
Multi-domain network infrastructure based on P4 programmable
devices for Digital Data Marketplaces

Sara Shakeri1 • Lourens Veen2 • Paola Grosso1

Received: 30 April 2021 / Revised: 21 September 2021 / Accepted: 24 November 2021 / Published online: 24 January 2022
� The Author(s) 2021

Abstract
There are many organizations interested in sharing data with others, and they can do this only if a multi-domain secure

platform is available. Such platforms, often referred to as Digital Data Marketplaces (DDMs), require that all the trans-

actions follow the pre-defined policies that are established by the participating parties i.e, domains. However, building a

multi-domain network infrastructure in which each domain can manage its own connectivity while at the same time all of

the transactions follow the sharing agreements is still a challenge. In this paper, we introduce a multi-domain containerized

DDM that is built upon a P4-based network. It can handle the communication of multiple domains and guarantee that the

operation of transactions is based on the pre-defined policies. We also studied the setup performance by defining a model

which we demonstrated follows the real measurements, and we can use for decision making. The results also show the low

overhead of using P4 switch in network setup time. In addition, we conducted a security evaluation which showed that our

P4-based network setup is secure against most types of attacks.

Keywords Digital Data Marketplaces (DDMs) � P4 program � Programmable networks � Data sharing � Container

1 Introduction

Data sharing is currently emerging as an essential element

in fields like healthcare systems [1], supply chain logis-

tics [2], and IoT devices in smart cities [3]. Digital Data

Marketplaces (DDMs) [4] are emerging frameworks that

provide secure data sharing mechanisms among partici-

pating parties. In DDMs, data providers and data con-

sumers exchange access to data for monetary compensation

in business settings or as part of open science practices in

research environments. In both cases a DDM needs to

provide a means of data exchange and/or processing, while

implementing and enforcing sharing policies in its

infrastructure. In some cases, legal restrictions keep data

from being exchanged at all, for example when data are

privacy sensitive. Still, even under these constraints, it is

possible to combine data from different sources through

techniques like distributed machine learning, secure mul-

tiparty computation, and homomorphic encryption. Initial

implementations of such algorithms are becoming avail-

able in systems like Vantage6 [5], PySyft [6], MPyC [7]

and IBM’s Federated Learning Library [8].

Data exchange entails copying data (sub)sets from one

system to another. These DDMs operations lead to very

stringent and specific requirements for the underlying

network, in terms of security, isolation, and multi-domain

operations.

DDMs algorithms are communication intensive, and in

order for a DDM to support them efficiently, processes

running on different independent systems will need to be

able to exchange data directly still maintaining the security

level specific to the policies governing the application.

In data exchange, many transactions may be active

simultaneously and need to be isolated from one another.

In addition, a DDM is a multi-domain environment. For

preserving privacy and providing the required security all

& Sara Shakeri

s.shakeri@uva.nl

Lourens Veen

l.veen@esciencecenter.nl

Paola Grosso

p.grosso@uva.nl

1 Multiscale Networked Systems (MNS) Research Group,

University of Amsterdam, Amsterdam, The Netherlands

2 Netherlands eScience Center, Amsterdam, The Netherlands

123

Cluster Computing (2022) 25:2953–2966
https://doi.org/10.1007/s10586-021-03501-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-3763-5424
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03501-2&domain=pdf
https://doi.org/10.1007/s10586-021-03501-2

the connections related to each participating party, i.e,

domain, has to be managed by its own domain

administrator.

For building such a DDM we use containers. In fact,

containers can provide the required isolation between

sharing transactions. When a container is deployed on a

host, each container’s resources, such as its file system and

network namespace, are placed in an isolated environment

which no other container can access. In each sharing

transaction, containers act on behalf of the participating

party to exchange data. Containers belonging to different

domains have to be able to connect to each other in a

secure manner so data can be transferred from one party to

the other.

In our previous work, we showed how we can build a

single-domain data sharing platform by using contain-

ers [9]. We used both Kubernetes [10] and Docker

Swarm [11] as container network orchestrators for creating

network overlays between containers and setting up filter-

ing rules between them in order to improve security and

performance in the network. However, these methods are

not applicable in a multi-domain environment: in all of

these frameworks one node should be selected as a master

node so it has access to all of the containers in the network

and can manage all of the connections. In a multi-domain

scenario, each participating party should be able to manage

its own domain independently from other domains partic-

ipating in the sharing platform. Building a container-based

DDM network infrastructure that can integrate with the

per-domain domain orchestrators is still an open challenge,

which we address in this paper.

For building a multi-domain DDM we adopt P4 as the

network data plane technology. Deploying P4 pro-

grammable switches satisfies our requirements, i.e., per

domain orchestration and managing container connections.

All the connections between containers will be pro-

grammed in such switches and can be handled by the

administrator. In addition, the connections can be recon-

figured when it is needed.

In Sect. 2, we will provide the motivation for adopting

P4, and a background on P4 programs and integration of

containers with P4 switches. Then, we will present the

DDM architecture (Sect. 3); we will explain how two

domains cooperate with each other to set up a connection

between containers (Sect. 4). We will extensively discuss

the setup time required to get to an operational network in

Sect. 5. We will present our proof of concept implemen-

tation (Sect. 6) where we show how the network and the

whole chain of connections between domain orchestrators

and switches work. In Sect. 7 we show the measurements

of setup time and discuss the overhead of using P4

switches. The security implications of using P4 as under-

lying network technology are discussed in Sect. 8. We

conclude our article discussing our findings (Sect. 9) and

relating our work to previous efforts (Sect. 10).

2 Containerized P4-based DDM

Motivation for P4 adoption For constructing a container-

based DDM we follow three main goals:

– Constructing a multi-domain environment in which

each domain can manage its own configuration because

a DDM consists of different, independently managed,

and configured domains, with data sharing to be done

across the domains.

– Improving security through better connection isolation

between containers by controlling their network con-

nections and providing more advanced filtering

possibilities.

– Providing programmability in the network. Because of

the dynamic behavior of a container-based network, it

is important to provide the ability to program and

change the network configurations instantly. Especially

in a DDM that sharing policies may change at any

moment.

We selected the P4 switch for connecting containers to be

able to handle all the mentioned requirements in one setup.

In overlay technologies like Calico or Cilium [12, 13] fil-

tering rules can be installed between containers, so they

can provide required isolation. However, in these methods,

all the hosts are under the control of one master node that

makes a cluster. Therefore, these methods are single-do-

main and are not applicable in our case.

The simplest way of connecting containers in a network

that can be used in a multi-domain environment is using the

Docker bridge in each domain [14]. However, in this

method, all the containers are connected to the same

bridge. Therefore, are connected to each other and it is not

possible to set the filtering rule between them in the host.

Therefore, it cannot provide the required network isolation

between containers.

The other method can be deployed in a multi-domain

environment is using a user-defined network and defining a

separate bridges for each group of containers, so that the

containers in different network bridges are separated from

each other [15]. It can provide better isolation compared to

the single Docker bridge method, however, still, the con-

tainers that are connected to the same bridge are connected

to each other and their connections cannot be filtered in the

host so the containers are not fully isolated.

In our setup, in each domain, the P4 switch is in charge

of routing the traffic based on match-action rules inde-

pendently from other domains so it can be deployed in a

multi-domain environments. In addition, before setting up

2954 Cluster Computing (2022) 25:2953–2966

123

the rules in the switch there is not any kind of connectivity

between containers. Therefore, every single container’s

connectivity can be controlled by the switch. This provides

better isolation between containers compared to available

methods. Finally, any connection and filtering rules

between containers can be programmed dynamically to

provide programmability.

In addition to the aforementioned capabilities, P4 can

provide more features in the DDM:

– As the packet’s header can be parsed in the P4 switch

(that is explained in the next section), every single field

of the header at different layers can be checked against

match rules. This provides high flexibility in deploying

the filtering rules.

– As containers are individually connected to the P4

switch interfaces, different kinds of telemetry informa-

tion, like the amount of traffic that is being transferred

via a specific interface, or the time of entering of a

packet to that interface can be tracked in P4 [16, 17].

This will help for managing the traffic preventing

different kinds of attacks [18–20] to improve security.

– The P4 program can be run on SmartNICs [21, 22].

Therefore, the packet processing can be offloaded to the

hardware, and the host’s CPU is not involved anymore.

This leads to better performance.

– New protocols can be defined in the P4 program to

transfer extra information between multiple domains.

For example, for our future work, we are adding extra

auditing information to the packets that are being

transferred between containers to improve the security

of the network.

In the rest of this section, we give a background about P4

program and then an explanation about containers’ network

configuration is presented.

P4 language P4 is a high-level language for program-

ming packet processing systems that is designed to pro-

gram the data plane of packet forwarding devices. It is

widely used by researchers, network owners, and devel-

opers as the new paradigm of network programmability

that does not have the limitations of Openflow [23].

P4 is more flexible by offering the capability of defining

new headers and making a protocol-independent system.

P4 devices can be reconfigured in real-time. In addition, P4

is a target independent program and can be deployed on

different forwarding hardware. A compiler is used to map

those programs to target devices. The architecture of P4

compiler helps to make it target independent by separating

language and the target model. This is an advantage in

deploying P4 language in a multi-domain DDM, as the P4

program can be used in different domains infrastructure

that the target hardware is not necessarily the same.

A typical packet processing pipeline in P4 includes

parser, ingress match-action, egress match-action. The

parser is a stage that parses the packet according to the

header definition that is performed by user in program.

Both ingress and egress match-action includes logical

tables that match the packet against protocol field and

determine the required actions to apply to packet. Actions

determine common modifications to packets, such as

changing header fields, adding/removing headers or packet

cloning.

Containerized DDM Containers use Linux network

namespaces to isolate containers from host network

namespace. A Linux network namespace is a virtual net-

work that isolates a process’s network connectivity and

resources (i.e. network interfaces, route tables, and rules)

from other processes. For example, when Docker creates

and runs a container, it creates a separate network

namespace and puts the container into it. Then, Docker

connects the new container to a Linux bridge docker0 using

a veth pair. This also enables the container to be connected

to the host network and other containers in the same bridge.

Using a Docker bridge or other overlay methods for con-

necting containers cannot provide isolation between con-

tainers on the same overlay network, however, complete

isolation between containers is what is needed in a DDM

platform. In this paper, the connection between containers

is limited to switch configurations that can be completely

programmed and changed in any time. By this method,

maximum isolation can be provided in a network of

containers.

3 Architecture

Figure 1 shows the architecture of the multi-domain con-

tainerized DDM with three distinctive blocks: the orches-

tration block in charge of the coordination of the operations

in the DDM, the containerization block in charge of cre-

ating and management of containers, and the networking

block in charge of setup the P4 network and the connection

between containers and the outside world.

In each domain, all of the components are under the

control of the domain administrator. The domain admin-

istrator can handle and manage all connections based on

the policies and rules that have been established in the

DDM. The role of each component in the architecture is as

follows:

– Orchestration block:

– Domain administrator Manages all components in

its own domain and controls the sequence of steps

for running the execution of a sharing request.

Cluster Computing (2022) 25:2953–2966 2955

123

– Message transfer controller To make the connection

between containers of multiple domains, they

should be able to exchange necessary information.

The message controller is in charge of sending/

receiving the required information to/from the other

domains involved in the sharing request.

– ID generator In each domain every single connec-

tion between two containers is identified by a

unique number. We call this the connection ID. This

number identifies the destination port of the client

container, i.e, the initiator. The ID generator gen-

erates this unique ID in each domain.

– Policy store All of the policies and rules about

permissions to access specific data in a domain are

recorded in the policy store. Before running any

request, the domain administrator checks in the

policy store if the request is permitted or not. If it is

not permitted the request will be rejected.

– Containerization block

– Docker agent This component is in charge of setting

up all of the required configurations for creating a

container and its network interfaces.

– Docker container The containers are created based

on the incoming requests.

– Networking block

– Switch runtime management This component sets

the appropriate rules for handling the switch con-

nections based on the information that is taken from

the Docker agent and the generated connection ID.

The rules allow traffic with a specific connection ID

(port number) to a specific container.

– Software P4 switch This is the core networking

element that will switch the traffic appropriately.

4 Workflow scenario

The operation of our proposed architecture can be better

understood by looking at a concrete scenario. We consider

two domains, domain A and domain B, in a DDM and

assume the whole architecture described in the previous

section is running on two servers, one in each domain (see

Fig. 2). Therefore, Domain A is a Linux server that is

connected to other server in Domain B.

In the following, we will guide the reader step by step

through each of the operations that occur to set up the

connection between containers in the two domains for

running a sharing request.

– Step 1 When a request arrives at domain B that asks for

access to an asset from domain A, the domain

administrator of domain B sends a request to the

administrator of domain A through the message con-

troller. The request identifies the data that it wants to

access. It also asks for the unique ID that is needed for

starting the connection between containers.

– Step 2 The domain administrator in domain A checks

the request permission in the policy store and if the

request is allowed it starts the required actions for

making the connection.

– Step 3 In this step the ID generator in domain A creates

the connection ID.

– Step 4 The domain administrator asks the Docker agent

to create the necessary containers to satisfy the request.

Containers are initially created without any interfaces.

Then, the Docker agent configures the network

Fig. 1 A Multi-domain containerized DDM architecture. It includes

three main blocks: orchestration block, containerization block and

networking block

Fig. 2 Steps for making the connection between containers of two

different domains using a unique connection ID

2956 Cluster Computing (2022) 25:2953–2966

123

interface of the container with a specific IP address, and

after that it peers the container interface with one

virtual interface (veth) of the host server. It must be

noted that at this stage the container is still not

connected to the switch.

– Step 5 After the container has been created and its IP

address and interfaces are set, the domain administrator

instructs the switch runtime controller to connect the

container interface to one of the ports of the software

P4 switch.

– Step 6 Here the domain administrator generates the

rules to allow establishing a connection between the

two containers of the sharing request and to set the rules

in the switch. Two rules are set on each side: one for

sending packets from the container via the switch to the

other domain, and one for sending packets coming in

from the outside to the related container. In this step,

the server-side is configured. The rule for incoming

packets matches packets sent to a specific destination

port (the connection ID), sets the destination IP address

and port number to that of the container and the service

running inside it, then sends it to the switch port to

which the container is connected. The rule for outgoing

packets matches packets from the container’s switch

port, sets the source IP address to the host’s public IP

address and the source port number to the connection

ID.

– Step 7 When all of the required configurations are set in

Domain A, the domain administrator sends the unique

ID out to Domain B. This also shows that Domain A is

ready for a connection with that specific ID.

– Step 8 Like domain A, domain B creates the container

related to this request. The interface configuration is the

same as domain A.

– Step 9 In this step the domain administrator connects

container to the switch port via the switch runtime.

– Step 10 Finally, the domain administrator sets two rules

that are needed for making the connection to the

specific container based on the unique ID. On the

client-side, the combination of destination IP address

and destination port is unique. Therefore, packets sent

from a local container to the switch are matched with

these two specifications and then sent out to the server-

side. The second client-side rule is for packets coming

from the server-side. These are matched by the same

unique combination (which here is the source IP

address and source port number) and then sent to the

specific container.

By performing all of these steps the DDM creates a con-

nection between two containers in a multi-domain envi-

ronment. The whole connection between domains is

isolated and based on a unique number that is specific to

that request and is not repeated by any other connection,

hence guaranteeing isolation between concurrent requests.

5 Request setup time

In a containerized DDM, the setup time is the time from

when a client issues a request until when the network is

ready for starting the data transfer between containers. In

many cases, it is important and critical for a client to know

an approximate setup time of the request; for example, for

federated machine learning the knowledge of resource

availability is critical for running the model efficiently.

In a single domain DDM, as there is one centralized

controller that is handling all of the resources, the network

setup is simple and straightforward. However, in a multi-

domain DDM, as domain administrators have to commu-

nicate with each other, and all of the setup processes in one

domain are separated from the other one, setup is lengthier.

In fact, the client-side should be sure that the destination is

ready for establishing the connection.

There are two approaches we can take to measure the

setup time: one is a Global view that considers the time

from when a request comes in to when the network is ready

for data transfer. It is measured by setting a timestamp

from starting a request until it is ready to start transferring

data.

The other one is a Step view which looks at the duration

of each individual step. We measured the duration of each

step by setting timestamps before and after running each

step. For example, for measuring the duration of step 4,

that is creating containers in domain A, we register the time

stamp before running step 4: CAðstartðS4ÞÞ. It is a times-

tamp of the clock of domain A related to the start point of

step 4. Likewise, we register the time stamp after finishing

step 4 as CAðendðS4ÞÞ. Therefore, the duration of step 4 is

calculated based on Eq. 1.

Ts4 ¼ CAðendðS4ÞÞ � CAðstartðS4ÞÞ ð1Þ

However, we must observe that there will be a challenge in

measuring the duration of Ts1 and Ts7. That is because the

starting and ending of these steps are not in the same

domain and the time is dependant on the clock time of both

domains. To solve this problem, we assume that Ts1 and

Ts7 are equal and eliminate clock difference by adding

timestamps of different domains according to Eq. 2.

Ts1 ¼ Ts7 ¼ ðCAðendðS1ÞÞ � CBðstartðS1ÞÞ

þ CBðendðS7ÞÞ � CAðstartðS4ÞÞÞ=2
ð2Þ

We investigated two different approaches to setting up the

network: a sequential and a parallel mode.

Cluster Computing (2022) 25:2953–2966 2957

123

5.1 Setup time in sequential mode

As explained in Sect. 4, 10 steps have to be executed for

setting up the network. If they are executed sequentially

then the total time is the sum of the duration of each step. If

we define Tsn as the time taken to run step n then the total

time can be calculated as in Eq. 3.

Sequential setup time ¼
X10

n¼1

Tsn ð3Þ

5.2 Setup time in parallel mode

To optimize the total setup time, it is possible to perform

some of these steps in parallel. Looking back at Fig. 2,

after the first three steps the other steps can be run simul-

taneously as they are in different domains and independent

from each other. The parallel setup time is the sum of the

duration of the three first steps and the maximum time of

running the other steps in each domain. This is expressed in

Eq. 4.

Parallel setup time ¼
X3

n¼1

Tsn þMax
X6

n¼4

Tsn;
X10

n¼7

Tsn

 !

ð4Þ

5.3 Global view and step view comparison

Table 1 shows the theoretical model for calculating the

setup time. The total time in Table 1 represents the global

view and the calculated time represents the step view.

Communication delay, Creating container, Adding inter-

faces, and Adding rules are individual steps that are con-

sidered in step view model. By comparing total time and

calculated time (Model error in Table 1), we can determine

the accuracy of the step view model. Concretely this would

tell us if there is any overhead in running the steps that the

model does not capture. If the overhead is negligible then

we can conclude that the time to setup is predictable, which

enables prediction of the setup time and other calculations

for decision-making for making any further improvements.

TA; TB; T
0
A; and T 0

B in Table 1 are calculated based on

Eqs. 5–8.

TA ¼ Ts1 þ CAðendðS6ÞÞ � CAðstartðS2ÞÞ ð5Þ

TB ¼ Ts1 þ Ts7 þ CAðendðS10ÞÞ � CAðstartðS8ÞÞ ð6Þ

T 0
A ¼

X3

n¼1

Tsn þ
X6

n¼4

Tsn ð7Þ

T 0
B ¼

X3

n¼1

Tsn þ
X10

n¼7

Tsn ð8Þ

6 Proof of concept

To test the operations of our architecture (see Sec. 3) we

built a prototype DDM software suite. We implemented the

connections between all the building blocks, starting from

the domain administrator at the higher level all the way

down to managing the network configuration in the P4

switch. We then instantiated two DDM domains and we

connected them to validate the scenario in Fig. 2.

In our setup, we did not implement the policy checking

part of the architecture and we assumed that all of the

requests that come in are according to the agreed upon

rules.

For our implementation, we used Ubuntu 18.04 and

Linux kernel 4.15.0 as the host OS, Docker Community

Edition 18.09 for container management, and bmv2 P4

switch as the programmable software switch in each

server [24].

The scenario in Fig. 2 is written in a bash script, which

initiates each step by calling the programs to implement the

functionalities of each block of architecture.

We have two servers representing the two different

domains, each running the full software suite. Each server

Table 1 Theoretical request setup time table based on time of each single step, Tsn is the time taken for running step n

Domain A Domain B Parallel time

Total time TA TB MaxðTA;TBÞ
Calculated time T 0

A T
0
B MaxðT 0

A;T
0
BÞ

Model error ðTA � T 0
A=TAÞ � 100 ðTB � T

0

B=TBÞ � 100 ðMaxðTA;TBÞ �MaxðT 0
A;T

0

BÞ=MaxðTA; TBÞÞ � 100

Communication delay Ts1 Ts1? Ts7

Creating container Ts4 Ts8

Adding interfaces Ts5 Ts9

Adding rules Ts6 Ts10

2958 Cluster Computing (2022) 25:2953–2966

123

can be the requester server (client-side) or the one that is

requested to share data (server-side). The servers are con-

nected together through a switch in the local area network,

which serves as the physical underlay for our connectivity.

For message transfer between domain administrators,

the script calls a message transferring program using

RabbitMQ [25]. The receiver side of each server is always

running and waiting for a new message. When a sharing

request comes in from a client for access to data of the

other domain, this program sends the access request

information to the other domain. Likewise, the receiver

side communicates back through the message bus.

After sending or receiving the required messages, the

domain administrator starts to create containers and sets the

interface configurations. This is the containerization block

of the architecture.

Listing 1 shows the procedure to create and connect

containers to the network.

Listing 1 Container interface configurationprocedure

At first (lines 1–2) containers are created without any

interface. Next (lines 7–8) we create the virtual interfaces

and these are then moved to the container’s network

namespace (lines 10–11). Finally (lines 13–15) we con-

figure the container interface.

After the container configuration, the switch with the

compiled P4 program can start running.

P4 program Listing 2 shows the P4 program that was

used for managing the connection between containers

based on a unique ID.

Listing 2 List of tables used in the P4 program running in

the switch defining the expected operations for packets sent

or received by the server and client sides of the DDM

As each server can act as both server or client there are four

tables defined in the P4 program:

– client_send_t (lines 1–7): when a packet is sent from

client-side to server-side;

– server_receive_t (lines 8–14): when a packet is received

on the server-side.

– server_send_t (lines 15–20): when a packet is sent from

server-side to client-side;

– client_receive_t (lines 23–31): when a packet is

received on the client-side;

A packet entering the switch is matched against the

fields shown in Listing 3. If a packet matches any of the

fields in one of the tables the specified action will be taken,

else it will be dropped.

The actions for each table are shown in Listing 3. The

action taken will depend on whether the packet is coming

from the outside or from an internally connected container,

and whether it is on the server-side or client-side.

Cluster Computing (2022) 25:2953–2966 2959

123

Listing 3 P4 actions associated with the P4program tables

When a packet comes into the P4 switch to be sent to a

local container, the destination IP address is changed to the

correct local (container) IP address, and the packet is sent

to the destination: these are server_receive (lines 1–5) or

client_receive (lines 6–10) actions.

When a packet leaves the P4 switch toward the other

domain the source IP address of the packet is changed to

the public address of the local server: these are the ser-

ver_send (lines 11–15) and client_send (lines 16–19)

actions.

The last call is related to adding new rules associated

with containers connection. Adding these rules allows

connection between two containers created in two

domains; that is the only permitted connection between

these two containers. Domain administrator uses the switch

command line to insert required rules for making connec-

tion possible. For example, listing 4 shows these rules

related to client-side. The first rule is when the packet is

outgoing from container to server-side. The second rule is

when the response from server-side is arrived.

Listing 4 List of rules in the P4 program

Because filtering rules are a combination of IP address of

source or destination and of the connection ID, the con-

nection ID needs only to be unique in each host but not

between domains. Therefore, there are 64K values for

every host to assign as connection ID and that is enough in

practice.

7 Measured request setup time

The next step for us was to measure the setup time in our

experimental environment and try to numerically identify

the possible overhead.

Setup time of one request According to Table 1 and

based on what is explained in Sect. 5 we measured both the

total setup time based on Eq. 4 as well as the duration of

every single step (see Sect. 5.3). Table 2 shows the average

value across 3 experiments. The results show that the

model error is less than 3%. As the difference is negligible

we can conclude that the stepwise model is reliable for

estimating the setup time and that it can be used for further

decision making and possible optimizations. The creating

container step is the longest step for setting up the network

(* 1.8 s). The other steps related to the P4 switch are

adding interfaces (* 0.50 s) and adding rules (* 0.110 s);

they take much less time than creating the containers and

this shows the low overhead of using a P4 switch in the

setup process.

Setup time as a function of increasing load For further

investigation and to observe the individual impact of each

step on the setup time, we explicitly overloaded our system

with concurrent operations, and observed the change of

setup time as a function of the increasing load. In each

experiment, we measured each step’s duration and also

calculated the total time based on the stepwise model. We

performed four different experiments (Fig. 3):

– Message transfer experiment: Fig. 3a shows the setup

time of one sharing request, when the number of

concurrent messages that are being sent from client-side

to server-side is increasing. To create this additional

load we sent a number of messages unrelated to the

request from the client-side to the server-side via the

message bus. we varied the number of concurrent

messages from 10 to 50. The plot shows that the delay

for message transferring between two domains is

positively correlated with the number of concurrent

Table 2 Request setup time table in seconds, numbers are according

to Table 1

Domain A Domain B Parallel time

Total time (s) 2.561 2.721 2.721

Calculated time (s) 2.499 2.700 2.700

Model error(s) 0.025 0.007 0.007

Communication delay (s) 0.082 0.163

Creating container (s) 1.765 1.850

Adding interfaces (s) 0.540 0.571

Adding rules (s) 0.112 0.116

2960 Cluster Computing (2022) 25:2953–2966

123

messages on the bus. We observe a maximum increase

of * 50%. On the other hand, as this step takes much

less time than creating containers, its dependency on

the number of concurrent messages does not have a

substantial effect on the overall setup time.

– Creating container experiment: To produce additional

load we created a specific number of containers not

related to the specific request we are measuring. We

issued requests to the Docker engine for 10 to 50

containers in step 10. As shown in Fig. 3b, by

increasing the number of containers that are being

created at the same time, the creating container time of

a single request also increases. The additional amount

of time is substantial compared to the other steps.

Additionally, this step is always the longest (see

Table 2), and its dependence on the load will have

the greatest impact on the variability of the total time.

– Adding interface experiment: Fig. 3c shows the effect

of running concurrent adding interface operations on

the setup time. We created containers’ interfaces

(varying the number from 10 to 50) and added them

to the P4 switch at the same time as the request being

satisfied. The figure shows that the time is lower than

container setup time and in addition, it does not change

with an increasing number of concurrent operations.

– Adding rule experiment: In this experiment we created

additional load by adding a varying number of rules, in

the range 10 to 50, into the P4 switch. Figure 3d shows

the same trend as for the adding interfaces experiment;

in fact, the time for adding the rules to the switch does

not increase with an increase in the number of rules.

As the results show, the creating container step is the step

that is most affected by increasing load on the system, and

more precisely when the system has to create many con-

tainers simultaneously. The steps that are related to the P4

switch, i.e, adding interfaces and adding rules do not

change with increasing numbers of interfaces and rules. So

we can conclude that the P4 switch is scalable enough for

running multiple sharing requests. Also, in all experiments

the calculated setup time is close to the total time and this

proves the accuracy of the stepwise model.

(a) Increasing load by increasing the number of messages
being sent concurrently

(b) Increasing load by increasing the number of containers
being created concurrently

(c) Increasing load by increasing the number of interfaces
being created concurrently

(d) Increasing load by increasing the number of switch’s
rules being set in P4 switch concurrently

Fig. 3 The impact of adding load on the system by increasing the number of operations related to each step separately

Cluster Computing (2022) 25:2953–2966 2961

123

8 Security

In a data sharing environment, one of the main concerns is

providing security for protecting data against unauthorized

access. Therefore, in a containerized DDM the security of

the connection of containers should be guaranteed. We

looked at different possible attacks that can happen in

containerized network infrastructure and study how the

architecture proposed in this paper is secure against these

kinds of attacks.

Figure 4 shows the threat model of the architecture. In

all attack scenarios, we assume that the attack originates in

a malicious container. Three types of attacks can happen in

a containerized DDM:

1. container to container of the same request (atc in the

figure);

2. container to container of different request (also called

atc in the figure);

3. container to its host’s service (called ath); in this case a

container attacks a service that is running in the host

listening on a specific port number.

In addition, in a multi-domain DDM, these types of attacks

can be local, i.e. the attacking container is in the same

domain as the victim, or remote, i.e. the attacker is in the

other domain.

In particular, in this paper, we only consider networking

attacks related to container connections. Based on the

architecture and the possible connections that a malicious

container can make, we discuss the feasibility of each

attack.

Figure 5 shows all possible connections that a container

can make to any other services of other containers or hosts

in our multi-domain environment. These include the local

connection that happens in the same host with the container

of the same request (c2c_local) or the host service

(c2h_local); or the remote connections (c2c_remote) to the

other domain.

In our architecture any connection from a container to

any other container is through the switch. However, for the

connection between a container and the host, the packet

does not need to go through the switch because of peering

with the host virtual interfaces veth that are in the host

network namespace.

Table 3 shows the possible attacks that can happen: ARP

spoofing, MAC flooding, IP spoofing, Syn flooding, and

HTTP flooding. In regard to the feasibility of each one of

them there are three possible outcomes: 1) the attack is not

possible; 2) the attack is possible but it can be mitigated; 3)

the attack is possible and it cannot be mitigated.

The possibility of each kind of attack is explained in the

following:

ARP spoofing and MAC flooding For these kinds of

attacks to happen there must be a connection between

containers at layer 2 [26]. Given that in our case each

container is in a different network subnet the connections

are at layer3 and ARP spoofing and MAC flooding are not

possible in any of the possible scenarios.

IP spoofing In an IP spoofing attack scenario, an

attacking container impersonates another container’s IP

address and sends packets with an incorrect source IP to

another service that is running in the network. Therefore,

the response of the packet will be sent back to the victim

and not the actual source [27].

In our architecture, the feasibility of an IP spoofing

attack depends on whether the attack is local or remote and

on whether the attacked node is another container or a host.

More precisely we can observe that IP spoofing is not

possible if the packet has to go through the switch, i.e.

when the attacker wants to make a connection to other

containers in the same host or to the outside world. As the

routing is based on the unique ID number that is inde-

pendent of container’s IP address, the packet will be

dropped as it does not match any rule. This means that

c2c_remote and c2h_local are not possible.

IP spoofing is possible if the attacker tries to make a

connection to its host service and perform the attack via

host service, like in the c2c_local and c2h_remote types of

attacks. In these cases packet does not go through the

switch. However, its source IP address can be checked in

host’s IPtables. Therefore, when the source IP address is

not correct, the packet will be dropped.

Syn and HTTP flooding In all cases that a container can

make a connection, flooding attacks are possible. For cases

in which the packet is going through the switch (c2c_local

and c2c_remote) the attack can be mitigated by detection

methods that can be implemented in the P4

Fig. 4 Threat model in a multi domain DDM. Two types of attacks

are possible: local attacks—Attacks from a container to host (ath) or
to other container in the same domain. (atc); remote attacks—Attacks

from a container to other container (atc) or host (ath) of the other

domain

2962 Cluster Computing (2022) 25:2953–2966

123

program [18–20]. However, for the c2h_local type of

attack, the attack cannot be mitigated as the packet does not

go through the switch and the connection is directly

between containers and the host service.

To conclude, as it is shown in Table 3 most network

attacks are either not possible in our proposed P4-based

DDM or they can be mitigated by customizing the P4

program. We must observe that security depends also on

the availability of the P4 switch. As all containers are

connected to the P4 switch and the whole setup relies on

the rules in the p4 switch, this can become a failure point in

the network. However, as there can be multiple servers in a

DDM when the switch fails in a domain, only the con-

tainers that are connected to that specific switch will be

affected.

Confidentiality and integrity in transferring data can be

supported by containers and happen in upper layers. Data

encryption can also happen in the P4 switch. To this pur-

pose, there are multiple available algorithms that encrypt

the connection in a P4 switch and can also be deployed in

this work [28–30].

The orchestration services at the two sites communicate

with each other via the public Internet, which means they

must be publicly accessible, and they also control the

network plane, which requires at least some administrator-

level privileges. This is clearly a potentially risky combi-

nation. Several steps should be taken to mitigate this risk.

First, the connection between the orchestration services

needs to be authenticated and encrypted, for example by

using an HTTPS connection with client- and server-side

certificates for authentication.

Next, to mitigate the risk of the orchestration application

software itself being compromised, the network adminis-

tration functionality should be separated out into a separate

program, which is given the minimum necessary privileges

(e.g. CAP_NET_ADMIN on Linux) and implements the

bare minimum functionality needed to support the func-

tioning of the system. The orchestration service itself can

then be run as an unprivileged user, so that if it is com-

promised the attacker will be limited to unprivileged

operations plus a small number of very inflexible network

administration functions.

Beyond these specific design features, all the usual

general measures should be taken, including code quality

assurance through testing, code reviews, and automated

analysis, and in the deployed system firewalls can be used

to block attacks, and intrusion detection systems may be

used to monitor the system for abnormal behaviour.

Fig. 5 Container connections possible in a multi-domain DDM: connection to containers of the same request in the local domain (c2c_local);
connection to containers of the same request in the remote domain (c2c_remote); connection to the local host (c2h_local)

Table 3 Possibility of attacks in a multi-domain containerized DDM: s Attack is not possible � Attack is possible but it can be mitigated, d

Attack is possible and it cannot be mitigated

Type of attack Domain Arp spoofing Mac flooding IP spoofing Syn flooding HTTP flooding

Container to container of the same request Single domain s s � � �

Multi-domain s s s � �

Container to container of different request Single domain s s � s s

Multi-domain s s s s s

container to host single domain s s s d d

Multi–domain s s � s s

Cluster Computing (2022) 25:2953–2966 2963

123

9 Discussion

We must note that in the scenarios in Sect. 4 we assumed

that all of the steps are run successfully. However, in

reality, one or more of the steps may fail. This especially

affects the parallel scenario (see Sect. 5), as the domain in

which the error did not occur will continue to reserve

resources that will never be used. In this case, running in

sequential mode would be more efficient.

Our architecture is flexible and can easily scale up. What

we have shown in this paper is an example of an imple-

mentation of a containerized DDM running in one server

per domain, e.g. all the containers in one domain reside in

one physical node. However, the number of required con-

tainers may be more than the capacity of one device. In the

case where there is an increasing number of requests in

DDM and therefore the need for more containers, other

servers can be easily added to the domain. Each server has

its own software P4 switch. All the P4 switches would then

be connected with each other and with the physical net-

work infrastructure in the domain.

As we explained all connections between switches are

based on a connection ID. Even if a container can guess the

connection ID, it cannot use it. As all the packets are going

through the P4 software switch, the connection ID can be

checked that it is from an eligible container.

The connection IDs are unique within the host. There-

fore, the combination of connection ID and host’s IP

address is unique in the whole site and should be permitted

in border firewall rules.

Defining a range of transport port numbers in border

firewalls depends on the general filtering strategies of a

site. What is important is allowing connection to a specific

IP address and specific port number. One solution can be

defining a range of permitted port numbers related to a host

that is running a P4 software switch and allowing that

range with host IP number in the border firewall.

10 Related work

DDM prototypes are currently in development in a number

of scientific and industrial contexts, including the Internet

of Things, supply chain logistics, health care, and exchange

of personal information.

Datapace is a commercial blockchain-based DDM

platform for trading IoT data streams [31]. It too has a

blockchain-based trading infrastructure, in which URLs are

traded at which data may be retrieved. Datapace sells a

curated collection of streams, but also allows external

sellers on its platform. Data is routed through its central

infrastructure. The Ocean Protocol is similar but is inspired

more by financial markets, with market makers and

derivatives. Data exchange is done directly between buyers

and sellers, and somewhat outside the scope of the platform

[32]. Both of these systems list data processing as possible

future extensions but do not currently support it.

International Data Spaces (IDS) is a DDM project

addressing amongst others supply chain logistics. It defines

data exchange protocols and provides central components

including a data broker, clearing house, identity provider,

app store, and vocabulary provider [33]. Data are requested

from a data provider, optionally processed, and returned to

the data consumer. An example use case is provided by the

DL4LD project, which will apply this technology to enable

sharing of potentially sensitive data regarding the transport

of goods [4].

A science use case concerns personalized medicine: the

EPI project will develop a secure and trustworthy platform

to share patient data across medical institutions to help

diagnosis and decision making for both patients and health

providers; the sharing of information will still fully pre-

serve patients’ privacy. It also studies policies definitions

and how to set up network infrastructure to enforce them

[1].

None of these systems support processing of data, nor is

the implementation of data exchange described at the

technical level. Our paper shows, for the first time, how to

realize the required network connectivity between DDM

parties, e.g domains.

For building a containerized DDM within one domain,

we had already proposed a number of solutions. In [34] we

studied whether available container network overlay tech-

nologies are suitable for deployment in a DDM. We

compared the performance of each technology and we

concluded that scalability was the main attention point in

choosing one technology over another. In [9] we remained

focused on single domain DDMs but we shifted our focus

onto providing isolation between containers and improving

the security. We studied three methods of container overlay

implementations with particular attention devoted the iso-

lation between containers in order to satisfy the data

sharing policies.

There is some work on the possible network solutions

for multi-domain DDMs. Xin et al. proposed a multi-do-

main distributed architecture for policy-driven data sharing

applications [35]. The architecture includes components to

manage policy auditing as well as to implement network

connections. To do this, they use Docker containers and

connect containers of each domain via VPN connections.

Although this approach can secure the data by encryption,

the ease of connection management method and also the

security aspects had not been studied.

In our current work, we are able to manage connections

in a dynamic and straightforward programmable method.

2964 Cluster Computing (2022) 25:2953–2966

123

As we mentioned we did not cover yet encryption, but this

can also be done in P4 switches. The load of this operation

could, if needed, be even offloaded to hardware by using

P4 hardware switches.

11 Conclusion and future work

In this paper, we proposed a multi-domain data sharing

architecture that is constructed with containers and soft-

ware P4 switches. Our architecture supports the network

connectivity between participating DDM domains. We

explained each step of setting up the network for making

the network ready for operation and showed the required

configuration. We also studied the performance and secu-

rity implications of adopting P4 programmable switches as

underlying technologies. To support performance and

planning, we introduced a model for measuring the setup

time and then showed that the model reliably represents the

real operations. We also determined that the overhead of

using a P4 switch in the setup process is negligible, which

makes an ideal technology to support the networking

requirements of DDMs.

Besides, we studied the security aspects of the proposed

architecture and by isolating every single connection via a

unique ID number in DDM we showed how the architec-

ture is secure against a number of typical network attacks.

Our future work will focus on improving the network’s

performance and security by enhancing the P4 program to

be able to reconfigure the network dynamically based on

real-time events and using monitoring information. We

also want to look at the possibility of using containers as

network virtual functions (NVFs) that can be used as part

of the execution workflow scenario. Finally, we intend to

complete the policy checking module of the architecture

and integrate it with current work.

Acknowledgements This work is supported by the Netherlands

eScience Center and NWO under the project SecConNet. We want to

specifically thank Rena Bakhshi for the useful discussions and

feedback.

Author contributions I confirm that all authors listed on the title page

have contributed significantly to the work, have read the manuscript,

attest to the validity and legitimacy of the data and its interpretation,

and agree to its submission. Conceptualization: [SS], [LV], [PG]; data

curation: [SS]; formal analysis: [SS], [LV], [PG]; funding acquisition:

[PG]; investigation: [SS], [LV], [PG]; Methodology: [SS], [LV];

Project administration: [PG]; Visualization: [SS]; Software: [SS];

Supervision: [PG]; Validation: [SS], [LV], [PG]; Writing—original

draft: [SS]; Writing—review and editing: : [SS], [LV], [PG].

Funding Information This work is supported by the Netherlands

eScience Center and NWO under the project SecConNet.

Data availability Not applicable.

Code availability P4 software switch code has been used in this work

that is publicly available on ‘‘https://github.com/p4lang/behavioral-

model’’. The code that has been written for this project is available on

‘‘https://github.com/sarashakeri/P4-uniqueid’’.

Declarations

Conflict of interest The authors have no relevant financial or non-

financial interests to disclose.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Kassem, J.A., De Laat, C., Taal, A., Grosso, P.: The EPI

framework: a dynamic data sharing framework for healthcare use

cases. IEEE Access 8, 179909–179920 (2020). https://doi.org/10.

1109/ACCESS.2020.3028051

2. Bastiaansen, H., Nieuwenhuis, K., Zomer, G., Piest, J.P.S., van

Sinderen, M., Dalmolen, S.: The logistics data sharing infras-

tructure. White Paper (2020)

3. AMdEX: THE DATA HYPERMARKET (2021). https://amster

dameconomicboard.com/en/news/research-organisations-and-

commercial-parties-start-developing-the-new-amsterdam-data-

exchange. Accessed Apr 2021

4. Zhang, L., Cushing, R., Gommans, L., De Laat, C., Grosso, P.:

Modeling of collaboration archetypes in digital market places.

IEEE Access 7, 102689–102700 (2019). https://doi.org/10.1109/

ACCESS.2019.2931762

5. priVAcy preserviNg federaTed leArninG infrastructurE for

Secure Insight eXchange (2021). https://distributedlearning.ai/.

Accessed Apr 2021

6. A library for computing on data you do not own and cannot see

(2021). https://github.com/OpenMined/PySyft. Accessed Apr

2021

7. MPyC: Secure Multiparty Computation in Python (2021). https://

www.win.tue.nl/*berry/mpyc/. Accessed Apr 2021

8. IBM Federated Learning (2021). https://github.com/IBM/feder

ated-learning-lib. Accessed Apr 2021

9. Shakeri, S., Veen, L., Grosso, P.: Evaluation of container over-

lays for secure data sharing. In: 2020 IEEE 45th LCN Sympo-

sium on Emerging Topics in Networking (LCN Symposium),

pp. 99–108 (2020). https://doi.org/10.1109/LCNSympo

sium50271.2020.9363266

10. Kubernetes (2021). https://kubernetes.io/docs/tutorials/kuber

netes-basics/. Accessed Apr 2021

11. Use bridge network (2021). https://docs.docker.com/network/

bridge/. Accessed Apr 2021

12. Calico (2021). https://www.tigera.io/project-calico/. Accessed

Sept 2021

13. Cilium (2021). https://cilium.io/. Accessed Sept 2021

Cluster Computing (2022) 25:2953–2966 2965

123

https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/sarashakeri/P4-uniqueid
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2020.3028051
https://doi.org/10.1109/ACCESS.2020.3028051
https://amsterdameconomicboard.com/en/news/research-organisations-and-commercial-parties-start-developing-the-new-amsterdam-data-exchange
https://amsterdameconomicboard.com/en/news/research-organisations-and-commercial-parties-start-developing-the-new-amsterdam-data-exchange
https://amsterdameconomicboard.com/en/news/research-organisations-and-commercial-parties-start-developing-the-new-amsterdam-data-exchange
https://amsterdameconomicboard.com/en/news/research-organisations-and-commercial-parties-start-developing-the-new-amsterdam-data-exchange
https://doi.org/10.1109/ACCESS.2019.2931762
https://doi.org/10.1109/ACCESS.2019.2931762
https://distributedlearning.ai/
https://github.com/OpenMined/PySyft
https://www.win.tue.nl/%7eberry/mpyc/
https://www.win.tue.nl/%7eberry/mpyc/
https://github.com/IBM/federated-learning-lib
https://github.com/IBM/federated-learning-lib
https://doi.org/10.1109/LCNSymposium50271.2020.9363266
https://doi.org/10.1109/LCNSymposium50271.2020.9363266
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://docs.docker.com/network/bridge/
https://docs.docker.com/network/bridge/
https://www.tigera.io/project-calico/
https://cilium.io/

14. Default bridge network (2021). https://docs.docker.com/network/

network-tutorial-standalone. Accessed Sept 2021

15. User-defined bridge networks (2021). https://docs.docker.com/

network/network-tutorial-standalone. Accessed Sept 2021

16. Improving Network Monitoring and Management with Pro-

grammable Data Planes (2021). https://opennetworking.org/

news-and-events/blog/improving-network-monitoring-and-man

agement-with-programmable-data-planes/. Accessed Sept 2021

17. Manzanares-Lopez, P., Muñoz-Gea, J.P., Malgosa-Sanahuja, J.:

Passive in-band network telemetry systems: the potential of

programmable data plane on network-wide telemetry. IEEE

Access 9, 20391–20409 (2021). https://doi.org/10.1109/

ACCESS.2021.3055462

18. Lapolli, A.C., Adilson Marques, J., Gaspary, L.P.: Offloading

real-time ddos attack detection to programmable data planes. In:

2019 IFIP/IEEE Symposium on Integrated Network and Service

Management (IM), pp. 19–27 (2019)

19. Febro, A., Xiao, H., Spring, J.: Distributed sip ddos defense with

p4. In: 2019 IEEE Wireless Communications and Networking

Conference (WCNC), pp. 1–8 (2019). https://doi.org/10.1109/

WCNC.2019.8885926

20. Dimolianis, M., Pavlidis, A., Maglaris, V.: A multi-feature ddos

detection schema on p4 network hardware. In: 2020 23rd Con-

ference on Innovation in Clouds, Internet and Networks and

Workshops (ICIN), pp. 1–6 (2020). https://doi.org/10.1109/

ICIN48450.2020.9059327

21. About Agilio SmartNICs (2021). https://www.netronome.com/

products/smartnic/overview/. Accessed Sept 2021

22. P4SmartNics (2021). https://opennetworking.org/wp-content/

uploads/2020/12/p4_d2_2017_nfp_architecture.pdf. Accessed

Sept 2021

23. Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N.,

Rexford, J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese,

G., Walker, D.: P4: Programming protocol-independent packet

processors. SIGCOMM Comput. Commun. Rev. 44(3), 87–95
(2014)

24. BEHAVIORAL MODEL (bmv2) (2021). https://github.com/

p4lang/behavioral-model. Accessed Apr 2021

25. RabbitMQ (2021). https://www.cloudamqp.com/blog/part1-rab

bitmq-for-beginners-what-is-rabbitmq.html. Accessed Apr 2021

26. ARP spoofing. https://www.veracode.com/security/arp-spoofing

(2021). [Online; accessed April-2021]

27. IP spoofing (2021). https://www.oreilly.com/library/view/ccna-

security-210-260/9781787128873/78f2bb48-0c68-452b-8edc-

eb1482f7dbfc.xhtml. Accessed Apr 2021

28. Hauser, F., Häberle, M., Schmidt, M., Menth, M.: P4-ipsec: site-

to-site and host-to-site vpn with ipsec in p4-based sdn. IEEE

Access 8, 139567–139586 (2020). https://doi.org/10.1109/

ACCESS.2020.3012738

29. Qin, Y., Quan, W., Song, F., Zhang, L., Liu, G., Liu, M., Yu, C.:

Flexible encryption for reliable transmission based on the p4

programmable platform. In: 2020 Information Communication

Technologies Conference (ICTC), pp. 147–152 (2020). https://

doi.org/10.1109/ICTC49638.2020.9123251

30. Hauser, F., Schmidt, M., Häberle, M., Menth, M.: P4-macsec:

Dynamic topology monitoring and data layer protection with

macsec in p4-based sdn. IEEE Access 8, 58845–58858 (2020).

https://doi.org/10.1109/ACCESS.2020.2982859

31. Draskovic, D., Saleh, G.: Datapace (2017). https://datapace.io/

datapace_whitepaper.pdf

32. Foundation, O.P., GmbH, B.: Ocean protocol: tools for the web3

data economy (2020). https://oceanprotocol.com/tech-white

paper.pdf

33. International data spaces reference architecture model version 3.0

(2019). https://internationaldataspaces.org/download/16630/

34. Shakeri, S., van Noort, N., Grosso, P.: Scalability of container

overlays for policy enforcement in digital marketplaces. In: 2019

IEEE 8th International Conference on Cloud Networking

(CloudNet), pp. 1–4 (2019). https://doi.org/10.1109/Cloud

Net47604.2019.9064090

35. Zhou, X., Cushing, R., Koning, R., Belloum, A., Grosso, P.,

Klous, S., van Engers, T., de Laat, C.: Policy enforcement for

secure and trustworthy data sharing in multi-domain infrastruc-

tures. In: 2020 IEEE 14th International Conference on Big Data

Science and Engineering (BigDataSE), pp. 104–113 (2020).

https://doi.org/10.1109/BigDataSE50710.2020.00022

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Sara Shakeri received the B.Eng.
degree in computer engineering

from Isfahan University of

Technology, Isfahan, in 2012,

and the M.Sc. degree in com-

puter architecture from Sharif

University of Technology, Teh-

ran, in 2015. She is currently

pursuing the Ph.D. degree with

the MultiScale Networked Sys-

tems, University of Amsterdam.

Her research interests include

novel network infrastructure,

programmable infrastructure,

secure container networks, and

virtual network functions.

Lourens Veen is a Senior

Research Software Engineer at

the Netherlands eScience Cen-

ter. As an engineer, his back-

ground is originally in databases

and information system archi-

tecture, including geographical

information systems, and more

recently he has worked in High

Performance Computing and

networking. As a scientist, his

skills are in modelling, multi-

scale models, model coupling,

parameter optimization and

Uncertainty Quantification, with

applications in biogeography, molecular simulation and computa-

tional biophysics.

2966 Cluster Computing (2022) 25:2953–2966

123

https://docs.docker.com/network/network-tutorial-standalone
https://docs.docker.com/network/network-tutorial-standalone
https://docs.docker.com/network/network-tutorial-standalone
https://docs.docker.com/network/network-tutorial-standalone
https://opennetworking.org/news-and-events/blog/improving-network-monitoring-and-management-with-programmable-data-planes/
https://opennetworking.org/news-and-events/blog/improving-network-monitoring-and-management-with-programmable-data-planes/
https://opennetworking.org/news-and-events/blog/improving-network-monitoring-and-management-with-programmable-data-planes/
https://doi.org/10.1109/ACCESS.2021.3055462
https://doi.org/10.1109/ACCESS.2021.3055462
https://doi.org/10.1109/WCNC.2019.8885926
https://doi.org/10.1109/WCNC.2019.8885926
https://doi.org/10.1109/ICIN48450.2020.9059327
https://doi.org/10.1109/ICIN48450.2020.9059327
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
https://opennetworking.org/wp-content/uploads/2020/12/p4_d2_2017_nfp_architecture.pdf
https://opennetworking.org/wp-content/uploads/2020/12/p4_d2_2017_nfp_architecture.pdf
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://www.cloudamqp.com/blog/part1-rabbitmq-for-beginners-what-is-rabbitmq.html
https://www.cloudamqp.com/blog/part1-rabbitmq-for-beginners-what-is-rabbitmq.html
https://www.veracode.com/security/arp-spoofing
https://www.oreilly.com/library/view/ccna-security-210-260/9781787128873/78f2bb48-0c68-452b-8edc-eb1482f7dbfc.xhtml
https://www.oreilly.com/library/view/ccna-security-210-260/9781787128873/78f2bb48-0c68-452b-8edc-eb1482f7dbfc.xhtml
https://www.oreilly.com/library/view/ccna-security-210-260/9781787128873/78f2bb48-0c68-452b-8edc-eb1482f7dbfc.xhtml
https://doi.org/10.1109/ACCESS.2020.3012738
https://doi.org/10.1109/ACCESS.2020.3012738
https://doi.org/10.1109/ICTC49638.2020.9123251
https://doi.org/10.1109/ICTC49638.2020.9123251
https://doi.org/10.1109/ACCESS.2020.2982859
https://datapace.io/datapace_whitepaper.pdf
https://datapace.io/datapace_whitepaper.pdf
https://oceanprotocol.com/tech-whitepaper.pdf
https://oceanprotocol.com/tech-whitepaper.pdf
https://internationaldataspaces.org/download/16630/
https://doi.org/10.1109/CloudNet47604.2019.9064090
https://doi.org/10.1109/CloudNet47604.2019.9064090
https://doi.org/10.1109/BigDataSE50710.2020.00022

	Multi-domain network infrastructure based on P4 programmable devices for Digital Data Marketplaces
	Abstract
	Introduction
	Containerized P4-based DDM
	Architecture
	Workflow scenario
	Request setup time
	Setup time in sequential mode
	Setup time in parallel mode
	Global view and step view comparison

	Proof of concept
	Measured request setup time
	Security
	Discussion
	Related work
	Conclusion and future work
	Author contributions
	Code availability
	References

