Skip to main content
Log in

E-MHMS: enhanced MAC-based secure delay-aware healthcare monitoring system in WBAN

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Chronic patients are adapting to an emerging healthcare system assisted by the wireless body area network (WBAN). Medical data are not normal at all times; hence, the preference for critical data is expected to be high, and the requirement of security has become essential. This paper addresses a novel healthcare monitoring system (HMS) that adopts the IEEE 802.15.6 standard for WBAN. A modified IEEE 802.15.6 MAC is designed for predicting data types and residual energy on body sensors. An enhanced MAC-based HMS (E-MHMS) is developed for delay aware data transmission to perform data aggregation, key distribution, channel selection and data classification. A smartphone acts as a coordinator that aggregates data from the WBAN; upon receiving the data, it determines the best channel from the available multiple inputs for assured data transmission. E-MHMS uses the novel time-based elliptic curve algorithm and the ASCII RSA algorithm for key distribution and encryption. Finally, the data reaches the monitoring servers that classify the data using hybrid naïve Bayesian neural network. The proposed E-MHMS setup in an OMNeT++ simulation environment and the improvements are demonstrated in terms of important network parameters such as delay, throughput, packet drop, security and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Punj, R., Kumar, R.: Technological aspects of wbans for health monitoring: a comprehensive review. Wireless Netw. 25, 1125–1157 (2018)

    Article  Google Scholar 

  2. Cavallari, R., Martelli, F., Rosini, R., Buratti, C., Verdone, R.: A survey on wireless body area networks: technologies and design challenges. IEEE Commun. Surv. Tutor. 16(3), 1635–1657 (2014)

    Article  Google Scholar 

  3. Ullah, S., Mohaisen, M., Alnuem, M.A.: A review of IEEE 802.15.6 mac, phy, and security specifications. Int. J. Distrib. Sens. Netw. 9(4), 950704 (2013)

    Article  Google Scholar 

  4. Suzuki, T.: Effect of block ack on application—level qos in IEEE 802.15. 6 CSMA/CA wireless bans. In: 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), pp. 1–4. IEEE (2019)

  5. Nabila, A. et al.: A QoS based comparative analysis of the IEEE standards 802.15. 4 & 802.15. 6 in WBAN-based healthcare monitoring systems. In: 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), pp. 1–5. IEEE (2019)

  6. Yang, X., Wang, L., Zhang, Z.: Wireless body area networks mac protocol for energy efficiency and extending lifetime. IEEE Sens. Lett. 2(1), 1–4 (2018)

    Article  Google Scholar 

  7. Ruan, L., Pubuduni Imali Dias, M., Wong, E.: Towards low-delay body area networks: an investigation on the hybrid mac of smartban and IEEE 802.15. 6 wireless body area network. In: 2019 IEEE 20th International Conference on High Performance Switching and Routing (HPSR), pp. 1–6. IEEE (2019)

  8. Samanta, A., Misra, S.: Energy-efficient and distributed network management cost minimization in opportunistic wireless body area networks. IEEE Trans. Mobile Comput. 17(2), 376–389 (2018)

    Article  Google Scholar 

  9. Sindhuja Banu, S., Baskaran, K.: Hybrid FGWO based FLCS modeling for performance enhancement in wireless body area networks. Wirel. Pers. Commun. 100(3), 1163–1199 (2018)

    Article  Google Scholar 

  10. Bhatia, A., Patro, R.K.: A delay and energy efficient poll-based mac protocol for wireless body area networks. Wirel. Pers. Commun. 99(2), 915–939 (2018)

    Article  Google Scholar 

  11. Yuan, X., Li, C., Ye, Q., Zhang, K., Cheng, N., Zhang, N., Shen, X.: Performance analysis of IEEE 802.15.6-based coexisting mobile wbans with prioritized traffic and dynamic interference. IEEE Trans. Wirel. Commun. 17(8), 5637–5652 (2018)

    Article  Google Scholar 

  12. Liu, Z., Liu, B., Chen, C.W.: Transmission-rate-adaption assisted energy-efficient resource allocation with QoS support in WBANS. IEEE Sens. J. 17(17), 5767–5780 (2017)

    Article  Google Scholar 

  13. Salayma, M., Al-Dubai, A., Romdhani, I., Nasser, Y.: Reliability and energy efficiency enhancement for emergency-aware wireless body area networks (WBANS). IEEE Trans. Green Commun. Netw. 2(3), 804–816 (2018)

    Article  Google Scholar 

  14. Liu, X., Jin, C., Li, F.: An improved two-layer authentication scheme for wireless body area networks. J. Med. Syst. 42(8), 143 (2018)

    Article  Google Scholar 

  15. Peng, H., Tian, Y., Kurths, J., Li, L., Yang, Y., Wang, D.: Secure and energy-efficient data transmission system based on chaotic compressive sensing in body-to-body networks. IEEE Trans. Biomed. Circ. Syst. 11(3), 558–573 (2017)

    Article  Google Scholar 

  16. Li, Z., Wang, H., Fang, H.: Group-based cooperation on symmetric key generation for wireless body area networks. IEEE Internet of Things J. 4(6), 1955–1963 (2017)

    Article  Google Scholar 

  17. Zhang, A., Wang, L., Ye, X., Lin, X.: Light-weight and robust security-aware d2d-assist data transmission protocol for mobile-health systems. IEEE Trans. Inf. Forensics Secur. 12(3), 662–675 (2017)

    Article  Google Scholar 

  18. Han, S., Zhao, S., Li, Q., Chun-Hua, J., Zhou, W.: PPM-HDA: privacy-preserving and multifunctional health data aggregation with fault tolerance. IEEE Trans. Inf. Forensics Secur. 11(9), 1940–1955 (2016)

    Article  Google Scholar 

  19. Vaniprabha, A., Poongodi, P.: Augmented lightweight security scheme with access control model for wireless medical sensor networks. Clust. Comput. 22, 12495–12505 (2018)

    Article  Google Scholar 

  20. Priya, N.S., Sasikala, R., Alavandar, S., Bharathi, L.: Security aware trusted cluster based routing protocol for wireless body sensor networks. Wirel. Pers. Commun. (2018). https://doi.org/10.1007/s11277-018-5374-5

    Article  Google Scholar 

  21. Jacob, A.K., Jacob, L.: A green media access method for IEEE 802.15.6 wireless body area network. J. Med. Syst. 41(11), 179 (2017)

    Article  Google Scholar 

  22. Jacob, A.K., Kishore, G.M., Jacob, L.: Lifetime and latency analysis of IEEE 802.15.6 WBAN with interrupted sleep mechanism. Sādhanā 42(6), 865–878 (2017)

    Article  Google Scholar 

  23. Kim, S., Song, B.K.: A prioritized resource allocation algorithm for multiple wireless body area networks. Wirel. Netw. 23(3), 727–735 (2017)

    Article  Google Scholar 

  24. Rasheed, M.B., Javaid, N., Imran, M., Khan, Z.A., Qasim, U., Vasilakos, A.: Delay and energy consumption analysis of priority guaranteed mac protocol for wireless body area networks. Wirel. Netw. 23(4), 1249–1266 (2017)

    Article  Google Scholar 

  25. Liu, Z., Liu, B., Chen, C.W.: Buffer-aware resource allocation scheme with energy efficiency and QoS effectiveness in wireless body area networks. IEEE Access 5, 20763–20776 (2017)

    Article  Google Scholar 

  26. Ali, M., Moungla, H., Younis, M., Mehaoua, A.: IOT-enabled channel selection approach for WBANS. In: Wireless Communications and Mobile Computing Conference (IWCMC), 2017 13th International, pp. 1784–1790. IEEE (2017)

  27. Issaoui, L., Horrich, A., Sethom, K.: Improved mac access under IEEE 802.15. 6 WBAN standard. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 416–420. IEEE (2017)

  28. Ghanavati, S., Abawajy, J.H., Izadi, D., Alelaiwi, A.A.: Cloud-assisted IOT-based health status monitoring framework. Clust. Comput. 20(2), 1843–1853 (2017)

    Article  Google Scholar 

  29. Monowar, M.M., Alassafi, M.O.: On the design of thermal-aware duty-cycle mac protocol for IOT healthcare. Sensors 20(5), 1243 (2020)

    Article  Google Scholar 

  30. Yuan, D., Zheng, G., Ma, H., Shang, J., Li, J.: An adaptive mac protocol based on IEEE 802.15.6 for wireless body area networks. Wirel. Commun. Mob. Comput. (2019). https://doi.org/10.1155/2019/3681631

    Article  Google Scholar 

  31. He, D., Zeadally, S., Kumar, N., Lee, J.-H.: Anonymous authentication for wireless body area networks with provable security. IEEE Syst. J. 11(4), 2590–2601 (2017)

    Article  Google Scholar 

  32. Bradai, N., Charfi, E., Fourati, L.C., Kamoun, L.: Priority consideration in inter-WBAN data scheduling and aggregation for monitoring systems. Trans. Emerg. Telecommun. Technol. 27(4), 589–600 (2016)

    Article  Google Scholar 

  33. Li, F., Han, Y., Jin, C.: Cost-effective and anonymous access control for wireless body area networks. IEEE Syst. J. 12(1), 747–758 (2018)

    Article  Google Scholar 

  34. Wang, G., Lu, R., Guan, Y.L.: Achieve privacy-preserving priority classification on patient health data in remote ehealthcare system. IEEE Access 7, 33565–33576 (2019)

    Article  Google Scholar 

  35. Moosavi, H., Bui, F.M.: Delay-aware optimization of physical layer security in multi-hop wireless body area networks. IEEE Trans. Inf. Forensics Secur. 11(9), 1928–1939 (2016)

    Article  Google Scholar 

  36. Akbar, M.S., Yu, H., Cang, S.: Performance optimization of the IEEE 802.15.4-based link quality protocols for WBASNS/IOTS in a hospital environment using fuzzy logic. IEEE Sens. J. 19(14), 5865–5877 (2019)

    Article  Google Scholar 

  37. Nekooei, S.M., Chen, G.: Cooperative coevolution design of multilevel fuzzy logic controllers for media access control in wireless body area networks. In: The IEEE Transactions on Emerging Topics in Computational Intelligence (2018)

  38. Chavva, S.R., Sangam, R.S.: An energy-efficient multi-hop routing protocol for health monitoring in wireless body area networks. Netw. Model. Anal. Health Inform. Bioinform. 8(1), 21 (2019)

    Article  Google Scholar 

  39. Manirabona, A., Fourati, L.C.: A 4-tiers architecture for mobile WBAN based health remote monitoring system. Wirel. Netw. 24(6), 2179–2190 (2018)

    Article  Google Scholar 

  40. Khan, R.A., Mohammadani, K.H., Soomro, A.A., Hussain, J., Khan, S., Arain, T.H., Zafar, H.: An energy efficient routing protocol for wireless body area sensor networks. Wirel. Pers. Commun. 99(4), 1443–1454 (2018)

    Article  Google Scholar 

  41. Orozco-Barbosa, L.: Performance study of the IEEE 802.15. 6 slotted aloha mechanism with power control in a multiuser environment. In: Ad Hoc Networks, pp. 27–37. Springer (2017)

  42. Abiodun, A.S., Anisi, M.H., Ali, I., Akhunzada, A., Khan, M.K.: Reducing power consumption in wireless body area networks: a novel data segregation and classification technique. IEEE Consum. Electron. Mag. 6(4), 38–47 (2017)

    Article  Google Scholar 

  43. Omala, A.A.: Kibiwott, Kittur P, Li, Fagen: An efficient remote authentication scheme for wireless body area network. J. Med. Syst. 41(2), 25 (2017)

    Article  Google Scholar 

  44. Huang, H., Gong, T., Ye, N., Wang, R., Dou, Y.: Private and secured medical data transmission and analysis for wireless sensing healthcare system. IEEE Trans. Ind. Inf. 13(3), 1227–1237 (2017)

    Article  Google Scholar 

  45. Ara, A., Al-Rodhaan, M., Tian, Y., Al-Dhelaan, A.: A secure privacy-preserving data aggregation scheme based on bilinear elgamal cryptosystem for remote health monitoring systems. IEEE Access 5, 12601–12617 (2017)

    Article  Google Scholar 

  46. Al-Saleem, S.M., Ali, A., Khan, N.: Energy efficient key agreement scheme for ubiquitous and continuous remote healthcare systems using data mining technique. Clust. Comput. 21, 469–480 (2017)

    Article  Google Scholar 

  47. Hiep, P.T., Kohno, R.: Optimizing packet generation rate for multiple hops WBAN with CSMA/CA based on IEEE 802.15.6. Commun. Netw. 6(2), 112 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jaisankar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharmila, A.H., Jaisankar, N. E-MHMS: enhanced MAC-based secure delay-aware healthcare monitoring system in WBAN. Cluster Comput 23, 1725–1740 (2020). https://doi.org/10.1007/s10586-020-03121-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03121-2

Keywords

Navigation