
Blockchain-enabled real-time SLA monitoring for cloud-hosted services

Kashif Mehboob Khan1 • Junaid Arshad2 • Waheed Iqbal3 • Sidrah Abdullah1 • Hassan Zaib3

Received: 10 December 2020 / Revised: 6 August 2021 / Accepted: 4 September 2021 / Published online: 4 October 2021
� The Author(s) 2021

Abstract
Cloud computing is an important technology for businesses and individual users to obtain computing resources over the

Internet on-demand and flexibly. Although cloud computing has been adopted across diverse applications, the owners of

time-and-performance critical applications require cloud service providers’ guarantees about their services, such as

availability and response times. Service Level Agreements (SLAs) are a mechanism to communicate and enforce such

guarantees typically represented as service level objectives (SLOs), and financial penalties are imposed on SLO violations.

Due to delays and inaccuracies caused by manual processing, an automatic method to periodically verify SLA terms in a

transparent and trustworthy manner is fundamental to effective SLA monitoring, leading to the acceptance and credibility

of such service to the customers of cloud services. This paper presents a blockchain-based distributed infrastructure that

leverages fundamental blockchain properties to achieve immutable and trustworthy SLA monitoring within cloud services.

The paper carries out an in-depth empirical investigation for the scalability of the proposed system in order to address the

challenge of transparently enforcing real-time monitoring of cloud-hosted services leveraging blockchain technology. This

will enable all the stakeholders to enforce accurate execution of SLA without any imprecisions and delays by maintaining

an immutable ledger publicly across blockchain network. The experimentation takes into consideration several attributes of

blockchain which are critical in achieving optimum performance. The paper also investigates key characteristics of these

factors and their impact to the behaviour of the system for further scaling it up under various cases for increased service

utilization.

Keywords Permissioned blockchain � SLO monitoring � Smart contract � Scalability � Web service monitoring

1 Introduction

Cloud computing has emerged as an important technology

for businesses and individual users to obtain computing

resources over the Internet. The main features of cloud

computing, including pay-as-you-go, dynamic resource

provisioning, high availability, and scalability, attracted the

customers to migrate their services from traditional in-

house data centers and computing facilities to remote cloud

data centers. However, the owners of time-and-perfor-

mance critical applications require some guarantees from

cloud service providers about their services. To address

customer concerns, cloud providers offer service level

agreements (SLAs).

A typical SLA documents a set of service level objec-

tives (SLOs) in terms of different quality of service (QoS)

metrics and mentions financial penalties on SLO violations

for the cloud provider. Nowadays, a typical SLA offered by

the cloud providers guarantees their services’ availability

and performance [1]. For example, Amazon Web Services

(AWS), a leading cloud service provider, offers 99.5%

uptime guarantees for its Relational Database Service

(RDS) and reduces 10% services charges in the customer

bill in case of violations as a penalty. However, RDS

customers still have to submit compensation requests

manually. Most customers hosting services and solutions

on the cloud platforms ensure the QoS for their end-users

by relying on the cloud provider guarantees. Therefore, it is

& Junaid Arshad

rjarshad@gmail.com

1 Department of Software Engineering, NED University of

Engineering & Technology, Karachi, Pakistan

2 School of Computing and Digital Technology, Birmingham

City University, Birmingham, UK

3 Punjab University College of Information Technology,

University of the Punjab, Lahore, Pakistan

123

Cluster Computing (2022) 25:537–559
https://doi.org/10.1007/s10586-021-03416-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-0424-9498
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03416-y&domain=pdf
https://doi.org/10.1007/s10586-021-03416-y

important for customers to automatically and periodically

verify the SLA terms in a transparent and trustworthy

method. An independent third party can help to enforce the

agreed SLA terms. However, the third party requires to

ensure transparency and trustworthiness for both parties.

Automatic SLA monitoring, verification, and enforce-

ment are challenging for both parties (cloud providers and

customers) to avoid trust deficits. Therein, blockchain

brings new opportunities to address the challenges involved

in automating SLA monitoring and enforcement.

A Blockchain system exemplifies distributed ledger tech-

nologies, enabling a digital transaction’s data to be stored

in a chained block where each participant stores transaction

records in these connected blocks. The transactions are

included with the consensus of verifying nodes, also known

as miners. A blockchain-based system has inherent

decentralization properties, transparency, trustless-trust,

immutability, and traceability since it allows each partici-

pating node to have equal opportunity to influence the

ledger. The transparency and immutability are enforced by

enabling the nodes to view and maintain the ledger, which

can only be altered with other mining nodes’ consensus.

Some initial work has been done in the blockchain for

SLAs, such as a blockchain-based framework for the

negotiation of cloud services [2], implementation of SLAs

in supply chain management system [3], validation of SLA

violations [4], payment of the penalties in case of SLA

violations [5, 6], the integrity of SLA [7] and secure

monitoring of SLA [8]. However, further work is required

to investigate challenges to achieve end to end SLA

monitoring and enforcement in a trustworthy manner. In

this respect, this paper aims to address this challenge

through the design and development of a blockchain-based

system to monitor and enforce SLA terms.

Specifically, we propose and evaluate an independent

third party service for automatic monitoring and enforce-

ment of SLA terms, precisely web application response

time, agreed between application owners and cloud pro-

viders for ensuring transparency and trustworthiness for

both parties. Our proposed solution is based on a private

blockchain system that creates an immutable history of

records that monitors and evaluates the level of SLA

enforcement between customers and service providers. The

proposed solution is evaluated for multiple SLA settings

with a varying number of web application endpoints

required to ensure specific response time SLO require-

ments. Our experimental evaluation investigates the effects

of blockchain’s different parameter settings, including

block size, transaction throughput, and block generation

rate, for optimizing the available infrastructure for running

the proposed solution and avoid any wastage of computing

resources. The proposed solution can monitor web appli-

cations’ response time running on the cloud to ensure

transparency and trustworthiness for application owners

and cloud providers. The main contributions of this paper

include:

i. Propose a blockchain-based automatic SLA moni-

toring system for ensuring transparency and trust-

worthiness between cloud providers and consumers.

We leverage decentralised characteristics of block-

chain technology to achieve fault tolerance and

therefore achieve a resilient SLA monitoring

infrastructure.

ii. A verifiable approach to SLA monitoring which can

facilitate trustworthy SLA enforcement. We leverage

blockchain’s inherent capabilities to achieve an

immutable record of web service monitoring which

can be helpful for complete audit data trial and log

violations against SLA in the future.

iii. Evaluate the proposed system for satisfying SLA,

specifically for web application response time, for a

varying number of endpoints.

iv. Analyse the impact of different blockchain system

parameters to avoid wastage of computing resources

to monitor and enforce SLA requirements.

The rest of the paper is organized as follows. Background

about SLA and blockchain is presented in Sect. 2. We

discuss the related work in Sect. 3, highlighting state of the

art within SLA monitoring. The proposed blockchain-

based SLA monitoring system is explained in Sect. 4 along

with its implementation details. Experimental setup and

performance analysis of the proposed system are provided

in Sects. 5 and 6, respectively. Finally, the conclusion and

future work are presented in Sect. 7.

2 Background

2.1 SLA/WS monitoring

A Service Level Agreement (SLA) is a contract between a

service consumer and a service provider that identifies

what services will be provided, the goals that will be met,

and penalties if expected QoS metrics are not met by the

service provider [9]. It also defines the expected level of

services that service providers must provide the customer.

Every SLA between the SP and customer has a list of

Service Level Objectives (SLOs) containing definitions and

measurable values of QoS metrics. SLO guarantees that an

SLA parameter will be provided in a specified time, and it

will adhere to QoS metrics [10]. Every SLA has a lifecycle

that it must adhere to. However, the terminologies may

vary across different SLAs [11]. There are typically 6

stages in the lifecycle, which are described below:

538 Cluster Computing (2022) 25:537–559

123

1. Discover service provider The customer identifies a

service provider that provides the required services.

2. Define SLA: Both parties negotiate and try to reach

acceptable definitions regarding the service level

objectives.

3. Establish agreement The terms and services are

defined and deployed in this phase. The customer is

able to access and utilize the deployed services.

4. Monitor SLA violation The provided services are

monitored by both the parties independently to assess

compliance with the agreed SLA and potential

violations.

5. Terminate SLA The SLA is terminated in case no

violation of service level agreement has been detected.

6. Enforce penalties for SLA violation If the specified

requirements are not met by service provider, penalties

for SLA violation are enforced Such policies are

envisaged to have been negotiated prior to service

provision.

The general working of service level agreement manage-

ment process is depicted in Fig. 1. This flow chart demon-

strates the SLA management process emphasizing the SLA

monitoring phase which is the focus of this paper. There

are several technical requirements in an SLA, which

include the responsibilities of customer and service provi-

ders, procedures, pricing and discount policies, service

description and description of QoS metrics, and reporting.

2.2 Blockchain and underpinning concepts

Blockchain is a distributed ledger technology that aids

decentralized, distributed computing in a trustless envi-

ronment. Blockchain has witnessed adoption across diverse

domains including finance, e-voting [12], and public sector

[13]. The attention attracted by blockchain is primarily due

to its most popular application, i.e., Bitcoin [14], which

effectively seeks to conduct financial transactions in a peer-

to-peer manner without the support of the conventional

banking system. Although Bitcoin was established in 2009,

the concepts and technologies which underpin blockchain

in general and Bitcoin, in particular, have evolved over the

last few decades. For instance, the concept of anonymous

transactions that can be traced back to the sender was

introduced by David Chaum [15] and today serves as one

of the elementary concepts within Bitcoin.

With respect to the ledger, a transaction represents the

fundamental concept within the blockchain. A transaction

in the blockchain is a piece of information that moves

something of value (a digital token which may represent a

unit of currency, a vote, etc.) from one public address

(belonging to the sender) to the receiver’s address.

Therefore, a transaction saves and tracks the state of the

blockchain over a period of time. These transactions

become part of a blockchain forever through blocks that

move them into the chain. A block is primarily a collection

of transactions that are integrated and organized in such a

way that each block computes and keeps its own blockhash

(using the individual hashes of all the transactions as its

source) in the block along with the blockhash of its pre-

ceding block. In this way, a chain of blocks is generated,

which grows with time. Since these blocks are connected

through their hashes (computed through the transactions

within that particular block), this data structure makes the

records of blockchain immutable where a slight change in a

single transaction would produce an entirely new hash

resulting in a mismatch of this hash with the neighboring

block. This prevents any suspicious block from being

accepted by the blockchain network and therefore mitigates

against illegitimate tampering of blockchain state. Figure 2

demonstrates this linkage between different blocks to

achieve a tamper-resistant ledger.

All the nodes of a typical blockchain network store an

identical copy of blockchain locally, which is frequently

synchronized with the main blockchain (also known as

consensus blockchain). Each new block of a blockchain is

accepted and added by its peers through a process known

as mining. The process of mining is essential in developing

consensus among participating nodes and can take up dif-

ferent forms depending upon the type of application.

Proof of work is the most common consensus algorithm in

blockchain applications owever, other variants such as

Proof of Stake have also emerged. Proof of Work algorithm

relies heavily on the computational capabilities of the

mining hardware to solve a non-trivial mathematical

problem.

2.2.1 Public vs. private blockchain

From the perspective of nodes’ participation, a blockchain

can be divided into two broad categories; public and pri-

vate blockchains. Public blockchain [16] adopts a public

model for participation and, therefore, may be joined by

any node without any restriction. Such networks of

blockchain do not require any permission for a user to join

or participate in the network. As mentioned earlier, it is a

permissionless open-ended blockchain, and that is why the

network size is usually bigger than the permissioned

blockchain. Private blockchain, also called permissioned

blockchain, on the other hand, is a more controlled form of

blockchain which is not publicly accessible. In a private

blockchain [17], nodes must seek permission to join the

network. Such networks usually require an authenticated

node to perform according to a predefined role in the

system.

Cluster Computing (2022) 25:537–559 539

123

3 Related work

Recently, blockchain is used in the cloud, edge, fog, and

IoT services and solutions [18]. For example, Zhang

et al. [19] proposed a solution to use blockchain to improve

computation ability for edge computing facilities. Rehman

et al. [20] proposed a secure mechanism for IoT devices

connected over the cloud through edge nodes using

blockchain. Cao et al. [21] proposed a reliable system for

the eHealth system to protect electronic health records for

authorized and illegal access and modifications using

Ethereum blockchain. Savi et al. [22] present initial

investigations of using a blockchain-based decentralized

system for resource allocation for fog computing infras-

tructure. Blockchain is also used for automated processes

in different domains. For example, in [2], the authors

presented a blockchain-based solution for the negotiation

process for the provisioning of the cloud resources being

provided by any cloud service provider. The proposed

solution offers tamper-proof automated negotiation terms

dynamically. Blockchain-enabled e-voting systems auto-

matically ensure the security and reliability of the

system [12, 23].

There have been several efforts to use blockchain to

ensure SLA in different applications as studied by Gai et al.

[24]. For example, [3] et al. proposed and evaluated a

blockchain integrated logistics and supply chain manage-

ment using IoT devices. Their proposed system provides a

trustful and transparent solution to track deliveries of high

value across different organizations. It ensures SLAs for

different objectives, including on-time deliveries, appro-

priate packaging, and asset damages during the transition.

Fig. 1 Service level agreement management

540 Cluster Computing (2022) 25:537–559

123

Zhou et al. [25] proposed a solution to satisfy SLA using

game theory and smart contracts. The authors proposed a

witness model to ensure the credibility of the information

to record on a public blockchain to detect and report SLA

violations. Neidhardt et al. [26] presented SLA monitoring

using blockchain to ensure customer trust in provider ser-

vices. Taha et al. [27] presented an approach to validate the

compliance of SLA offered by cloud providers and auto-

matically compensate the customers for SLA violations

using smart contracts and the Ethereum blockchain system.

Another recent work by Scheid et al. [5, 6] proposed an

automated solution based on blockchain and smart con-

tracts to dynamically pay the cost of the penalties to the

customers due to SLA violations observed in the services

offered by the providers. The authors experimented and

showed the SLA violations and penalties payment for a

web server response time objectives. The solution is built

on the Ethereum blockchain system and does not address

the performance impact of hosting multiple smart contracts

and monitoring overhead for multiple customers. Nguyen

et al. [28] explored the implementation of SLA based

blockchain which aims to address the issue of security of

the agreements between a user and a service provider in the

domain of tourism. The services are defined in detail in

SLAs which are executed to enhance the reliability of the

system. For this purpose, these SLAs run on architecture

based on blockchain that not only monitors the entire

process, but also minimizes the interaction between people

The SLAs are monitored on the parameters of satisfaction,

rule-abiding rates and cost.

There has been some work that uses oracle [29] to use

off-chain services for enforcement of SLA. For example, a

recent work by Taghavi et al. [30] presented multi-agent

monitoring for cloud service SLA for the Ethereum

blockchain system using a single oracle for monitoring the

SLA constraints and objectives. Uriarte et al. [31] proposed

SLA monitoring and penalty enforcement using the public

blockchain platform Ethereum. For imposing penalties, the

solution used smart contracts and exploited oracles to use

off-chain services and data. Scheid et al. [6] also use oracle

as a monitoring service to ensure SLA compliance. Ma

et al. [32] provide a decentralized solution for verification

and disputation for consumers and providers using oracles.

Their proposed solution ensures the reliability of oracle for

avoiding adding any malicious information to the

blockchain.

In addition to using blockchain as a ledger, smart con-

tracts are increasingly used to develop autonomous appli-

cations as highlighted by [33]. The authors in [34] explored

the use of smart contracts in the field of blockchain for the

purpose of implementing effectiveness in service-oriented

computing. Further, This study emphasizes on reuse and

increase in cost-effectiveness. Daniel and Guida [34] pre-

sented a study on the use of smart contracts from an SLA

perspective in the paradigm of blockchain. They have also

presented with the challenges that might arise in using

smart contracts, such as cost awareness, interoperability

and standardization, and cost awareness [34]. Smart Con-

tracts in blockchain can also be used as a trusted compo-

nent to maintaining the integrity of SLA provided by the

service provider, as proposed by Wonjiga et al. [7]. SLA

Fig. 2 An in-depth view of conventional blockchain

Cluster Computing (2022) 25:537–559 541

123

verification approach in cloud-based on blockchain tech-

nology is made possible to ensure trust between the

involved parties. The authors stated that data integrity is a

common issue in storage systems, and there have been

several data integrity failures. So, this research has enabled

tenants to verify the integrity of the data, and providers

need to verify the claim [7]. Wonjiga et al. [8, 35] has

proposed detailed infrastructure for the monitoring of the

security of service level agreements in IaaS clouds [8, 35].

There has been an introduction of SLA in the complex

Internet of Things (IoT) domain. Alzubaidi et al. [36, 37]

presented the implementation of blockchain SLA in the

environment of IoT. IoT devices continuously exchange

data in the environment. SLA plays a vital role in the

context of IoT applications as it enables concerned parties

to conform to the agreed QoS. Traditional SLA techniques

are found to be inefficient for the complex IoT domain and

applications. The presented conceptual framework focuses

on the awareness of the IoT ecosystem, transparency,

auditability and minimum human intervention [36]. Hang

and Kim [38] proposed and evaluated an SLA based

economy sharing service using Hyperledger Fabric. The

system focuses more on the breach of the contract between

the concerned parties. In case there is a breach of contract,

the monetary compensation is applied automatically, and

all the concerned entities are aware of this breach. The

framework has been designed in a way to transform busi-

ness solutions, improve efficiency, and bring automation in

different economic situations [38].

Efficient resource provisioning is another significant

challenge in cloud computing as it is critical to maximising

utilisation and an lead to under or over provisioning. In this

context, Ghobaei-Arani et al. [39–41] and [?] have pre-

sented recent efforts to achieve effective methods for

efficient resource provisioning for cloud-based environ-

ments whilst minimising SLA violations. As with SLA

monitoring discussed earlier, research community has

investigated leveraging blockchain technology to aid

resource provisioning in cloud environments. Xing [42]

presents one of the most recent efforts in this respect,

focusing on complexity due to the use of IoT systems.

The state of the art uses blockchain for various reasons,

including SLA monitoring and compliance, but none of the

work focused on building a service to enable consumers

and providers to monitor web application response time

requirements in a transparent and trustful environment. In

this work, we have presented and evaluated the third party

service using blockchain to address this issue. We also

perform performance analysis for using different block-

chain parameters to optimize computing resources required

to run the proposed solution. Table 1 summarizes the

exiting state of the art uses Blockchain for SLA.

4 A blockchain-based SLA monitoring
system

In this section, we present details of the proposed block-

chain-based SLA monitoring system, including the system

architecture and our implementation testbed using the

Multichain blockchain.

4.1 System architecture

Figure 4 presents the overall architecture of our proposed

system. The overall monitoring architecture consists of a

customer(s), a cloud service provider, and a monitoring

authority. A customer is a user who requires the service

provider’s service and can be an automated service/pro-

gram acting on behalf of a human user. The monitoring

authority is a trusted third party that runs one or more

instances of the monitoring service, each tasked with

monitoring compliance of SLA for individual objectives.

As presented in Fig. 4, an SLA is generated through initial

interaction between a customer and the service provider,

which is envisaged to include specific SLOs such as

availability, response time, and Round Trip Time (RTT).

Upon the SLA generation, the monitoring authority mon-

itors the compliance of service endpoints with the agreed

SLOs reporting any violations using specific interfaces.

Within our system, a private blockchain is used to create

an immutable history of records that monitors and evalu-

ates the level of SLA enforcement between customers and

service providers. Every endpoint has its own wallet

address in the blockchain network, including monitoring

service. Transactions are sent in real-time from the wallet

address of the monitoring service to the end point’s wallet

addresses. All these transactions are encrypted using the

OpenSSL library (through https) and authenticated by

digital signatures generated in the coin base transaction.

Blockchain network raises the system’s overall perfor-

mance by making it scalable through its decentralized

network, where the mined transaction upon becoming the

part of the consensus blockchain cannot be tampered.

While logging the response time of endpoints, the moni-

toring service also checks the internet quality every time.

Any degradation in the quality of the internet may not

impact the observed response time of endpoints. If the

internet is in an unresponsive state, its throughput is not

recorded and compared with its SLO.

Figure 3 describes the interaction of entities through a

sequence diagram. Here, the customer process activates

upon receiving endpoints’ data and registering their

accounts on blockchain through their respective wallet

addresses. Upon successful registration, SLOs (Service

Level Objectives) are defined between customer and its

542 Cluster Computing (2022) 25:537–559

123

service provider to formally develop a mutually decided

service level agreement. This SLO based SLA is then

provided to monitoring service to evaluate endpoints’

performance benchmarks in accordance with the agreement

between customer and service provider and maintain its

immutable copies of records on blockchain based dis-

tributed ledger through its decentralized private network.

The data logging for endpoints evaluation is frequently

synchronized to continuously monitor the performance and

enforcement of SLA.

This approach is envisaged to be very useful for a

transparent evaluation and ranking of a service provider for

business gain. In order to ensure the integrity of results, all

the data becomes part of the records in real time, powered

by blockchain technology. The system also takes into

account the stability of the Internet and does not grade a

Table 1 Comparison of related work uses blockchain for SLA

References Blockchain

type/Platform

Utilized

techniques

Performance

metrics

Data set or type Advantages Disadvantages

Scheid

et al. [5]

Permissionless Network Function

Virtualization

Not included/

addressed

Not included/

addressed

Automatic

enforcement

of the

payments

No evaluation of the proposed

work

Scheid

et al. [6]

Permissionless Blockchain-based

SLA and

Resource

Description

Framework

response time Public

Ethereum

addresses

Dependency of

billing

handling

removed

Monitoring solution only reports

SC violations

Zhou et al.

[25]

Permissionless Nash equilibrium

principle and

unbiased random

sortition

algorithm

Complexity of the

interface

Not included/

addressed

Performs well

in terms of

feasibility

Unautonomous SLA

Neidhardt

et al.

[26]

Permissionless Blockchain based

SLA

Not addressed/

included

Not included/

addressed

Transparency of

the billing

process

No evaluation has been carried

out

Nguyen

et al.

[28]

Permissioned Blockchain based

SLA

Satisfaction, rule

abiding rates

and cost

Data from

Tourist

Management

Agency

Tracking of

SLA

violations

Security of the tracked data is

not considered and no

evaluation has been carried out

for the select performance

metrics

Alzubaidi

et al.

[37]

Permissioned Accuracy

Diagnostics

Latency and

Success/Fail

rates

e database

provided by

HLF

Performs well

in terms of

latency

Interoperability issue between

Hyperledger Fabric and MVCC

Wonjiga

et al. [7]

Permissioned Blockchain

Ledger

Time, verification

and overhead

Users’ data Independent

verification

No verification if the generated

proof is lost by the user

Hang et al.

[38]

Permissioned Asymmetric

cryptography

Throughput and

latency

Wallet API Multi-user

collaboration

and process

automation

Security and privacy issues not

addressed

Taghavi

et al.

[30]

Permissionless Stackelberg

differential

game

Quality, price and

capacity

Users’ data Less computing

resources are

reserved

Assumptions of perfect

knowledge on players part

Taha et al.

[27]

Permissionless Decentralized

monitoring over

Ethereum

Availability,

percentage of

processed

requests and

secure-cookies

Customer data Customer

compensation

in case of

security

breaches

Not focused on authentication

management

Urirate

et al.

[31]

Permissioned

and

permissionless

Dynamic SLA

management

Not addressed/

included

Automates the

SLA

lifecycle and

brings

transparency

Reduced

latency and

low overhead

No evaluation of the framework

was carried out

Cluster Computing (2022) 25:537–559 543

123

service provider against any endpoints if the internet con-

nection is not stable. Nowadays, most of the cloud service

providers (such as Microsoft Azure and others) offer and

get engaged with the customer through a minimum level of

service agreement which is promised to fulfil by the ven-

dor. Our system does have the tendency to build a strong

platform for tracking and monitoring such kind of business

model where the independent and instantaneous enforce-

ment of agreement through independent evaluation of

secured and immutable data is of utmost importance.

4.2 Implementation

Figure 5 presents the blockchain-based testbed implemen-

tation of the system described in Fig. 4 to achieve a rig-

orous empirical evaluation of the proposed monitoring

system. The testbed consists of three units working in

coordination under their roles, i.e., Monitoring Server Unit

(MSU), Administration Unit, and Monitoring Service

Node. Monitoring Server Unit is responsible for hosting

and running the monitoring service, which periodically

checks, captures, and monitors the data related to SLO

against each endpoint. SLO related information is shared

with the monitoring server unit through the administration

unit, which is composed of an administrator server and a

file server. The administration unit’s role includes regis-

tration of accounts for endpoints and monitoring service

with the blockchain network (to facilitate transaction pro-

cessing through respective wallet addresses). Admin server

also co-ordinates with the file server (containing SLO and

endpoints’ data) and updates the records against each

endpoint in accordance with their wallet addresses on the

blockchain. This updated record is used by the monitoring

service to process the captured data in accordance with

SLO. Monitoring service then pushes the endpoint’s

observed data onto the SLA monitoring blockchain net-

work via JSON RPC API using the OpenSSL library for

secure communication.

Within our setup, the blockchain network contains one

seed node and two connected nodes. Seed node in block-

chain generates and registers all the addresses for endpoints

and monitoring service. This node is also responsible for

managing rights for endpoints and monitoring service

along with the creation and utilization of tokens that are

moved through transactions from monitoring service wallet

address to respective end point’s wallet address. The token

represents an acknowledgment of a successfully recorded

transaction that is moved from the monitoring service

account to the end point’s wallet address. Connected nodes

empower the decentralization of the distributed decentral-

ized network by locally creating and maintaining their

respective copies of the blockchain. The mining pool is

shared among all the nodes to push the transaction data into

the blocks of consensus blockchain.

Fig. 3 Sequence of events for

the blockchain-based SLA

monitoring process

544 Cluster Computing (2022) 25:537–559

123

5 Experimental setup

To evaluate the proposed system, we implemented the

testbed presented in Fig. 5 using Multichain within a pri-

vate blockchain setup.

Here, monitoring service unit and blockchain network

maintain end to end communication through multichain

JSON based RPC API. These monitoring services have

been specifically written to send transactions over the

network using JSON based RPC APIs. They have support

for SSL connections to its JSON-RPC API using Mul-

tichain platform [43].

The motivation to choose private blockchain is mainly

due to our proposed model requiring the trusted third party

monitoring infrastructure to run on a managed and con-

trolled environment. The monitoring infrastructure main-

tains the ledger containing web services monitoring data,

runs on a managed and controlled environment. Private

blockchain also enables a permissioned model for access-

ing the data stored on the ledger, thereby adding a layer of

security to achieve resilience against data tampering and

leakage.

Our experimental blockchain network consists of three

nodes (a seed node and two client nodes) connected within

a local area network. The specifications of these nodes are

presented in Table 2. The blockchain network consists of

10 miners with a blockchain generation rate of 15 s and a

maximum block size of 8 MB, as described in Table 3.

Monitoring service(s) checks the status of the endpoints

periodically (preset time interval) and stores the result of

each monitoring event for an endpoint in the form of a

transaction. As our setup is a private blockchain, we have

used round robin algorithm for consensus to ensure the

transactions are added to blocks based on their arrival

times. Figure 7 presents a typical transaction whereas

Fig. 6 presents a typical block within our blockchain.

For our experiments, we have used sixteen web-based

public resources to represent service endpoints. A

description of these endpoints, along with their blockchain

wallet addresses, is presented in Table 4. To achieve a

thorough analysis of our proposed monitoring system, we

have used different scenarios with a varying number of

monitoring service instances (one, two, and three instan-

ces), each with different service endpoints (1, 5, 10, 15).

The time interval to conduct periodic checks sets to 5 s

across all these settings.

6 Performance and scalability analysis
of the proposed approach

The experiments have been carried out using different

configuration settings with respect to parameters such as

number of active monitoring services, number of endpoints

Fig. 4 Blockchain-based SLA monitoring process model

Cluster Computing (2022) 25:537–559 545

123

(hosted services), and time interval for monitoring the

responses of endpoints as shown in Table 5.

6.1 Average block size for varying endpoints

Here, the average size of the transaction is 578 bytes. In

order to determine the scalability limit of our system. Let’s

denote the size of the SLA transaction, which is being

forwarded from monitoring service to blockchain is Tsize,

rate of generating new blocks by backend blockchain by

Brate, the maximum volume of data that can be accom-

modated by the block is Bdata�max. The average size of the

block under which the existing blockchain is currently

being operated, is represented by is Bdata�avg. We are

Fig. 5 Testbed to implement blockchain-based SLA monitoring

Table 2 Hardware and software specifications

S.

No.

Platform Hardware specification

Processor Memory Page file

01 Windows 10 Pro 64-bit Intel Core i3-4005u CPU @ 1.70GHz

(4CPUs)

4096MB

RAM

5586MB Used 1887MB

available

02 Windows 10 Home Single Lang. 64-bit (10.0,

Build 17134)

Intel Core i7-7500U CPU @ 2.70GHz (4

CPUs) 2.9GHz

8076MB

RAM

14346MB used 2836

available

Table 3 Blockchain parameters

Platform Blockchain parameters

Mining Diversity No. of Miners Block Gen. Rate Max. Allowed Blk Size (MB) Mining Turnover

Windows 0.3 10 15 8.3 0.5

546 Cluster Computing (2022) 25:537–559

123

interested in determining the maximum count of transac-

tions that a block can carry with itself, represented as

Tmax�count per block and the current average number of

transactions in a block (Tavg�count), which may slightly vary

with varying number of monitoring services due to asso-

ciated metadata with each transaction. The size of the SLA-

transaction in our system is 578 bytes that is Tsize = 578

bytes. The computation for the size has been performed as

per the method mentioned in the official documentation of

Multichain.

Within this experimentation, Case 1 referred to the

scenario when one monitoring service was operated to push

SLA transactions to the blockchain. Similarly, cases 2 and

3 make use of two and three parallel running monitoring

services, respectively. Table 5 shows the linear increase in

the average data size of blocks with the increase in the

number of endpoints along with monitoring services. It can

be seen in Table 5 that Brate is set to 15 s and Bdata�max at

8MB while Bdata�avg is 2581 bytes (from Fig. 8A). In order

to obtain the maximum count of transactions that a block

can carry, Tmax�count=block, we need to divide the maximum

size of block, Bdata�max (that may be utilized for allocating

transactions) by Tsize (size of SLA transaction);

Mathematically;

Tmax�count=block ¼ Bdata�max=Tsize ð1Þ

Substituting the values (in bytes), we get;

)Tmax�count=block ¼ 8000000=578

)Tmax�count=block ffi 13841 transactions / block

Computing the average number of SLA transactions in a

single block according to the case where Bdata�avg is 2581

bytes; We have;

Tavg�count=block ¼ Bdata�avg=Tsize ð2Þ

Placing values for block and transaction size (in bytes), we

get;

)Tavg�count=block ¼ 2581=578

)Tavg�count=block ffi 4 transactions / block

Figure 8.A confirms our above result, where some sample

blocks of case 1 with EPn=1 has been shown.

Analyzing the calculated values of Tmax�count=block and

Tavg�count=block, it may be inferred that our system may

further be scaled up to facilitate approximately three

thousand four hundred and sixty times more transactions.

One more thing that should be mentioned here is that the

machines’ computational strength (which are being oper-

ated at the monitoring service unit) may vary the result due

to their processing strength.

6.2 Average transaction throughput

Now, considering the data from Table 5 where Bdata�avg has

been the highest against different cases for monitoring

services, we will perform the same computation for

Fig. 6 Sample block within the blockchain

Fig. 7 Sample transaction within the blockchain

Cluster Computing (2022) 25:537–559 547

123

Tavg�count=block for the data at row number 4,8 and 12 of the

table. This will show us the existing operational upper limit

of our proposed system under stress.

Therefore, using Eq. (2);

Tavg�count=block ¼ Bdata�avg=Tsize ð3Þ

At Bdata�avg = 7185 bytes, Brate = 15seconds, Tsize = 578

bytes

Placing values for block and transaction size (in bytes),

we get;

)Tavg�count=block ¼ 7185=578

)Tavg�count=block ffi 12 transactions / block

At Bdata�avg = 13,009 bytes, Brate = 15seconds, Tsize = 578

bytes

(a) EPn vs. Bdata−avg with Brate=15 (b) Tavg−count/block vs Bdata−avg Brate=15s

Fig. 8 Experimentation to assess scalability of proposed system

Table 4 Web services

monitored and their blockchain

wallets

S.No Endpoint Service Name Endpoint Service Blockchain Wallet Address

01 Blockchain Research Group 182QwrqzWHmiBgjdC1pTQs1t1rdBGUHiQYm2F6

02 SLA Cloud service 14gtzt3XZVT3Mf61uAQoGEXxGgP6yc41awynzg

03 Yahoo 1UuPVjnTvewdSaw9Xe8XL1HzaTBYVi2yG8xZVD

04 Ebay 1VfSM1pC2qtFQaYHcYirGc8tMFUDLnJLjn5JPo

05 Google 17mY9QAim8i8XcQxVsUC6ficQTNYpKunmtwQQG

06 Example 1FjDokjwzYtT2mtWsk7irGY37hskaTtiXtjKWa

07 Paypal 1FX8jcXgN4dj36xvowFoo6ELkrv44rNS3k6AR9

08 Bing 1VTzdPGnDbX8e6L4W1iDn2uGryReC7LU5fKkWA

09 Techcrunch 1DYbGBPcrZYArYvyGhkrs1i2N59W8o1w2cENtn

10 Mashable 1JHcLQ4a8vtPb5UgVJkYyHrdAzX4KHimSaoEiQ

11 The next web 1K3A1qotfFo65HfSH8GARZLe8TK48eL8hj3Wbg

12 Wordpress.com 1T2QqCXp7o9GwixVbVnCQ8bm42pHUC5Sk4a7YH

13 Wordpress.org 1FkQApTwagEraRhzcTD3NEUfjyrVw96FeiSEKQ

14 NED University 1W5ZHwPvjbneXwJ3tC3g2UwHTotSB9LCZnLC84

15 Higher Education Comm. 1EBYDxDyvpJ8Au4Fnh9JUsGaGetdJqNMz9z4F7

16 Wikipedia 161r7RpfkYDraapBTibqnHXvBj5FGATuRo1SRY

Table 5 Average Block size with varying EPn for Different Cases

S. No. Case Ep n Ddata_avg (bytes)

1 1 1 2581

2 1 5 3499

3 1 10 4115

4 1 15 7185

5 2 1 3505

6 2 5 3933

7 2 10 9579

8 2 15 13,009

9 3 1 6176

10 3 5 10,399

11 3 10 15,380

12 3 15 16,108

548 Cluster Computing (2022) 25:537–559

123

Placing values for block and transaction size (in bytes),

we get;

)Tavg�count=block ¼ 13; 009=578

)Tavg�count=block ffi 23 transactions / block

At Bdata�avg = 16,108 bytes, Brate = 15seconds, Tsize = 578

bytes

Placing values for block and transaction size (in bytes),

we get;

)Tavg�count=block ¼ 16; 198=578

)Tavg�count=block ffi 28 transactions / block

Figure 8B shows the linear increase towards average

transaction count per block due to an increase in better

utilization of the SLA-blockchain network. This also shows

that the system at this stage may easily be further scaled up

to meet further demands.

In this system, we have been pushing some metadata

along with each transaction through monitoring services.

This metadata (which includes endpoint’s URL, availabil-

ity of hosted services, length of time it takes to respond, the

number of times the service has been queried since its start,

and the current timestamp) may cause some delays in

transaction formation, which may ultimately affect the

arrival time of the transaction to the blockchain but it does

not impact the mining time of transaction. On the contrary,

this situation can certainly affect the overall transaction

throughput of the system and may lead to the under-uti-

lization of backend Blockchain’s capabilities and resour-

ces. Therefore, it is also equally important to investigate

the scalability of our system by examining the maximum

upper limit for the number of SLA-processed transactions

per second.

6.3 Sensitivity analysis of transaction
throughput vs. blocksize

Lets TTp represents the transaction throughput of our pro-

posed system. Hence, TTp can be mathematically expressed

as;

TTp ¼ Bdata�max=Tsize=Brate

Here we are keeping Brate= 15seconds to determine the

direct impact of block size on throughput. Applying values

in Eq. (3), we get;

At Bdata�max¼ 8MB

)TTp ¼ 8000000=578=15

)TTp ¼ 922:722

)TTp ffi 923 transactions per second.

Using the same mathematical relationship between TTp and

Bdata�max; we can make a projected visualization for TTp
based upon the experimental data of our system. Hence,

determining scalability in context of TTp when available

memory for block is increased to 80MB, we get;

AtBdata�max¼ 80MB

)TTp¼ 80000000=578=15

)TTp¼ 9227:220

)TTp ffi 9227 transactions per second.

Similarly, for 800 MB and 8000 MB;

AtBdata�max¼800MB

)TTp¼800000000=578=15

)TTp¼92272:20

)TTpffi92272transactionspersecond.

AtBdata�max¼8000MB

)TTp¼8000000000=578=15

)TTp¼9227220

)TTpffi 922722transactionspersecond.

This shows that the system bears the tendency to process

923 transactions at every second provided the nodes

hardware/software configuration settings remains the same

as shown in Table 5 along with the network connectivity

strength (refer to Table 5) in accordance with existing

settings while under same settings but by allocating more

space for the block (at Bdata�max = 8000 MB), the same

system may be scaled up to add as many as approximately

nine lacs SLA-transactions per second which is considered

adequate for a large scale global monitoring system. Fig-

ure 9 shows this relationship between TTp and Bdata�max.

Figure 9 shows a big increase in transaction throughput

when the block is allowed to accept more transactions to

carry to the blockchain with a constant rate of 15 s for

adding a new block. This assumes a continuous flow of

Fig. 9 TT vs Bdata�max (Brate=15 s)

Cluster Computing (2022) 25:537–559 549

123

incoming transactions from clients across the network;

otherwise, the same situation may lead towards a disaster

blockchain state if the resource utilization and responses

are not properly analyzed due to frequent empty spaces

within a block throughout the blockchain.

6.4 Sensitivity analysis of transaction
throughput vs. block generation rate

Although transaction throughput is a vital attribute in

assessing the scalability of the system, but there is another

key factor which may affect the performance of the system

by under or over-utilizing the available resources and

refrain it to achieve an optimum level of performance. This

key factor is the domain or application area, which sets up

the benchmark performance for the system to deliver.

Technically, at the blockchain level, this requires an opti-

mum match of speed between the rate of incoming trans-

actions and the rate of generating new blocks by the

backend blockchain engine that is another area of investi-

gation is TTp versus Brate.

It is very important here to mention that the significance

of the impact of maintaining an optimum level between an

incoming flux of transactions and their additions through

blocks to the blockchain. If this level is not maintained to

meet the desired output, it may lead to a situation where

monitoring service would likely to be able to push data to

the blockchain at a slower rate (if the block size is con-

figured to be more in size than the demand of the SLA

system). At this moment, more transactions may likely to

wait in the pool for their confirmations until the block is

ready to be added to the blockchain (depending upon the

block generation rate). This builds up a strong foundation

for carrying out scalability analysis in the context of the

number of incoming transactions versus its confirmation

keeping the block memory size intact as it may dramati-

cally increase or decrease the scalability strength of the

system in terms of its performance for transaction

throughput. Therefore, in order to assess the potential of

our system in this context, we need to conduct a thorough

stress testing analysis on the theoretical limits of transac-

tion processing speed versus block generation rate.

Using Eq. (3), very exciting research findings may be

obtained to investigate various dimensions of our system in

the context of scalability. Figure 10 highlights the

responses/behavior of our system when it is projected

(using the mathematical relationship of Eq. (3)) to be

stressed under the theoretical limits of one of the key

scalability related attributes of our system, block genera-

tion rate. This mathematical projection is based upon the

actual data obtained from the experimentation of the

blockchain-enabled SLA system presented in this paper.

Performing computation using Equ. (3), we have;

TTp ¼ Bdata�max=Tsize=Brate ð4Þ

Now, here again, we will first consider the data from

Table 5 where Bdata�avg has been the highest against dif-

ferent cases for monitoring services, and therefore we can

use it for the maximum data consumed by the block against

a particular monitoring service, which in our case is located

at row number 4,8, and 12 of the table for monitoring

service 1,2 and 3 respectively (can also be seen in Fig. 8B).

The result will give us the existing operational upper limit

of our proposed system under stress at different block

generate rates. In the later part, we will carry out the same

computation using the maximum block size allowed by our

system for SLA blockchain to determine its potential peak

performance.

6.4.1 Case 1: 1 monitoring service

Applying values in Eq. (4) for system throughput TTp
against maximum average blocksize achieved at EPn=15,

with one monitoring service.

AtBdata�max¼ 7185bytes;Brate¼ 15 s;

Tsize¼ 578bytes, we get;

)TTp ¼ 7185=578=15

)TTp ¼ 0:82)TTp ffi 1 transaction per second.

AtBdata�max¼ 7185bytes;Brate¼ 20 s;Tsize¼ 578bytes;we get;

)TTp ¼ 7185=578=20)TTp ¼ 0:62

)TTp ffi [1transaction every 2 s.AtBdata�max¼ 7185bytes;

Brate¼ 25 s;Tsize¼ 578bytes, we get;

)TTp ¼ 7185=578=25)TTp ¼ 0:49

)TTp ffi 1transaction every 2 s.

Figure 10A shows the impact of increasing block genera-

tion rate to the existing operational strength of our system

when 01 monitoring service is being used to observe 15

endpoints with block consumption of 7185 bytes. The trend

in the graph discourages any further increase in the rate of

generating new blocks as the system’s current throughput is

around 52 transactions per minute. Therefore, for one

monitoring service, the graph shows a satisfactory and

considerably stable status of the operation following the

system’s demand at the existing rate of the addition of new

blocks.

6.4.2 Case 2: 2 monitoring service

Applying values in Eq. (4) for system throughput TTp
against maximum average blocksize achieved at EPn=15,

with two monitoring services.

550 Cluster Computing (2022) 25:537–559

123

AteBdata�maxe ¼ 13009bytes; eBratee ¼ 15 s; eTsizee ¼ 578bytes

, we get;

)eTTp ¼ 13009=578=15

)eTTp ¼ 1:50

)eTTp is approximately 3 transactions after every 2 sAteBdata�max

¼ 13009bytes;Bratee ¼ 20 s; eTsizee ¼ 578bytes, we get;

)eTTp ¼ 13009=578=20

)eTTp ¼ 1:12

)eTTpis just over one transaction per second.AteBdata�maxe

¼ 13009bytes; eBratee ¼ 25 s;Tsize ¼ 578bytes, we get;

)eTTp ¼ 13009=578=

25)eTTp ¼ 0:90

)eTTpis closed to one transaction per second

Figure 10B shows a slightly better utilization of blocks

with respect to the system’s existing throughput (90

transactions per minute). The reason is, of course, an

increase in the number of parallel running monitoring

services (in contrast to one monitoring service, as shown in

Fig. 10A) and the availability of space in the block.

Although space utilization has been improved to 13,009

bytes, the system is still able to satisfy the demand of

monitoring endpoints at different intervals of time ranging

from 05 to 15 s. Another important point we need to keep

during the analysis of such graphs is that the throughput

may also be varied a bit in accordance with the response of

the endpoints to the monitoring service. The earlier it

responds, the lesser the time it takes to form and send a

transaction to the blockchain. One of the monitoring ser-

vices pushes once the transaction to the transaction mining

pool, blockchain internal processes start to work.

(a) Avg. block size=7185B, MS=1 (b) Avg. block size=13009B, MS=2

(c) Avg. block size=16198B, MS=3

Fig. 10 TTP vs Bdata�max (consumed against each monitoring service) vs. Brate

Cluster Computing (2022) 25:537–559 551

123

6.4.3 Case 2: 3 monitoring services

Applying values in Eq. (4) for system throughput TTp
against maximum average blocksize achieved at EPn=15,

with three monitoring services.

AtBdata�max¼ 16198bytes;

Brate¼ 15 s;Tsize¼ 578bytes; we get;

)TTp ¼ 16198=578=15

)TTp ¼ 1:86

)TTpis approximately 2 transactions per second

AtBdata�max¼ 16198bytes;Brate¼ 20 s;Tsize¼ 578bytes;

we get;

)TTp ¼ 16198=578=20

)TTp ¼ 1:40

)TTpis over one transaction per second.

AtBdata�max¼ 16198bytes;Brate¼ 25 s;Tsize¼ 578bytes;

we get;

)TTp ¼ 16198=578=25

)TTp ¼ 1:12

)TTp is just above one transaction per second

Figure 10C highlights the extreme case of the existing

system where 15 endpoints are being monitored by three

parallel running monitoring services. The maximum uti-

lization of memory space increases to 16,198 bytes on

average per block. This shows that the system is still

capable of handling more endpoints within the existing

setup. The existing block generation rate is working opti-

mally to maintain a maximum demand of 112 transactions

per minute. Increasing the rate of creating new blocks will

lead to a situation where transactions would be required to

wait more to be mined into the block, thereby decreasing

the system’s overall performance.

6.5 Sensitivity analysis of transaction
throughput for max. blocksize

Since the blockchain in our system has the potential to

carry almost 8MB of transactions in each block, therefore

we also must need to find out how much boost in the

performance we may be able to obtain if the blockchain is

fully scaled up and we let the SLA-transactions occupy the

maximum possible and available block space. For this

purpose, we need to investigate the impact of transaction

throughput when the block generation rate is varied, and

the block memory size is wholly utilized.

Therefore, applying Eq. (4) for the above scenario,

system throughput TTp for maximum available blocksize

can be calculated as below.

AtBdata�max¼ 8000000bytes;Brate¼ 15 s;

Tsize¼ 578bytes, we get;

)TTp ¼ 8000000=578=15

)TTp ¼ 922:722

)TTp ffi 923 transactions per second

Now, applying the projected values for Brate = 15 s, 20 s,

and 25 s to compute the constraints which may be observed

while blockchain under further stress.

AtBdata�max¼ 8000000bytes;Brate¼ 20 s;

Tsize¼ 578bytes, we get;

)TTp ¼ 8000000=578=20

)TTp ¼ 692:04

)TTp ffi 692 transactions per second

AtBdata�max¼ 8000000bytes;Brate¼ 25 s;

Tsize¼ 578bytes, we get;

)TTp ¼ 8000000=578=15

)TTp ¼ 553:63

)TTp ffi 553 transactions per second

Figure 11 shows that our investigation for keeping SLA

blockchain to operate optimally encourages the block

generation rate to be kept at 15 s to maximize the

throughput. If we would further decrease this rate, the

chances are there that the blockchain may start to mine

empty blocks as it happened during experimentation when

the checking interval by monitoring service is set at 15 s to

observe the endpoints’ responses. Figure 11 also reflects

the true state of our blockchain as it works upon the actual

transaction size of this system when the block is hypo-

thetically completely filled by such transactions. At this

stage, the system is capable of handling 923 transactions

Fig. 11 TTP vs Bdata�max vs. Brate

552 Cluster Computing (2022) 25:537–559

123

per second when the block generation rate is set to 15 s.

6.6 Scalability analysis for increasing monitoring
services

Figure 12 represents the relation between block size with

the variation of load through an increase in running the

number of monitoring services. If we start analyzing the

graph vertically with respect to different levels of interval

in seconds (set by monitoring service to periodically check

the status of the endpoints), we can see that overall; the

trend is towards higher consumption of block size across

cases 1, 2, and 3. A relatively unusual point at the graph

can be found in cases 1 and 2 when monitoring services

were being operated at a checking interval of 5 s, where the

utilization of memory space of block is almost similar. This

is most likely due to the fact the blockchain is one and

common across all the cases. Although the monitoring

services are running in parallel that is causing to generate

multiple transactions from these two parallel running ser-

vices, however, we must keep in mind that the block

generation process is sequential, and these parallel running

services, therefore, start to put pressure on the size of the

block to scale it up. Therefore, more space is expected to

be consumed as more transactions start to come in a shorter

interval of time. The point to note here is that the difference

in the average block size at this stage (when the checking

interval is 5 s) is very little. This shows that the rate of

incoming transactions was very close at that point in time

when one and two parallel monitoring services had been

running, respectively.

Another factor that affects the average block size here is

the block generation rate (which is set to 15 s) of block-

chain. This rate represents the average value; that is, if a

block takes more or less time than 15 s to be added to the

blockchain, then the next block will be timed in such a way

so that this average block generation rate may be restored.

Combining both of these reasons, the graph may be

understood at a point when case 2 and 3 when the interval

is set to 10 s. However, the overall impact illustrates that if

the system is loaded with more monitoring services keep-

ing constant checking intervals, the average block size will

be increased. Case 3 at an interval of 10 s shows a decline

from its previous position; this is because of the delay in

response by some of the endpoints when multiple (three to

be exact) monitoring services in parallel had been querying

endpoints. Trade-off lies between endpoints’ responses and

block generation rate to occupy memory space in the block.

As it can be observed in Fig. 13, case 3 is relatively on a

higher side most of the time in terms of confirming trans-

actions to the block than case 1 due to a higher load on

blockchain from case 1 to 3 through an increase in the

number of monitoring services. Some exceptions may be

ignored, such as for cases 1 and 2 against checking interval

of 5 s, due to the randomness in the arrival time of trans-

actions. For example, if a transaction arrives (through one

of the monitoring services to the pool of unconfirmed

transactions of the blockchain) immediately after the

addition of the latest block, then the new transaction will

have to wait to the addition of the next block (approxi-

mately 15 s in our case). Due to this reason, we have taken

into account the average transaction mining time (out of

nine total transactions every time while running a fixed

number of monitoring service(s) and endpoints for every

case such as case 1 was performed with one monitoring

service while recording nine individual transactions taken

at a difference of every 500 transactions for every varying

number of monitored endpoints which in our scenario are

1,5,10, and 15. This makes 36 transactions at various stages

of blockchain operations for each monitoring service.

Hence, for all monitoring services running in parallel, that

is 1, 2, and 3, a total of 36*3, which is equal to 108

transactions, have been considered. These transactions

Fig. 12 Block size variation with increasing load Fig. 13 Transaction mining time against monitoring services

Cluster Computing (2022) 25:537–559 553

123

have been recorded after every 500 transactions, so overall,

to get the behavior of our system, 500*108=54,000 trans-

actions were performed). Generally speaking, the transac-

tion mining time will increase with the increase in the rate

of incoming transactions to the blockchain system. This

increase in time will not be due to an increase in the time it

takes to put an individual transaction to the block but may

also be due to the overutilization of memory space of a

block once the rate of incoming transactions becomes too

high to accommodate further transactions. In our case, the

block size has not been completely utilized in the full

operational blockchain (Fig. 13), and the system through-

put is also good (Figure for Transaction Mining Time),

which may further be increased due to the available space

in the block (Fig. 13 showing the maximum consumed

memory of block is well under our 8MB dedicated memory

size of the block). This is why it can be said that our system

is highly scalable to meet the future demands of increased

throughput. Tables 6, 7 and 8 show the data that have been

recorded for all the cases of above graph. Here MT_Avg

represents the average mining time of a transaction while

EP_n represents the number of observed endpoints.

6.7 Hypothesis testing

We designed the two sets of hypotheses to determine the

statistical evidence for the obtained results for increasing

the number of endpoints and monitoring services on the

transaction delays. The first set of hypotheses is related to

increasing the number of endpoints and delays in transac-

tion delays.

H0a : l1 ¼ l2

H1a : l1\l2

The second set of hypothesis is related to the increasing

number of monitoring services for fixed (10) number of

enddpoints.

H0b : l3 ¼ l4

H1b : l3\l4

1. l1 The population mean for the delays in transac-

tions pickup by miners using one monitoring service

against 1 endpoint.

2. l2 The population mean for the delays in transac-

tions pickup by miners using one monitoring service

against 10 endpoint.

3. l3 The population mean for the delays in transac-

tions pickup by miners using one monitoring service

against 10 endpoint.

4. l4 The population mean for the delays in transac-

tions pickup by miners using three monitoring

service against 10 endpoint.

The level of significance is set at a ¼ 0:05. We rejected the

null hypothesis (H0 or H0b) when the p-value based on the

paired t-test is less than 0.05 for any specific feature.

The null hypothesis H0a for the first set of the hypothesis

is rejected for the average delay in the transaction for

miners as the p-value is less than 0.05. It means that the

average delay in transactions for an increasing number of

endpoints will increase.

We rejected the null hypothesis H0b for the second set of

the hypothesis for the feature Processed Requests as the p-

value is less than 0.05 and t-value is �6:54. It means that

increasing the number of endpoints increases the transac-

tion delays. For the increasing number of monitoring ser-

vices, the null hypothesis H0b is also rejected as we find p-

value \0:00001 and t-value is �30:59. It means that the

increasing number of monitoring services also contributes

to increasing the transaction delay.

6.8 Scalability analysis for increasing monitoring
service requests on transaction delays

We carried out approximately forty-eight thousand trans-

actions overall by assigning a different number of end-

points (one, five, ten, and fifteen) against one, two, and

three parallel running monitoring services such that all of

these monitoring services were run in parallel for each case

of endpoints for four hundred transactions in every

Table 6 Avg. mining time for

end points at MS=1
S. No. MTavg EPn

1 7.2 1

2 9.7 5

3 5.8 10

4 9.2 15

Table 7 Avg. mining time for

end points at MS=2
S. No. MTavg EPn

1 10 1

2 12.1 5

3 6.7 10

4 7.6 15

Table 8 Avg. mining time for

end points at MS=3
S. No. MTavg EPn

1 9.2 1

2 12.3 5

3 10.7 10

4 10.7 15

554 Cluster Computing (2022) 25:537–559

123

iteration. The observation was made to record the latency

between transaction receiving and picking up by miner

with the gradual increase in the number of requests. The

data was evaluated against real endpoints, as shown in

Table 4. Figures 14, 15, and 16 show the trend where

latency varies from 3 to 27 s covering all conditions for

number of monitoring services and endpoints. We can see

here in Fig. 14 that increasing the number of endpoints

pushes more transactions in a block. This situation helps

better utilization of blocks but may sometimes result in

unexpected output. For instance, when a miner pickups a

transaction after ‘‘n’’ seconds and another transaction after

‘‘n?2’’ seconds and both the transactions get their place in

the same block. In this situation, the first transaction waits

for the block to confirm the chain, although it came earlier

than the rest of the incoming transactions for the same

block. In general, we observe a slight increase in the delay

when more transactions against requests are pushed into

the blockchain by monitoring services. However, the

maximum amount of delay after 50 thousand transactions

was almost stable at 27 s. This does not pose any scalability

threat to our system as the transactions were flooded at an

equal interval of only 5 s with a maximum load of fifteen

endpoints by three concurrent monitoring services, which

is a higher rate even in a private blockchain.

6.9 Formal scalability analysis

We carried out formal analysis of our system by consid-

ering the total number of monitoring requests confirmed

into the consensus blockchain by a single monitoring ser-

vice for a specific length of time. This will help determine

how scalable our system is with initially one monitoring

service as a functional unit of operation. This scheme may

be helpful to assess the scalability strength of the entire

system when put into operation as a whole. The entire

process of observing and recording data for cloud-hosted

services into blockchain by a monitoring service may be

modelled by using a queuing theory principle. Suppose

there are ‘k’ number of cloud-hosted services that are being

monitored by a monitoring service Mi per unit time ‘t’. In

this scenario, this system follows a queue-like centralized

service provider scheme, and therefore, its throughput may

be monitored using an approach as proposed by Almeida

et al. [44].

We assume that there is no restriction for monitoring

any number of cloud-hosted services. These services will

be monitored depending upon the monitoring service’s

current status, which is receiving the request to log the

response time of cloud-hosted services into the blockchain.

The rate of evaluating cloud-hosted services (number of

services monitored per unit time) does not depend upon the

overall number of services (size of the queue that forms the

entire list of services) and the time consumed by the service

under process. Suppose the process of monitoring and

confirming the number of hosted services to blockchain per

second is represented by Mt. We are interested in

Fig. 14 One MS with increasing load

Fig. 15 Two MS with increasing load

Fig. 16 Three MS with increasing load

Cluster Computing (2022) 25:537–559 555

123

investigating the amount of time Tk when the system is

dealing with the ’k’ number of hosted services by a mon-

itoring agent. The duration of time, taken by a single cloud-

hosted service may be determined as a little duration when

the monitoring agent is engaged.

Tk ¼ 1 �Mi

Mt
ðMi

Mt
Þk ð5Þ

Now, we may take into account the total amount of time,

/, when the whole system (under consideration) is

involved in monitoring the hosted services. / may be

computed as;

/¼
X

k

k[0

Tk ¼ 1 � T0 ¼ Mi

Mt
ð6Þ

Simplifying the above equation for Tk; using /¼ Mi

Mt
in

Equ.(5)

Tk ¼ ð1� /Þð/Þk ð7Þ

if M represents an average number of hosted services

which are currently present in the system under consider-

ation and being monitored by a monitoring agent, it may be

calculated as;

M ¼
X

k

k[0

k:Tk

)M ¼
X

k

k[0

k:ð1� /Þð/Þk

)M ¼ð1� /Þ
X

k

k[0

k:ð/Þk ¼ ðð1� /Þ /
ð1� /Þk

Þ

)M ¼ð /
1� /Þ

This formal analysis of scalability implements the concepts

behind queuing and derived results of Little’s formula from

the book entitled ‘‘Distributed Systems’’ (2017, third edi-

tion, chapter No. 1) by Maarteen van Steen and Andrew S.

Tanenbaum, where they have shown the modelling of

service scalability for a single servicing agent. We used the

same principle to initially investigate the scalability for one

monitoring service to project the impact of using multiple

monitoring services. For a detailed investigation regarding

scalability for the given scenario, we also need to factor

into the equation the waiting time which is experienced by

a hosted service(in the queue) in order to get its turn for

evaluation along with the time consumed by the monitoring

agent to record its (hosted service) performance attribute

into the blockchain. The results of such analysis will help

assess the total response time Rt of the unit of the system,

we are modeling. The status of a monitoring agent service

may be marked as busy when it is engaged in facilitating a

hosted cloud service. This implies that our proposed system

will be conducting evaluation against SLA with a

throughput of Mt services per unit time. Similarly, the

system is not idle for this specific length of activity (in

terms of time) out of the whole time.

System’s throughput b may be calculated as;

b ¼/ :Mt þ ð1� /Þ:0 ¼ Mi

Mt
:Mt ¼ Mi ð8Þ

Using Little’s formula, Rt may be determined as;

Rt ¼
Kavg

/
ð9Þ

Solving the above equation using relations for Kavg, / and

Mt, we get;

Rt

Sert
¼ /

ð1� /Þ ð10Þ

where Sert represents service time allocated to a hosted

service while Rt is the response time which is provided by

the monitoring service agent to facilitate the hosted service.

The value of / is very critical here to maintain the ratio

between response and service time. If the value of is very

low, the system would be regarded as very scalable, and

there will not be much waiting time in the queue for the

hosted service to get its turn. The situation may change

dramatically if the system is fully utilized and / reaches 1.

At this stage, the monitoring service may become unre-

sponsive for some cloud-hosted endpoints.

6.10 Discussion

The experimental data detailed in the above sections

assume a constant and frequent rate of incoming transac-

tions from blockchain clients (monitoring services) through

the entire experimentation work. Merely increasing block

generation rate and other seemingly good looking attributes

cannot alone guarantee for improved performance unless

their dependencies upon other quantities are not evaluated

properly. For example, in Fig. 11, an increase of 5 s is

causing 231 transactions to wait for the next block in a

window of 1 to 20 s (average block generation time for TTp
= 692.04 case), although at the same time it probably

would have caused better utilization of block memory (in

rare cases where the rate of incoming transactions may fall

low). Figures 10 and 11 conclude that the operating attri-

butes of blockchain should be kept realistic in accordance

with the demand and nature of the application. Any mis-

calculation may result in the wastage of resources in terms

of block memory (adding a block to blockchain containing

a reasonable amount of empty spaces), Computational

556 Cluster Computing (2022) 25:537–559

123

strength by over-utilizing resources (making block gener-

ation rate very high and keep nodes on toes), and under-

utilizing space for mining pool of unconfirmed/waiting

transactions. The paper shows an exhaustive evaluation of

sending bulk transactions (approximately fifty thousand

after every 5 s upto a maximum of 3 concurrent running

monitoring services) in order to monitor its impact on the

system in terms of the latency and responses of endpoint

services. A detailed formal analysis of proposed model has

also been conducted in context of its scalability. The

analysis reveals the factors which are critical in enhancing

the performance of the proposed system upon scaling by

focusing on the capacity of a single monitoring service in

execution for facilitating multiple services (as a unit of

scalability) to project the behaviour of entire system in this

context. This determines the overall scalability strength of

the system.

7 Conclusion and future work

Service Level Agreements (SLAs), typically represented in

the form of SLOs and financial penalties, are a mechanism

to communicate and enforce service guarantees within

cloud computing. An automatic method to periodically

verify SLA terms in a transparent and trustworthy method

is fundamental to effective SLA monitoring. Such a

method will help mitigate inaccuracies and delays due to

manual processes and can lead to widespread acceptance

and credibility among cloud service users. This paper has

presented a blockchain-based SLA monitoring infrastruc-

ture that leverages fundamental blockchain properties to

achieve immutable and trustworthy SLA monitoring within

cloud services. We have implemented the proposed system

using Multichain and have evaluated it in different sce-

narios for a varying number of monitoring services and

service endpoints. In the future, we wish to strengthen the

capability of the network by introducing smart nodes,

which are expected to make smart decisions on their own

by learning historical network data to respond as per situ-

ation and building consensus over it for maximizing the

potential of the network to address the challenges of

scalability.

Author Contributions Conceptualization: JA & WI; Methodology:

KM, WI, JA & HZ; Formal analysis and investigation: KM, JA, WI,

HZ; Writing—original draft preparation: KM, JA, WI, SA; Writing—

review and editing: JA, WI, SA; Supervision: JA & WI

Funding No funding sources are applicable for this research.

Data availability The data that support the findings of this study are

available from the corresponding author upon reasonable request.

Declarations

Conflict of interest There are conflicts of interest to report.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Serrano, D., Bouchenak, S., Kouki, Y., de Oliveira Jr, F.A.,

Ledoux, T., Lejeune, J., Sopena, J., Arantes, L., Sens, P.: SLA

guarantees for cloud services. Future Gener. Comput. Syst. 54,

233–246 (2016)

2. Pittl, B., Mach, W., Schikuta, E.: Bazaar-blockchain: a block-

chain for bazaar-based cloud markets. In: Proceedings of the

2018 IEEE International Conference on Services Computing

(SCC), pp. 89–96. IEEE (2018)

3. Müller, M., Garzon, S.R., Westerkamp, M., Lux, Z.A.: Hidals: a

hybrid iot-based decentralized application for logistics and supply

chain management. In: Proceedings of the 2019 IEEE 10th

Annual Information Technology, Electronics and Mobile Com-

munication Conference (IEMCON), pp. 0802–0808. IEEE (2019)

4. Zhou, H., Ouyang, X., Ren, Z., Su, J., de Laat, C., Zhao, Z.: A

blockchain based witness model for trustworthy cloud service

level agreement enforcement. In: Proceedings of the IEEE

INFOCOM 2019—IEEE Conference on Computer Communica-

tions (2019)

5. Scheid, E.J., Stiller, B.: Automatic sla compensation based on

smart contracts. Technical report, Technical Report IFI-2018.02.

https://files.ifi.uzh.ch/CSG/staff/scheid (2018)

6. Scheid, E.J., Rodrigues, B.B., Granville, L.Z., Stiller, B.:

Enabling dynamic SLA compensation using blockchain-based

smart contracts. In: Proceedings of the 2019 IFIP/IEEE Sympo-

sium on Integrated Network and Service Management (IM),

pp. 53–61. IEEE (2019)

7. Wonjiga, A.T., Peisert, S., Rilling, L., Morin, C.: Blockchain as a

trusted component in cloud sla verification. In: Proceedings of the

Proceedings of the 12th IEEE/ACM International Conference on

Utility and Cloud Computing Companion, UCC ’19 Companion,

pp. 93–100. Association for Computing Machinery, New York,

NY, USA (2019)

8. Teshome, A., Rilling, L., Morin, C.: Verification for security

monitoring SLAs in IAAs clouds: the example of a network ids.

In: Proceedings of the NOMS 2018—2018 IEEE/IFIP Network

Operations and Management Symposium, pp. 1–7 (2018)

9. Marilly, E., Martinot, O., Betge-Brezetz, S., Delegue, G.:

Requirements for service level agreement management. In: Pro-

ceedings of the IEEE Workshop on IP Operations and Manage-

ment, pp. 57–62 (2002)

10. Schweizer, C.: Slamer: a blockchain-based sla management

system (2019)

11. Maarouf, A., Abderrahim, M., Haqiq, A.: Practical modeling of

the SLA life cycle in cloud computing, pp. 52–58 (2015)

Cluster Computing (2022) 25:537–559 557

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

12. Khan, K.M., Arshad, J., Khan, M.M.: Investigating performance

constraints for blockchain based secure e-voting system. Future

Gener. Comput. Syst. 105, 13–26 (2020)

13. Karaszewski, Robert, Modrzyński, Paweł, Modrzyńska, Joanna:

The use of blockchain technology in public sector entities man-

agement: an example of security and energy efficiency in cloud

computing data processing. Energies 14(7), 1873 (2021)

14. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system.

Cryptography Mailing list https://metzdowd.com (2009)

15. Chaum, D.: Blind signatures for untraceable payments. In:

Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in

Cryptology, pp. 199–203. Springer, New York (1983)

16. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of

blockchain technology: architecture, consensus, and future trends.

In: Proceedings of the 2017 IEEE International Congress on Big

Data (BigData congress), pp. 557–564. IEEE (2017)

17. Pongnumkul, S., Siripanpornchana, C., Thajchayapong, S.: Per-

formance analysis of private blockchain platforms in varying

workloads. In: Proceedings of the 2017 26th International Con-

ference on Computer Communication and Networks (ICCCN),

pp. 1–6. IEEE (2017)

18. Gai, K., Guo, J., Zhu, L., Yu, S.: A survey. In: Proceedings of the

IEEE Communications Surveys & Tutorials, Blockchain Meets

Cloud Computing (2020)

19. Zhang, Z., Hong, Z., Chen, W., Zheng, Z., Chen, X.: Joint

computation offloading and coin loaning for blockchain-em-

powered mobile-edge computing. IEEE Internet Things J. 6(6),

9934–9950 (2019)

20. Rehman, M., Javaid, N., Awais, M., Imran, M., Naseer, N.: Cloud

based secure service providing for iots using blockchain. In:

Proceedings of the IEEE Global Communications Conference

(GLOBCOM 2019) (2019)

21. Cao, S., Zhang, G., Liu, P., Zhang, X., Neri, F.: Cloud-assisted

secure ehealth systems for tamper-proofing ehr via blockchain.

Inf. Sci. 485, 427–440 (2019)

22. Savi, M., Santoro, D., Di Meo, K., Pizzolli, D., Pincheira, M.,

Giaffreda, R., Cretti, S., Kum, S.W., Siracusa, D.: A blockchain-

based brokerage platform for fog computing resource federation.

In: Proceedings of the Conference on Innovation in Clouds,

Internet and Networks (2020)

23. Kshetri, N., Voas, J.: Blockchain-enabled e-voting. IEEE Softw.

35(4), 95–99 (2018)

24. Gai, K., Guo, J., Zhu, L., Yu, S.: Blockchain meets cloud com-

puting: a survey. IEEE Commun. Surv. Tutor. 22(3), 2009–2030

(2020)

25. Zhou, H., Ouyang, X., Ren, Z., Su, J., de Laat, C., Zhao, Z.: A

blockchain based witness model for trustworthy cloud service

level agreement enforcement. In: Proceedings of the IEEE

INFOCOM 2019-IEEE Conference on Computer Communica-

tions, pp. 1567–1575. IEEE (2019)

26. Neidhardt, N., Köhler, C., Nüttgens, M.: Cloud service billing

and service level agreement monitoring based on blockchain. In:

Proceedings of the EMISA, pp. 65–69 (2018)

27. Taha, A., Zakaria, A., Kim, D., Suri, N.: Decentralized runtime

monitoring approach relying on the ethereum blockchain infras-

tructure. In: Proceedings of the 2020 IEEE International Con-

ference on Cloud Engineering (IC2E), pp. 134–143. IEEE (2020)

28. Nguyen, T.V., Lê, L.S., Dao, B., Nguyen-An, K.: Leveraging

blockchain in monitoring SLA-oriented tourism service provi-

sioning. In: Proceedings of the 2019 International Conference on

Advanced Computing and Applications (ACOMP), pp. 42–50

(2019)

29. Al-Breiki, H., Rehman, M.H.U., Salah, K., Svetinovic, D.:

Trustworthy blockchain oracles: review, comparison, and open

research challenges. IEEE Access 8, 85675–85685 (2020)

30. Taghavi, M., Bentahar, J., Otrok, H., Bakhtiyari, K.: A block-

chain-based model for cloud service quality monitoring. In:

Proceedings of the IEEE Transactions on Services Computing

(2019)

31. Uriarte, R.B., De Nicola, R., Kritikos, K.: Towards distributed

SLA management with smart contracts and blockchain. In: Pro-

ceedings of the 2018 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom), pp. 266–271.

IEEE (2018)

32. Ma, L., Kaneko, K., Sharma, S., Sakurai, K.: Reliable decen-

tralized oracle with mechanisms for verification and disputation.

In: Proceedings of the 2019 Seventh International Symposium on

Computing and Networking Workshops (CANDARW),

pp. 346–352. IEEE (2019)

33. Khan, S.N., Loukil, F., Ghedira-Guegan, C., Benkhelifa, E., Bani-

Hani, A.: Blockchain smart contracts: Applications, challenges,

and future trends. In: Proceedings of the Peer-to-peer Networking

and Applications, pp. 1–25 (2021)

34. Daniel, F., Guida, L.: A service-oriented perspective on block-

chain smart contracts. IEEE Internet Comput. 23(1), 46–53

(2019)

35. Wonjiga, A.T., Rilling, L., Morin, C.: Defining security moni-

toring SLAs in IaaS clouds: the Example of a Network IDS.

Research Report RR-9263, Inria Rennes Bretagne Atlantique,

March (2019)

36. Alzubaidi, A., Solaiman, E., Patel, P., Mitra, K.: Blockchain-

based SLA management in the context of iot. IT Prof. 21(4),

33–40 (2019)

37. Alzubaidi, A., Mitra, K., Patel, P., Solaiman, E.: A blockchain-

based approach for assessing compliance with SLA-guaranteed

iot services. In: Proceedings of the 2020 IEEE International

Conference on Smart Internet of Things (SmartIoT), pp. 213–220

(2020)

38. Hang, L., Kim, D.-H.: SLA-based sharing economy service with

smart contract for resource integrity in the internet of things.

Appl. Sci. 9(17), 3602 (2019)

39. Ghobaei-Arani, M., Jabbehdari, S., Pourmina, M.A.: An auto-

nomic approach for resource provisioning of cloud services.

Clust. Comput. 19(3), 1017–1036 (2016)

40. Ghobaei-Arani, Mostafa, Khorsand, Reihaneh, Ramezanpour,

Mohammadreza: An autonomous resource provisioning frame-

work for massively multiplayer online games in cloud environ-

ment. J. Netw. Comput. Appl. 142, 76–97 (2019)

41. Ghobaei-Arani, Mostafa, Souri, Alireza: Lp-wsc: a linear pro-

gramming approach for web service composition in geographi-

cally distributed cloud environments. J. Supercomput. 75(5),

2603–2628 (2019)

42. Liu, X.: Towards blockchain-based resource allocation models

for cloud-edge computing in iot applications. In: Proceedings of

the Wireless Personal Communications, pp. 1–19 (2021)

43. Multichain. Open platform for blockchain applications

44. Almeida, V.A.F., Menasce, D.A.: Capacity planning an essential

tool for managing web services. IT Prof. 4(4), 33–38 (2002)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

558 Cluster Computing (2022) 25:537–559

123

Kashif Mehboob Khan is an

Assistant Professor in the

Department of Software Engi-

neering at NED University of

Engineering and Technology,

Karachi, Pakistan. He has been

engaged in various research and

development projects and has an

overall of 15 years of industrial

and teaching experience. He

achieved his PhD from NED

University of Engineering and

Technology focusing at security

challenges within blockchain.

His current research interests

include security challenges within blockchain and its associated

emerging technologies such as IoT, cloud computing and edge

computing.

Junaid Arshad is an Associate

Professor in cybersecurity at the

Birmingham City University,

UK. Junaid achieved his PhD

from the University of Leeds,

UK where he investigated the

challenge of effective intrusion

severity analysis for clouds. His

research is focused at challenges

within cyber security emphasis-

ing impact of novel and emerg-

ing technological paradigms,

such as blockchain, distributed

systems, cloud computing and

big data. He has been actively

involved in publishing high quality research within this field and has

served on Program and Review Committee of a number of journals

and conferences.

Waheed Iqbal is an Assistant

Professor at Punjab University

College of Information Tech-

nology, University of the Pun-

jab, Lahore, Pakistan. He

worked as a Postdoc researcher

with the Department of Com-

puter Science and Engineering,

Qatar University during

2017–2018. His research inter-

ests lie in cloud computing,

distributed systems, machine

learning, and large scale system

performance evaluation.

Waheed received his Ph.D.

degree from the Asian Institute of Technology, Thailand.

Sidrah Abdullah is an MSc stu-

dent at the N.E.D University of

Engineering & Technology. Her

research interests include

investigating use of blockchains

to address cutting-edge chal-

lenges in diverse domains.

Hassan Zaib is an MSc student

at the Punjab University College

of Information Technology,

University of the Punjab,

Lahore, Pakistan. His research

interests surround web service

monitoring, scalability and

blockchains.

Cluster Computing (2022) 25:537–559 559

123

	Blockchain-enabled real-time SLA monitoring for cloud-hosted services
	Abstract
	Introduction
	Background
	SLA/WS monitoring
	Blockchain and underpinning concepts
	Public vs. private blockchain

	Related work
	A blockchain-based SLA monitoring system
	System architecture
	Implementation

	Experimental setup
	Performance and scalability analysis of the proposed approach
	Average block size for varying endpoints
	Average transaction throughput
	Sensitivity analysis of transaction throughput vs. blocksize
	Sensitivity analysis of transaction throughput vs. block generation rate
	Case 1: 1 monitoring service
	Case 2: 2 monitoring service
	Case 2: 3 monitoring services

	Sensitivity analysis of transaction throughput for max. blocksize
	Scalability analysis for increasing monitoring services
	Hypothesis testing
	Scalability analysis for increasing monitoring service requests on transaction delays
	Formal scalability analysis
	Discussion

	Conclusion and future work
	Author Contributions
	Open Access
	References

