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Abstract
Auction designs have recently been adopted for static and dynamic resource provisioning in IaaS clouds, such as Microsoft

Azure and Amazon EC2. However, the existing mechanisms are mostly restricted to simple auctions, single-objective,

offline setting, one-sided interactions either among cloud users or cloud service providers (CSPs), and possible misreports

of cloud user’s private information. This paper proposes a more realistic scenario of online auctioning for IaaS clouds, with

the unique characteristics of elasticity for time-varying arrival of cloud user requests under the time-based server main-

tenance in cloud data centers. We propose an online truthful double auction technique for balancing the multi-objective

trade-offs between energy, revenue, and performance in IaaS clouds, consisting of a weighted bipartite matching based

winning-bid determination algorithm for resource allocation and a Vickrey–Clarke–Groves (VCG) driven algorithm for

payment calculation of winning bids. Through rigorous theoretical analysis and extensive trace-driven simulation studies

exploiting Google cluster workload traces, we demonstrate that our mechanism significantly improves the performance

while promising truthfulness, heterogeneity, economic efficiency, individual rationality, and has a polynomial-time

computational complexity.

Keywords Virtual machine � Double auction � Truthful � VCG-auction � Approximation � Energy-efficiency.

1 Introduction

The global cloud infrastructure services market is rapidly

proliferating enterprise IT. According to a study by Mck-

insey, public cloud expenditure is expected to grow six

times the rate of general IT expenditure by 2020. The

Infrastructure-as-a-Service (IaaS) cloud model is increas-

ingly being adopted across several industry verticals to

meet cloud user’s real-time demands through virtualization

technologies to virtually access computing resources, i.e.,

storage, networking-related services, or processing power

at cloud service providers (CSPs) such as Rackspace,

Amazon EC2, VMware, Salesforce, Google cloud, and

Microsoft Azure platform. Hypervisor-based virtualization

technologies such as VMware ESXi, XenServer, KVM,

and Microsoft’s Hyper-V have become very popular in

recent years and massively applied in cloud infrastructures,

explicitly, in IaaS. The key benefits of virtualization

include availability, hardware independence, isolation, and

security. CSPs offer cloud resources using virtual machines

(VMs) to run applications (workload/services). Several

other cloud services, such as Platform-as-a-Service (PaaS),

Container-as-a-Service (CaaS) and Software-as-a-Service

(SaaS), are most often deployed on top of an IaaS platform

with all their applications running inside the VMs. How-

ever, in the data center, resources are often severely under-

utilized; and substantial energy saving can be achieved
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through efficient resource management strategies, i.e.,

resource allocation, scheduling, and consolidation [1–4].

This paper addresses the resource allocation problem in

IaaS clouds. Efficient resource allocation problem is very

challenging to IaaS cloud because, to satisfy the cloud

users’ requests of desired resources (i.e, Memory, CPU,

network bandwidth, and storage), it has to balance multi-

objective trade-offs between CSP’s revenue and energy

cost minimization while maintaining the performance as

shown in Fig. 1. To maximize revenue, CSP prefers to

allocate as many VMs as possible. However, it will dras-

tically increase the power consumption due to a large

number of active physical machines (PMs) [5].

In cloud trading markets, major IaaS providers today

typically sell cloud resources via pre-configured VM

instances of fixed types, while cloud customers acquire

resources for executing tasks. Every participant in such a

cloud computing market focuses on maximizing its rev-

enues. Thus pricing is another critical factor for balancing

the benefits of cloud users as well as CSPs. In trading, an

efficient pricing strategy is required to maximize the

individual profits of each participant. Cloud computing

providers offer multiple pricing strategies, e.g., Microsoft

Azure [6] provides resellers pricing, and Pay-As-You-Go

(PAYG) models. Amazon EC2 [7] offers on-demand,

reserve, spot pricing, and savings models. Most of the

CSPs have adopted a fixed price strategy, i.e., charging

customers a fixed amount for each pre-configured VM,

where the total payment is calculated by the length of time,

the total number of purchased VMs and the unit price.

Despite the apparent simplicity in implementation, fixed

pricing methods have failed to reflect the dynamic demand

and supply relationship of the cloud market. As a result, it

lacks efficiency and market agility compromising the

CSP’s profit and customers’ utility. The adoption of dif-

ferent pricing models by multiple service providers poses

the challenge to deliver cloud services at a reasonable price

to users. Hence, in such a a federated cloud environment,

we need a fair resource allocation technique to effectively

allocate CSP’s resources to those cloud users who can

value them the most and without any market manipulation.

In economics, the auction [8] is become one of the

popular trading forms as it maintains efficiency and fairly

distributes the resources to those service users who will

value them most and without any market manipulation.

Unfortunately, we have observed that only simple auction

mechanisms have been implemented by leading CSPs.

Such simple auctions have significant limitations as

follows:

1. One-sided interactions: In auctioning, one-sided inter-

action means an auction can either be performed by a

buyer-side (i.e., cloud users) or the seller-side (CSPs).

For example many e-commerce platforms following

one-to-many negotiations [9]. In a buyer-side auction-

ing, a buyer procures asks from multiple sellers and

determines a winner to buy the commodity. While in a

seller-side auctioning, a single seller offers its dis-

tributed commodities to multiple buyers.

2. Offline setting: In an offline setting, all users’ demands

and bids are known in advance without considering the

dynamics of an elastic model in the time-variant

environment such as the arrival of users at some future

time for any specified time interval, and time-based

Fig. 1 Green cloud computing
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server maintenance in data centers. This scenario gives

the advantage of acquiring higher social welfare,

however the cloud service users have to wait for some

period of time prior to the actual resources are

assigned. Also, in the time-varying resource allocation

users’ resource demands can not be consistent over

time. For example, amid the COVID-19 lockdown,

there is a sudden surge in traffic for video streaming

platforms compared with the regular days. Another

example of the Cab booking App server, which may

not require many resources for data processing at night.

This is because there are more users on the network

during the peak period than the off-peak period.

3. Homogeneous task model: Existing double-auction

techniques such as McAfee [10] was originally

designed for homogeneous task model and not suit-

able for IaaS clouds having heterogeneous distribution

of resources. Also, most of the studies have considered

only a single type of VM, while the IaaS CSPs such as

Microsoft Azure [6] and Amazon EC2 [7] offer

heterogeneous types of VM instances.

4. One-to-one matching: Existing auction models such as

in [11], restricted the final outcome of auction setting

with one-to-one matching, where one buyer is matched

to at most one seller and each seller will be alloted to at

most one buyer.

5. Selfish strategies: Selfish strategies followed by cloud

users or potential misreports of private information,

such as the time-window of resource requirements and

also the valuation, to obtain higher utilities. For

example, in the mobile device cloud application model

[12], some of the selfish mobile devices intended to

maximize their utility by manipulating the claimed

cost. Also, in the federated cloud environment, each

selfish cloud provider desire to gain higher profit and

total social welfare by declaring false information

about the resource types and quantities [13].

To overcome the aforementioned drawbacks, we propose

an Online Truthful Double Auction Mechanism called

’OTDAM’ for efficient resource allocation. OTDAM pre-

sents a more realistic case of the online double auction for

IaaS clouds, with the unique characteristics of revenue

maximization, energy cost minimization while perfor-

mance is maintained. To overcome all the limitations of the

current auction mechanisms, we consider to use a double

auction or two-sided cloud market over a single-sided

auction. The reason behind the selection is, a single-sided

auction could be either a seller’s side that compete to sell

their goods or the buyer’s side that compete to obtain a

finite resource. But in reality, a CSP can sell IaaS resources

to multiple service users, and users can purchase VMs of

various types together from CSPs. As the CSP dynamically

packs the requested VMs with numerous types of resources

on heterogeneous PMs (cloud servers), it is more difficult

to find an optimum provisioning decision under different

server operational costs.

To solve this problem, we merge together a seller’s side

as well as a buyer’s side auction design to devise a two-

sided auction market framework, commonly referred to as

’double auction’ for many-to-many negotiations. A double

auction strategy is an efficient trading technique for orga-

nizing trade in two-sided market actively involving service

users to bid and CSPs to ask with their individual demands.

For example, the leading foreign exchange (FX), New

York Stock Exchange (NYSE), and NASDAQ employ

double auctions variants [14]. Due to the participation of

multiple sellers (servers) and buyers (cloud users), our

proposed scenario ideally matches to double auction mar-

ket. Thus, we model the problem of resource provisioning

in cloud as a truthful online double auction mechanism,

where our action obtains a maximal matching between the

set of cloud servers and the service users in IaaS clouds.

This work proposes a completely different approach of

online auctioning for IaaS resource trading with the unique

properties of elasticity for time-varying arrival of cloud

users’ demands requesting for heterogeneous VMs and

modeling the operational cost of servers under time-based

maintenance in data centers. The auction mechanism

design consists of a winning bid algorithm to find matching

between cloud service users and servers and a payment

algorithm applying price function to determine how much

the cloud providers charge for compute instances of each

cloud user.

1.1 Motivation

As demonstrated in Fig. 2, we focus on a two-sided IaaS

cloud environment with cloud service users and service

providers. Our study is driven by realistic cloud users

demand and service provisioning scenarios where both

cloud users and service providers are dynamic. It means the

cloud service users may arrive and leave the system

dynamically. Also, the physical machines (PMs) or servers

in cloud data centers may have to undergo periodic main-

tenance, which may interrupt the services. Given the arri-

val-departure of cloud users and maintenance duration of

the PMs, we need to perform matching of service demands,

i.e., VMs to the PMs. After the arrival, service users submit

their demands in the form of bids comprising start-time of

VM, end-time of VM, resource requirement, and unit val-

uation for acquiring one-unit capacity in one-time slot.

As shown in the example, the service user is requesting

a VM from 5:00 pm to 7:00 pm. The unit valuation is

$2.00. Once the cloud service provider receives a bid, first,

it determines the type of allocated VMs based on

Cluster Computing (2021) 24:1855–1879 1857

123



computation, memory, and storage capability. It then per-

forms matching of user-requested VMs to the PMs while

considering the time-varying arrival of demands and

maintenance-duration of servers.

1.2 Contributions

The main technical contributions of the proposed work are

as follows:

– We model the problem of dynamic resource allocation in

IaaS clouds as an online double auction that offers an

elastic framework for time-varying cloud user demands

and availability of physical machines (PMs) due to

periodic, or time-basedmaintenance in cloud data centers.

– We propose an online truthful double auction mechanism

(OTDAM) consisting of a weighted bipartite matching

based winning-bid algorithm for resource provisioning

and a Vickrey–Clarke–Groves (VCG) driven algorithm

for payment calculation of winning bids.

– Through rigorous theoretical analysis, we prove that

OTDAM achieves truthfulness, economic-efficiency,

individual rationality, and polynomial-time computa-

tional complexity.

– Based on the extensive trace-driven simulation study,

we show that OTDAM maximizes revenue and mini-

mizes energy cost while maintaining high performance

in cloud data centers compared with the existing

auction approaches.

1.3 Organization

The rest of the paper is structured as follows: In Sect. 2, we

provide related works on double auction and resource

allocation in IaaS clouds. In Sect. 3, we discuss the system

model and problem formulation for dynamic resource

provisioning problem. In Sect. 4, we present working of

OTDAM, algorithms, an illustrative example, and also

provide the proofs of desirable auction properties. We

evaluate the approaches through extensive simulation

studies in Sect. 5. Finally, Sect. 6 provides conclusions

with some of the directions for future research.

2 Related works

This section presents some related works on double auction

techniques and resource allocation approaches in IaaS

clouds.

2.1 Double auction

In [15], Kumar et al. presented a comprehensive survey of

double-auction approaches and investigate the benefits of

applying double-auction in cloud markets for the trading of

computing resources. Kumar et al. [16] further proposed a

truthful combinatorial double-auction technique referred to

as ’TCMDAC’ for pricing and resource allocation of

computing resources in a cloud computing market. Farajian

et al. [17] provided a continuous double-auction strategy

for efficient resource allocation in the cloud market. In

economics literature, McAfee [10], and Vickrey–Clarke–

Groves (VCG) [18–20] are two well-known double-auction

models. McAfee is based on the Trade-Reduction (TR)

method, and it can achieve the properties of individual

rationality, budget-balance, and truthfulness (incentive

compatibility). While, the VCG based double-auction

model can fulfill the property of individual rationality [11],

and it can also satisfy the truthfulness property [21].

The McAfee [10] auction method can be illustrated as

follows: Firstly, the auctioneer sorts the bids of buyers in

non-increasing order, where B1 �B2 �B3:::�Bm. The ask

Fig. 2 Illustration of two-sided online interactions between cloud

users and service providers
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of sellers’ are sorted in non-decreasing order:

A1 �A2 �A3:::�An. Here, the efficient number of trades is

the number k�minfn;mg, where Bk �Ak and Bkþ1\Akþ1.

Finally, the median can be defined as p0 ¼ Akþ1þBkþ1

2
. The

McAfee needs a budget balancer to operate. If

Ak � p0 �Bk, then all efficient k buyers and sellers trade for

the resource at price p0. Otherwise, only k � 1 buyers and

sellers trade for k � 1. In this case buyers pay Bk and the

sellers recieve ask Ak.

Generalized VCG double auction mechanism has also

received popularity as they are efficient and strategy-proof.

Without the budget-balance problem, the VCG payment

scheme supports efficient, individual rationality, and

strategy-proof exchange. VCG optimizes social welfare

while achieving truthfulness property. It achieves budget-

balance property by distributing ‘‘surplus’’ to each agent

[21]. During VCG based auctioning, if Bi �Aj, then no

trade is performed. If Bi [Aj, then only the trading is

performed, and the buyer pays the ask Aj, and the seller

receives the bid Bi. The McAfee and VCG auction mech-

anisms can not be directly applied for the proposed sce-

nario due to the following limitations:

(i) McAfee provides a simple exchange environment

for single-unit resources only, where sellers and

buyers trade for single-units of the same good, and

consequently it is not applicable for IaaS clouds

having multi-unit resources.

(ii) McAfee’s mechanism is weakly budget-balanced.

(iii) The McAfee [10] double-auction technique was

originally designed for homogeneous commodities

where a buyer can be assigned to one seller only.

But it is not suitable for IaaS clouds having

heterogeneous commodities and need multiple

assignments of a seller.

(iv) VCG payment scheme is the most efficient truthful

mechanism. However, it does not ensure the

criteria of budget-balancing. Subsequently, the

auctioneer actually has to subsidize the trade.

Huang et al. [22] designed a generalized model of

McAfee [10] for a multi-unit trading environment, which is

proven to be budget-balanced, truthful, and individually

rational. Babaioff et al. [23] proposed an extended Trade

Reduction (TR) technique for single unit commodities. It

performs the bidding of buyers in bundles, and each seller

sells one unit of each commodity. Chu and Shen [24]

developed a multi-stage and truthful double auction

approach for the consumer to consumer (C2C) market

environment. The authors have assumed the single-unit

market where a consumer bids for a bundle of commodi-

ties, and the seller sells a single unit for a single com-

modity. The mechanisms are proven to be truthful, budget-

balanced, individually rational, and asymptotic efficient.

Chu and Shen [25] also designed 2-incentive compatible

double auction-based multi-stage mechanisms named as

buyer-competition, and modified-buyer-competition). The

authors have assumed a single-unit trading market where a

buyer acquires the commodities in bundles with a seller

selling a unit capacity for a single type of commodity. The

approaches are further proven to be budget-balance and

incentive compatibility.

Chu [26] provided a padding approach in a multi-unit

environment, which is highly efficient than the single-unit

schemes. The double auction mechanisms are proven to be

budget balanced, incentive compatible, and asymptotic

efficient. Mishra et al. [27] designed a descending price

Dutch auction mechanism for multiple heterogeneous

items. Demange et al. [28] proposed two dynamic auction

mechanisms to achieve equilibrium and degree of accu-

racy. Ausubel et al. [29] presented a dynamic auction

approach for multiple heterogeneous commodities. Charles

et al. [30] devised a multiple unit double-auction that

enables numerous units or block trades in the double-auc-

tion framework. Yang et al. [11] designed TASC auction-

ing for cooperative communication, where the wireless

node can participate in relay services trading. The overall

comparison of the aforementioned double-auction mecha-

nisms is shown in Table 1.

2.2 Resource allocation in IaaS clouds

Jin et al. [38] provided cloudlet based resource sharing

auction schemes for mobile cloud computing. However,

these auction techniques are only applicable for homoge-

neous task models, and resultant matching for auctioning is

one-to-one. Wang et al. also [12] proposed two truthful

auctioning schemes for task based allocation in mobile

clouds. They presented a VCG-driven truthful auction

approach in the homogeneous cloud environment, and also

a winning-bid algorithm for heterogeneous cloud models.

In [31–35], and [37] CSPs adopted the auction-based

resource allocation model as an economic paradigm to

provide VM resources to the worthy users. In this design,

the cloud users submit their resource demands with their

values to the CSP. Then the CSP determines the allocation

of VMs to the users for maximizing revenue. In [32], Nejad

et al. given a VCG-based truthful auction scheme for

revenue maximization, and prove that it is an NP-hard

optimization problem.

However, to deal with the dynamic environment,

Mashayekhy et al. [31] and Zhang et al. [34] developed an

online truthful scheme that is invoked during the arrival of

user requests. Zhang et al. [35] further enhance the online

mechanism by giving more flexibility for user bidding. It
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means if the required resources are accessing during a

particular time slot, then a user request can be accommo-

dated. Wang et al. [36] consider an efficient VM allocation

problem for reducing energy consumption. Zaman et al.

[37] presented the VM allocation problem as a combina-

torial auction problem. They have provided combinatorial

auction-based approaches and compare with fixed-price

allocation approach. Jin et al. [38] designed a truthful

incentive mechanism (TIM) for auctioning of resources

between the cloudlets and mobile devices. Lu et al. [39]

suggested a truthful double auction scheme for bridging the

gap between cloud users’ task demands and service pro-

viders’ resources for two-sided markets.

Zhang et al. [40] provided an online auction method for

time-varying assignment and pricing of multidimensional

resources in the cloud environment. Middya et al. [41]

developed ’TARA’, a multi-unit double auction approach

for resource provisioning in a federated cloud environment.

The authors have considered a multi-buyer and multi-seller

double auction design for heterogeneous cloud resources.

Patel et al. [42] designed ’TDAM’, a truthful double auc-

tion scheme to provision VMs in cloud data centers. Jin

et al. [43] developed ’ICAM’ an incentive-compatible

auction approach to assign cloudlets in order to fulfill the

service requirements of mobile devices.

However, the main problem with the reported works is

the lack of efficient pricing strategies for minimizing the

cost of energy consumption and maximum revenue real-

ized by satisfying the arriving user’s demands. In com-

parison to the existing techniques, the auctioning problem

studied in this work mainly differs in the following aspects:

(i) heterogeneity of cloud environment where VMs have

different resource requirements and PMs with different

resource availability; (ii) double auction mechanism to

consider the dual preferences where VMs act as buyers and

PMs act as sellers; (iii) truthful auctioning while consid-

ering the fundamental research issues of revenue

maximization and energy cost minimization, both are

critical objectives for VM allocation scheme; (iv) dynamics

of an elastic model in the time-variant environment such as

arrival and departure of users and time-based server

maintenance in data centers. Table 2 presents a comparison

between the proposed approach and the closely related

works in 12 different aspects.

3 System model and problem formulation

3.1 Auction model

We model the dynamic resource provisioning problem as

an online double auction model, as illustrated in Fig. 3.

The auction model comprises of two-sided interactions

between cloud service users and CSP. The auctioneer

handles the auction process and acts as a trusted third party

between cloud service users called buyers, and servers of

CSP called sellers. Note that we will use buyers inter-

changeably with cloud service users and sellers with ser-

vers of a cloud service provider. We assume that the cloud

service users request for VM instances. CSP offers a wide

variety of instance types including varying combinations of

memory, CPU, networking capacity, and storage. The CSP

allocates the requested resources to the servers or physical

machines (PMs). Cloud service users may arrive and leave

the system dynamically. They submit their demand to

reserve the resources for future use. A cloud service user

submits a resource request in the form of a bid consisting of

the service-time window i.e, start and finish times to use

VMs, resource requirement, and the valuation or minimum

price per unit time for getting one unit capacity. All the

participants submit bids and asks to the cloud auctioneer in

such a manner so that no auction participant has any idea

about a realistic bids/asks of any other participants. With

the help of received bids and asks values, an auctioneer

Table 1 Comparison of existing

double auction approaches in

the economics literature

Algorithm Double auction Auction properties Heterogeneous Dimension

TF IR BB EE

Huang et al. [22] 4 4 4 9 9 9 Multi-item

Babaioff et al. [23] 4 4 4 4 9 4 Single-item

Chu et al. [24] 4 4 4 4 9 4 Single-item

Chu et al. [25] 4 4 4 4 9 4 Single-item

Chu et al. [26] 4 4 4 4 9 – Multi-item

Mishra et al. [27] 9 – – – – 4 Multi-item

Demange et al. [28] 9 4 – – – 4 Multi-item

Ausubel et al. [29] 9 – – – – 4 Multi-item

Charles et al. [30] 4 9 9 9 9 9 Multi-item

Yang et al. [11] 4 4 4 4 9 4 Multi-item

TF truthful, IR individually rational, BB budget balance, EE economic efficient
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discovers mapping between the PMs of CSP and the cloud

service users. The auctioneer also determines the hammer

price (clearing-price) and the final payment. In the cloud

market, a CSP can deliver the cloud services to users if and

only if the auctioneer discovers a suitable matching

between that particular CSP and the service user. Now, let

us understand the entities involved in the auction process.

3.1.1 Sellers (i.e., Physical machines (PMs))

Cloud service providers offer j servers or PMs to fulfill the

demands of g VM instances in a cloud data center. A VM

instance must be placed to at most one cloud server. Also,

it cannot operate on multiple resources provided by mul-

tiple servers. Each seller can be expressed as a 11-tuple

Sj ¼ \aj;
P

j;wj;/j; sj; aj; dj; vj; �idj ; �
a
j ; vj [ , where aj

represents the ask-per-resource submitted by Sj,
P

j indi-

cates the list of hosted VMs at the particular cloud server,

wj implies the total resources available at the server, /j

denotes the available resources, sj refers the response time

of server, vj represents the payment the seller will gain

when the auction is completed, aj 2 T and dj 2 T denote

the arrival and departure time respectively and vi represents

the valuation of the ask raised by the Seller. �aj indicates the

energy consumption of the fully utilized server and, �idj
denotes the energy consumption of the fully idle server.

3.1.2 Buyers (i.e., The cloud users)

We assume a set of g buyers B ¼ fB1;B2; . . .;Bgg
requesting resources from j servers S ¼ fS1; S2; . . .; Sjg.
A user request C 2 B arrives at slot t and sends a bid to the

auctioneer. A user specifies the VM requirement according

to its own needs and hence will report honestly. A server

after joining the system dynamically will raise an ask per

resource demanded by the buyer. Each buyer can be

expressed as 7-tuple, Bi ¼ \bi; li; �
m
i ; vi; ai; di; vi [

where bi denotes the bid per resource which Bi places, li

Table 2 Comparison of existing auction techniques in cloud literature

Algorithm Auction type F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

Wang et al. [12] VCG 4 9 9 Simple HO&HE Not supported Offline 4 4 9 4

Mashayekhy et al. [31] VCG 4 9 9 Simple HE Not supported Offline 4 9 9 4

Nejad et al. [32] VCG 4 9 9 Simple HE Not supported Offline 4 9 9 9

Grosu et al. [33] VCG 4 9 9 Simple HE Not supported Online 4 9 9 9

Zhang et al. [34] VCG 4 9 9 Simple HE Not supported Online 4 9 9 4

Jiang et al. [35] VCG 4 9 9 Simple HE Not supported Online 4 9 9 4

Wu et al. [36] – 9 4 9 Simple HE Supported Online 9 9 9 4

Zaman et al. [37] – 4 9 9 Simple HE Not supported Offline 4 9 9 9

Jin et al. [38] – 4 9 9 Double HE Not supported Offline 4 4 9 4

Lu et al. [39] – 4 9 9 Double HE Not supported - 4 4 9 4

Zhang et al. [40] – 4 9 9 Simple HE Supported Online 4 4 9 4

Middya et al. [41] McAfee 4 9 9 Double HE Not supported Offline 4 4 9 4

Patel et al. [42] VCG 4 4 9 Double HE Not Supported Offline 4 4 4 9

Jin et al. [43] – 4 9 9 Double HE Not Supported Offline 4 4 9 4

Proposed VCG 4 4 4 Double HE Supported Online 4 4 4 4

F1 maximize revenue, F2 minimize energy, F3 maximize performance, F4 auction:simple/double F5 environment:HO:homogeneous/

HE:heterogeneous, F6time-varying VM allocation, F7 online/offline, F8 truthful, F9 individually rational, F10 economic efficient, F11compu-

tational efficiency

Fig. 3 Auction model
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represents the server allocated to Bi, �
m
i is the type m VM

resource requirement and vi denotes the total payment the

buyer pays after auction is over, ai 2 T and di 2 T indicate

the start-time and finish-time of the buyer respectively, vi
denotes the valuation of the bid raised by buyer.

3.1.3 Auctioneer

The cloud auctioneer acts as a trustworthy third-party,

which decides the mapping between the dynamic set of

winning buyers BðtÞ 2 BðtÞ and the set of winning sellers

SðtÞ 2 SðtÞ at time t, i.e, r : fi : Bi 2 Bg ! fj : Sj 2 Sg.
The auctioneer carries the task in slots and hence the set

T ¼ f0, 1,...., tg. The auction process is performed into

three phases, as follows:

– Platform setup Cloud users (buyers) and servers (sellers)

details are taken as input and arranged accordingly.

– Winner-determination and matching To assign the

winning cloud servers according to their asking and

energy, response-time values to the winning cloud users

as per their bids.

– Payment schedule Using a VCG-based payment strategy,

we determine the payment/B
i thewinning buyerBðtÞ 2 B

is charged and also the payment /S
j the winning seller

SðtÞ 2 S is rewarded per-unit of resource.

3.2 Assumptions

We make some practical assumptions for online auction

model as follows:

1. Buyers & sellers have bounded patience measured as K

slots of waiting time, i.e. ai þ K � di.

2. The auctioneer holds the resource allocation and

forwards it to the buyer when the buyer departs. It

also contains the payment to the server and pays it

when it leaves.

3. The cloud users and servers have the same bids and

asks respectively for the same type in the heteroge-

neous environment.

In Table 3, we have summarized some important mathe-

matical notations used in this paper.

3.3 Utility functions

Definition 31 (Buyer Utility Function) For a buyer (cloud

service user) Bi 2 B the utility represents the difference

between the true valuation of the bid raised and price paid

to the auctioneer.

UB
i ¼

� ivi � vi; if Bi 2 B

0; otherwise

� �

ð1Þ

where vi is the valuation of the buyer’s instance. vi states

the buyer’s true cost who makes willingness for payment of

a single resource usage.

Definition 32 (Seller Utility Function) For a seller (PM)

Si 2 S the utility can be characterized as the difference

between payment received from the auctioneer and actual

cost to perform resource allocation.

US
j ¼

vj � ð/j � wjÞvj; if Sj 2 S

0; otherwise

� �

ð2Þ

where vj is the valuation of the seller’s instance. vj tells the

seller’s true cost who has to sustain to provide a single

resource to the buyer.

Definition 33 (Auctioneer Utility Function) The utility of

a matched pair of a cloud service user to a server in a

particular time slot is the payment difference between the

buyer to the seller.

UA
i ¼

vi � vj; if bi 6¼ ai
0; bi ¼ ai

� �

ð3Þ

where UA
i is utility of auctioneer.

3.4 Problem formulation

Our objective is to maximize the revenue through the

allocation of VM instances and minimize the energy con-

sumption of cloud servers by examining the energy per-

formance trade-off under the allocation and resource

constraints, while considering the time-varying arrival of

the cloud service users during the server maintenance

period. Also, we aim to achieve the desired double auction

features, such as truthfulness, economic efficiency, and

individual rationality. Next, we mathematically describe

the optimization problem and then introduce the properties

of double auction.

Definition 34 (Revenue Maximization) Let bt is the set of

bids received by time et, Ct ¼ fbtjti � etg. Then, the total

number of sold type-m VMs till time slot et is:

Xg�1

i¼1

�m
i piðtÞ þ �m

g bgðtÞ; et � t� T : ð4Þ

Next, we formulate the revenue maximization objective

as follows:

maximize
XT

t¼1

"
Xg�1

i¼1

�m
i piðtÞ þ �m

g bgðtÞ
#

; 8m 2 M; 8t 2 ½1; T �

ð5Þ

where,
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pi ¼
ali ; if ali � bhþ1

bhþ1; otherwise

� �

ð6Þ

Here h represents the position of buyer Bi in H, under the

following constraints -

1. Resource capacity constraint The resource capacity

constraint indicates that the allocated capacity of the

total number of hosted type m VMs at a cloud server j

must be less than or equal to the total number of

available resources at server j of the data center.

Implicitly, it is guaranteed that the allocation of

resources for any type m VM will not reach beyond

the capacity of server j.
X

k2
P

j

�m
k �wj; 81� j� j; t 2 T ð7Þ

2. Placement constraint The placement constraint ensures

that the requested type m VM can be provisioned on at

most one server at the cloud data center.
X

t2T

X

l2Sj
ygtl � 1; 8BgðtÞ 2 B; l 2 ½1; j�; t 2 T ð8Þ

Revenue can be maximized by increasing the cardinality of

winning buyers set denoted by (B).

maximize Bj j : B � B ð9Þ

The fundamental idea behind the maximization of VM

allocation is to always place the seller’s costly resources to

the buyers having a higher valuation, who can afford to

pay. Consequently, it will leave the economic seller

resources for the buyers having a low valuation.

Definition 35 (Energy Minimization) The CSP’s opera-

tional cost mainly depends on the energy consumption cost.

In fact, the power consumption of a data center increases

linearly as the resource utilization increases. The total

energy cost at time slot t can be stated as:

minimize
Xj

j¼1

ð�ajPjðtÞ þ �idj ð1�PjðtÞÞÞ ð10Þ

where P represents the server utilization denoted as -

PjðtÞ ¼
wjðtÞ � /jðtÞ

wjðtÞ
; t 2 T ð11Þ

Definition 36 (Performance Maximization) As suggested

by Gupta et al. [44] ‘‘the ERP (Energy and Response-

timeratio. Here the performance can Product) can be

applied to acquire the trade-off between the performance

and energy parameter’’. By minimizing ERP, we can

maximize the ‘‘performance-per-watt (PPW)’’ ratio. Here

the performance can be denoted as the inverse of run-time

or response–time denoted by R. The ERP value is calcu-

lated by Eq. 12:

ERP ¼ dw1E � dw2R ð12Þ

where dw1 and dw2 represent the domination factors for E

and R respectively [44, 45]. Hence the overall objective

function for performance maximization can be written as:

Table 3 Main notations and their descriptions

Notations Description

g Number of VMs

j Number of PMs/servers

T Total time slots

Bi An instance of buyer

Si An instance of seller

kb Bounded patience time for buyer

ks Bounded patience time for seller

bi ith buyer’s bid per instance

li The server allocated to the ith buyer

�m
i Type m VM resource requirement of the ith buyer

vi Total payment to be paid by the ith buyer

ai ith buyer arrival time

di ith buyer departure time

vi Valuation of the bid raised by the ith buyer

aj jth seller’s ask per instance
P

j List of hosted VMs at jth seller

wj Total resources at the jth seller

/j Resources available at the jth seller

vj Total Payment to be paid to the jth seller

aj Start-time of server j

dj End-time of server j

sj Response time of jth server

�aj Energy consumed when jth seller is fully active

�idj Energy consumed when jth seller is fully idle

B Winning buyers set

S Winning sellers set

PjðtÞ Server utilization of the jth server at time t

B Set of all the buyers

S Set of all the sellers

H Ordered list of buyers with respect to bid-per-instance
H
j

Energy consumption difference value

rj Seller desirability

X Ordered list of sellers with respect to their r-values

r Asymptotic approximation ratio
H id Minimum idle energy consumption
H a Minimum active energy consumption
H
total

Total energy consumption
H
opt

Optimal energy consumption
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minimizeðERPÞ ð13Þ

3.5 NP-hardness

Theorem 1 The proposed online VM allocation problem is

NP-Hard.

Proof To prove that the online VM allocation problem is

NP-Hard, let’s examine the problem of bin-packing.

Assume the set of n items with different weights w1;w2;

w3; . . .;wn and bins each of with capacity c. Our goal is to

place each item to a bin such that the number of total used

bins is minimized. Next, we examine the proposed VM

allocation problem. Assume a set of g VM instances

requiring heterogeneous resources �m
1 ; �

m
2 ; �

m
3 ; . . .; �

m
g and

j servers with w1;w2;w3; . . .;wj capacities. The objective

is to allocate each VM instance to a cloud server in such a

way that the total number of allocated VM instances is

maximized and the overall energy consumption of cloud

servers is minimized. Now to prove a given problem is NP-

Hard, it is sufficient to prove that its sub-problems are NP-

Hard. So, our proposed problem can be further classified

into two sub-problems as follows:

1. Maximize the number of assigned VMs: We can

consider two cases of this problem as follows:

– Case 1 When each cloud server is having unlimited

amount of resources: VM instances can be allocated

to the server by using the criteria of least ask-per-

instance, let’s assume Sj, and now we require to

pick the buyers satisfying the constraint bi � aj.
Then we compute the final buyers’ payment vi
based on their corresponding bid-per-instance

value, which can be performed with polynomial-

time complexity.

– Case 2 When each cloud server is having limited

amount of resources: VM instances can be allocated

to the server by applying the Algorithm 2 that is

equivalent to assigning g VM instances on j cloud

servers in such a way that the total number of

allocated VM instances are maximized. It also

ensures the total number of active cloud servers are

minimized, satisfying the allocation constraint and

resource constraint. Thus, this problem is equiva-

lent to the problem of Bin-Packing, which is NP-

Hard. Afterward, we compute the final payment of

buyers’ and sellers’ denoted as vi and vj respec-
tively by applying the Algorithm 3, which can be

solved with polynomial-time complexity.

2. Minimize the overall energy consumption of cloud servers:

We can examine two cases of this problem as follows:

– Case 1 When each cloud server is having unlimited

amount of resources: VM instances can be allocated

to the server having the least energy consumption,

let’s assume Sj, and now we require to pick the

buyers satisfying the constraint bi � aj. Then we

compute the buyers’ payment vi based on their

corresponding bid-per-instance value, that would be

performed with polynomial-time complexity.

– Case 2 When each cloud server is having limited

amount of resources: This case is just the same as the

case 2 of the first sub-problem, except that we require to

allocate the VMs to the cloud servers while considering

the servers’ energy consumption which is equivalent to

assigning gVM instances to the j cloud servers in such

a way that the overall value of
Pj

j¼1

H
is minimized

satisfying the allocation constraint and resource con-

straint. Hence, this problem is equivalent to the decision

version of theBin-Packing problem,which is also aNP-

Hard problem. Afterward, we can compute the final

payment buyers’ and sellers’ denoted as vi and vj by
applying the Algorithm 3, which can be executed with

polynomial-time complexity.

Since both these sub-problems are of the form of Bin-

Packing problem, we can infer that proposed online

VM allocation problem can be reduced in polynomial

time to a Bin-Packing problem. Since it is known that

the Bin-Packing is a NP-Hard problem, the online VM

allocation problem is also NP-hard.

h

3.6 Double auction properties

Designing an efficient double auction technique for allo-

cating cloud resources of CSP to the cloud service users is

expected to satisfy four desired properties as follows:

1. Truthfulness A truthful approach implies incentive

compatibility, which means that the bid value of each

buyer and the ask value of each seller must be equal to

the actual true valuation and true cost of the resource,

respectively. A property where the dominant strategy is

bidding one’s true valuation, is called strategy proofs.

A mechanism is truthful if a buyer or seller obtains the

largest utility in a trade if and only if it truthfully

represents its ask or bid information i.e.

UB
i �UB̂

i ;U
S
i �UŜ

i ; 8B̂; Ŝ 2 X; ð14Þ

where X represents arbitrary information about an ask

or a bid. Remark: We assume that the units (buyer/
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seller) cannot manipulate other task information, and

truthful working only the bids and asks are considered.

The unit (buyer/seller) cannot gain extra profit by

reporting false information.

2. Individual Rationality: An auction design is individu-

ally rational if it does not incur a loss on joining the

auction. This means a unit winning in the auction

should have a non-negative utility and should gain

profit, i.e.

UB
i � 0;US

i � 0; vi � bi
vj � ai; 8Bi 2 B; Sj 2 S;

ð15Þ

3. Budget-Balance An auction mechanism follows the

budget-balance property if, for a matched pair of a

buyer and seller, the auctioneer charges buyer no less

than what it pays to the seller. It deals with the

difference in payment between buyer and seller i.e., the

utility of the platform should be non-negative.

UA
i � 0 ð16Þ

It can be divided into two types:

(a) Strong Budget-Balance - The auctioneer should

not lose or gain money. Transactions should

strictly happen between buyer and seller i.e.

Xg

i¼1

vi ¼
Xg

j¼1

vj ð17Þ

(b) Weak Budget-Balance - The auctioneer must not

pay for the transaction to be successful, in other

words it can gain profit but not suffer any loss i.e.

Xg

i¼1

vi �
Xg

j¼1

vj ð18Þ

4. Economic efficiency Economic efficiency implies that

the winner of the auction should be the one who

deserves or values the auction most after the trades

have been completed.

However, the Myerson–Satterthwaite (MS) impossibility

theorem states that, it is always impossible to accomplish

all four of these desirable auction properties

simultaneously.

4 Proposed approach

The detailed algorithm for proposed auction mechanism

(OTDAM) is given by Algorithm 1. OTDAM works in two

modules: winner-determination and matching and VCG

based payment calculation. OTDAM calls Winner_Deter-

minationðS;B; g; j; TÞ to obtain the set of winner candi-

dates (as shown in Algorithm 2). After winner

determination stage, OTDAM performs final payment

calculation using VCG_Payment_Calculation

(A;B;S;H;X) (as shown in Algorithm 3). We next

describe the winner-determination and the VCG based

payment calculation algorithms in detail.

Algorithm 1 OTDAM
Input: Cloud servers set S, Cloud users set B, Bid vector

β, Ask vector α, Set of time slots T , Resource requirement
Υ m

Output: Winning buyers set B, Winning sellers set S,
χb

w, χs
w

1: Auction Setup(B, S, β, α, T, Υ m)
2: Winner Determination(S, B, η, κ, T )
3: VCG Payment Calculation(A,B, S, Θ, Ω)

4.1 Winner determination and matching

To perform online double auction, first we form list B and

S of the bids and asks of the buyers and sellers respectively,

we get g and j as :

g ¼ jBj; j ¼ jSj ð19Þ

Then we set the initial values of the parameters for buyer

and seller. With each time slot, we check the condition of

the buyer and seller availability for a particular time slot.

We sort all the bids per resource of buyers in non-in-

creasing sequence, so that buyer having the highest bid

goes first to satisfy the resource request. A function r is a

’seller desirability’ or usability factor which denotes the

ratio of the ask-per-resource(aj) to the product of fully-

utilized-energy-consumption (�aj ), when server is fully uti-

lized, and response-time of the seller in milliseconds.

r ¼ aj
�aj 	 sj

ð20Þ

where sj is the response time. Therefore we have to sort all

the sellers according to their r values in non-increasing

order. So that we can allocate maximum number of pos-

sible VM instances to the cloud server having least active

energy consumption value, and the cloud server with

highest ask-per-resource considering the VM instances

with the highest bid value are granted first. Thus we iterate

over both the lists within a particular time slot to assign

maximum possible VM instances to the cloud server.
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Algorithm 2 Winner Determination(S, B, η, κ, T)
Input: Sellers set S, Buyers set B, Set of Time Slots

T = {0,1,....,t}
Output: B and S

Phase 1: Initialization
1: Create a set H ← ρ of vertices corresponding to B
2: Create a set A ← ρ of vertices corresponding to S
3: Input Buyer and Seller resources , Γi resource require-

ment of Buyer ,ψj resource availability of Seller
4: Set κ = number of sellers and η = number of buyers
5: for all buyer Bi in input do
6: Initialize μi ← null, χi ← 0
7: Add H ← Bi

8: for all seller Sj in the input list do
9: Initialize Pj ← null, φj ← ψj , χj ← 0
10: Add A ← Sj

11: Set Bounded Patience time kb and ks for buyers and
sellers respectively

12: Set λ ← 0
13: Set t ← 0
14: for all buyers and sellers in input do
15: set (ai, di) and (aj , dj) � Setting arrival and

departure time of buyer and seller respectively
16: while t ≤ T do
17: for all buyer in input do
18: if ai ≥ t ≥ di then
19: Tb ← Bi

20: for all seller in input do
21: if aj ≥ t ≥ dj then
22: Ts ← Sj

23: Sort all buyers in Tc to get an ordered list of Θ =
[B1, B2, . . . , Bη]

24: Such that β1 ≥ β2 ≥ · · · ≥ βη

25: Sort all sellers in Ts to get an ordered list of Ω =
[S1, S2, . . . , Sκ]

26: Such that σ1 ≥ σ2 ≥ · · · ≥ ση � Where σ is the
Seller Desirability or User sell ability
Phase 2: Resource Provisioning

27: for all buyer Bi ∈ Θ do
28: while λ ≤ length of Ω and Bi is not in Pj do
29: Set W ← Ω of λ
30: if αW ≤ βBi

then then
31: if resource requirement of βi i.e. Γi ≤
32: resource availability at seller i.e. ψW then
33: μi ← W

34: Add Bi to the client of W i.e.PW ← Bi

Phase 3: Updation
35: Set φW ← φW − Γi � Decrease

availability of resources at the particular seller
36: Add Bi and SW to B and S their winning

set respectively
37:

else Increment λ
38: Increment t
39: return B, S

We check for the availability of resources at the server

and then allocate keeping in priority that the highest ask-

per resource of the seller must be less than or equal to the

buyer’s having lowest bid value. With each matching pair,

we add the corresponding winner buyer and seller to their

winning set B and S, respectively.

4.2 VCG based pricing scheme

Vickrey–Clarke–Groves (VCG) pricing scheme is a gen-

eric truthful approach for achieving a socially-optimal

solution. It is one of the most commonly used scheme for

payment determination. Our payment schedule does not

follow VCG completely, as VCG lacks in providing bud-

get-balance over individual rationality. Next, we iterate the

list of cloud users and find the final payment value for each

user in the same time slot before it increments. Payment

value is a product of resource requirement of the minimum

value required to claim that cloud server, whose value is

equal to the greater of the two i.e., ask-per-resource and the

second-highest bid.

Algorithm 3VCG Payment Calculation(A,B,S, Θ, Ω)
Input: A, B, S, Θ, Ω
Output: χb

w, χs
w

1: while t ← 0 do � Processing the
Winner determination algorithm and then executing the
Payment calculation for particular time period

2: Sort all the sellers in A to get an ordered list Aα =
[S1, S2, . . . , Sκ] such that α1 ≤ α2 ≤ · · · ≤ ακ

3: for all seller Sj ∈ N do
4: for all buyer Bi ∈ users list of Sj do

Phase 1: Buyer’s Payment
5: if Bi is not the last buyer in the list of Θ then
6: Set χi ← Υi ∗max(αj , βδ+1) where ϑ is the

position of Bi in Θ
7: else
8: Set χi ← Υi ∗ βi

9: Set χb
w ← χb

w ∪ χi

Phase 2: Revision of Seller’s Payment
10: if Sj is not the last seller in the list of Γ α then
11: Set χj ← χj + (Υi ∗ min(βi, αε+1)) where

ε denotes the Sj ’s position in Γ α

12: else
13: Set χj ← χj + χi

14: Set χs
w ← χs

w ∪ χj

15: return χb
w, χs

w

Considering # as the current buyer’s position in the H
ordering list and the particular buyer placed at cloud server

j.

vi ¼
� iaj; if aj � b#þ1

� ib#þ1; otherwise

� �

ð21Þ

We calculate payment the server will receive from buyer

Bi, by computing minimum value from all the buyer’s

payment ensuring that the designated buyer is hosted at

next economical cloud server. Taking e as the current seller
selected from the ordered list Aa, we obtain
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vij ¼
� ibj; if bi � aeþ1

� iaeþ1; otherwise

� �

ð22Þ

The final payment to Sj is the sum of all payments to Sj
received from all its buyers.

vj ¼
XjPj

i¼1

vij ð23Þ

4.3 Illustrative example

We consider a random input of user requests and servers

for a randomly generalized distribution of parameters

assuming a valid time window and payment schedule.

Table 4 shows the bid matrix that contains bids and

resource requirements of 10 buyers. The ask vector for

sellers is shown in Table 5. It contains ask, resource

availability, active and idle energy consumption of 3 ser-

vers. The values of bids, asks, resource requirements, total

resource availability, energy consumption, and response

time have been generated between [2.0, 12.0], [1.0, 10.0],

[3, 10], [10, 30], [150.0, 350.0], and [0.5, 2.0] respec-

tively. Next, we illustrate the OTDAM steps to derive the

auction outcome as follows:

– Step 1 First, we form the ordered list H of buyers,

where all the buyers are sorted based on their per-re-

source bids in non-increasing order as displayed in

Table 6.

– Step 2 Next, the sellers are sorted in the non-increasing

sequence of their seller desirability values r, as shown
in Table 7.

– Step 3 Iterate the ordered list of buyers and sellers and

allocate the VMs to the servers efficiently (Table 8).

– Step 4 Create the ordered list Aa for payment calcu-

lation (Table 9)

– Step 5 Calculate the payment for the buyers based on

the resource demand and the minimum value required

to claim that cloud server (Table 10).

– Step 6 Calculate the payment for the sellers (Table 11).

– Step 7 Now, we examine the individual rationality and

truthfulness for the given example.

1. Buyers’ Individual Rationality: As shown in Fig. 4,

the actual payment a buyer has to give is never

greater than the expected payment as per its bid.

2. Sellers’ Individual Rationality: As represented in

Fig. 5, the seller’s actual payment is never lesser

than the expected payment as per its ask.

3. Buyers’ Truthfulness: We maintain the auction’s

truthfulness by ensuring that the buyer’s utility is

maximum only when its bid equals the truthful cost.

To analyze truthfulness, we select a random buyer,

say buyer 8 and analyze its utility as it places bids

different from its true value. Figure 6 shows that the

utility increases when you get close to the truthful

cost, is maximum at the truthful cost, and decreases

from there. This is just an instance involving buyer

8 and the graph will not be the exact same for other

buyers but will follow the same pattern due to the

way the algorithm is designed (as shown in lines 23

and 24 of Algorithm 2).

– Step 8 The allocation done by OTDAM for a random

input can be illustrated by a bipartite graph, as shown in

Fig. 7. The vertices in the first row show VMs and the

vertices in the second-row show servers. The randomly

generated bid and resource requirement values are

indicated above the buyer vertices, and the ask and total

resource availability are indicated below the seller

vertices. The numbers along the edge show the payment

receiving from the buyers set and the payment obtained

by the sellers set. Since we show this graph only for

illustration of allocation, energy consumption values

have not been stated. However, they are taken into

account as displayed by the seller with ask value of 9

coming before the seller with ask value of 13.

4.4 Energy approximation

Definition 37 For any algorithm A(B, S), the asymptotic

approximation ratio (r) can be expressed as follows:

rA ¼ AðB; SÞ
OPTðB; SÞ ð24Þ

The total energy consumption can be calculated as:

Table 4 Bid matrix of 10 buyers
i b � a d

B

1 7.48 5 2 3

2 11.14 5 0 2

3 2.15 4 2 5

4 8.75 8 1 4

5 6.05 4 2 5

6 2.45 8 3 5

7 3.41 4 4 7

8 5.49 9 5 7

9 6.04 6 3 6

10 4.47 5 6 8
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I

total

¼
Xj

j¼1

ð�ajPjðtÞ þ �idj ð1�PjðtÞÞÞ ð25Þ

For an ideal condition, an energy-optimal algorithm (EOA)

does not consider the cloud server’s asking price, and try to

assign VM instances in such a way that it consumes min-

imum energy. Hence, the overall energy consumption in

this scenario can be written as:

Table 5 Ask vector of 3 sellers

j a w �a �id s a d

S

1 9.89 24 239.51 205.51 0.7 0 3

2 4.15 25 274.27 186.64 1.6 2 8

3 7.74 12 299.38 232.25 1.1 1 4

Table 6 Build ordered list of

buyers
i b � a d

H

2 11.14 5 0 2

4 8.75 8 1 4

1 7.48 5 2 3

5 6.05 4 2 5

9 6.04 6 3 6

8 5.49 9 5 7

10 4.47 5 6 8

7 3.41 4 4 7

6 2.45 8 3 5

3 2.15 4 2 5

Table 7 Ordered list of sellers based on their seller desirability values

r

j a w �a �id s r a d

X

1 9.89 24 239.51 205.51 0.7 0.0589 0 3

3 7.74 12 299.38 232.25 1.1 0.0235 1 4

2 4.15 25 274.27 186.64 1.6 0.0094 2 8

Table 8 Allocation of VMs to

the servers
j

P
w /

S

1 [2] 24 19

2 [1, 5, 9, 8] 25 1

3 [4] 12 4

Table 9 Build Aa for payment calculation

j
P

w �a �id s

Aa

2 [1, 5, 9, 8] 25 274.27 186.64 1.6

3 [4] 12 299.38 232.25 1.1

1 [2] 24 239.51 205.51 0.7

Table 10 Calculate buyers

payment
i b � l v

B

1 7.48 5 2 30.26

2 11.14 5 1 49.46

3 2.15 4 – 0.0

4 8.75 8 3 61.91

5 6.05 4 2 24.16

6 2.45 8 – 0.0

7 3.41 4 – 0.0

8 5.49 9 2 40.20

9 6.04 6 2 32.97

10 4.47 5 – 0.0

Table 11 Calculate sellers payment

j a w �a �id s
P

/ v

S

1 9.89 24 239.51 205.51 0.7 [2] 19 49.46

2 4.15 25 274.27 186.64 1.6 [1, 5, 9, 8] 1 147.30

3 7.74 12 299.38 232.25 1.1 [4] 4 70.02

Fig. 4 Buyers’ individual rationality
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I

OPT

¼
Xja

j¼1

�aj þ
Xj

j¼jaþ1

�idj ð26Þ

where ja represents the total active cloud servers. Here, we

suppose that the cloud servers are positioned in an

increasing sequence of their corresponding active energy

consumption value and also in the decreasing sequence of

their corresponding idle energy consumption value. Hence

the
H
OPT can be expressed mathematically as follows:

I

OPT

¼
I a

þ
I id

ð27Þ

where
H id

denotes the minimum idle energy consumption,

and
H a

represents the minimum active energy consumption.

Note that
H a

and
H id

are ideal values which more often

are not achieved in the real world scenario. So, our algo-

rithm will yield an energy consumption
H
OTDAM which will

be calculated by taking the server utilization values w, into
consideration.

Theorem 2 The maximum energy consumed by OTDAM,

when PjðtÞ ¼ 1, 81� j� j is calculated by:
I a

þ
I id

þ
Xj

j¼jaþ1

I

j

Proof From Equation 10, it is known that
I

OTDAM

¼
Xj

j¼1

ð�ajPjðtÞ þ �idj ð1�PjðtÞÞÞ ð28Þ

By expanding, we get

I

OTDAM

¼
Xj

j¼1

ð�ajPjðtÞ þ �idj � �idj PjðtÞÞ ð29Þ

Next, we characterized a new function ’
H
’, for the Differ-

ence Value of Energy Consumption, whose value is always

positive. Since it is evident that the active energy con-

sumption of a cloud server will always be higher than the

value of its idle energy consumption.
I

¼ �a � �id ð30Þ

By substituting Eq. 30 in the Eq. 29, we obtain,

I

OTDAM

¼
Xj

j¼1

PjðtÞ
I

j

þ
Xj

j¼1

�idj ð31Þ

Here, we consider the ja denotes the active servers in the

ideal condition. Thus, it is evident that, 1� ja � j. We can

note that it can not be implied that only ja cloud servers

would be in active mode in the practical run-time of our

approach. Using ja in the Equation 31,

I

OTDAM

¼
Xj

j¼1

PjðtÞ
I

j

þ
Xja

j¼1

�idj þ
Xj

j¼jaþ1

�idj ð32Þ

Let’s introduce a new term
Pja

j¼1 �
a
j for Equation 32,

Fig. 6 Buyer’s truthfulness

Fig. 7 Bipartite graph representation of final VM allocation

Fig. 5 Sellers’ individual rationality
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I

OTDAM

¼
Xj

j¼1

PjðtÞ
I

j

þ
Xja

j¼1

�idj �
Xja

j¼1

�aj þ
Xj

j¼jaþ1

�idj þ
Xja

j¼1

�aj

ð33Þ

By applying Eq. 30 and Eq. 26 in the Eq. 33, we obtain:

I

OTDAM

¼
Xj

j¼1

PjðtÞ
I

j

�
Xja

j¼1

I

j

þ
I

OPT
ð34Þ

As the ideal and active energy consumption costs of all the

cloud servers are already known and constant. Hence, the

final value of
H
OTDAM relies primarily on the cost of

PjðtÞ 8 1� j� j. After all, PjðtÞ represents the utilization

of cloud server, it is known that 8 1� j� j, 0�PjðtÞ� 1.

Thus by applying the Eq. 27,

I

OTDAM

�
Xj

j¼jaþ1

I

j

þ
I a

þ
I id

ð35Þ

h

Corollary 1 For the proposed algorithm, the maximum

value of the asymptotic approximation ratio (rOTDAM) is:
H a þ

H id þ
Pj

j¼jaþ1

H
j

H a þ
H id

Proof By applying Eq. 24 and Theorem 2, we can find:

rA ¼
H
OTDAMH
OPT

� 1þ
Pj

j¼jaþ1

H
j

H a þ
H id

ð36Þ

h

4.5 Time complexity analysis

Theorem 3 The time complexity of Algorithm 2 is

Oðj log jþ g log gþ 5gjþ 2jþ 4gÞ

Proof The second algorithm is about determining the

winning bids and allocating the VM instances to the cloud

servers. We consider the mergesort algorithm for sorting,

whose complexity is Oðg log gÞ. We have two allocation

steps in the algorithm with complexities of 2g and 2j,
respectively. We then have two sorting steps in the algo-

rithm with time complexities of Oðg log gÞ and Oðj log jÞ
separately. The for-loop in the line no. 27 contains a while-

loop and another for-loop within that while-loop. We have

two candidate worst cases here - first, where the value of

k ¼ j, thus making the contents of the for-loop to iterate

only once and giving a time complexity of Oðjþ 5Þ and

second, where the value of k ¼ 1, thus making the contents

of the for-loop to iterate maximum j times and giving a

time complexity of 5jþ 2. We’ll consider the second case

as our worst-case as its time complexity is higher. So, the

time complexity of the for-loop is Oðgð5jþ 2ÞÞ and thus,

the total time complexity of Algorithm 2 is

Oðj log jþ g log gþ 5gjþ 2jþ 4gÞ.
h

Theorem 4 The time complexity of Algorithm 3 is

Oðgðlog gþ log jÞ þ j log jÞ

Proof The third algorithm is about calculating the pay-

ment to be given by each buyer and to be received by each

seller. We assume the searching algorithm to be binary

search, whose complexity is Oðlog nÞ. We have a sorting

step in the algorithm with a time complexity of Oðj log jÞ.
The for-loop in the third line contains another for-loop. The

worst case is where the VMs are allocated such that every

server becomes a winning seller, and every buyer becomes

a winning buyer, thus making the for-loop in the third line

iterate j times, and the for-loop in the fourth line iterate a

total of g times. The complexity of binary search (in sixth

and eleventh statements) is Oðlog nÞ. So, the total com-

plexity of the statements within the loops is

Oðlog gþ log jÞ, and the time complexity of whole algo-

rithm is Oðgðlog gþ log jÞ þ j log jÞ. h

Theorem 5 The time complexity of Algorithm 1 is

Oð2g log gþ g log jþ 5gjÞ:

Proof Algorithm 1 time complexity can be obtained as the

sum of complexities of Algorithm 2 and Algorithm 3.

Considering that g[ [ j, from Theorem 3 and Theo-

rem 4, we can calculate the overall time complexity of

Algorithm 1 and can be written as:

O½ð2gþ 2jÞ þ ðj log jþ g log gþ 5gjþ 2gÞ
þ ðg log gþ j log jþ g log jÞ�

 O½2g log gþ g log jþ 5gj�

ð37Þ

h

4.6 Properties of OTDAM

Theorem 6 OTDAM follows individual rationality.

Proof Any auction design is individually rational if and

only if the buyer’s payment is less than or equal to its

bidding value, and the seller also receives greater than or

equal to its asking value.

As, it is known that 8 Bi in B, there can be two cases:

1. Bi is not a winning buyer. Thus, it is not necessary to

calculate its rationality.

2. Bi is a winning buyer. We have two more situations as

described in Algorithm 3 -

(a) Bi is not the last buyer of H. It is known that

aj � bi, and it is also a major criteria for Bi to be
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declared as a winning bid. Also, it is known that

bdþ1 � bi since the buyers in H are positioned in

non-increasing sequence of their bid-per-in-

stance value. Hence, vi �� ibi.
(b) Bi is the last buyer of H. vi ¼ � ibi.

As, we know that 8 Sj in S, there can be two cases:

1. Sj is not a winning seller. Hence, it is not necessary to

calculate its rationality.

2. Sj is a winning seller. Thus, we have two more cases as

described in Algorithm 3 -

(a) Sj is not the last seller of A
a. As, it is known that

bi � aj, and it is also a major criteria for Bi to be

declared as a winning bid. Also, it is known that

axþ1 � aj since the sellers in X are positioned in

non-decreasing order based on their ask-per-

instance value. Thus, vj �ðwj � /jÞaj.
(b) Sj is the last buyer of X. vj ¼ ðwj � /jÞaj.

The Individual Rationality of OTDAM has also been

illustrated in Figs. 4 and 5. h

Lemma 1 OTDAM is always truthful for buyers.

Proof Let bi be the true valuation bid of the buyer Bi and

b0i be the false bid buyer Bi places in the greed of a better

utility. Now, we have two possible cases

– Case 1 : b0i\bi If the buyer places a bid that is less than

its true valuation, it might jeopardize its chances of

allocating resources at a more energy-efficient server.

Also, in some cases, there is a chance that the buyer

might not be allocated at all since the buyer won’t know

the asking prices as this is a sealed-bid auction. So, the

buyer might suffer a loss if it places a bid less than its

true valuation.

– Case 2 : b0i [ bi If the buyer places a bid whose value is
greater than its true valuation, it might end up being

allocated to a higher-ask seller, thus reducing its utility.

Also, the payment mechanism is such that if the buyer’s

bid is significantly higher than its true valuation, it

might have to pay an amount greater than its valuation,

which is undesirable. So, a buyer stands a huge chance

of suffering a loss if it places a bid higher than its true

valuation.

So, in either of the two cases, the best policy for a buyer is

to place a bid equal to its true valuation. h

Lemma 2 OTDAM is always truthful for sellers.

Proof Let aj be the true cost ask of the buyer Sj and a0j be

the false ask seller Sj places in the greed of a better utility.

Now, we have two possible cases

– Case 1 : a0j\aj If the seller places an ask less than its

true cost, it might end up jeopardizing its chances of

winning the auction since the seller won’t know the

bidding prices as this is a sealed-bid auction. Also, the

payment mechanism is such that if the seller’s ask is

significantly lower than its true cost, it might get paid

less than its cost, which is undesirable. So, a seller

stands a huge chance of suffering a loss if it places an

ask lower than its true cost.

– Case 2 : a0j [ aj If the seller places an ask higher than

its true cost, there is a chance that no buyer might be

able to match its asking price, and the seller might lose

the auction.

So, in either of the two cases, the best strategy for a seller is

to place an ask equal to its true cost. h

Theorem 7 OTDAM is truthful.

Proof By applying Lemma 1 and Lemma 2 simultane-

ously prove that OTDAM is truthful. The truthfulness of

OTDAM has also been illustrated in Fig. 6. h

Theorem 8 OTDAM is also economically efficient.

Proof OTDAM always prefers a buyer bidding high bid-

per-instance. Hence the costly resources of sellers will

always be given to those buyers who are willing to pay

more. Thus, OTDAM is economically-efficient. h

5 Performance evaluation

We have conducted a set of simulation experiments to

examine the efficacy of OTDAM while allocating resour-

ces in IaaS clouds. Subsection 5.1 illustrates the experi-

mental environment and the benchmark. The evaluation

methods are explained in Subsection 5.2. We also compare

the performance of these approaches and analyze the

experimental results in Subsection 5.3.

5.1 Experimental environment

To investigate the overall performance of proposed auction

mechanisms, we have applied trace-driven simulations,

utilizing Google cluster-usage data [46]. The dataset cap-

tures the activity of a production cluster comprising a total

of 12,583 machines with a heterogeneous configuration for

a period of 29 days. Machines are categorized into three

different classes and ten distinct architectures with avail-

able CPU and memory capacity, as shown in Table 12. In

the table, the memory and CPU units are linearly scaled in

such a way that the maximum resource capacity is 1.

To simulate a cloud data center with servers of hetero-

geneous resource capacities, we have configured the hosts
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based on the distribution of cloud server configurations

reported in the Google cluster data, also shown in Table 13.

The hardware specification and energy consumption values

for the hosts were accumulated from the well-known

SPECpower [47] benchmarks. Since the disk configura-

tions of servers are not available in the Google dataset, we

randomly set the capacity of disk storage for servers within

[320, 800](in GB).

Resource tables are broadly classified into three major

categories: Machines, Jobs and Tasks, and CPU Usage.

Each class has one or more than one table containing

multiple features. The dataset comprises approximately

672,074 incoming real-time jobs, and an individual user

creates each job out of total 925 users. In Google cluster

data, each job consists of multiple tasks that unite to

approximately 24,281,242 different tasks. Each task is

having three types of resource requirements, i.e., RAM,

CPU, and disk. The usage of every type of resource is

collected at five minutes intervals. It also provides the

arrival time for each job and comprises task duration, i.e.,

start-time and finish-time of each task present in a partic-

ular job. The dataset illustrates that most of the tasks only

run for short durations. There are also some of the long-

running tasks that would yield some weeks to finish their

execution. Our experiment comprises of six VM types of

Amazon’s instance classes, as shown in Table 14.

Each VM instances is randomly allocated a workload

trace from the data set, ensuring the demands extracted

from the cluster traces at time t should be less than the total

capacity of VM. We set the start-time and finish-time of

VM usage based on the corresponding tasks’ latest time

slot. The value of T is set to 3000 and each of duration 10

seconds. The assumption of other values for the following

variables lie in range: b 2 [4.0,14.0), a 2 [2.0,20.0), s 2
[3,10) (milliseconds). We have implemented the auction

mechanism in the python programming language using an

HPC cluster. The cluster contains one management server,

and four compute servers. Table 15 shows the details,

including hardware and software specifications. Each

compute node is connected with the InfiniBand network

(56 Gbps) and ethernet to the management server.

5.2 Evaluation methods

To analyze the performance of OTDAM, we compare its

experimental results with three other existing double auc-

tion approaches: TASC [11], TDAM [42], and ICAM [43].

Each experiment is run over 100 times and averaged as the

final result. The auction mechanisms are evaluated by using

the following criterion: (i) Successful trades, (ii) Revenue,

(iii) Energy-performance, (iv) Time-slots, (v) Volatility,

and (vi) Running time. We have also discussed a theoret-

ical comparison among auction mechanisms in Table 16.

5.3 Analysis of results

We first investigate the impact of different performance

parameters and analyze the results. Afterward, we discuss

the theoretical comparison of OTDAM results with three

existing double auction-based mechanisms.

– Number of successful trades In Fig. 8, we examine the

successful trades of OTDAM and compare its perfor-

mance with the other three approaches. In this exper-

iment, we have varied the buyers (users) from 0 to

14,000 and sellers (servers) from 0 to 7000 by

increasing 2000 numbers of buyers and 1000 sellers

respectively at each step. From Fig. 8, it can be

observed that the plot for successful trades is a linearly

increasing graph for all the four algorithms used for

comparison. TASC wins over by giving maximum

successful trades with an increase of servers and VMs,

as illustrated in Fig. 8. OTDAM initially provides a

good amount of successful trades in comparison with

TDAM and ICAM. Still, as the number of VMs and

servers increase respectively in a particular slot, it

becomes difficult for servers to allocate more VMs

within that specific period. For example, in Fig. 8, it is

depicted that when the number of buyers is 14,000, the

Table 12 Configuration of machines in the Google cluster

Number of machines Platform CPUs Memory

1 B 0.50 0.06

3 C 1.00 0.50

5 B 0.50 0.97

5 B 0.50 0.03

52 B 0.50 0.12

126 A 0.25 0.25

795 C 1.00 1.00

1001 B 0.50 0.75

3863 B 0.50 0.25

6732 B 0.50 0.50

Table 13 Host characteristics for Google’s cloud

Host characteristics

Model of CPU Xeon 2695 Xeon 2670 Xeon 2670

Speed(GHz) 2.3 2.5 2.6

ECUs 32.2 25 20.8

No. of cores 14 10 8

Memory (GiB) 768 768 384

Pmax (W) 120 115 105

Pidle (W) 70 65 55
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OTDAM realizes approximately 11,000 successful

trades, and the TASC achieves around 15,500 success-

ful trades. The interesting thing in our proposed auction

approach is, it compares the bid and ask values at each

period, and the winning seller obtains a final payment

not less than its ask price, and the buyers are not

charged more than its bid value.

– Revenue maximization In Fig. 9, we illustrate the

revenue generated by OTDAM and compare its

performance with the other approaches. To verify its

performance, we pick a fixed number of buyers and

sellers. From Fig. 9, it can be observed that among the

four algorithms, the revenue generation is maximum for

OTDAM after a certain point, i.e., 7000 buyers. The

point where the revenue generated is increasing when

buyers and sellers are in the range of thousands, and it

takes time in minutes to complete the execution, as

shown in Fig. 9. It is also observed that, the TASC

results in worst performance than TDAM. The reason

behind the maximum revenue generation is the seller

Table 14 Types and

characteristics of Amazon EC2

instances

Types and characteristics of Amazon EC2 instances

Instance Speed (GHz) vCPUs ECUs Memory (GiB) Storage (GB)

m3.medium 3.0 1 3 3.75 4

m1.medium 2.0 1 2 3.75 410

m1.small 1.0 1 1 1.7 160

t2.micro 1.0 1 1 0.613 1

t2.micro 1.0 1 1 1 1

t2.nano 1.0 1 1 0.5 1

Table 15 Hardware and software specification of HPC Cluster

HPC cluster details

Master node Compute node 1 Compute node 2 Compute node 3 Compute node 4

Processor Intel(R) Xeon(R) CPU

E5-2630 v3 @

2.40GHz

Intel(R) Xeon(R) CPU

E5-2630 v3 @

2.40GHz

Intel(R) Xeon(R) CPU

E5-2630 v3 @

2.40GHz

Intel(R) Xeon(R) CPU

E5-2630 v3 @

2.40GHz

Intel(R) Xeon(R) CPU

E5-2630 v3 @

2.40GHz

RAM 256GB 128GB 128GB 128GB 128GB

Hard disk 4TB 1TB 1TB 1TB 1TB

CPU

sockets

2 2 2 2 2

Cores 2�8 = 16 2�8 = 16 2�8 = 16 2�8 = 16 2�8 = 16

OS VMware ESXi 6.0 Ubuntu 16.04 Ubuntu 16.04 Ubuntu 16.04 Ubuntu 16.04

Table 16 Comparison between TASC, TDAM, ICAM, and OTDAM

Property TASC [11] TDAM [42] ICAM [43] OTDAM

Auction type McAfee VCG McAfee VCG

Truthfulness for

buyers

Not guaranteed Guaranteed Guaranteed Guaranteed

Truthfulness for

sellers

Guaranteed Guaranteed Guaranteed Guaranteed

Individual

rationality

Guaranteed Guaranteed Guaranteed Guaranteed

Computational

Complexity

Polynomial Polynomial Polynomial Polynomial

Buyers utility Lesser than TASC, TDAM,

ICAM, and OTDAM

Lesser than OTDAM and higher than

TASC, TDAM, ICAM

Greater than TASC but

less than OTDAM

Greater than TASC,

TDAM, ICAM
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Fig. 8 Comparison of successful trades

Fig. 9 Analysis of revenue maximization
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desirability factor since the VM with the highest bid is

allocated first to the servers with the highest ask-per-

resource value. Thus, it maximizes the VM allocation

by always placing the costly resources of the seller to a

buyer having a high valuation, and being able to pay.

As a result, it maximizes the overall revenue for a larger

set of buyers and sellers, respectively.

– Energy-performance analysis Figure 10 compares the

energy performance of the four approaches. For this

experiment, we have varied the buyers from 200 to

1000 and sellers from 100 to 500 by increasing 200

numbers of buyers and 100 numbers of sellers respec-

tively at each step. From Fig. 10, it can be identified

that the energy consumption of the VMs is increasing

linearly for the ICAM algorithm, which is the only one

under-performing than OTDAM. But considering the

general case, the total energy consumption of OTDAM

is minimum for maximum successful trades. The reason

behind the minimum energy consumption is the seller-

desirability value, which always allocates the VM

instances to the cloud server having the least active

energy consumption.

– Time slot analysis Figure 11 examines the number of

successful trades each algorithm experiences with the

increase in time slots. For the time-slots versus successful

trade analysis, we have varied the number of time-slots

from 10 to 40 by increasing five numbers of time-slots

respectively at each step. FromFig. 11, it can be observed

that the OTDAM experiences a drop initially, but after

15-time slots, it maximizes the trades with an increase in

time slots. It can also be noticed that when the time-slots

are 35, the OTDAM achieves more than 1000 successful

trades while the TDAM gives fewer successful trades.

– Volatility analysis Figure 12 investigates the impact of

market volatility on the allocation efficiency by taking

out the standard deviation of the valid price schedules.

For this experiment, we have ranged from 10 to 35

time-slots and the number of trades from 0 to 1400 by

increasing five numbers of time-slots and 200 numbers

of trades respectively at each step. From Fig. 12, it can

be observed that when the market is at low volatility

trades are reasonably low. For example, when the trades

are 200 at 10th time-slots, the volatility value is around

0.63 for OTDAM. As the volatility increases, the

allocation efficiency becomes better. For example, at

23rd time-slots, OTDAM achieves approximately 1.5

volatility value, which is higher than the TASC

approach, which produces only 1.0 volatility. However,

the TDAM and ICAM approaches perform well and

experience stable changes.

Fig. 10 Energy-performance analysis
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– Running-time analysis Figure 13 compares the running

time of all four algorithms. For the running-time

analysis, we have varied the buyers from 0 to 14,000

and sellers from 0 to 7000 by increasing 2000 numbers

of buyers and 1000 numbers of sellers respectively at

each step. From Fig. 13, it can be identified that all the

algorithms have a related functioning for a small

amount of VM instances and servers. Still, as the

number increases, the TASC mechanism takes more

time to complete its allocation, i.e., taking more than

600 seconds to satisfy 14000 number of buyers. The

OTDAM clearly shows its optimized technique saving

upon running time even with a large set of of buyers

and sellers, as depic in Fig. 13. For instance, when the

buyers are 14,000, OTDAM takes less than 400 seconds

to fulfill the request of VMs, which is much less than

TASC and TDAM taking over 600 and 400 seconds,

respectively. It can also be identified that the running-

time of OTDAM increases with respect to the rise in the

number of participating buyers and sellers separately.

Thus, OTDAM is subjected to a polynomial computa-

tion time concerning the increasing number of buyers

and sellers.

– Theoretical comparison In Table 16, we present a

theoretical comparison between the four auction

approaches: TASC, TDAM, ICAM, and OTDAM.

The auction mechanisms are evaluated using the

following important criterion: (i) Auction type, (ii)

Truthfulness for buyers, (iii) Truthfulness for sellers,

(iv) Individual rationality, (v) Buyers utility, and (vi)

Fig. 11 Time slots versus

Successful trades

Fig. 12 Volatility analysis
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Computational complexity. In summary, OTDAM

promises truthfulness of buyers and sellers considering

the utility cannot be enhanced by bidding or asking

untruthfully. It also guarantees individual rationality

and higher utility values for buyers while taking

polynomial computation time corresponding to the

more significant number of buyers and sellers.

6 Conclusion

This paper studies the limitations of existing auction

techniques for dynamic resource allocation in IaaS clouds.

We have observed that the current auction techniques are

mainly one-sided or offline without considering the

dynamics of an elastic model in a time-variant environ-

ment. To address the issues of the current auction

approaches of VM allocation, we have devised an online

truthful double auction approach ’OTDAM’ with the

unique features of truthfulness, elasticity, heterogeneity,

and multi-objective trade-offs for dynamic resource allo-

cation in IaaS clouds. OTDAM has two main algorithms

first one is weighted bipartite matching based winning bids

determination, and the second is a VCG based algorithm

for payment calculation. OTDAM can impressively dis-

tribute the cloud resources between the cloud users to meet

their instance demands while ensuring the desirable auction

features such as individual rationality, truthfulness, eco-

nomic-efficiency, and polynomial-time computational

complexity. Further, we have provided rigorous proofs on

the OTDAM auction properties and validate the analysis

with extensive trace-driven simulations showing

improvements over performance, revenue, energy con-

sumption, and running-time.

As a future study, we plan to investigate the emerging

constraint challenges in distributed data centers, such as

anti-affinity, scalability, network resource utilization, and

availability etc., and apply these constraints to online

resource provisioning algorithms to evaluate its perfor-

mance in a distributed environment.
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