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Abstract As anew data processing era like Big Data, Cloud
Computing, and Internet of Things approaches, the amount
of data being collected in databases far exceeds the abil-
ity to reduce and analyze these data without the use of
automated analysis techniques, data mining. As the impor-
tance of data mining has grown, one of the critical issues
to emerge is how to scale data mining techniques to larger
and complex databases so that it is particularly impera-
tive for computationally intensive data mining tasks such
as identifying natural clusters of instances. In this paper,
we suggest an optimized combinatorial clustering algorithm
for noisy performance which is essential for large data
with random sampling. The algorithm outperforms conven-
tional approaches through various numerical and qualitative
thresholds like mean and standard deviation of accuracy and
computation speed.
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1 Introduction

As a new data processing ear like Big Data, Cloud Com-
puting, and Internet of Things (IoT) approaches, the amount
of data being collected in databases far exceeds the ability
to reduce and analyze these data without the use of auto-
mated analysis techniques, data mining [25-27,34,36]. As
the importance of data mining has grown, one of the criti-
cal issues to emerge is how to scale data mining techniques
to larger and larger databases [2,24,35]. This is particularly
true for computationally intensive data mining tasks such
as identifying natural clusters of instances [10,18]. Several
approaches to scalability enhancements have been studied at
length in the literature [4,32], including using parallel mining
algorithms [9,23] and preprocessing the data by filtering out
redundant or irrelevant features and thus reducing the dimen-
sionality of the database [32]. Another approach to better
scalability is using a selection of instance from a database
rather than the entire database [29,31,41].

Perhaps the simplest approach to instance selection is ran-
dom sampling [5,6,21]. Numerous authors have studied this
approach for specific data mining tasks such as clustering
[10,18,37,38], association rule discovery [35], and decision
tree induction [4]. When these approaches are implemented,
one of the most challenging issues is determining a sample
size that improves the performance of the algorithm with-
out sacrificing the solution quality. Bounds can be developed
that allow for a prediction of sample effort needed, but such
bounds usually require knowing certain problem parame-
ters and typically overestimate the necessary sample size
[6,14,41]. On the other hand, too small sample will lead to a
bias and degeneration in performance. One possible solution
is to use adaptive sampling [4,6,24].

In this paper we advocate an alternative approach that
is based on a novel formulation of the clustering task as
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an optimization problem. We also take advantage of the
fact that certain optimization techniques have been explicitly
designed to account for noisy performance estimates, which
are common when performance is estimated using simula-
tion. In particular, one such method is the nested partitions
method that can be used to solve general global optimiza-
tion problems [32,39] and specifically combinatorial type
optimization problems with noisy performance [19]. A char-
acteristic of this method is that wrong moves made due to
noise in performance estimates can be automatically cor-
rected in a later move. In the scalable clustering context
this means that noisy performance estimates, resulting from
smaller samples of instances, may result in more steps taken
by the algorithm but any bias will be automatically corrected.
This eliminates the need to determine the exact sample size,
although the computational performance of the algorithm
may still depend on some extent on how it is selected.

Even though the pure NP method guarantees the conver-
gence to the optimal solution, its efficiency and convergence
properties can still be improved. To address these, two exten-
sions to the pure NP method are suggested: the statistical
selection method and random search method. First, to have
more intelligent sampling, we use Nelson Matejciks proce-
dure [31]. Second, Genetic Algorithms (GAs) and k-means
algorithm are used to speed convergence and to overcome the
difficulty in the backtracking stage of the Nested Partitioning
algorithm. For the numerical evaluation, two different types
of cancer data are used. Using these extended algorithms, we
want to show that the computation time can be reduced by
sampling of the instances rather than using all the instances
without affecting solution quality. Also we can give proper
guideline for proper instances at least used.

Organizations The remainder of this paper is organized
as follows. In Sect. 2 we briefly review statistical selection
method and clustering techniques. In Sect. 3 we discuss the
basis for the new clustering methodology, which is an opti-
mization method called the Nested Partitions method and
extended algorithm, Optimized Combinatorial NP Cluster
algorithm. In Sect. 4 we present some numerical results of
the scalability of the algorithm with respect to the instance
dimension, and Sect. 5 contains concluding remarks and sug-
gestions for future research directions.

2 Literature review

2.1 Statistical selection method and random search
method

In the discrete event stochastic simulation, to choose the best
solution is the maximum or minimum expected simulation
result among a set of alternative solutions. Thus, Ranking
and Selection (R&S) procedure is a primary matter of appre-
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hension [7]. Bechhofer proposed the fundamentals of R&S at
first [1]. The suggested original indifference zone R&S pro-
cedure [1]is asingle-stage and presumes unknown means and
known, common variances for all results. But it doesnt have
to be single-stage. We can extend to multi-stage procedures
(sequential procedures) assuming common, known variances
by defining the user-specified number of observations. Bech-
hofer et al. [1] presented such methodologies and Koeing and
Law [22] extended the indifference zone approach for sifting
procedure. As contrasted with the articles discussed, Frey
and Dueck [10] presented a representative examplar proce-
dure not requiring reduction to a univariate model. To allocate
additional replications, the indifference zone procedures used
a least-favorable configuration where the optimal computing
budget allocation and Bayesian decision-theoretic methods
used an average case analysis [5,8,33]. All three procedures
are applicable to both two-stage and sequential procedures.
These assume that simulation result is independent and nor-
mally distributed having unknown mean and variance.

Inoueetal. [16] showed empirically that the two-stage pro-
cedure [1,6] performs competitively with sequential optimal
computing budget allocation model and Bayesian decision-
theoretic methods when the number of systems under con-
sideration is small (k < 5). For a large number of systems
(k = 5), or when the difference in the mean output of
the best system and other systems varies significantly, the
two-stage procedure [1,6] is less effective at identifying
the best system. Among two-stage procedures, the Bayesian
decision-theoretic procedures have the best overall perfor-
mance characteristics.

Recently, many articles have tried to unify the fields of
R&S and multiple comparison procedures (MCPs). Multiple
comparisons with the best (MCB) [31] is one of the most
widely used MCPs. To apply MCB in a discrete-event sim-
ulation, the simulation runs must be independently seeded
and the simulation output must be normally distributed, or
averaged so that the estimators used are somewhat normally
distributed [31,36,38]. There are four R&S-MCB procedures
having normally distributed data, but do not require known
or equal variance: Nelson and Matejciks Procedure (Proce-
dure NM) [31], two-stage procedure (Procedure B) [1,6],
Watanabe (Procedure W) [40], and Frey and Dueck Proce-
dure (Procedure FD) [10]. Procedure B and Procedure FD
are performed in the same manner with the only difference
being in the calculation of the sample means. Both algo-
rithms require independence among all observations. The
total sample size depends on the sample variance of the
systems. So the larger the sample variance, the more replica-
tions are required. Unlike these algorithms, Procedure NM
requires fewer total observations by employing the common
random number where Watanabe [40] used the Bonferroni
correction to account for the dependence induced by com-
mon random number. However, Nelson and Matejcik [31]
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observed that the benefit gained from using Procedure W
was diminished when the number of systems to be compared
would be large. To overcome this problem, they presented
Procedure NM where it assumed that the unknown variance
covariance matrix exhibited a structure known as spheric-
ity that implied the variances of all paired differences across
systems were equal, even though the marginal variances and
covariance may be unequal. The difference between Proce-
dure W and NM is the calculation of sample variance. This
sample variance affects the total number of sample size for
second-stage sampling. Procedure B is superior to Procedure
NM and DT in terms of the total observations required to
obtain the desired confidence level. The only potential draw-
back with Procedure B is that the assumption of sphericity
may not be satisfied.

When the feasible region is discrete, random search meth-
ods are generally used. These methods also cannot usually
guarantee a global optimal, and therefore they are often called
heuristics methods. Three common random search methods
are mentioned below. Tabu Search was originally proposed
by Glover [12] for escaping local optimal by using a list of
prohibited solutions known as the tabu list. The commonly
used diversification method is re-starting from the best solu-
tion obtained so far. Another drawback of the tabu search
is unless there is a long tabu list, it may reach a previously
visited solution. Simulated annealing (SA), introduced by
Kirkpatrick et al. [20], is a random search method that is able
to escape local optima using a probability function. Unlike
the tabu search, SA does not evaluate the entire neighbor-
hood in every iteration. Instead, it randomly chooses only
one solution from the current neighborhood and evaluates
its costs. That means SA tends to need more iterations to
find the best solution than the tabu search method. Another
disadvantage is that it does not have memory, and hence
it may re-visit a recent solution. There is a combination
method of tabu and SA. Genetic algorithms (GAs) were orig-
inally developed by Holland [15]. This is one of the most
widely known evolutionary methods, which is both power-
ful and broadly applicable to stochastic optimization [41].
Commonly used operators include selection, reproduction,
crossover, and mutation. It mimics the mechanisms of natural
selection and natural genetics where stronger individuals are
more likely to survive in a competing environment. Thereby,
the strongest individual (having the best performance) sur-
vives.

2.2 Scalable clustering

Clustering has been an active area of research for several
decades, and many clustering algorithms have been proposed
in the literature [10, 11,13,28,30]. In particular, considerable
research has been devoted specifically to scalable clustering.
We will start by briefly describing the various types of clus-

tering algorithms and then mention some specific scalable
methods.

Clustering algorithms can be roughly divided into two
categories: hierarchical clustering and partitional clustering
[18]. In hierarchical clustering all of the instances are orga-
nized into a hierarchy that describes the degree of similarity
between those instances (e.g., a dendrogram). Such repre-
sentation may provide a great deal of information, but the
scalability of this approach is questionable as the number
of instances grows. Partitional clustering, on the other hand,
simply creates one partition of the data where each instance
falls into one cluster. Thus, less information is obtained
but the ability to deal with a large number of instances is
improved. Examples of the partitioning approach are the clas-
sic k-means and k-medoids clustering algorithms.

There are many other characteristics of clustering algo-
rithms that must be considered to ensure scalability of
the approach. For instance, most clustering algorithms are
polythetic which means all features are considered simul-
taneously in tasks so as to determine the similarity of two
instances. But if we have big features, this may pose scal-
ability problems. For this reason, monothetic clustering
algorithms that consider one feature at a time is considered.
Most clustering algorithms are also non-incremental in the
sense that all of the instances are considered simultaneously.
However, there are a few algorithms that are incremental,
which implies that they consider each instance separately.
Such algorithms are particularly useful when the number of
instances is large. Scalable clustering has received consider-
able attention in recent years, and here we will mention only
a few of the methods. In the early stage, Guha et al., [13] pre-
sented the steps of the CURE algorithm that they obtained a
sample from the original database, partition the sample into
a set of partitions and then cluster each partition, eliminate
outliers and cluster the partial clusters. Finally, each data
instance is labeled with the corresponding cluster.

Such as k-means and k-medoids, improved scalable ver-
sions of partitioning methods. The Clustering LARge Appli-
cations (CLARA) algorithm improves the scalability of the
PAM k-medoids algorithm by applying PAM to multiple
samples of the actual data and returns the best clustering
[18]. Jain and Dubes [17] suggest a single pass k-means
clustering algorithm with the main idea to use a buffer to
save points from the database in a compressed form. This
approach was simplified by Farnstrom et al., [7] in an effort
to reduce the overhead that otherwise might cancel out any
scalability improvements that might be achieved.

There is another way of improving scalability via dis-
tributed clustering, where instead of combining all data
before clustering, data sets are operated by the affinity
propagation (AP) clustering algorithms [10]. The propose
algorithm in this paper is a partitional clustering algorithm
that try to find cluster centers and uses random sampling to
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improve scalability. In that sense, it is the most similar to AP
clustering algorithm, expect it guarantees the s optimization
solution.

3 Hybrid clustering algorithm
3.1 Nested partitions (NP) method

The main framework of suggested algorithm was suggested
by Shi and lafsson [39] which is called Nested Partitions (NP)
Method. This is an optimization method that solve general
global optimization problems of the following form:

min f(x) (D

xeX

where x is apointin an-dimensional space X and f : X — R
is a real-valued performance measure defined on this space.
This performance may or may not be known deterministi-
cally. In our paper, we define X as the space of all clusters
and the function measures some quality of the clusters.

The concept of the NP method is very simple. In each step,
the method partitions the feasible region into subsets by the
rule and concentrates on the computational effort in those
subsets that are considered hopeful which might have the
best answer. The partitioning rule depends on a case. Thus
there is no fixed rule but that all subsets are disjoint. At each
iteration of the algorithm.

We assume that there is a region, which is considered
the most promising region having the most likely to contain
the best solution at every iteration. Then this most promis-
ing region is partitioned into M regions and the remaining
of the feasible region is aggregated into one region called
the surrounding region. So we have M + 1 disjoint subsets
at each iteration. We sample using some random sampling
scheme, and calculate an average of the performance func-
tion, a promising index for each of these M + 1 regions.
Then these promising indices are compared to determine
which region has the most promising index, the smallest aver-
age of performance function. The best sub-region having the
best performance is the most promising region. However, if
the best performance is found in the surrounding region, the
algorithm backtracks and a larger region containing the cur-
rent most promising region becomes the new most promising
region. We then partitioned and sampled in a similar fash-
ion from this new most promising region. This process is
repeated until the criteria for termination is satisfied. The
main components of the method are:

— Partitioning At each iteration the feasible region is par-
titioned into subsets by predefined rule. This partitioning
creates a tree of subsets which is called partitioning tree.
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— Creating feasible solutions To evaluate each of the
subsets, a randomly generated sample of solutions is
obtained from each subset and used to estimate the per-
formance of each region as a whole.

— Evaluating promising index To select the most promis-
ing region, calculate the promising index for each subre-
gion.

— Retracing If the best solution is found in the surround-
ing region, the algorithm retraces to what was the most
promising region in the previous iteration.

This method combines adaptable global sampling with
local heuristic algorithm. It uses a supple partitioning method
to divide the design space into regions. Each region should
be evaluated individually and then aggregates the evaluation
results from each region to determine the region for con-
centrating the computational effort. This means that the NP
method intelligently samples from the entire design space and
concentrates the sampling effort by methodical partitioning
of the design space.

3.2 Defining clusters

We can manage suggesting algorithm using the NP for-
mat. From the view of this approach we presume that we
partition a whole data set into several and that each clus-
ter is defined by its center (every instance are set to the
nearest center). So the coordinates of each center of the clus-
ter are the decision variables. We notate the jth cluster as
x) = (xfj), xéj), ...,x,gj), ), where j =1, 2, ..., m. There-
fore, this clustering problem tries to locate the centers for
optimizing certain performance.

In case of clustering defining a performance measure to be
optimized is very nonobjective, because there are no standard
criteria for constituting a good cluster. But we have the most
common measures that can be used: probably maximizing
similarity within a cluster (that is, maximizing homogeneity
or compactness), and minimizing similarity between differ-
ent clusters (that is, maximizing separability between the
clusters).

A particular strength of suggesting algorithm is that it can
adopt any measure of cluster performance, even combination
of measures. We define the function f as the measure of
the quality of a cluster. For performance comparison, we
will compare our approach to other well-known methods that
focus on the within similarity or compactness of a cluster.
To make sure of performance comparison, we simplify the
measure as a single measure of similarity within cluster:

n
f(x(l)’ x(2)’ e x(m)) — Z Z |yl _ xi[y]|2 (2)

yey i=1
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Fig. 1 Simple example for clustering using NP methodology

We define i as the space of all instances, y € i as a specific
instance in this space, x1 as the cluster center which the
instance is assigned, and | y; — xi[y] | as the difference between
the ith coordinate of the instance and the homologous center.
So the objective function is the sum of the distance of n data
points from their respective cluster centers. By using such a
simple measure we focus on the performance of the algorithm
itself as we mentioned before.

When we use NP method, the main implementation issue
is defining the partitioning rule. By finding cluster centers for
one feature at a time, we manage this issue. In other words, at
each level of the partitioning tree, the values for all centers are
limited to a range for one feature. This bounds the subsets
that make the partitioning tree. Using the idea of generic
NP method, we do random sampling from each subset, and
apply the k-means algorithm to those random samples to
speed convergence. The resulting improved centers are used
to select the most promising region at the next iteration. This
most promising region is partitioned further and remaining
regions are aggregated as surrounding region, and so forth.

Figure 1 shows that the simple example when we apply
NP methodology to the clustering problem. This is the prob-
lem with two dimensions and the total number of cluster is
2. To simplify the problem, we assume that each dimension
has only two values. That is, x; = {1,2},i = 1, 2. Figures
2 and 3 demonstrates a partitioning tree whereas all features
can take two different values. The objective of this prob-
lem is to find the optimal location of 2 clusters (identified
as Cp and C3). This partitioning method helps the scalabil-
ity of the method with respect to the feature dimension. It
focuses on fixing one feature at a time and repeated until
all features are fixed at every iterations. During the random
sampling stage, all features are used simultaneously to select
subregions. This approach can thus be thought of as having
elements of both monothetic and polythetic clustering. This
partitioning approach helps the scalability of the method with
respect to the feature dimension. It concentrates one feature
at a time and is in that sense monothetic. But all features are

Most promising region

l Random Samples

Cy(1,1) Cy(12) 235
C,(1.2) G(12) 11
Cy(L1) Cy(L1) 212

Promising Index

I(c,(1))=18.6

Fig. 2 First iteration of the example

| Most promisingregion G(Z)l

l Random Samples

Ci21) G2 7
Ci(1.2) &(22) 11
Ci(LD) G2,1) 14

Best Promising Index

Fig. 3 Second iteration of the example

I(65(2))=10.7

randomly assigned values during the random sampling stage,
and thus all features are used simultaneously to select sub-
regions. So this approach can be thought of both monothetic
and polythetic clustering.

Itis also significant to note that the partitioning tree makes
a structure on the space of all possible clusters, and deter-
mines the effectiveness of the search through this space.
Furthermore, investigating effective algorithms about order-
ing features is an important research topic in the future.

Figure 2 shows initial partitioning. First dimension of each
cluster are set as (1,1) in the first subset. For second subset,
first dimension of each cluster are set as (1,2) and for third
subset, first dimension of each cluster are set as (2,2).

Random sampling is performed after partitioning of three
subsets. For instance, every sample point of this subset has a
fixed first dimension for the first subset; the first cluster and
the second cluster are fixed as 1. Centers can be randomly
assigned from the values 1,2 for the remaining dimension.
A similarity value is calculated by formulation (2) using the
sampling from each subset.

The promising index is calculated for each subset based
on these values. The most promising region is the first subset
having the smallest promising index after calculating promis-
ing index for all subsets.

@ Springer
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Figure 3 shows that the most promising index is first subset
at firstiteration. The partitioning starts from the first subset of
the second iteration. At the same way, the second dimension
can take 2 different values, and three different subsets can
be obtained like in the 1st iteration. The second iteration
is the maximum depth because there are two dimensions
in this problem. There is one more subset which is called
the surrounding region from the second iteration. The sub-
set which contains center C(1, -), C2(2, ) is surrounding
region (in Fig. 3). After sampling from all subsets, the most
promising index is found in the second region, having the first
clusters coordinate (1,1) and the second clusters coordinate
(1,2). These coordinates are optimal because they minimize
the similarity of the problem.

3.3 Optimized combinatorial cluster algorithms

As already mentioned, the NP method has two apparent draw-
backs. There are two types of error in the estimate of each
region: First, sampling error due to the use of sample points
in the region, and the estimation error because of the use
of simulation. Secondly, there is no guarantee whether the
movement is correctly made in each iterations. To get over
this problem, a two-stage method is suggested both of these
problems [19,27,36]. It is possible to guarantee that the cor-
rect move is made by using statistical selection methods.
Because statistical selection methods determine a second-
stage sample size to use different numbers of sample points in
each region, while simultaneously controlling the total error.
To take on this hypothesis, we use Nelson and Matejcik [31]
and incorporate with our scheme.

One main idea of statistical selection methods is that the
number of sample points gained from each system should be
proportional to the variance of the performance of each sys-
tem. This method is very helpful when incorporated with NP
scheme, especially the surrounding region which is expected
having high variance than the other sub-regions needing a
larger sampling size.

To state the two-stage approach rigorously, let D;; (k) be
the ith set of random sample points selected from the region
o (k) in the kth iteration, wherei > land j = 1,2, ..., M +
1. Inaddition, N = |D;;(k)|, 0 € D;j(k),and L(0) set as the
initial number of sample points assuming constant, a point
in that set and a simulation estimate of the performance of
this point each. Then in the kth iteration, for every i,

X;i(k)= min L(6 3
(k) 96“13}}}@ @) 3)

is an performance estimate of the region o;, which is referred
as the ith system performance for the jth system,i > 1, j =
1,2,....M+1.

First, two-stage ranking and selection method acquires n
system estimates. Then determines the total number of N; of
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system estimates using that information needed from the jth
system, which is, subregion o7 (k) based on the variance. If
we want to choose the subregion as correctly with probability
atleast P*, this number should be selected to be enough large
to an indifference zone of € > 0.

First-stage samples are randomly obtained from each
region by using random numbers for each region. Given a
fixed first-stage sample size np, we can determine sample
variance S of the difference of the sample means. Using final
sample size given indifference zone € can be computed.

N = max {no Ri—s)z” @)

Note that this requires the constant g which affected by the
initial sample size no and the number of regions M that are
compared.

Genetic Algorithm (GA) is used since GA is one of the
well-known and effective heuristic algorithms although there
is no guarantee of global convergence. Therefore, sample
points that better represent the best performance in their
region can be obtained by applying GA search to each
sub-region. The next promising region can be more exactly
determined based on these sample points. This is because
GA guarantees local optimums at least for each region by
finding the best solution of each region. To improve the per-
formance of the NP method, we combine the well-known
heuristic clustering algorithm, k-means algorithm, also. As a
result, a combined algorithm retains the benefits of all of the
methods.

3.4 Three cluster algorithms

In this section, we suggest 3 types of Cluster Algorithms,
Algorithm NP/NM/Km, Algorithm NP/NM/Genetic, and
Algorithm NP/NM/Km/Genetic. To present a detail descrip-
tion in Table 1, we need the following notations:

The squared error criterion function is used as a perfor-
mance measure. Its calculation is as follows.

Table 1 The notations

Symbol Description

® The feasible region

o (k) The most promising region in the kth iteration
s(o) The super-region of 0 C X

d* Maximum depth

m Total number of clusters (given)

n Total number of features (given)

no The number of samples (given) of each subregion
Mo ) The number of subregion at kth iteration
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is used instead of J (7).
We can now state the detailed algorithm.

4 Numerical results

In order to evaluate the performance of these algorithms,
two different sizes of cancer data B-type and S-type are
considered [3]. The B-type data set has 9 features and 699
instances; whereas, the S-type data set has 9 features and 286
instances. By varying the number of instances, we show that
the algorithm can use a random sample of instances without
sacrificing solution quality and determine appropriate guide-
lines for how many instances are needed. We vary the number
of instances as 100, 50, 28, 15, 4.5, 1.5, 0.7, and 0.5% of total
instances. In case of B-type data set, they are 699, 350, 200,
100, 50, 30, 10, 5, and 3. For S-type data set, we use 286,
143, 82, 41, 20, 12, 4, 2, and 1 as instances. Figure 4 shows
numerical results of B-type cancer data set of each dupli-
cation. We cant find the pattern of similarity of this Fig. 4
(left). But we can notice that partial instances well performs
in terms of computation time. In NP/NM/Km algorithm, the
computation time (right) of 50% of instances is almost 1/4 of
100% of instances. From all algorithms, we find that using
partial instances needs less computation time than using full
instances. We can get similar results from S-type cancer data
setin Fig. 5. We can save the time by hiring partial instances.

Table 2 shows that the mean and the standard deviation of
accuracy, and computation speed for B-type and S-type data
set. Lets see the B-type data set first. From these results, we
get several important things. For every algorithm, we get the
best solution in terms of solution quality when we use half
instances. We can decrease the computation speed without
changing the solution quality by using half of the instances.
For example, in NP/NM/Km algorithm, the similarity value
and computation time are 4259 and 394,780 each when all
instances are used and 4208 and 101,670 each when 50% of
instances are used. Computation time is cut almost 75% with
no reduction in quality. We can get similar results from other
algorithms. In NP/NM/Genetic algorithm, we can save time
63% when we use half instances. In NP/NM/Genetic/Km
algorithm, we can get the best solution when we use 28% of

Algorithm 1 NP/NM/Km algorithm

Step 1. Initialization

1: Setk=0and o(k)=0.

2: Specify the value of 25, j = 1,2,..., M)

3: Specify the constants €, &, n; and ng.

4: Letg= Tk(f‘l)’(kil)(n“i”.oj, an equi-coordinate critical point of the
equi-correlated multivariate central 7-distribution

Step 2. Partiti

5: If d(o(k)) # d*, that is, 6(k) # ¥, partition the fittest region,
o (k), into Mk sub-regions oy (k), ..., O, (k)

6: Ifd(o(k)) #0, thatis, o (k) # ©, aggregate the surrounding region
© )\ o(k) into one region oy_,, (k)

Step 3. Sampling > Stage I Sampling

7: Sett =0
8: Km algorithm, h =1
9: Randomly Assign Instance to the Clusters
10: Use random sampling to obtain N instances and assign to the cen-
ters for each of the regions o;(k),j = 1,2,..., Mg + 1
11: Calculate the Squared Error Criterion Function
Lu(o; (k) < XN, et =2t i=1,0Nej = 1,2, Moy + 1

18 L4(05(K)) < L1 (0;(K) then X, (k) = L1 (05 (k)
12: if h = ny continue to line 14
otherwise let 1 = h+ 1 and go back to line 9
13: Change the Center of each Subregion
Change the centers of the value of the features > d(o(k)) for each
cluster of each subregion and back to line 9
14: If t = ng continue to Step 4
Otherwise let u = u+ 1 and go back to line 9

Step 4. Estimating Mean and Variance of First-State Sampling >
Stage II Sampling

15: Compute the approximate sample variance of the difference of the
sample means

D N AT A IED By
EICED)

where X, = YX_ X,;/k. X ; = ¥} | X,;/no, and

X =y, ):]}:1 Xij/knog

2

Step 5. Computing Total Sample Size for Second-Stage Sampling

16: Compute the total sample size for all j
2SN\ 2
Compute the total sample size Nj(k) = max{no, “%) -‘ }
for j=1,2,... Mg()11

Step 6. Second-Stage Sampling

17: Obtain Nj(k) — no more sample estimates of the system perfor-
mance for all j as in Step 3 above

Step 7. Estimating Mean of Second-Stage Sampling

18: Let the overall sample mean be the promising index for all j € I,
_ a0 X0

Ho) =%(4) = =50

Step 8. Calculating the Promising Index

19: Calculate the index of the region with the smallest squared error
criterion function (most promising region)
J¢ € argmini(c;) forall j €1

20: If more than one region is equally promising, the tie can be broken
arbitrarily. If this index corresponds to a region that is a sub-region
of o(k), then let this sub-region be the most promising region of
next iteration, that is,
o(k+1)=0;(k),j < Mo

21: Otherwise, if the index corresponds to the surrounding region,
backtrack to the region, s(c(k)), of the current most promising
region

22: Thatis, let 6(k+1) = s(o(k))

Step 9. Checking the Stopping Rule

23: If o(k+1) € ng stop and 6, = o(k+1) else k =k+ 1 and go
back to Step 2
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Fig. 4 Numerical results of B-type cancer data set (left similarity value, right computation time)

@ Springer



Cluster Comput (2017) 20:1135-1148

1143

Similarity Results of NP/NM/Km algorithm for S-type Caner
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Table 2 Effect of using fraction of instance space for the B-type and S-type data sets

Fraction no. of instances B-type data set

S-type data set

Similarity value

Computation time

Similarity value Computation time

Mean £+ SD Mean + SD Mean £+ SD Mean £ SD
NP/NM/Km
100% (699) 4259.0 + 46 3,94,777 + 6668 1302.3 £ 13 84,115 £ 3166
50% (350) 4207.7 + 53 101,666 + 1352 1276.6 = 15 27,295 + 901
28% (200) 4264.8 + 51 43,794 + 498 13229+ 12 25,700 £+ 689
15% (100) 42729 + 53 38,374 4+ 498 13643 £ 9 25,160 £+ 604
7% (50) 4331.4 + 50 38,826 4+ 660 1360.6 + 11 26,603 + 1074
4.5% (30) 4363.4 + 41 38,966 £+ 590 1363.1 £ 13 27,698 4+ 960
1.5% (10) 4380.0 + 53 40,622 + 534 1381.7 £ 13 28,468 £+ 850
0.7% (5) 4337.6 + 43 41,641 + 481 1434.8 + 12 28,545 4+ 656
0.5% (3) 4401.1 +49 44,065 + 775 14309 £+ 12 33,774 + 1203
NP/NM/Genetic
100% (699) 4203.7 + 40 404,534 £ 23,118 1317.1 £ 12 128,158 + 8684
50% (350) 4198.7 + 41 152,181 + 7237 1277.7 £ 11 134,849 + 10,827
28% (200) 4369.5 + 43 120174 £ 5522 1367.6 £ 11 116,872 + 9181
15% (100) 4310.7 + 38 127,696 + 5884 1365.7 + 10 128098 £ 10647
7% (50) 4317.5 £ 45 124,951 + 6285 13974 + 12 110209 + 8235
4.5% (30) 4362.2 + 44 129,202 + 7907 1416.1 & 11 130,608 + 10,622
1.5% (10) 4518.5 + 38 130,634 + 7752 1430.1 £ 11 137,483 + 10495
0.7% (5) 4466.8 + 38 130,801 + 8634 1435.8 + 14 152,132 + 14361
0.5% (3) 4606.7 + 51 115,850 + 5352 14522 £ 12 114,601 £ 10317
NP/NM/Genetic/Km
100% (699) 44442 + 39 231,200 + 10,487 1267.8 £ 11 72,739 £+ 4528
50% (350) 4418.7 £ 37 84,920 £ 5610 12859 +9 70,753 £ 4701
28% (200) 4401.2 + 38 80,075 £ 3527 1363.0 = 10 70,175 4 4589
15% (100) 4514.5 + 39 77,117 £ 4131 1370.8 £ 10 58,568 £+ 3102
7% (50) 4512.6 + 37 84,622 + 6775 1405.2 £ 12 69846 + 5070
4.5% (30) 4652.4 + 39 80,971 £ 4968 1421.0+9 59,105 £ 3929
1.5% (10) 4600.0 + 38 72,910 £ 3476 14375 £ 12 72,188 £ 4561
0.7% (5) 4664.5 + 44 74,396 £+ 3163 14715 £ 15 62,197 £+ 3847
0.5% (3) 4661.6 + 49 63,127 £ 1185 1516.4 £ 13 54,164 £+ 3241

instances. Nevertheless, we can cut down the computa-
tion time by 35% of full instances. Similar results are
acquired from S-type data set. The NP/NM/Km algo-
rithm and NP/NM/Genetic algorithm show that 50% of
instances give the best solution. The computation speed of
NP/NM/Genetic algorithm does not make of much of dif-
ference. Unlike the above algorithms, NP/NM/Genetic/Km
algorithm gives the best solution when full instances are
used. At both B-type and S-type data set, we get same
computation results. Computation time is the best when
0.5% of instances is used in NP/NM/Genetic algorithm and
NP/NM/Genetic/Km algorithm and 15% of instances is the
best when NP/NM/Km algorithm is used.

@ Springer

Figures 6 and 7 are the average of similarity and com-
putation time for B-type and S-type data set. As we already
commented, 50% of instances give the best similarity value
regardless of type and algorithm. Generally, NP/NM/Km
algorithm gives the best solution. And NP/NM/Genetic/Km
algorithm gives the worst solution. This results definitely
clear for B-type data set, a larger data. The more fractions
we hire, the better the solution we get. Similar results hap-
pen in computation speed. The NP/NM/Km algorithm is the
best and NP/NM/Genetic algorithm is the worst. And this
is apparently clear at larger data set. Especially the patterns
between the algorithms are same at larger data set. Com-
putation time speedily cut at 50% fraction and not much
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Fig. 6 Numerical results for different fraction of instances used for B-type cancer data set
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Fig. 7 Numerical results for different fraction of instances used for S-type cancer data set

difference of computation quality after 28% fraction which
means if we have to choose between 25-0% fraction, we

should choose 25% fraction.

5 Conclusions and future research

In this paper, we suggest Optimized Combinatorial NP Clus-
ter algorithms for stochastic process that will be crucial for

B-type, complex data with random sampling. As we can see,
the computation time can be cut by fraction of instances rather

than using all the instances. This is more noticeable in cases
of B-type data problem, larger data set. When only half of
the instances are used, the computation time is cut without
affecting solution quality. In addition, the standard deviation
is declines, which means computation time is getting sta-

ble. But with too few instances, the solution quality becomes
significantly worse while the computation time goes up. And
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hiring k-means algorithm than Genetic algorithm gives better
solution.

Algorithm 2 NP /NM/Genetic algorithm

Algorithm 3 NP/NM/Km/Genetic algorithm

Step 1. Initialization
1: See Step 1 in Algorithm NP/NM /Genetic

Step 1. Initialization

1: Setk=0and o(k) =0O.

2: Specify the value of z(j)., J=12,. . Msu
3: Specify the constants €, &, n; and ng.
4:

Letg= Tk(fl). (k=1)(ng—1),0.5° 0 equi-coordinate critical point of the
equi-correlated multivariate central z-distribution

Step 2. Partitioning

5: If d(o(k)) # d*, that is, o(k) # Y, partition the fittest region,
o (k), into M) sub-regions oy (k), ..., Oy (k)

6: Ifd(o(k)) # 0, that is, o (k) # O, aggregate the surrounding region

O\ o (k) into one region oy_,, (k)

Step 3. Initial Population

7: fk=0and d(o(k)) # d*, use random sampling to obtain an ini-
tial center population N strings from each of regions c;(k),j =
172,...7Mg<k) +1

: -1 2 N
POPI, = [ZI, 721, 7---72], 7]7j = 1727-"7M(7(k) +1
8: Part of the lacks should be fulfilled using uniform sampling

Step 4. Sampling

9: Sett=0

10: GA Search )
Apply the GA to each initial population POP/ individually, obtain-
ing a final population for each region o;(k),j = 1,2,...,Mg() + 1

. PR ;

POPL = (2} \Z] . Z] ], j = 1,2, Mgy + 1

11: Calculate the Squared Error Criterion Function (Overall Fitness)
Randomly assign instances to the best of final population to calcu-
late squared error criterion function

2 N jBesi

Ly(oj(k)) = Z,’:Cl xer! |x71j' I|

si=1,..,Nc,j= 1,2, ""MO'(k) +1

Ifih(cj(k)) < Zh,l(cj(k)) then X,j(k) = ih(cj(k))
12: if h = ng continue to step 5

Otherwise let 7 = h+ 1 and go back to line 10

Step 5. Estimating Mean and Variance of First-State Sampling >
Stage II Sampling

13: See Step 4 in Algorithm NP /NM/Km

Step 6. Computing Total Sample Size for Second-Stage Sampling
14: See Step 5 in Algorithm NP/NM/Km

Step 7. Second-Stage Sampling

> Stage I Sampling

15: Obtain Nj(k) —ng more sample estimates of the system perfor-
mance for all j as in Step 4 above

Step 8. Estimating Mean of Second-Stage Sampling
16: See Step 7 in Algorithm NP/NM/Km

Step 9. Calculating the Promising Index

17: See Step 8 in Algorithm NP /NM/Km

Step 10. Checking the Stopping Rule

18: See Step 9 in Algorithm NP/NM/Km

@ Springer

Step 2. Partitioning

2: See Step 4 in Algorithm NP /NM/Genetic

Step 3. Initial Population

3: See Step 3 in Algorithm NP /NM /Genetic

Step 4. GA Search

4: Sett=0

5: GA Search )
Apply the GA to each initial population POP/ individually, obtain-
ing a final population for each region o;(k),j = 1,2,...,Mg() + 1
POPL=[zh 7L . 7 ), = 1,2, Mgy + 1

Step 5. First-Stage Sampling

6: Sett =0
7: Km algorithm
See Step 3 in Algorithm NP/NM/Km

Step 6. Estimating Mean and Variance of First-State Sampling >
Stage II Sampling

8: See Step 4 in Algorithm NP/NM/Km
Step 7. Computing Total Sample Size for Second-Stage Sampling
9: See Step 5 in Algorithm NP/NM /Km
Step 8. Second-Stage Sampling
10: See Step 6 in Algorithm NP /NM/Km
Step 9. Estimating Mean of Second-Stage Sampling
11: See Step 7 in Algorithm NP/NM/Km
Step 10. Calculating the Promising Index
12: See Step 8 in Algorithm NP/NM/Km
Step 11. Checking the Stopping Rule
13: See Step 9 in Algorithm NP/NM/Km

For further research, we can extend these algorithms to the
more various statistical selection method and random search
method that can be expected more quality in computation
and similarity.
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