threads, 8/2 = 4

and 8/4 = 2 processes can bring about desirable results.

With an increase in the number of cores, the number of

processes also increases. This will lead to interference

among the threads of these processes, which could increase

execution time and decrease speedup.

Throughput In Fig. 10, the throughput of the different

scenarios of the CPU cluster is shown for 256 K with 8

processes and 2 and 4 threads. As in the speedup figure, the

hybrid method with 4 more processes has a weaker per-

formance than the MPI-alone method and classifies fewer

packets. The reason was explained above when discussing

the speedup graph.

Memory usage Fig. 11 shows memory usage for the

classification of 1024 K packets in the scenarios run on the

CPU cluster. The results show that, as both methods use

processes, memory usage in both of them is similar and

increases with increasing the number of cores.

The results of the execution of the tuple space algorithm

using OpenMP and MPI scenarios on a quad-core system

show that requires more memory and performs better than

OpenMP. Also, the results from the execution of the

algorithm on the CPU cluster show that MPI, as in the one-

Fig. 8 The memory usage of

OpenMP and MPI scenarios in a

system

Fig. 9 The speedup of 256 K packets using MPI and the hybrid method (OpenMP-MPI) in the CPU cluster

506 Cluster Computing (2023) 26:495–512

123

system mode, requires more memory and has a higher

performance. However, as using more processes means

more memory usage, the highest throughput rate possible

can be achieved by defining the number of processes equal

to the number of systems in MPI and defining the number

of threads equal to the number of cores in each system.

4.5 Paralleization on the GPU

The graphics card used is the Nvidia GeForce GTX 960.

The graphics card has 8 SMs, and each SM has 128 pro-

cessing cores, so a total of 1024 cores are available.

Pre-processing time This includes the time of con-

struction of TupleSpace trees and transferring them and

synthetic packets to the global memory of GPU. In Table 6,

the preprocessing time for the different numbers of packets

has been shown. The preprocessing time doubles as the

number of packets doubles; for example, for 128 K of

packets, this time is 0.33 s, while for 256 k of packets, it

has increased to 0.69 s.

Classification time Table 7 shows the implementation

results of classifying the different number of input packets

with 1024 filters of IPC2 using Tuple Space. The second

column is the computation time of the kernel or the packet

classification time. From the table, it is evident that this

Fig. 10 The throughput of

256 K packets using MPI and

the hybrid method (OpenMP-

MPI) in the CPU cluster

Fig. 11 Throughput of 256 K

packets using MPI and the

hybrid method (OpenMP-MPI)

in the CPU cluster

Table 6 Pre-processing time of the first scenario of a system in a GPU for different test packages

Number of packets 32 k 64 k 128 k 256 k 512 k 1024 k

Preprocessing time (s) 0.11 0.23 0.33 0.69 1.21 2.05

Cluster Computing (2023) 26:495–512 507

123

time doubles when the number of incoming packets dou-

bles. The transfer time also doubles. Transfer time includes

the time for transmission of the filters, the H-trie structure,

the test packets, and the array of results from the system

memory to the GPU memory and also the time of the

transmission of the results from the GPU memory to the

CPU.

4.6 Comparing results

In this section, the performance of all three implementa-

tions is compared. Figure 12 compares the performance of

the parallelization scenarios in classifying 1024 K of

packets using IPC2 filters. As it is clear when using only

one CPU (quad-core CPU), the throughput is 2.3 million

packs per second. The throughput of the CPUclusterb is

4.72 million packs per second. Due to the larger number of

cores and, therefore, faster parallelization, the GPU can

handle 13.23 million more packets in unit time. According

to the results, the throughput of the CPU cluster in classi-

fying the packets with the Tuple Space algorithm is about

two times the throughput of the single system running

Tuple Space. Although the throughput of the classifying

packets with GPU is about four times of the throughput of

the CPU cluster system, comparing 1024 cores of GPU and

only eight cores of CPU cluster, the average throughput of

the CPU cluster is 0.525 MPPS which as compared to

0.004 MPPS throughput of GPU, is considerably higher.

This result confirms that by using appropriate paralleliza-

tion APIs, the efficiency of a CPU cluster with a limited

number of processing cores would be considerably higher

than a GPU with many cores.

5 Conclusion

According to GDPR rules, the provision of an expected

level of privacy and security in granting access privilege to

the collected data from distributed subscribers of any vir-

tual power plant is inevitable. Though this objective is

possible by anonymization and pseudo-anonymization, due

to its re-identification possibility, the latter is the more

common approach in the ICT community.

In this paper, we presented a novel pseudo-anonymiza-

tion method that is based on packet classification. In this

method, the unionized data are first classified into specific

flows regarding their source and destination addresses. At

this step, a unique flow number is associated with each

installation. The corresponding part of data that includes

personal information is encrypted and stored in a secure

database with the flow number as the key.

Among different packet classification algorithms, tuple

space algorithms were selected and its parallel version on a

CPU cluster was constructed. A review of the works con-

ducted in this field showed that implementations of these

algorithms on single-processor systems have not yet

Table 7 Implementation results of classifying packets with the parallel version of Tuple Space algorithm on GPU

Number of packets (K) Kernel time (ms) Transfer time (ms) Total time (ms) Processing delay of each packet (ls)

32 2.203 0.566 2.769 84

64 5.321 1.23 6.551 99

128 9.683 1.522 11.205 85

256 19.332 3.442 22.774 86

512 37.474 7.011 44.485 84

1024 78.631 12.348 90.979 86

0

5

10

15

20

CPU GPU CPU Cluster

TH
RO

U
GH

 (M
PP

S)

CLASSIFICATION SCENARIO

Fig. 12 Comparison of the

throughput of three scenarios

for classifying 1024 packets

using Tuple Space

508 Cluster Computing (2023) 26:495–512

123

achieved desirable throughput and speedup rates and the

low processing capability of these systems tends to

decrease performance. To overcome this issue, the present

paper implemented the tuple space algorithm on a CPU

cluster. The achievements of this study are as follows:

The tuple space algorithm was first implemented and

executed in two scenarios on a quad-core system in a parallel

mode. Parallelization in the first scenario was performed

usingOpenMP and, in the second scenario,MPIwas used for

distribution of packets and parallelization of the algorithm.

The results show that MPI uses more memory but performs

better than OpenMP. Next, the algorithm was implemented

in two scenarios on a CPU cluster consisting of two quad-

core systems. The evaluation results suggest that the first

scenario (which used MPI alone) had better outcomes than

the hybrid method (MPI-OpenMP). However, it should be

noted that MPI uses more memory than OpenMP.

Overall, the findings of this study suggest that the best

method for implementing the tuple space algorithm on a

CPU cluster is to define the number of processes as equal to

the number of systems in MPI and define the number of

threads equal to the number of cores in each system. Thus,

the highest possible throughput rate can be achieved, which

means the largest volume of packets in the unit of time.

In future work, GPU Clusters or a combination of GPU

and CPU clusters can be used to increase the speed of

packet classification. Given the larger number of compu-

tational cores in GPUs, it is expected that packet classifi-

cation speed will be significantly increased through the

optimized parallelization of classification algorithms on

GPU clusters.

Author contributions All authors have participated in the design of

the proposed method and practical implementation. MA and AFN

have coded the method. MA, SBE, MZ, MRK, and HN have com-

pleted the first draft of this paper. All authors have read and approved

the manuscript.

Funding This work has been carried out in the framework of the

European Union’s Horizon 2020 research and innovation program

under grant agreement No 957852 (Virtual Power Plant for Inter-

operable and Smart isLANDS’- VPP4ISLANDS).

Data availability Not applicable.

Code availability The code will be available upon request sent to the

corresponding author.

Declarations

Conflict of interest The authors declare that they have no competing

interests.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Yazdanie, M., Orehounig, K.: Advancing urban energy system

planning and modeling approaches: gaps and solutions in per-

spective. Renew. Sustain. Energy Rev. 137, 110607 (2021)

2. Abbasi, M., Yaghoobikia, M., Rafiee, M., Jolfaei, A., Khosravi,

M.R.: Energy-efficient workload allocation in fog-cloud based

services of intelligent transportation systems using a learning

classifier system. IET Intel. Transport Syst. 14, 1484–1490

(2020)

3. Pudjianto, D., Ramsay, C., Strbac, G.: Virtual power plant and

system integration of distributed energy resources. IET Renew.

Power Gener. 1, 10–16 (2007)

4. Saboori, H., Mohammadi, M., Taghe, R.: Virtual power plant

(VPP), definition, concept, components and types. In: 2011 Asia-

Pacific Power and Energy Engineering Conference, pp. 1–4

(2011)

5. Chen, Y., Li, T., Zhao, C., Wei, W.: Decentralized provision of

renewable predictions within a virtual power plant. IEEE

Transactions on Power Systems (2020)

6. Yu, S., Fang, F., Liu, Y., Liu, J.: Uncertainties of virtual power

plant: problems and countermeasures. Appl. Energy 239,
454–470 (2019)

7. Venkatachary, S.K., Prasad, J., Samikannu, R., Alagappan, A.,

Andrews, L.J.B.: Cybersecurity infrastructure challenges in IoT

based virtual power plants. J. Stat. Manag. Syst. 23, 263–276
(2020)

8. Batista, E., Solanas, A.: A uniformization-based approach to

preserve individuals’ privacy during process mining analyses.

Peer-to-Peer Netw. Appl. 14(3), 1–20 (2021)

9. Jiang, H., Li, J., Zhao, P., Zeng, F., Xiao, Z., Iyengar, A.:

Location privacy-preserving mechanisms in location-based ser-

vices: a comprehensive survey. ACM Comput. Surv. 54, 1–36
(2021)

10. Lee, J.-S., Jun, S.-P.: Privacy-preserving data mining for open

government data from heterogeneous sources. Gov. Inf. Q. 38,
101544 (2021)

11. Alamaniotis, M., Bourbakis, N., Tsoukalas, L.H.: Enhancing

privacy of electricity consumption in smart cities through mor-

phing of anticipated demand pattern utilizing self-elasticity and

genetic algorithms. Sustain. Cities Soc. 46, 101426 (2019)

12. Zajc, M., Kolenc, M., Suljanović, N.: 11—Virtual power plant

communication system architecture. In: Yang, Q., Yang, T., Li,

W. (eds.) Smart Power Distribution Systems, pp. 231–250.

Academic Press, New York (2019)

13. Syed, S., Syed, M., Syeda, H.B., Garza, M., Bennett, W., Bona,

J., et al.: API driven on-demand participant ID pseudonymization

in heterogeneous multi-study research. Healthc. Inform. Res. 27,
39–47 (2021)

14. Abbasi, M., Najafi, A., Rafiee, M., Khosravi, M.R., Menon, V.G.,

Muhammad, G.: Efficient flow processing in 5G-envisioned

Cluster Computing (2023) 26:495–512 509

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

SDN-based Internet of Vehicles using GPUs. IEEE Trans. Intell.

Transp. Syst. (2020)

15. Abbasi, M., Shokrollahi, A.: Enhancing the performance of

decision tree-based packet classification algorithms using CPU

cluster. Clust. Comput. 23, 3203–3219 (2020)

16. Abbasi, M., Fazel, S.V., Rafiee, M.: MBitCuts: optimal bit-level

cutting in geometric space packet classification. J. Supercomput.

76, 3105–3128 (2020)

17. Abbasi, M., Tahouri, R., Rafiee, M.: Enhancing the performance

of the aggregated bit vector algorithm in network packet classi-

fication using GPU. PeerJ Comput. Sci. 5, e185 (2019)

18. Taylor, D.E.: Survey and taxonomy of packet classification

techniques. ACM Comput. Surv. 37, 238–275 (2005)

19. Henty, D.S.: Performance of hybrid message-passing and shared-

memory parallelism for discrete element modeling. In: Proceed-

ings of the 2000 ACM/IEEE conference on Supercomputing,

p. 10 (2000)

20. Pao, D., Liu, C.: Parallel tree search: an algorithmic approach for

multi-field packet classification. Comput. Commun. 30, 302–314
(2007)

21. Nottingham, A., Irwin, B.: Parallel packet classification using

GPU co-processors. In: Proceedings of the 2010 Annual Research

Conference of the South African Institute of Computer Scientists

and Information Technologists, pp. 231–241 (2010)

22. Hung, C.-L., Lin, Y.-L., Li, K.-C., Wang, H.-H., Guo, S.-W.:

Efficient GPGPU-based parallel packet classification, Presented

at the Trust, Security and Privacy in Computing and Communi-

cations (TrustCom) (2011)

23. Hung, C.-L., Guo, S.-W.: Fast parallel network packet filter

system based on CUDA. Int. J. Netw. Distrib. Comput. 2,
198–210 (2014)

24. Hung, C.-L., Lin, C.-Y., Wang, H.-H.: An efficient parallel-net-

work packet pattern-matching approach using GPUs. J. Syst.

Architect. 60, 431–439 (2014)

25. Srinivasan, V., Suri, S., Varghese, G.: Packet classification using

tuple space search. In: Proceedings of the Conference on Appli-

cations, Technologies, Architectures, and Protocols for Computer

Communication, pp. 135–146 (1999)

26. López, P., Baydal, E.: Teaching high-performance service in a

cluster computing course. J. Parallel Distrib. Comput. 117,
138–147 (2018)

27. Rico-Gallego, J.A., Dı́az-Martı́n, J.C., Manumachu, R.R., Las-

tovetsky, A.L.: A survey of communication performance models

for high-performance computing. ACM Comput. Surv. 51, 126
(2019)

28. Wu, X., Li, W.: Performance models for scalable cluster com-

puting. J. Syst. Architect. 44, 189–205 (1998)

29. Martin, R.P., Vahdat, A.M., Culler, D.E., Anderson, T.E.: Effects

of communication latency, overhead, and bandwidth in a cluster

architecture. In: ACM SIGARCH Computer Architecture News,

pp. 85–97 (1997)

30. Buyya, R., Jin, H., Cortes, T.: Cluster computing. Future Gener.

Comput. Syst. 18, 5–8 (2002)

31. Talia, D.: Models and languages for high-performance comput-

ing. In: Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C.

(eds.) Encyclopedia of bioinformatics and computational biology,

pp. 215–220. Academic Press, Oxford (2019)

32. Smith, L., Bull, M.: Development of mixed mode MPI/OpenMP

applications. Sci. Program. 9, 83–98 (2001)

33. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP

parallel programming on clusters of multi-core SMP nodes. In:

2009 17th Euromicro International Conference on Parallel, Dis-

tributed and Network-Based Processing, pp. 427–436 (2009)

34. Grant, R.E., Olivier, S.L.: Chapter 6—Networks and MPI for

cluster computing. In: Prasad, S.K., Gupta, A., Rosenberg, A.L.,

Sussman, A., Weems, C.C. (eds.) Topics in parallel and

distributed computing, pp. 117–153. Morgan Kaufmann, Boston

(2015)

35. Nottingham, A., Irwin, B.: GPU packet classification using

OpenCL: a consideration of viable classification methods. In:

Proceedings of the 2009 Annual Research Conference of the

South African Institute of Computer Scientists and Information

Technologists, pp. 160–169 (2009)

36. Pong, F., Tzeng, N.-F.: HaRP: rapid packet classification via

hashing round-down prefixes. IEEE Trans. Parallel Distrib. Syst.

22, 1105–1119 (2011)

37. Kang, K., Deng, Y.S.: Scalable packet classification via GPU

metaprogramming. In: Design, Automation & Test in Europe

Conference & Exhibition (DATE), pp. 1–4 (2011)

38. Varvello, M., Laufer, R., Zhang, F., Lakshman, T.: Multi-layer

packet classification with graphics processing units. In: Pro-

ceedings of the 10th ACM International on Conference on

emerging Networking Experiments and Technologies,

pp. 109–120 (2014)

39. Abbasi, M., Rafiee, M.: A calibrated asymptotic framework for

analyzing packet classification algorithms on GPUs. J. Super-

comput. 75, 6574–6611 (2019)

40. Zhou, S., Qu, Y.R., Prasanna, V.K.: Multi-core implementation

of decomposition-based packet classification algorithms. In:

International Conference on Parallel Computing Technologies,

pp. 105–119 (2013)

41. Qu, Y.R. et al.: Optimizing many-field packet classification on

fpga, multi-core general purpose processor, and gpu. In: Pro-

ceedings of the Eleventh ACM/IEEE Symposium on Architec-

tures for Networking and Communications Systems, pp. 87–98

(2015)

42. Razaque, A., Jararweh, Y., Alotaibi, B., Alotaibi, M., Hariri, S.,

Almiani, M.: Energy-efficient and secure mobile fog-based cloud

for the Internet of Things. Future Gener. Comput. Syst. 127, 1–13
(2022)

43. Seyhan, K. et al.: Lattice-based cryptosystems for the security of

resource-constrained IoT devices in post-quantum world: a sur-

vey. Clust. Comput. (2021)

44. Sah, D.K. et al.: Load-balance scheduling for intelligent sensors

deployment in industrial internet of things. Clust. Comput. (2021)

45. Jafarian, T., Masdari, M., Ghaffari, A., Majidzadeh, K.: A survey

and classification of the security anomaly detection mechanisms

in software defined networks. Clust. Comput. 24, 1235–1253

(2021)

46. Chiang, M.-L., et al.: SDN-based server clusters with dynamic

load balancing and performance improvement. Clust. Comput.

24, 537–558 (2021)

47. Hutter, J., Curioni, A.: Dual-level parallelism for ab initio

molecular dynamics: reaching teraflop performance with the

CPMD code. Parallel Comput. 31, 1–17 (2005)

48. Cappello, F., Etiemble, D.: MPI versus MPI? OpenMP on the

IBM SP for the NAS Benchmarks. In: Supercomputing, ACM/

IEEE 2000 Conference, p. 12 (2000)

49. Ferretti, M., Santangelo, L.: Hybrid OpenMP-MPI parallelism:

porting experiments from small to large clusters. In: 2018 26th

Euromicro International Conference on Parallel, Distributed and

Network-Based Processing (PDP), pp. 297–301 (2018)

50. Jiao, Y.-Y., Zhao, Q., Wang, L., Huang, G.-H., Tan, F.: A hybrid

MPI/OpenMP parallel computing model for spherical discontin-

uous deformation analysis. Comput. Geotechn. 106, 217–227

(2019)

51. Katz, M.J., Papadopoulos, P.M., Bruno, G.: Leveraging standard

core technologies to programmatically build linux cluster appli-

ances. In: Proceedings of IEEE International Conference on

Cluster Computing, pp. 47–53 (2002)

52. Taylor, D.E., Turner, J.S.: ClassBench: a packet classification

benchmark. In: Proceedings IEEE 24th Annual Joint Conference

510 Cluster Computing (2023) 26:495–512

123

of the IEEE Computer and Communications Societies,

pp. 2068–2079 (2005)

53. Zheng, J., Zhang, D., Li, Y., Li, G.: Accelerate packet classifi-

cation using GPU: a case study on HiCuts. In: Park, J.J., Stoj-

menovic, I., Jeong, H.Y., Yi, G. (eds.) Computer Science and its

Applications: Ubiquitous Information Technologies,

pp. 231–238. Springer, Berlin (2015)

54. Zhou, S., Singapura, S.G., Prasanna, V.K.: High-performance

packet classification on gpu. In: 2014 IEEE on High Performance

Extreme Computing Conference (HPEC), pp. 1–6 (2014)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Mahdi Abbasi is an Associate

Professor of Computer Archi-

tecture at Bu-Ali Sina Univer-

sity, Hamedan, Iran. He

received his B.Sc. degree in

Computer Engineering and his

M.Sc. degree in Computer

Architecture from Sharif

University of Technology, Iran,

in 2000 and 2005 respectively.

He received his Ph.D. in com-

puter Architecture, from

University of Isfahan, in 2012.

Since 2021, he is a Postdoctoral

Researcher at the University of

Aix-Marseille and he is with the LIS (UMR 720 CNRS) Lab. His

main research interests include Computer Architecture, IoT, Opti-

mization and High-Performance Computing.

Azam Fazel Najafabadi received

M.Sc. degree in computer net-

works from Bu-Ali Sina

University, in 2017. Her

research interests include Com-

puter Networks, Network Pro-

cessors, distributed systems and

Internet of things (IoT).

Seifeddine Ben Elghali was born
in Téboulba, Tunisia, in 1981.

He received the B.Sc. degree in

Electrical Engineering in 2005

from ENIT, Tunis, Tunisia, the

M.Sc. degree in Automatic

Control in 2006 from the

University of Poitiers, Poitiers,

France, and the Ph.D. degree in

Electrical Engineering in 2009

from the University of Brest,

Brest, France.After receiving

the Ph.D. degree, he joined the

French Naval Academy, Brest,

France as a Teaching and

Research Assistant. Since 2010, his is an Associate Professor of

Electrical Engineering at Aix-Marseille University, Marseille, France.

His current research interests include modeling and control of

renewable energy applications.

Mohamed Zerrougui is an

Associate Professor in Auto-

matic Control. He received his

engineering degree in Industrial

Control from the department of

electronics in 2007, he obtained

his Master’s Degree in Auto-

matic Control from the Univer-

sity of Reims Champagne

Ardenne (URCA), France, in

2008. He received his PhD

degree in Automatic Control

from the Université Henri

Poincaré of Nancy I, France, in

2011. He was a postdoctoral

fellow at the Ecole Polytechnique de Bruxelles between 2011 and

2012. Since 2013, he has been an Associate Professor an Associated

Professor in Automatic Control at the Université d’Aix Marseille and

is with LIS (UMR CNRS 7020) lab. His main research interests are in

energy management, smart grid, distributed control, filtering, esti-

mation and diagnosis of complex systems.

Mohammad R. Khosravi is now

with the Department of Com-

puter Engineering, Persian Gulf

University, Bushehr, Iran, and

has been with Department of

Electrical and Electronic Engi-

neering, Shiraz University of

Technology, Shiraz, Iran.

Mohammad has studied electri-

cal engineering with expertise in

communications and signal

processing for BSc, MSc and

PhD degrees. His main interests

include statistical signal and

image processing, medical

bioinformatics, radar imaging and satellite remote sensing, computer

communications.

Cluster Computing (2023) 26:495–512 511

123

Habib Nasser holds three high

degrees as mechatronic engi-

neer, Master in information

technology and Ph.D. in com-

plex systems (data scientist) and

is specialist in smart technolo-

gies development. At Lis-Lab

Habib has developed algorithms

and mechatronic system for

autonomous systems based on

the analysis of mutli-sensors. He

was previously a scientific

research (qualified ISO13485)

at Symme Lab to realize an

advanced simulator for infant

and analyse the problems of bronchitis. He has equipped the body

with flexible sensors and a web-based application to clean and analyse

the different information. At Ecosteering, he has developed a patented

connected occupational clothing to detect painful postures in real

time, especially to promote active aging and mitigate MSDs. At

RDI’UP, Habib is the CEO and co-founder and he is interested in ML

field and data analytics in healthcare and energy sectors.

512 Cluster Computing (2023) 26:495–512

123

	High-performance pseudo-anonymization of virtual power plant data on a CPU cluster
	Abstract
	Introduction
	Related work
	Algorithms and tools
	Tuple space algorithm
	Cluster computing
	OpenMP
	MPI
	Hybrid method
	Parallel packet classification

	Implementation of tuple space algorithm
	Specifications of the implemented cluster
	Implementation of hierarchical trie algorithm on a CPU cluster
	Using one system
	Using two systems

	Implementation and evaluation
	ClassBench suite
	Evluation metrics
	Sequential implementation
	Parallelization on the CPU cluster
	Paralleization on the GPU
	Comparing results

	Conclusion
	Author contributions
	Open Access
	References

