
Accelerating distributed deep neural network training with pipelined
MPI allreduce

Adrián Castelló1 • Enrique S. Quintana-Ortı́1 • José Duato1

Received: 25 January 2021 / Revised: 1 June 2021 / Accepted: 24 July 2021 / Published online: 7 August 2021
� The Author(s) 2021, corrected publication 2021

Abstract
TensorFlow (TF) is usually combined with the Horovod (HVD) workload distribution package to obtain a parallel tool to

train deep neural network on clusters of computers. HVD in turn utilizes a blocking Allreduce primitive to share infor-

mation among processes, combined with a communication thread to overlap communication with computation. In this

work, we perform a thorough experimental analysis to expose (1) the importance of selecting the best algorithm in MPI

libraries to realize the Allreduce operation; and (2) the performance acceleration that can be attained when replacing a

blocking Allreduce with its non-blocking counterpart (while maintaining the blocking behaviour via the appropriate

synchronization mechanism). Furthermore, (3) we explore the benefits of applying pipelining to the communication

exchange, demonstrating that these improvements carry over to distributed training via TF?HVD. Finally, (4) we show

that pipelining can also boost performance for applications that make heavy use of other collectives, such as Broadcast and

Reduce-Scatter.

Keywords Message Passing Interface (MPI) � Collective communication primitives � Allreduce � Deep learning �
Distributed training

1 Introduction

The outburst of deep learning (DL) technologies in the past

few years has been accelerated by the development of

efficient frameworks for distributed training of deep neural

networks (DNNs) on clusters. Most of these frameworks

exploit data parallelism (DP), by partitioning (and dis-

tributing) the workload among the cluster nodes/processes

across the batch dimension (i.e., the inputs or samples) [5].

In this scenario, at each iteration of training, all processes

collaborate to perform a reduction of the local weights in

order to produce a global update of the parameters that

define the DNN model [5, 8]. This synchronous version of

training thus ensures that, prior to the next training iteration

(with a new batch of samples), all processes unite their

state.

Data communication through the interconnection net-

work is particularly crucial for the efficient synchronous

DP training of convolutional neural networks (CNNs) on

clusters of computers [8, 15]. Furthermore, data move-

ments (across the memory hierachy as well as the nodes of

a distributed platform) are a major source of energy con-

sumption [26].

MPI (Message Passing Interface) [28] is the de facto

standard for distributed high performance computing

(HPC) applications. Therefore, it has been naturally

adopted as the communication layer for distributed training

frameworks such as Google’s TensorFlow (TF) [1],

TF?Horovod (HVD) [25], and PyTorch [24]. The MPI

application programming interface (API) comprises a large

variety of peer-to-peer and collective communication

primitives. Among these, the DP scheme for distributed

DNN training basically relies on the blocking

MPI_Allreduce primitive, which internally reduces a

collection of local values broadcasting the global result to

all processes participating in the communication.

& Adrián Castelló

adcastel@disca.upv.es

Enrique S. Quintana-Ortı́

quintana@disca.upv.es

José Duato

jduato@disca.upv.es

1 Universitat Politècnica de València, Valencia, Spain

123

Cluster Computing (2021) 24:3797–3813
https://doi.org/10.1007/s10586-021-03370-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-8576-8451
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03370-9&domain=pdf
https://doi.org/10.1007/s10586-021-03370-9

In a previous work [6], we analyzed the impact on

performance of selecting the best algorithmic realization of

MPI_Allreduce, depending on the message size and

cluster configuration, when leveraging TF?HVD to train

CNNs on a small cluster equipped with an Infiniband

network. In this paper we pursue the pipelined optimization

of this global blocking reduction via the split of the data

exchange into a collection of smaller MPI_Iallreduce

calls, which offers a better overlap of computation with

communication yielding a better utilization of the network

bandwidth. In particular, our present work makes the fol-

lowing contributions:

– We perform a complete performance evaluation of a

blocking global reduction when replacing the conven-

tional (blocking) MPI_Allreduce call by the alter-

native non-blocking MPI_Iallreduce primitive

immediately followed by the corresponding blocking

synchronization MPI_Wait.

– We propose two realizations of MPI_Iallreduce

that offer significantly higher performance when

applied to perform a blocking global reduction. These

implementations operate by dividing the message

(transparently to the user) into either a collection of

messages of a specific smaller size or a fixed number of

smaller messages, in both cases pipelining the transfers.

– We demonstrate that the performance acceleration from

pipelining the global reduction carry over to the

distributed training of representative CNNs using the

TF?HVD framework, offering performance improve-

ments that vary between 5 and 60%.

– We show that splitting the messages so as to pipeline

the transfers benefits not only the global reduction

primitive but also other collective operations, such as

broadcast or reduce-scatter, which can improve perfor-

mance for applications that make significant use of

them.

– Finally, our complete experimental analyses employ

three popular instances of MPI and explores the distinct

algorithms for the MPI_Iallreduce primitive in

those to detect the best operation depending on the

number of nodes and message size. Furthermore, we

conduct the experiments on a couple of recent Infini-

band network technologies: QDR and EDR.

The rest of the paper is organized as follows. In Sect. 2 we

provide a brief review of related work. In Sect. 3 we

include a discussion of some popular algorithms for

implementing a global reduction together with their theo-

retical costs. In Sect. 4 we conduct an analysis of these

algorithms, and in Sect. 5 we introduce our pipelined

optimizations for the MPI_Allreduce collective com-

munication primitive. In Sect. 6 we extend the pipelining

technique to other popular collective communication

primitives. Section 7, we apply these optimizations to the

TF?HVD DL environment. Finally, Sect. 8 summarizes

the conclusions of this work.

2 Related work

2.1 MPI collective communication primitives

Since its initial appearance in the early nineties, MPI [10]

has evolved to integrate new functionality in addition to

many optimizations. One relevant example is the design of

efficient algorithms for collective communication primi-

tives (CCPs) in line with [9, 30]. In particular, the former

work 1) formalizes the theoretical analysis of CCP,

focusing on simple and effective solutions that generalize

to multidimensional meshes and hypercubes; and 2) shows

how the algorithms for a given CCP can be organized into

parameterized families, which then expose the keys for

performance. In the latter work, the authors propose new

algorithms to improve the performance of CCPs, for clus-

ters connected by switched networks, pursuing either the

minimization of latency for short messages or the reduction

of bandwidth use for long messages.

Other work aimed at improving the CCPs performance

act at node level. In particular, in [21, 22], shared-memory

is exploited to boost intra-node communication; and in [33]

the reductions are performed by means of AVX-512

instructions.

There exist a few works that specifically evaluate and/or

improve the MPI CCPs for DL, for example, taking into

account the special characteristics of the messages that are

exchanged in this type of applications [3, 4, 18, 23]. In

addition, MPI-based software has been developed for dis-

tributed DNN training; for example, MVAPICH2-GDR1

from Ohio State University or oneAPI2 from Intel.

2.2 Pipelining for MPI CCPs

MPI was originally conceived with a strong focus on the

efficient exchange of small messages. In consequence, the

adoption of MPI in DL forced developers to study how to

reduce the overhead of MPI for large messages. A step in

this direction consists in dividing the transfers into a col-

lection of smaller messages, yielding a pipelined (or seg-

mented) communication scheme. In [32], the authors

performed a manual segmentation for MPI_Reduce,

MPI_Bcast, and MPI_Allreduce when communicat-

ing data among a few graphics processing units (GPUs) in

the same node. In [31], the authors presented a pipelined

1 https://mvapich.cse.ohio-state.edu/
2 https://github.com/oneapi-src

3798 Cluster Computing (2021) 24:3797–3813

123

https://mvapich.cse.ohio-state.edu/
https://github.com/oneapi-src

data transfer mechanism for processes running on the CPUs

of a single node. In two recent works [16, 17], the authors

present a pipelining approach for two CCPs: MPI_All-

gather and MPI_Allgatherv with message sizes up

to 64 and 8 MB, respectively, in a cluster.

In [2], a variant of pipelining is obtained by slicing the

network (by means of virtual LANs) in order to exploit the

full network bandwidth for data broadcasting.

Compared with previous work, we address the applica-

tion of pipelining to optimize a blocking Allreduce, for

very large messages, of up to 1 GB, in the context of

distributed DNN training on clusters of computer nodes. In

addition, we demonstrate that the same technique renders

appealing benefits for some collective primitives, such as

MPI_Bcast and MPI_Reduce_scatter, but not for

other cases, such as MPI_Allgather, due to their

implementation in current MPI libraries.

3 MPI algorithms for allreduce

The term ‘‘reduction’’ is frequently used in DL and DNN

frameworks to refer to the global update of the DNN model

parameters (i.e., weights and biases) that is necessary at

each iteration of the synchronous version of the training

process. In practice, this reduction is performed using the

conventional (blocking) MPI_Allreduce CCP which,

depending on the MPI library, is realized via different

algorithms [9, 30]. In this section we review some of the

most common algorithmic realizations of

MPI_Iallreduce, together with their theoretical cost.

We note that the non-blocking primitive can be easily

leveraged to mimic the behaviour of the blocking-coun-

terpart, by simply adding a proper synchronization after it.

3.1 A family of algorithms

There exist a number of instances of the MPI library, with

some prominent examples being OpenMPI,3 MPICH,4

MVAPICH,5 and Intel MPI.6 All these implementations

adhere to the functionality and specification defined by the

MPI API, while distinct realizations of the standard vary in

the implementation of the primitives and, quite often, the

performance they attain.

The MPI instances usually optimize the CCPs via the

implementation of a variety of algorithms (or communi-

cation schemes), in principle selecting the most appropriate

option at execution time depending, for example, on the

message size, number of processes, network topology, etc.

For the particular case of (the non-blocking)

MPI_Iallreduce, the following list briefly describes

some of the most popular algorithms (see [9, 12, 30] for

additional details):

1. RDB (Recursive doubling): Initially, the processes that

are a ‘‘distance’’ 1 apart (i.e., with rank identifiers that

differ only by 1) exchange (and reduce) their data.

Next, the processes that are a distance 2 apart do the

same with the complete data they own after the first

exchange. This is repeated for processes which are at

distances 4, 8,. . . apart, till all processes have received
(and reduced) all the data.

2. RSA (Rabenseifner’s algorithm): This algorithm per-

forms a Reduce-Scatter exchange followed by an

Allgather. For this, the algorithm uses a combination

of recursive-vector halving and recursive-distance

doubling for the Reduce-Scatter stage, and recursive-

doubling for the subsequent Allgather.

3. RNG (Ring): The message size is divided into one

segment per process and each process then sends its

segment to the next process, where it is reduced with

the local data. Once this step is complete, the process is

repeated p� 1 times. Finally, an Allgather is applied.

4. BIN (Binomial tree): The processes first perform a

common (reverse) binary (or binomial) tree-based

reduction to a specific process, to then broadcast the

result back to all processes using a binary tree-based

broadcast.

The above-mentioned algorithms are not exclusive of

MPI_Iallreduce. In particular, its blocking counterpart

is frequently implemented using the same algorithms (to-

gether with other options) [6]. Nonetheless, one major

difference between the blocking and non-blocking variants

is that, in MPI_Iallreduce, once all operations (com-

munication and computation) are pushed to the scheduler,

the control immediately returns to the user’s application

process. In comparison, for the MPI_Allreduce case,

this control is only returned when all the operations are

completed by the current process. A second difference lies

in the specific peer-to-peer primitives that are utilized in

each case.

3.2 Theoretical cost analysis

Let us consider a collection of n � p data items, evenly

distributed across a platform consisting of p nodes, with a

single MPI process running on each node. Furthermore,

consider the link latency is given by a (in seconds) and

assume the link bandwidth, denoted by b (in data items per

second), is independent of the message size. Assume also

3 https://www.open-mpi.org
4 https://www.mpich.org
5 https://mvapich.cse.ohio-state.edu
6 https://software.intel.com/content/www/us/en/develop/tools/oneapi/

components/mpi-library.html

Cluster Computing (2021) 24:3797–3813 3799

123

https://www.open-mpi.org
https://www.mpich.org
https://mvapich.cse.ohio-state.edu
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html

that the interconnection network supports simultaneous

transfers between all pairs of nodes at full link bandwidth.

Finally, consider that each node can perform c arithmetic

operations per second. Table 1 then displays the theoretical

cost of the afore-described algorithms for

MPI_Iallreduce separated into their latency, band-

width, and arithmetic components. For simplicity, in the

table we assume that p is a power of 2. Otherwise, all

logarithmic costs need to be rounded up to the nearest

integer. When the message is large, as it is generally the

case in the DNN training, the transfer cost is dominated by

the bandwidth term and, therefore, the expressions in the

table indicate that the best options are RSA and RNG.

4 Performance analysis
of MPI_Iallreduce

MPI is nowadays widely adopted for distributed pro-

gramming. However, our experience with several MPI

libraries is that the algorithms which are automatically

selected to execute the CCPs are often suboptimal for a

considerable range of message sizes and number of nodes

[6]. One main reason is that, while the theoretical cost

models in Table 1 a priori identify the best algorithm(s),

the experimental results may differ significantly for a

number of causes. At this point, we recognize that most

MPI instances were implemented with the target of opti-

mizing the exchange of small messages on a reduced

(usually, an integer power of two) number of nodes. This

does not reflect the usual scenario in the case of DNN

training.

In this section we conduct a complete evaluation of the

algorithms for MPI_Iallreduce in three well-know,

widely-used MPI libraries, and compare the available

options with the automatic selection made by the library

(hereafter referred to as AUTO), so as to asses if it selec-

tion is properly done.

4.1 Experimental setup

For our evaluation, we employ OpenMPI 4.1.0rc,

MPICH 3.3.1, and Intel MPI 2020. The cluster platform

for these experiments consists of 9 nodes equipped with 2

Intel Xeon Gold 5120 CPUs (14 cores each, for a total of

28 cores per node) at 2.20 GHz, 192 GB of DDR4 RAM,

and an NVIDIA V100-PCIe GPU with 32 GB of HBM2

memory. The nodes are connected via an InfiniBand EDR

network with a link latency of 0:5ls and a link bandwidth

of 100 Gbps.

In all experiments in this paper, the performance

reported for a given algorithm is calculated as the

throughput rate that is obtained by dividing the size of the

message n (in bytes) with the time required to complete the

global reduction. The tests are repeated a large number of

times and the execution time corresponds to the average

cost. As we are dealing with non-blocking primitives, each

call is paired with its corresponding synchronization

(MPI_Wait) in order to ensure that the execution is com-

plete prior to measuring the execution time. About the

selected metric, on the negative side, the actual number of

transferred bytes during the reduction is considerably lar-

ger. Therefore, the transfer rate represented with this metric

is in general quite below the actual network bandwidth. On

the positive side, the metric is inversely proportional to the

execution time for all algorithms and libraries and, there-

fore, sets the grounds for a fair comparison of these.

4.2 Analysis

In Fig. 1, we display the throughput rates (measured in

millions of bytes per second, or MB/s) attained by the

algorithms for MPI_Iallreduce. This comparison

includes the distinct algorithms in OpenMPI, MPICH, and

Intel MPI, and is conducted using 8 and 9 MPI processes/

nodes. (The latter configuration is chosen to evaluate the

effect of executing the algorithms with a number of nodes

that is not an integer power of two.)

The first factor exposed by the charts in Fig. 1 is the

distinct number of algorithms depending on the specific

MPI library: While OpenMPI and MPICH integrate a

reduced set of options (4 and 5, respectively), Intel MPI

spans a much larger number of possibilities (a total of 9).

This study reveals that the best option is in general given

by the RNG algorithm in OpenMPI. Although Intel MPI

also implements that particular algorithm, it does not

achieve a comparable throughput. In contrast, MPICH does

not offer a realization of this algorithm. Analyzing the

AUTO selections, all three MPI instances select RSA (one

of the two best option for large messages, from the theo-

retical point of view; see Table 1). However, this choice

Table 1 Theoretical cost of common algorithms for

MPI_Iallreduce

Id. Alg. Latency �a Bandwidth �b�1 Arithmetic �c�1

1 RDB log p n log p n log p

2 RSA 2 log p 2n p�1
p n p�1

p

3 RNG 2ðp� 1Þ 2n p�1
p n p�1

p

4 BIN 2 log p 2n log p n log p

3800 Cluster Computing (2021) 24:3797–3813

123

corresponds to the actual optimal option only for MPICH.

This experiment clearly shows that a correct selection of

the algorithm can significantly improve performance.

Taking into account the considerably higher performance

attained with OpenMPI, for brevity in the remainder of the

paper we exclude MPICH and Intel MPI from the discus-

sion. The complete results using these two other libraries

can be found in Appendix A.

5 Pipelined MPI_Iallreduce

Although the MPI_Iallreduce CCP is usually viewed

as a ‘‘monolithic’’ operation, its realization comprises a

sequence of intertwined communication exchanges and

arithmetic computations. Specifically, this CCP consists of

a set of calls to the non-blocking peer-to-peer primitives in

the MPI API for sending and receiving data, MPI_Isend

and MPI_Irecv respectively, plus a few simple arith-

metic computations. All these are passed to a communi-

cation runtime scheduler (and the associated thread) so that

the application thread which invoked MPI_Iallreduce

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

AUTO
RDB
RSA
RNG
BIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

AUTO
RDB
RSA
RNG
BIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

AUTO
RDB
RSA
NAI
RSB
RMB

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

AUTO
RDB
RSA
NAI
RSB
RMB

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

AUTO
RDB
RSA
RNG
BIN
R+B
KNO
RSA2
SMP
NRED

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

AUTO
RDB
RSA
RNG
BIN
R+B
KNO
RSA2
SMP
NRED

Fig. 1 Performance of the algorithms in OpenMPI, MPICH and Intel MPI for MPI_Iallreduce (top, middle and bottom, respectively) using

8 and 9 nodes/processes (left and right, respectively)

Cluster Computing (2021) 24:3797–3813 3801

123

can continue with the execution of the user’s code while

the non-blocking data transfers are performed.

The possibility of overlapping communication and

computation, in addition to a potential infra-utilization of

the network bandwidth, offer appealing niches for perfor-

mance improvement, especially for large messages. In this

section, we explain how addressing these weakness via the

concurrent execution of multiple MPI_Iallreduces

improves performance.

5.1 Pipelining with fixed message size

In order to obtain a pipelined variant of the global reduc-

tion, we can divide (that is, partition or segment) the

original exchange into several non-blocking calls, as shown

in Listing 1. There, we split the message, consisting of s

bytes, into several segments (or chunks) of segsize

bytes each (except, possibly, for the last one), and perform

numseg ¼ ds=segsizee consecutive invocations to the

non-blocking MPI_Iallreduce CCP, that is one per

segment, to initiate the exchange of the corresponding

segment. Note that the routine returns the number of seg-

ments so that a conventional blocking behaviour can be

achieved by simply invoking the synchronizing

MPI_Waitall.

int MPI_Piallreduce_fsize(TYPE * in , TYPE * out ,
size_t s, MPI_Comm comm , int segsize ,
MPI_Request * request , MPI_Status * status)

{
int h;
int numseg = (s <= segsize) ? 1 : s/segsize;
if (numseg > 1 && s % segsize != 0) numseg ++;

size_t sent = 0;
for(h=0;h<numseg -1;h++)
{

MPI_Iallreduce(&in[h*segsize],
&out[h*segsize], segsize , MPI_TYPE ,
MPI_OP , comm , &request[h]);

sent+= segsize;
}
h=numseg -1;
MPI_Iallreduce(&in[h*segsize],

&out[h*segsize], s-sent , MPI_TYPE ,
MPI_OP , comm , &request[h]);

return numsegs;
}

Figure 2 reports the effect of pipelining with a fixed

message size, applied to the AUTO and RNG algorithms

for both 8 and 9 nodes. For the AUTO option (RSA for

OpenMPI), these results show a performance gain for the

pipelined variants of about 250 MB/s for message sizes

larger than 32 MB and 8 processes. From that size and

beyond, dividing the message into 32 MB segments is one

of the best options. For AUTO and 9 processes, the per-

formance gain of the pipelined realizations is slightly

higher: from 800 MB/s up to more than 1,200 MB/s. For

the best algorithm (RNG for OpenMPI), the pipelined

variants generally outperform AUTO by a factor of 2�. In

addition, dividing the message into several segments

allows to maintain the asymptotic exchange throughput at

4,000 MB/s, whereas the original primitive falls from a

peak of 3,500 MB/s to 3,000 MB/s or less for large

messages.

5.2 Pipelining with a fixed degree
of concurrency

An alternative to obtain a pipelined realization of

MPI_Iallreduce is to divide the message into a fixed

number of smaller messages. For that purpose, we employ

the code in Listing 2, where we perform the global

reduction of a message, of s bytes, by means of numseg

calls to the non-blocking MPI_Iallreduce CCP, one

per segment of segsize ¼ s=numseg bytes (except for the

last one, which has to take into account the possibility of

the message size not being an integer multiple of the

number of segments). Note that the number of primitives

which are concurrently executed in this scheme is fixed.

The routine also returns the number of segments so that a

blocking behaviour to allow a straight-forward realization

of a blocking behaviour via the invocation to

MPI_Waitall.

int MPI_Piallreduce_fconc(TYPE * in, TYPE * out ,
size_t s, MPI_Comm comm , int numseg ,
MPI_Request * request , MPI_Status * status)

{
int h;
if(s < numseg){numseg =1;}
size_t segsize = s/numseg;

size_t sent = 0;
for(h=0;h<numseg -1;h++)
{

MPI_Iallreduce(&in[h*segsize],
&out[h*segsize], segsize , MPI_TYPE ,
MPI_OP , comm , &request[h]);

sent+= segsize;
}
h=numseg -1;
MPI_Iallreduce(&in[h*segsize],

&out[h*segsize], s-sent , MPI_TYPE ,
MPI_OP , comm , &request[h]);

return numseg;
}

Figure 3 illustrates the impact of pipelining with a fixed

degree of concurrency. The two top charts in the fig-

ure confirm that the AUTO algorithm (for OpenMPI, RSA)

only benefits from this type of pipelining for messages of

size larger than 32 MB. In contrast, the pipelined RNG

algorithm (see the bottom two charts) already improves the

performance for messages of size larger than 2 MB. In

addition, these charts expose that it is possible to accelerate

the throughput by up to 25% applying this type of

pipelining.

Taking into account that the RNG algorithm outper-

forms AUTO by a factor of two, pipelining the RNG

algorithm for large messages improves the communication

3802 Cluster Computing (2021) 24:3797–3813

123

performance of the automatic selection from 1,400 to

4,000 MB/s for 8 processes and from 800 to 4,000 MB/s

for 9 processes.

Both pipelining techniques have demonstrated signifi-

cant performance advantage with respect the conventional

MPI_Iallreduce. However, when dealing with an

application where the message may vary in size from one

transfer to another (as it is the case of DNN training), it is

more convenient to apply the pipelining with a fixed degree

of concurrency. In this scenario, a solution based on a

fixed-size segment may result in an elevate number of

messages if the size is too small, constraining the perfor-

mance as it is shown in Fig. 2. In consequence, in the

remainder of this paper we will consider only the variant

that applies pipelining with a fixed degree of concurrency.

5.3 Identification of the source of gains

We next present a simple experiment that demonstrates the

communication-computation overlap that takes place when

splitting the reduction primitive into multiple smaller calls.

For this purpose, we have modified OpenMPI to eliminate

the arithmetic computations that occur inside the

MPI_Iallreduce primitive by omitting the submission

of the corresponding arithmetic tasks to the communication

scheduler.

Figure 4 shows the throughput rate for the RNG algo-

rithms with and without the arithmetic operations which

are necessary for the reduction. The lines labeled with the

NOOP suffix correspond to the modified OpenMPI routine

without arithmetic operations. The lines with labels NBL

and NBLx4 distinguish between the conventional and

pipelined variants. The direct comparison between the lines

with the NOOP suffix and the conventional variant (label

‘‘NBL(RNG)’’) exposes the contribution of the arithmetic

to the cost of the reduction operation, which represents

between 28 to 37% of the total execution time.

Now, by applying pipelining, the difference with respect

to the NOOP versions is reduced, and the fraction of time

with non-overlapped communication-computation dimin-

ishes to less than 14%: compare the lines with the NOOP

suffix and the pipelined variant (label ‘‘NBLx4(RNG)’’. In

summary, although the pipelining does not totally overlap

computation with communication, it reduces the impact of

arithmetic on the global cost of MPI_Iallreduce

significantly.

 0

 1000

 2000

 3000

 4000

 5000

220 222 224 226 228 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(AUTO)
1MB
2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB

 0

 1000

 2000

 3000

 4000

 5000

220 222 224 226 228 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(AUTO)
1MB
2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB

 0

 1000

 2000

 3000

 4000

 5000

220 222 224 226 228 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(RNG)
1MB
2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB

 0

 1000

 2000

 3000

 4000

 5000

220 222 224 226 228 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(RNG)
1MB
2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB

Fig. 2 Performance of the AUTO and RNG algorithms in OpenMPI

(top and bottom, respectively) using 8 and 9 nodes/processes (left and

right, respectively). The NBL(AUTO) and NBL(RNG) labels

correspond to the evaluation of the original MPI_Iallreduce
primitive; the labels of type XMB indicate the pipelined variant

MPI_Piallreduce_fsize with segment size segsize=X MB

Cluster Computing (2021) 24:3797–3813 3803

123

6 Extension of pipelining to other MPI
collectives

While our work was, so far, mainly focused in

MPI_Allreduce, the MPI standard defines several other

collective primitives that involve multiple processes inside

a communicator. In this section, we evaluate the possibility

of improving the performance of these other primitives by

pipelining their data transfers.

6.1 MPI_Allgather

MPI_Allgather performs an all-to-all communication

where each MPI process broadcasts its portion of the final

result to the other processes. The logical communication

pattern is thus similar to that present in MPI_Allreduce,

as each MPI process contributes a piece of the final result,

except in that there is no reduction performed during the

data recollection.

Figure 5 shows the result of applying pipelining to the

MPI_Iallgather collective. All variants there rely on a

LIN-based algorithm, which turns out to be the best option

for this primitive. Unfortunately, for this particular primi-

tive applying, a pipelined communication scheme does not

 0

 1000

 2000

 3000

 4000

 5000

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(AUTO)
NBLx2
NBLx4
NBLx6
NBLx8

 0

 1000

 2000

 3000

 4000

 5000

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(AUTO)
NBLx2
NBLx4
NBLx6
NBLx8

 0

 1000

 2000

 3000

 4000

 5000

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(RNG)
NBLx2
NBLx4
NBLx6
NBLx8

 0

 1000

 2000

 3000

 4000

 5000

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(RNG)
NBLx2
NBLx4
NBLx6
NBLx8

Fig. 3 Performance of the AUTO and RNG algorithms in OpenMPI

(top and bottom, respectively) using 8 and 9 nodes/processes (left and

right, respectively). The NBL(AUTO) and NBL(RNG) labels

correspond to the evaluation of the original MPI_Iallreduce
primitive; the labels of type NBLxY indicate the pipelined variant

MPI_Piallreduce_fconc with numseg=Y segments

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

220 222 224 226 228 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL NOOP (RNG)
NBLx4 NOOP (RNG)
NBL (RNG)
NBLx4 (RNG)

Fig. 4 Performance of the RNG algorithm in OpenMPI using 8

nodes/processes. The NBL NOOP suffix identifies the modified

variant of MPI_Iallreduce without arithmetic operations; the

labels of type NBL and NBLx4 respectively indicate the conventional

variant MPI_Piallreduce_fconc and the pipelined alternative

with numseg=4 segments

3804 Cluster Computing (2021) 24:3797–3813

123

render any performance improvement. Even worse, in the

case of 8 MPI processes, the message pipelining reduces

the performance for a certain range of message sizes. The

reason for this lies in the particular ‘‘linear’’ implementa-

tion of this primitive in OpenMPI, which implies that

segmenting the data transfers increments the number of

messages but does not render a higher degree of parallelism

among data transfers.

6.2 MPI_Bcast

MPI_Bcast is a popular collective primitive where a

message is broadcast from one single process to all other

processes participating in the communicator.

Figure 6 highlights the effect on performance of

exploiting pipelining in the asychronous variant of this

collective. In this case, the AUTO algorithm follows a

CHAIN implementation which is already segmented

internally. Nonetheless, adding an extra level of segmen-

tation increases the performance from the initial 2,400 and

1,900 MB/s to 3,500 and 3,250 MB/s for 7 and 8 pro-

cesses, respectively. In contrast with the

MPI_Iallgather case, for the broadcast the commu-

nication has a single original (root) process. In conse-

quence, splitting the message into smaller chunks augments

the number of concurrent data transfers.

6.3 MPI_Reduce_scatter

MPI_Reduce_scatter, as its name indicates, combi-

nes a first stage that reduces the contents of a data array

into a single process, to then split (and scatter) the result of

the reduction among all processes in the second stage.

Figure 7 displays the effect of applying a pipelined

scheme to the asynchronous version of this collective. The

results expose two different scenarios: For messages of size

smaller than 16 MB (224 bytes), the best option uses a

single segment (i.e., no pipelining). In contrast, for mes-

sages larger than that threshold, segmenting the commu-

nication improves the total performance by about 100 MB/

s. As was the case for MPI_Allreduce, the performance

gain comes from the reduction stage, but the effect is

mostly blurred by the scatter stage if the data size is small.

Note that OpenMPI implements only one algorithm for this

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

210 212 214 216 218 220 222 224 226 228

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL (LIN)
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

210 212 214 216 218 220 222 224 226 228

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL (LIN)
NBLx2
NBLx4
NBLx6
NBLx8

Fig. 5 Performance of the LIN algorithm for MPI_Iallgather in OpenMPI using 7 and 8 nodes/processes (left and right, respectively). The

labels of type NBLxY indicate the pipelined variant MPI_Piallgather_fconc with numseg=Y segments

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL (CHAIN)
NBLx2
NBLx4
NBLx6
NBLx8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL (CHAIN)
NBLx2
NBLx4
NBLx6
NBLx8

Fig. 6 Performance of the CHAIN algorithm for MPI_Ibcast in OpenMPI using 7 and 8 nodes/processes (left and right, respectively). The

labels of type NBLxY indicate the pipelined variant MPI_Pibcast_fconc with numseg=Y segments

Cluster Computing (2021) 24:3797–3813 3805

123

primivite and, therefore, the AUTO option simply relies on

that.

6.4 Other collectives

The MPI standard also defines other relevant collective

primitives: MPI_Alltoall, MPI_Gather,

MPI_Scatter, and MPI_Reduce. In this work though,

we do not consider them because of their similarities with

the four analyzed primitives. Specifically, MPI_All-

toall and MPI_Gather are highly related with

MPI_Allgather in the communication pattern;

MPI_Scatter is a ‘‘reversed’’ realization of MPI_-

Gather, and therefore it is also linked with MPI_All-

gather; finally, MPI_Reduce is a ‘‘chopped’’ version of

MPI_Allreduce, where there is a single reduction point

and, given that the performance gains for the latter mostly

come reduction part, we may expect a similar behaviour.

Some of the collective communication primitives

reviewed in this section are heavily leveraged in distributed

training of DNNs. Specifically, MPI_Allgather,

MPI_Bcast, MPI_Reduce_scatter and

MPI_Allreduce are employed for distributed DL

frameworks that exploit model parallelism instead of the

conventional data-parallel approach [7].

7 Acceleration of distributed DNN training

In this section we assess the benefits of the pipelined

communication schemes proposed in our work when

applied to accelerate distributed training of DNNs on a

cluster of computer nodes, possibly enhanced with GPUs.

7.1 Experimental training setup

In order to illustrate the advantage of the new CCPs, we

employ TF 2.1.0 with Horovod (HVD) 0.20.3 as the target

framework for distributed CNN training. In the experi-

ments, HVD is compiled and linked with OpenMPI 4.1.0

and CUDA support. For the evaluation involving GPUs, we

also consider NVIDIA NCCL 2.7.8 as an alternative

communication layer. For the computations, we use Intel

MKL 2020 in the case of CPUs and CUDA 10.2 and

cuDNN 8.0 for GPUs. All the results are obtained using the

TF benchmark suite [14] executed with Python3.7.

To close this short review of the training setup, we

consider a testbed consisting of four CNN models: AlexNet

[20], ResNet50 [13], VGG11 [27], and ResNet110; and two

datasets: Cifar10 [19] and ImageNet [11].

Table 2 characterizes each DNN model-dataset combi-

nation, indicating the total number of layers, the amount of

model parameters, and the floating point operations (flops)

per training iteration. (The latter parameters is actually a

function of the batch size b.) For simplicity, we only report

the number of flops for the forward pass; the total amount

flops for a complete forward-backward iteration of training

is roughly obtained by multiplying this number by 3.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL (AUTO)
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

210 215 220 225 230

B
an

dw
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL (AUTO)
NBLx2
NBLx4
NBLx6
NBLx8

Fig. 7 Performance of the AUTO algorithm for MPI_Ireduce_scatter in OpenMPI using 7 and 8 nodes/processes (left and right,

respectively). The labels of type NBLxY indicate the pipelined variant MPI_Pireduce_scatter_fconc with numseg=Y segments

Table 2 Characterization of the DNN models?datasets. AlexNet,

ResNet50 and VGG11 employ ImageNet and ResNet110 is for

Cifar10

Model # of layers Params. flops �b

AlexNet 22 62,378,344 2,270,512,192

ResNet50 176 25,636,712 8,178,368,512

VGG11 30 132,863,336 15,218,180,096

ResNet110 393 1,747,898 506,832,128

3806 Cluster Computing (2021) 24:3797–3813

123

Figure 8 reports the number of messages and their size

for the model-dataset pairs. We can clearly observe there

that each scenario exhibits quite different transfer

requirements. At this point it is necessary to point out that,

in practice, frameworks such as HVD group several con-

secutive ‘‘small’’ data transfers into a single one to reduce

latency. Therefore, the number of messages per forward-

backward pass may be smaller than the amount of convo-

lutional and fully-connected layers for a DNN model.

(Concretely, HVD groups small data transfers into 64 MB

data transfers.) Grouping messages into larger data trans-

fers favors pipelining, as it increases performance for

messages of that size.

7.2 Brief discussion of TF1HVD

At each iteration, HVD exploits DP by distributing a global

batch size of b � p samples among the p processes/nodes;

TF then performs the local computations corresponding to

the forward pass and backward propagation [29]; and HVD

orchestrates the global reduction necessary for the update

of the DNN model (that is, weight and biases) prior to the

next iteration.

The original version of HVD relies on the blocking

MPI_Allreduce primitive to perform the global reduc-

tion. Furthermore, HVD off-loads the execution of these

primitives to a communication thread, which allows to

overlap the operations that are necessary for the compu-

tational parts of the backward propagation (performed by

the application processes/threads and TF) with the com-

munication for the global reduction [8, 25].

In order to test our (non-blocking) pipelined CCP, we

developed a modified version of HVD that replaces the

blocking collective with an adaptation of the code shown in

Listing 2, followed by a wait synchronization. The

numerical behavior and, therefore, the convergence rate of

our TF?modified HVD version is equivalent to that of the

original TF?HVD framework. In consequence, we can

directly compare the execution time of the two solutions

for a specific number of training epochs (10 in the exper-

iments). To avoid variations, the framework is initialized

with the same random seeds, yielding the same starting

DNN model for the training process and, consequently, the

same training convergence (except for the effect of

rounding errors).

7.3 Cluster of multicore processors

Figure 9 illustrates the acceleration (or speed-up) attained

when replacing the conventional invocation to (the block-

ing) MPI_Allreduce in HVD, with the blocking opti-

mal algorithm for OpenMPI (that is, RNG), the non-

blocking counterpart, and the pipelined variant (with the

fixed concurrency degree set to 4). The local batch size

b for this particular experiment is set to either 32 or 64. We

note that, increasing the batch size generally reduces the

contribution of the communication to the training cost per

iteration, but may increase the total time due to a decay in

the convergence rate.

The results in Fig. 9 offer three main conclusions: (1)

The non-blocking MPI_Iallreduce outperforms its

blocking counterpart, likely due to implementation deci-

sions of the internal peer-to-peer calls; (2) the RNG

algorithm offers considerably higher performance than the

AUTO selection for this scenario; and (3) applying

pipelining significantly improves the training performance

of the framework.

In general, the performance gains vary depending on the

contribution of communication to the total training cost,

which in turn strongly depends on the CNN model (and, of

course, the cluster hardware configuration). For example,

applying the pipelining techniques to a communication-

bound testbed, such as ResNet110 with Cifar10, improves

the performance by a factor that is between 50 and 60%.

Conversely, when the computation dominates the total

execution time (as, for instance, is the case for ResNet50

and VGG11 when trained with ImageNet), the performance

gain is more modest, in the range between 5 and 22%.

7.4 Cluster of multicore processors with GPU
accelerators

In the last experiment, we investigate the impact of

pipelining on the training throughput when the target

cluster is equipped with graphics accelerators. For this

particular case, in the comparison we also consider an

alternative where the communication layer provided by

NVIDIA’s proprietary NCCL library instead of MPI.

NCCL provides highly efficient primitives for Infiniband,

 0

 5

 10

 15

 20

 25

 30

 35

 40

210 215 220 225 230

of

 tr
an

sf
er

s

Message size (bytes)

AlexNet+ImageNet
ResNet50+ImageNet
VGG11+ImageNet
ResNet110+Cifar10

Fig. 8 Number of transfers clustered by message size for the DNN

models?datasets

Cluster Computing (2021) 24:3797–3813 3807

123

with direct access to the GPU memory and, therefore, is

very difficult to outperform by a ‘‘general-purpose’’ library

such as MPI. Nonetheless, we intend to verify whether it is

possible to reduce the difference between MPI and NCCL

by pipelining the communications.

Figure 10 reports the training throughput rate (meas-

sured in terms of number of images processed per second,

or images/s) and speed-up with respect the conventional

blocking implementation in HVD based on

MPI_Allreduce. In this study, we only consider the

RNG algorithm since this has been identified as the best

MPI-based option for this scenario. As it already occurred

when the experiment did not exploit the GPUs, for those

cases where the communication is the bottleneck (e.g.,

AlexNet and VGG11 with ImageNet), NCCL clearly out-

performs any of the MPI configurations. Conversely, for

compute-bound training scenarios (e.g., ResNet50 with

ImageNet and ResNet110 with Cifar10 and a large batch

size), the difference between NCCL and MPI is negligible.

The performance improvement when pipelining is applied

yields a speed-up of up to 60% in the best case. If we

compare the pipelined MPI_Iallreduce version against

NCCL, we observe that it performs close to the NVIDIA

solution, with the difference narrowing as the batch size is

increased. At this point we repeat that augmenting the

batch size may affect the convergence and accuracy of the

training process, which often asks for a very fine-grain,

application-dependent, tuning of the learning rate that

needs to be dynamically varied as the training process

evolves. Therefore, this is a complex technique which

requires special knowledge and care.

8 Conclusions

We have reported notable improvements on the perfor-

mance of the blocking Allreduce via 1) an adequate

selection of the underneath algorithm; 2) the use of its non-

blocking counterpart followed by a synchronization prim-

itive, to preserve the global blocking behaviour; and 3)

pipelining the original call into a collection of smaller

collectives that accommodates a better overlap of compu-

tation with communication, yielding a better utilization of

the network bandwidth. In general, the RNG algorithm

tends to be the best Allreduce option for the target data-

parallel TF?HVD framework but this is rarely selected as

default algorithm and, in the case of MPICH, not even

implemented. Furthermore, we have demonstrated that the

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
pe

ed
-u

p

BL (AUTO)
BL (RNG)
NBL (AUTO)
NBL (RNG)
NBLx4 (AUTO)
NBLx4 (RNG)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
pe

ed
-u

p

BL (AUTO)
BL (RNG)
NBL (AUTO)
NBL (RNG)
NBLx4 (AUTO)
NBLx4 (RNG)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
pe

ed
-u

p

BL (AUTO)
BL (RNG)
NBL (AUTO)
NBL (RNG)
NBLx4 (AUTO)
NBLx4 (RNG)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
pe

ed
-u

p

BL (AUTO)
BL (RNG)
NBL (AUTO)
NBL (RNG)
NBLx4 (AUTO)
NBLx4 (RNG)

Fig. 9 Speed-up of TF?HVD when the blocking AUTO algorithm

for MPI_Allreduce (BL(AUTO)) is replaced with either the

blocking RNG algorithm (BL(RNG)), the non-blocking algorithms

(NBL(AUTO/RNG)), or the pipelined variants of the latter

(NBLx4(AUTO/RNG)), using batch sizes of 32 and 64 (top and

bottom, respectively), and 8 and 9 nodes/processes (left and right,

respectively)

3808 Cluster Computing (2021) 24:3797–3813

123

performance advantages of the segmentation/pipelining

techniques carry over to other relevant collective

primitives.

These benefits have been demonstrated for MPI via a

experimental analysis but, more importantly, also for a

relevant framework for distributed training of DNNs:

TF?HVD. For those training testbeds where the commu-

nication plays a key role, on clusters of multicore proces-

sors, the proposed optimizations of the MPI layer yield an

acceleration of the training performance for TF?HDV of

up to 22% for AlexNet and ResNet50; 15% for VGG11;

and 50–60% for ResNet110 with respect to the configura-

tion automatically selected by MPI. For platforms equipped

with GPUs, NVIDIA’s NCCL is still offers the best com-

munication layer, outperforming any of the MPI-based

solutions. However, the techniques that have been pro-

posed in this work help to close the performance gap

between NCCL and MPI by a significant margin. In gen-

eral, we can expect that the segmentation/pipelining

approach will benefit many distributed applications that

makes heavy use of collective primitives.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

Im
ag

es
/s

NCCL
BL (RNG)
NBL (RNG)
NBLx4 (RNG)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
pe

ed
-u

p

NCCL
BL (RNG)
NBL (RNG)
NBLx4 (RNG)

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

Im
ag

es
/s

NCCL
BL (RNG)
NBL (RNG)
NBLx4 (RNG)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
pe

ed
-u

p

NCCL
BL (RNG)
NBL (RNG)
NBLx4 (RNG)

 0

 5000

 10000

 15000

 20000

 25000

 30000

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

Im
ag

es
/s

NCCL
BL (RNG)
NBL (RNG)
NBLx4 (RNG)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
pe

ed
-u

p

NCCL
BL (RNG)
NBL (RNG)
NBLx4 (RNG)

Fig. 10 Training throughput (in images/s) and speed-up (left and

right, respectively) of TF?HVD with 8 GPUs/nodes when the

blocking AUTO algorithm for MPI_Allreduce (BL(AUTO)) is

replaced with either the blocking RNG algorithm (BL(RNG)), the

non-blocking algorithms (NBL(AUTO/RNG)), or the pipelined

variants of the latter (NBLx4(AUTO/RNG)), using batch sizes of

96, 128 and 256 (top, middle and bottom, respectively). For reference,

we also include the results when the communication layer is provided

by NCCL

Cluster Computing (2021) 24:3797–3813 3809

123

Complementary experiments

In this appendix, we assess the benefits of pipelining for a

variety of experimental configurations: MPI library, net-

work technology, network topology, and processor family.

In all plots, the BL(AUTO), NBL(AUTO) and NBL(RNG)

labels correspond to the evaluation of the conventional

MPI_Allreduce collective and the original (non-

blocking) MPI_Iallreduce; the labels of type NBLxY

indicate the pipelined variant MPI_Siallre-

duce_fconc with numseg=Y segments.

MPI libraries

The target platform and libraries utilized in this first sub-

section are the same described in Sect. 7.1.

Figure 11 shows that the performance gains attained

with pipelining are considerable for both the AUTO and

BEST algorithms in MPICH and Intel MPI. (Note that for

MPICH, AUTO corresponds to the RSA algorithm as this

is the best option. In consequence, we only provide one

row of charts for that MPI library.)

Figure 12 shows that pipelining also improves perfor-

mance for legacy library versions. In this case, the results

were obtained with OpenMPI 4.0. Compared with the

version evaluated earlier in the paper (4.1), OpenMPI 4.0

does not allow to select a concrete algorithm for the

MPI_Iallreduce CCP.

Infiniband QDR

Figure 13 demonstrates that the efficiency of pipelining is

also visible in case the nodes of the target platform are

connected via an older Infiniband QDR switch. In this

case, the experiments were executed on a cluster with 15

nodes, each equipped with two Intel Xeon E5645 West-

mere processors (6 cores each) and 48 GB of DDR3

RAM memory. The MPI libraries selected for this

experiment were OpenMPI 4.0.1, MPICH 3.3.2, Intel

MPI 2019.

 0

 500

 1000

 1500

 2000

 2500

 3000

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 500

 1000

 1500

 2000

 2500

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 500

 1000

 1500

 2000

 2500

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 500

 1000

 1500

 2000

 2500

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 500

 1000

 1500

 2000

 2500

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

Fig. 11 Performance of the AUTO algorithm in MPICH (top), and the AUTO and RNG algorithms in Intel MPI (middle and bottom,

respectively) using 8 and 9 nodes/processes (left and right, respectively)

3810 Cluster Computing (2021) 24:3797–3813

123

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

Fig. 12 Performance of the AUTO algorithm in OpenMPI (4.0) using 8 and 9 nodes/processes (left and right, respectively)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

210 215 220 225 230

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

Fig. 13 Performance of the AUTO algorithm in OpenMPI 4.0 (top), and the AUTO and RNG algorithms in MPICH and Intel MPI (middle and

bottom, respectively) using 8 and 15 nodes/processes (left and right, respectively)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

227 228 229

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

227 228 229

Ba
nd

wi
dt

h
(M

B/
s)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

Fig. 14 Performance of the AUTO algorithm in OpenMPI (4.0) for large messages using 30 and 32 processes (left and right, respectively)

Cluster Computing (2021) 24:3797–3813 3811

123

Network topology and processor family

Finally, Fig. 14 reports the result of applying pipelining in

the Marconi100 Supercomputer.7 This last experiment was

executed with up to 32 nodes, where each cluster node was

equipped with two IBM POWER9 AC922 processors (3.1

GHz, 16 cores/processor) and 256 GB RAM each. (A node

of Marconi also includes four NVIDIA Volta V100 GPUs,

connected with NVLINK 2.0, and 16 GB.) The Infiniband

network in this system is configured with a DragonFly

topology (in all other experiments the topology was a Fat-

Tree). The results confirm that a significant benefit can,

again, be gained from pipelining for large messages.

Acknowledgements This research was partially sponsored by project

TIN2017-82972-R of the SpanishMinisterio de Ciencia, Innovación y
Universidades and the Agencia Valenciana de la Innovación. Adrián
Castelló was supported by the Juan de la Cierva-Formación project

FJC2019-039222-I of the Ministerio de Ciencia, Innovación y
Universidades. Part of this work was executed on the Marconi100

supercomputing facility from CINECA Interuniversity Consortium -

HPC Department via the PRACE Preparatory Access project

#2010PA5531.

Author contributions All authors contributed to the study concep-

tion and design. Material preparation, data collection and analysis

were performed by Adrián Castelló and Enrique S. Quintana-Ortı́.

The first draft of the manuscript was written by Adrián Castelló and

was reviewed by Enrique S. Quintana-Ortı́ and Jose Duato. All

authors commented on previous versions of the manuscript. All

authors read and approved the final manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature. Project TIN2017-82972-R of the

Spanish Ministerio de Ciencia, Innovación y Universidades. Agencia
Valenciana de la Innovación. Juan de la Cierva-Formación project

FJC2019-039222-I of the Ministerio de Ciencia, Innovación y Uni-
versidades PRACE Preparatory Access project #2010PA5531.

Data availability Not applicable.

Declarations

Conflict of interest Not applicable.

Code availability The pipelined codes may be found at https://github.

com/adcastel/collectives.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,

Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Ten-

sorFlow: a system for large-scale machine learning. In: 12th

USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI 16), pp. 265–283 (2016)

2. Alsmadi, I., Khreishah, A., Dianxiang, X.: Network slicing to

improve multicasting in hpc clusters. Clust. Comput. 21(3),
1493–1506 (2018)

3. Awan, A.A., Bedorf, J., Chu, C.-H., Subramoni, H., Panda, D.K.:

Scalable distributed DNN training using TensorFlow and CUDA-

aware MPI: characterization, designs, and performance evalua-

tion (2018). arXiv:1810.11112

4. Awan, A.A., Chu, C.-H., Subramoni, H., Panda, D.K.: Optimized

broadcast for deep learning workloads on dense-GPU InfiniBand

clusters: MPI or NCCL? In: Proceedings of the 25th European

MPI Users’ Group Meeting, pp. 1–9 (2018)

5. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed

deep learning: an in-depth concurrency analysis. ACM Comput.

Surv. 52(4), 65:1–65:43 (2019)

6. Castelló, A., Catalán, M., Dolz, M.F., Mestre, J.I., Quintana-Ortı́,

E.S., Duato, J.: Evaluation of MPI Allreduce for distributed

training of convolutional neural networks. In: 29th Euromicro

International Conference on Parallel, Distributed and Network-

based Processing (PDP) (2021)

7. Castelló, A., Dolz, M.F., Quintana-Ortı́, E.S., Duato, J.: Analysis

of model parallelism for distributed neural networks. In: Pro-

ceedings of the 26th European MPI Users’ Group Meeting,

EuroMPI ’19, New York, NY, USA (2019). Association for

Computing Machinery

8. Castelló, A., Dolz, M.F., Quintana-Ortı́, E.S., Duato, J.: Theo-

retical scalability analysis of distributed deep convolutional

neural networks. In: 2019 19th IEEE/ACM International Sym-

posium on Cluster, Cloud and Grid Computing (CCGRID),

pp. 534–541 (2019)

9. Chan, E., Heimlich, M., Purkayastha, A., van de Geijn, R.:

Collective communication: theory, practice, and experience.

Concurr. Comput. 19(13), 1749–1783 (2007)

10. Clarke, L., Glendinning, I., Hempel, R.: The MPI message

passing interface standard. In: Programming Environments for

Massively Parallel Distributed Systems, pp. 213–218. Springer,

Berlin (1994)

11. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.:

ImageNet: a large-scale hierarchical image database. In: 2009

IEEE Conference on Computer Vision and Pattern Recognition,

pp. 248–255 (2009)

12. Hasanov, K., Lastovetsky, A.: Hierarchical redesign of classic

MPI reduction algorithms. J. Supercomput. 73(2), 713–725

(2017)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for

image recognition. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 770–778 (2016)

14. Google Inc. Tensorflow benchmarks. https://github.com/tensor

flow/benchmarks

15. Ivanov, A., Dryden, N., Ben-Nun, T., Li, S., Hoefler, T.: Data

movement is all you need: a case study on optimizing trans-

formers (2020). arXiv:2007.00072

16. Kang, Q., Träff, J.L., Al-Bahrani, R., Agrawal, A., Choudhary,

A., Liao, W.-k.: Full-duplex inter-group all-to-all broadcast

7 https://www.hpc.cineca.it/hardware/marconi

3812 Cluster Computing (2021) 24:3797–3813

123

https://github.com/adcastel/collectives
https://github.com/adcastel/collectives
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1810.11112
https://github.com/tensorflow/benchmarks
https://github.com/tensorflow/benchmarks
http://arxiv.org/abs/2007.00072
https://www.hpc.cineca.it/hardware/marconi

algorithms with optimal bandwidth. In: Proceedings of the 25th

European MPI Users’ Group Meeting, pp. 1–10 (2018)

17. Kang, Q., Träff, J.L., Al-Bahrani, R., Agrawal, A., Choudhary,

A., Liao, W-k: Scalable algorithms for MPI intergroup Allgather

and Allgatherv. Parallel Comput. 85, 220–230 (2019)

18. Kim, Y., Choi, H., Lee, J., Kim, J.-S., Jei, H., Roh, H.: Towards

an optimized distributed deep learning framework for a hetero-

geneous multi-gpu cluster. Clust. Comput. 23(3), 2287–2300

(2020)

19. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of

features from tiny images. Technical report, Department of

Computer Sciences, University of Toronto (2009)

20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classifi-

cation with deep convolutional neural networks. In: Proceedings

of the 25th International Conference on Neural Information

Processing Systems - Volume 1, NIPS’12, pp. 1097–1105, Curran

Associates Inc. (2012)

21. Kurnosov, M., Tokmasheva, E.: Shared memory based mpi

broadcast algorithms for numa systems. In: Russian Supercom-

puting Days, pp. 473–485. Springer, Berlin (2020)

22. Li, S., Hoefler, T., Chungjin, H., Snir, M.: Improved MPI col-

lectives for MPI processes in shared address spaces. Clust.

Comput. 17(4), 1139–1155 (2014)

23. Nguyen, T.T., Wahib, M., Takano, R.: Hierarchical distributed-

memory multi-leader MPI_Allreduce for deep learning work-

loads. In: 2018 Sixth International Symposium on Computing and

Networking Workshops (CANDARW), pp. 216–222. IEEE

(2018)

24. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,

G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.:

Pytorch: an imperative style, high-performance deep learning

library. In: Advances in Neural Information Processing Systems,

pp. 8026–8037 (2019)

25. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed

deep learning in TensorFlow (2018). arXiv:1802.05799

26. Shalf, J.: HPC interconnects at the end of Moore’s Law. In: 2019

Optical Fiber Communications Conference and Exhibition

(OFC), pp. 1–3 (2019)

27. Simonyan, K., Zisserman, A.: Very deep convolutional networks

for large-scale image recognition (2014). arXiv:1409.1556

28. Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Don-

garra, J.: MPI: The Complete Reference. The MIT Press, New

York (1996)

29. Sze, V., Chen, Y.-H., Yang, T.-J., Emer, J.S.: Efficient processing

of deep neural networks: a tutorial and survey. Proc. IEEE

105(12), 2295–2329 (2017)

30. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of col-

lective communication operations in MPICH. Int. J. High Per-

form. Comput. Appl. 19(1), 49–66 (2005)

31. Worringen, J.: Pipelining and overlapping for MPI collective

operations. In: 28th Annual IEEE International Conference on

Local Computer Networks, 2003, pp. 548–557. IEEE (2003)

32. Zhao, Y., Wang, L., Wu, W., Bosilca, G., Vuduc, R., Ye, J.,

Tang, W., Xu, Z.: Efficient communications in training large

scale neural networks. In: Proceedings of the on Thematic

Workshops of ACM Multimedia 2017, pp. 110–116 (2017)

33. Zhong, D., Cao, Q., Bosilca, G., Dongarra, J.: Using advanced

vector extensions avx-512 for mpi reductions. In: 27th European

MPI Users’ Group Meeting, pp. 1–10 (2020)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Adrián Castelló received his BS

degree in computer science, the

MS degree in advanced com-

puter systems, and his Ph.D.

degree in Computer Science

from Universitat Jaume I in

2011, 2013 and 2018, respec-

tively. He is a Postdoc

researcher at the Universitat

Poitècnica de València and his

research interests include high-

performance computing, deep

neural networks, programming

models and distributed and

shared memory systems.

Enrique Quintana-Ortı́ received

the bachelor and Ph.D. degrees

in computer sciences from the

Universitat Poitècnica de

València, Spain, in 1992 and

1996, respectively. He is a Pro-

fessor in Computer Architecture

in the Universitat Poitècnica de

València. Recently, he has par-

ticipated in EU projects such as

TEXT, INTERTWinE, EXA2-

GREEN and OPRECOMP. His

current research interests

include parallel programming,

linear algebra, energy con-

sumption, transprecision computing and bioinformatics as well as

advanced architectures and hardware accelerators.

José Duato , Ph.D. in electrical

engineering from the Technical

University of Valencia (UPV),

Spain. He is a professor in the

Department of Computer Engi-

neering at UPV. His current

research interests include inter-

connection networks and multi-

processor architectures. He

published more than 500 refer-

eed papers that received more

than 16,000 citations. He served

as a member of the editorial

board of IEEE TPDS, IEEE TC,

and IEEE CAL, as general (co-)

chair of ICPP 2001, HiPEAC 2019, and ISCA 2020, and as PC chair

of HPCA 2004. He is a member of the Spanish Royal Academy of

Sciences.

Cluster Computing (2021) 24:3797–3813 3813

123

http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1409.1556

	Accelerating distributed deep neural network training with pipelined MPI allreduce
	Abstract
	Introduction
	Related work
	MPI collective communication primitives
	Pipelining for MPI CCPs

	MPI algorithms for allreduce
	A family of algorithms
	Theoretical cost analysis

	Performance analysis of MPI_Iallreduce
	Experimental setup
	Analysis

	Pipelined MPI_Iallreduce
	Pipelining with fixed message size
	Pipelining with a fixed degree of concurrency
	Identification of the source of gains

	Extension of pipelining to other MPI collectives
	MPI_Allgather
	MPI_Bcast
	MPI_Reduce_scatter
	Other collectives

	Acceleration of distributed DNN training
	Experimental training setup
	Brief discussion of TF+HVD
	Cluster of multicore processors
	Cluster of multicore processors with GPU accelerators

	Conclusions
	Complementary experiments
	MPI libraries
	Infiniband QDR
	Network topology and processor family

	Author contributions
	Data availability
	References

