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Abstract
As a major energy source for cells, mitochondria are involved in cell growth and proliferation, as well as migration, cell fate 
decisions, and many other aspects of cellular function. Once thought to be irreparably defective, mitochondrial function in 
cancer cells has found renewed interest, from suggested potential clinical biomarkers to mitochondria-targeting therapies. 
Here, we will focus on the effect of mitochondria movement on breast cancer progression. Mitochondria move both within 
the cell, such as to localize to areas of high energetic need, and between cells, where cells within the stroma have been shown 
to donate their mitochondria to breast cancer cells via multiple methods including tunneling nanotubes. The donation of 
mitochondria has been seen to increase the aggressiveness and chemoresistance of breast cancer cells, which has increased 
recent efforts to uncover the mechanisms of mitochondrial transfer. As metabolism and energetics are gaining attention as 
clinical targets, a better understanding of mitochondrial function and implications in cancer are required for developing 
effective, targeted therapeutics for cancer patients.
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Introduction

Breast cancer is the most commonly diagnosed cancer 
globally, with approximately 2.3 million new cases and 
685,000 deaths in women in 2020 [1]. 5-year overall sur-
vival is > 80% if diagnosed at stage I or II (American Joint 
Commission on Cancer Staging, 6th edition), but was 63.4% 
for individuals diagnosed at stage III and 22.8% at stage IV 
using the 2006–2010 Surveillance, Epidemiology, and End 
Results (SEER) data [2]. In 2011, Hanahan and Weinberg 
expanded the hallmarks of cancer to include reprogram-
ming cellular metabolism. Cancer cells have long been 
known to prefer glycolysis over oxidative phosphorylation 
(OXPHOS) even in the presence of oxygen (i.e. aerobic 
glycolysis), which is termed “the Warburg Effect” and has 
been successfully utilized in clinical scans for decades [3, 
4]. Aerobic glycolysis has been associated with c-MYC and 
RAS amplifications and with loss of TP53, while increased 

glycolysis in general can also be attributed to hyperplasia 
and the hypoxic cores associated with advanced tumors [3, 
5]. As such, metabolic reprogramming varies across breast 
cancer molecular subtype depending on the most common 
oncogenic drivers and phenotypic presentation of each. For 
example, triple negative breast cancer cells have the highest 
expression of GLUT1 (glucose transporter 1) and display 
the most dramatic switch from mitochondrial respiration 
to glycolytic energy production across the molecular sub-
types [5]. First proposed by Warburg himself, the prevail-
ing hypothesis was that aerobic glycolysis in tumor cells 
occurred due to irreversible defects in the mitochondria. 
However, advances in the last 25 years have revealed that 
many cancer cells still retain the capacity for OXPHOS 
during disease progression [6, 7]. For example, glycolysis 
inhibitors tested did not have as significant of an effect on 
tumor growth as expected. Additionally, increased OXPHOS 
is often seen in cancer stem cells and cancer cells resistant to 
chemotherapy [8]. These observations suggest that tumors 
are metabolically heterogeneous and that at least a subset of 
cancer cells are likely metabolically plastic. More recently, 
mitochondria have also been shown to actively participate 
in several cell fate decisions, such as cell cycle control and 
programmed cell death control. Altogether, mitochondria 
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and mitochondrial metabolism have found renewed interest 
in basic research and for clinical targeting [6, 9, 10]. Here 
we will discuss an overview of the transfer of mitochondria 
and mitochondria-related content in cancerous tissues, with 
particular emphasis on breast cancer.

Mitochondrial basics

Mitochondrial structures

Mitochondria are energy-producing organelles that form 
interconnected network(s) within the cytoplasm of a cell 
(Fig. 1A) [11]. These organelles are tubular, membrane-
bound structures, approximately 0.5–3 µm in length. In 
fact, a mitochondrion has a double-membrane, consisting 
of an inner and outer mitochondrial membrane separated 
by intermembrane space (Fig. 1B) [11, 12]. The inner 
membrane invaginates into the inner most compartment 
of the mitochondria (the mitochondrial matrix), creating 
folds known as cristae (Fig. 1B–D). Voltage-dependent 

anion channels located on the outer mitochondrial mem-
brane connect the cytosol of the cell to the intermembrane 
space and allow small molecules such as ions and nucleo-
tides to flow throughout the mitochondrion [13]. These 
channels and other ion channels help to establish a mem-
brane potential across the outer and inner mitochondrial 
membranes. This potential is essential for the generation 
of ATP via the tricarboxylic (TCA) cycle and the electron 
transport chain (ETC), which occur in the matrix and at 
the inner mitochondrial membrane, respectively [14]. Each 
crista can act as an individual unit and is connected to the 
inner boundary membrane through a narrow tubular junc-
tion that is believed to limit diffusion of OXPHOS-related 
molecules [15]. As such, cristae within one mitochondrion 
may have disparate membrane potentials (which are sepa-
rate from the inner boundary membrane potential as well). 
Crista structure is dynamic, fluctuating between a con-
tracted/dense state and a wide/less dense state to adapt to 
the demands of the mitochondrion’s environment [15–17]. 
Given the role of mitochondrial membrane potential in 
ATP generation, it is often used as a marker of overall 
mitochondrial activity [18].

Fig. 1  Mitochondrial structure. Graphical representations of A 
mitochondria in a cell with B key structures inside a mitochondrion 
labeled. C Transmission electron microscope (TEM) image of a 
mitochondrion from control skeletal muscle myotubes. Blue arrows 
indicate areas of mitochondria-endoplasmic reticulum contact as 

quantified in the source work [19] D 3D reconstruction of cristae 
morphology in wildtype mouse retina using a focused ion beam scan-
ning electron microscope. C and D adapted from Hinton et  al. [19] 
under CC 4.0
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Mitochondrial DNA (mtDNA)

Mitochondria uniquely have their own, maternally-inherited 
genome, present in multiple copies in each mitochondrion 
[20]. Mitochondrial DNA (mtDNA) is housed in the mito-
chondrial matrix, along with the mitochondrial ribosomes 
and the intermediates and byproducts of the TCA cycle. 
Human mtDNA is 16,569 nucleotides long and encodes 37 
genes for 22 tRNAs, 2 rRNAs, and 13 proteins involved in 
the ETC, as well as a control region [21–23]. The genetic 
material is stored in the form of nucleoids, which are closed 
circular molecules [24]. The rest of the mitochondrial 
proteome, composed of approximately 1500 proteins, is 
encoded in the DNA in the nucleus of the cell (nDNA) [20]. 
Present in at least hundreds of copies per cell and being 
transcribed continuously, human mtDNA accumulates muta-
tions at a rate at least an order of magnitude greater than 
nDNA [20, 25, 26]. Frequently, more than one mtDNA vari-
ant is present within the same cell, known as heteroplasmy 
[27]. To combat the effects of a mutant allele overtaking a 
population, mtDNA switching is possible both inter- and 
intracellularly. Intercellular exchange, or horizontal trans-
fer, of mtDNA will be discussed in detail below (“The flow 
of mitochondria from surrounding cells in breast cancer”). 
Intracellularly, mitochondria can disperse and mix their 
genetic contents by fusing membranes together to become 
larger, elongated mitochondria in a process known as fusion 
[22, 28]. During this process, old or non-functional mito-
chondria are repurposed by cross-complementation and mix-
ing of mitochondrial contents [28]. These large mitochondria 
can then disseminate into multiple independent mitochon-
dria via fission. Fusion and fission are two complementary 
processes—mitofusin 1 and 2 (Mfn1 and Mfn2) and optic 
atrophy-1 (OPA1) fuse the outer and inner membranes of the 
mitochondria [29–31], respectively, while dynamin-related 
protein 1 (Drp-1) coordinates fission, along with several 
accessory proteins, by forming a constricting ring and sev-
ering both membranes [32]. Additionally, to maintain turno-
ver of an overall healthy population, new mitochondria are 
generated via mitochondrial biogenesis while unnecessary 
or overtly damaged mitochondria are selectively degraded 
in the process of mitophagy [33].

mtDNA reduction and clinical relevance

In 2002, Tan et al. analyzed the mitochondrial genome of 19 
breast cancer tumor samples and paired normal tissue, find-
ing that 74% had at least one somatic mtDNA mutation [34]. 
In 2020, Perez-Amado et al. similarly sequenced the mtDNA 
of 92 paired primary breast tumors and peripheral blood 
samples, finding somatic mtDNA mutations in 73.9% of the 
tumors [35]. mtDNA is less protected and more susceptible 
to damage than nDNA, as it is stored without histones and 

in close proximity to the generation of reactive oxygen spe-
cies within mitochondria. Additionally, although mitochon-
dria do have some methods of removing damaged mtDNA 
[33, 36, 37], they are less effective at removing genotoxic 
damage than the host cell is [38, 39]. It is not fully known 
if mitochondrial defects are drivers of tumorigenesis or an 
effect of the increased proliferation and metabolic demand, 
although recent mtDNA sequencing and metanalyses indi-
cate that the vast majority, at least, are likely passengers of 
clonal expansion [35, 40–44]. Furthermore, mutations have 
only been occasionally observed in areas that may impact 
OXPHOS or mitochondrial generation, such as a deletion in 
the conserved OXPHOS polypeptides [44, 45].

Regardless, numerous studies in the last two decades have 
aimed to quantify overall mtDNA levels and correlate these 
values to cancer diagnosis and/or patient overall survival 
prognosis. Interestingly, it appears to be cancer-specific 
whether mtDNA is increased or decreased in tumorigenic 
tissue compared to healthy type-matched tissue [46, 47]. The 
mechanisms of this are not well understood. Most studies 
report that mtDNA content is lower in breast cancer tissue 
than in normal mammary epithelium [45, 48, 49]. How-
ever, there is also inconsistency across tissue-based studies, 
wherein some report the lowest mtDNA content in mam-
mary tumors smaller than 2 cm [50], while others report 
lower mtDNA content in tumors larger than 5 cm compared 
to smaller tumors [51] or report no trend [52, 53]. Similarly, 
the clinical effect of decreased mtDNA content in breast 
cancer is not yet understood and quantifying circulating 
mtDNA content through blood biopsies has not elucidated 
a consistent trend in breast cancer [44, 54]. Weertz et al. 
demonstrated that breast cancer patients in the lowest quar-
tile of mtDNA content (< 350 mtDNA molecules per cell) 
had a higher probability of metastasis and a shorter distant 
metastasis-free survival over 10 years. All patients included 
in this study presented as lymph node-negative and did not 
receive (neo)adjuvant systemic treatment [50]. Interestingly, 
Weerts et al. published data from another cohort of breast 
cancer patients in 2017 where there was no observed cor-
relation between mtDNA content and disease-free survival 
in patients receiving no adjuvant therapy (24 patients), but, 
for patients given anthracycline-based adjuvant therapy as 
part of their treatment (27 patients), higher mtDNA content 
was associated with lower disease-free survival [55]. This 
highlights a dramatic issue in analyzing breast cancer patient 
data—the disparate treatment regiments, which vary due to 
subtype, geographical region, and across time as new drugs 
are developed (among other aspects)—it is challenging to 
create significant sample sizes after this necessary subgroup-
ing, and what differences can be grouped together for a given 
question is not known.

The mechanism by which altered mtDNA copy number 
affects breast cancer disease progression is also currently 
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contradictory. Some researchers report that low mtDNA 
promotes metastasis by inducing epithelial–mesenchymal 
transition, perhaps via mitochondrial retrograde signaling 
[40, 56–58], but this is not universally observed [50] and the 
need for complete mesenchymal transition over phenotypic 
plasticity and collective metastasis is not fully understood 
itself [59–62]. Retrograde signaling refers to the pathway 
of communication from the mitochondria to the nucleus 
of the cell. It has been speculated that retrograde signaling 
between nDNA and mtDNA may be responsible for meta-
bolic plasticity/switching during cancer progression [63]. 
Low mtDNA copy number was also found to generate breast 
cancer stem cells [40], but this is somewhat contradictory 
to reports on increased OXPHOS in cancer stem cells [8]. 
Whether these features are breast cancer subtype specific, 
model specific, or metastatic location specific is unknown 
until more research is conducted. Simultaneously, preclinical 
research is also being conducted analyzing the role of spe-
cific mtDNA mutations—often but not limited to the com-
plexes of the ETC—on breast cancer progression, which are 
beyond the scope of this review.

Intracellular transportation of mitochondria 
in breast cancer

Breast cancer migration

Because the mitochondrial network is not homogeneously 
distributed throughout the cell, an energy gradient is cre-
ated. This network of mitochondria is mobile and its dis-
tribution varies with the changing metabolic needs of the 
cell [64]. For example, mitochondria are localized to the 
leading edge of a migrating cell to provide ATP, given the 
metabolically demanding nature of migration [30, 64–66]. 
Specifically, mitochondria are trafficked via Miro1 to sup-
ply ATP for lamellipodia formation [30, 64, 66, 67], which 
can be an important first step in migration as well as for 
focal adhesion stability [64, 66] and membrane ruffling 
[64] at the leading edge of the cell. Fibroblasts lacking 
Miro1 experienced decreased lamellipodia protrusions and 
impaired actin-based membrane reorganization, result-
ing in an overall slower migration [64]. Miro1 stands for 
mitochondrial Rho-GTPase 1 and is the microtubule-based 
mitochondria transport molecule. The ability of a cell to 
efficiently shuttle around its mitochondria is dependent on 
both Miro1 and the structure of the mitochondria itself. 
Specifically, the mitochondrial network must be capable 
of breaking apart into smaller mitochondrial segments 
that may be easily repositioned using fission and fusion 
as previously discussed. Thus, if the mitochondrial dynam-
ics of a cell are less “pro-fission”, larger mitochondrial 

networks are observed that are more uniformly distrib-
uted throughout the cell due to the increased difficulty 
in transporting them [30, 65]. Indeed, a similar effect of 
decreased lamellipodia formation was seen in breast can-
cer cells (MDA-MB-231, and MDA-MB-436) by alter-
ing the expression of fission and fusion molecules, Drp-1 
and Mfn1, respectively, wherein “pro-fission” cells (i.e. 
high Drp-1 and/or decreased Mfn1 expression) with short 
networks of tubular or spherical mitochondria were more 
highly migratory [30]. In addition to migration speed, 
mitochondrial distribution to the leading edge seems to 
aid other metrics of migration efficiency as well. Specifi-
cally, breast cancer cells (MDA-MB-231) with a greater 
portion of mitochondria in their anterior achieved faster 
migration velocities, demonstrated greater directional 
persistence, and more efficiently adapted to alterations in 
channel confinement (e.g. reduction from larger to smaller 
channel width), compared to cells with a more symmet-
ric distribution. Interestingly, asymmetric mitochondrial 
localization does not seem to be required for migration 
on two-dimensional surfaces that lack chemoattractants 
or mechanical confinement [65].

It is important to consider that cancer cells can migrate 
using several different modes: mesenchymal migration, 
collective movement, or amoeboid migration [68]. Spe-
cifically, increased collagen density has been shown in 
melanoma and fibrosarcoma to trigger the cancer cells to 
switch from single cell to collective migration to minimize 
the need for individual proteolytic degradation of colla-
gen and track clearance [69]. Leader–follower dynamics 
have also been observed in invading breast cancer cells 
(MDA-MB-231), where a select few cells take on the role 
of spearheading collective migration through the extra-
cellular matrix [70, 71]. This metabolically demanding 
task results in a decrease in the ATP/ADP ratio in breast 
cancer leader cells overtime and prompts more energetic 
follower cells to replace the leader cells in a relay-like 
manner to progress invasion. Breast cancer leader cells 
consume more glucose compared to their follower cells 
to fuel their role as a leader [70]. However, this may be 
cancer-type specific, as the opposite metabolic propor-
tions were seen in leader lung cancer cells [72]. Given that 
breast cancer cells expressing increased Drp-1 exhibited 
greater migration in vitro [30], breast cancer leader cells 
may have pro-fission mitochondrial networks that enable 
them to lead collective migration. Though such a connec-
tion between mitochondrial fission and leader cells has yet 
to be defined for breast cancer, Drp-1 expression is known 
to be required for the fragmented mitochondrial network 
of border cells migrating collectively during the develop-
ment of Drosophila [73]. Future efforts will be necessary 
to elucidate the role of fission in breast cancer leader cells.
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Mitochondria movement in metastasis

Similarly, Drp-1 expression is associated with greater meta-
static ability in vivo in breast cancer. Parida et al. isolated 
latent brain metastases in athymic mice from the HCC1954 
and SKBR3 HER2+breast cancer cell lines. These meta-
static cells had smaller, more fragmented mitochondria 
and a greater expression of Drp-1. Intracardial injection of 
doxycycline-inducible Drp-1 depleted cells (using shRNA 
against the dynamin 1 like gene (DNM1L) that encodes Drp-
1) showed a significant reduction in metastatic lesions for 
both cell lines [74].

Drp-1 expression appears low in healthy human breast 
tissue, as characterized via immunostaining. However, Drp-1 
staining was observed to be dramatically more intense in 
samples of invasive carcinoma or samples demonstrating 
local lymph node metastasis [30]. High Drp-1 expression 
was also correlated with poor metastasis free survival 
regarding brain metastases in HER2+breast cancer patients 
[74]. Interestingly, heightened Drp-1/DNM1L expression 
in cancerous and metastatic tissue compared to normal tis-
sue does not appear to be breast cancer specific. In many 
cases, Drp-1/DNM1L was a suggested biomarker postop-
eratively to predict recurrence [75–78]. Preclinical work has 
shown that inhibiting Drp-1-dependent fission may reduce 
or prolong the time until metastatic relapse. For example, 
beginning 1 week after intracardial injection, oral treatment 
of mice with mitochondrial division inhibitor 1 (Mdivi-1) 
(reported to inhibit Drp-1-dependent fission) significantly 
reduced the number of surviving latent cells and attenuated 
brain metastasis development [74, 79]. Similarly, Leflu-
nomide, an FDA-approved arthritis drug, was shown to 
increase Mfn2 expression and suppress tumor growth in a 
study of pancreatic ductal adenocarcinoma, indicating its 
potential repurposed used as a chemotherapeutic agent [80].

Despite the advances made on fission and fusion dynam-
ics, the exact mechanism of mitochondria trafficking in 
breast cancer has yet to be identified. Trafficking mitochon-
dria has been shown to be AMPK-dependent (adenosine 
monophosphate (AMP)-activated protein kinase) [67] and 
triggered by PI3K (phosphoinositide 3-kinases) inhibi-
tors [66] in other cancer types and may be applicable to 
mitochondrial dynamics across cancer types. Interestingly 
mechanotransduction from interstitial fluid flow activated 
mitochondrial AMPK in MDA-MB-231 cells, but not in 
normal MCF10A cells and did not activate AMPK in other 
subcellular compartments. Inhibition of mitochondrial 
AMPK blocked flow-induced cell migration, thus reducing 
cell migration overall [81]. In total, more research is needed 
to elucidate the role of intracellular mitochondrial traffick-
ing mechanisms during breast cancer metastasis. While not 
directly related to intracellular mitochondrial movement, it 
is also critical to remember that metabolic reprogramming 

of metastatic breast cancer cells is not a monolith, but that 
disseminated tumor cells undergo tissue-specific adapta-
tion unique to each distant site based on nutrient and oxy-
gen availability, energy requirements, and perhaps the new 
mechanoenvironment as well [82].

The flow of mitochondria from surrounding 
cells in breast cancer

Broadly, this phenomenon involves the movement of either 
whole mitochondria or mtDNA between cells and can be 
stimulated via several methods, including cell fusion [83], 
extracellular vesicles [84–86], tunneling nanotubes (TNTs) 
[87–90], and through gap junctions [91] (which may be 
close-ended TNTs). The free release of mitochondria has 
also been observed in culture medium and human plasma, 
but it is debated whether they are functional [92, 93]. Cell 
fusion is the process by which two independent cells par-
tially or fully merge to create a singular cell (permanently 
or temporarily), thus mixing mitochondria. In vitro, nor-
mal (primary cells), neoplastic (MCF10A), and cancerous 
(MCF7, MDA-MB-231) breast epithelial cells were co-cul-
tured with mesenchymal stem cells (MSCs) whereby fusion 
began in less than 5 min, and up to 2% of the population 
consisted of hybrid cells after 72 h [94]. In noncancerous 
tissue, cardiomyocyte-stem cell fusion has been observed, 
including the transfer of stem cell mitochondria to cardio-
myocytes that facilitated cardiomyocyte reprogramming in 
the context of regenerative medicine [83]. Although cell–cell 
fusion has been reported in several cancer types, including 
breast cancer [94–96], in vivo mitochondrial exchange via 
fusion is critically understudied.

Extracellular vesicle transfer

Extracellular vesicles are lipid bound structures secreted 
by cells for communication, among various other things 
[97]. Mitochondria have been observed inside of vesicles 
in several manners. Foremost, mitochondria typically fuse 
with lysosomes during mitophagy [98, 99], but have been 
observed inside of extracellular vesicles as a pathway of 
elimination when lysosomal degradation is compromised 
[100] and/or when the cell is under high interstitial fluid 
pressure [101].

Second are mitochondria or mitochondrial material 
found in extracellular vesicles that appear metabolically 
functional or facilitate specific intercellular communica-
tions (as opposed to a degradation byproduct in the former) 
[102]. Intact mitochondria have been reported in larger 
microvesicles (~ 1000 nm) [103–105], while mitochondrial 
material (e.g. mitochondrial proteins, mtDNA) have been 
observed in extracellular vesicles more closely resembling 
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exosome sizes (~ 50–200 nm) [103, 106–108]. Extracellular 
vesicles containing mitochondria or mitochondria-associ-
ated proteins have been shown to hasten disease progres-
sion in breast cancer in a few studies. For example, when 
 HER2−/ER+/PR+ breast cancer cells (MCF7 and T47D) 
were exposed to hypoxic culturing conditions, these cells 
released small extracellular vesicles that, upon uptake by 
MCF10A cells, resulted in altered mitochondrial dynamics, 
increased migration, and an increased mesenchymal phe-
notype in these recipient cells. Interestingly, the key regu-
lator of this response was integrin-linked kinase (ILK) in 
the extracellular vesicles, which is not well understood, but 
can activate Akt, a critical mediator of mitochondria traf-
ficking, and which has recently been implicated in blocking 
retrograde mitochondrial movements. The accumulation of 
ILK after exposure to hypoxia was specific to extracellular 
vesicle communication, as ILK levels were not altered in the 
whole-cell lysates in normoxic versus hypoxic conditions 
[109]. In another study, breast cancer cells (MDA-MB-231) 
released extracellular vesicles containing mtDNA. This 
packaged mtDNA was necessary and sufficient to transfer 
invasive behavior to other tumor cells [110]. As a final exam-
ple, breast cancer cells (MDA-MB-231 and BT-549) were 
made resistant to cisplatin or doxorubicin in vitro or left as 
chemosensitive. After co-culture of resistant and sensitive 
cells, bidirectional exchange of mitochondria was observed 
primarily through direct transfer via extracellular vesicles. 
After mitochondria exchange (including conditioned media 
studies rather than co-cultures), chemosensitive triple nega-
tive acquired the same chemoresistance [85]. Of note, con-
siderably less work has studied potential effects on the donor 
cell after losing a portion of mitochondria. For example, 
here, when “chemoresistant” mitochondria was donated and 

“chemosensitive” mitochondria was acquired, it was not 
investigated whether the donor cells maintained the same 
level of chemoresistance, or if there was temporary or per-
manent reduction. Although the effect of mitochondrial loss 
in donor cells is occasionally studied after mitochondrial 
transfer via tunneling nanotubes (TNTs) (see “Tunneling 
nanotube (TNT) transfer”), we found no work investigating 
the same after extracellular vesicle transfer, and donor cell 
behavior, in general, requires greater study.

Lastly, a subset of vesicles has recently been described 
which are vesicles that contain mitochondrial material and 
originate from the mitochondria [102]. Specifically, mito-
chondrial-derived vesicles are currently categorized as those 
that deliver mitochondrial content to other organelles, such 
as lysosomes [111]. In this way, some studies identify mito-
chondria-derived vesicles as the subpopulation that may han-
dle mitochondria degradation in autophagy-deficient cells, 
including the BT549 breast cancer cell line [112–114]. In 
at least some circumstances, the inclusion of mitochondrial 
content inside of extracellular vesicles appears to be depend-
ent on the formation of mitochondrial-derived vesicles [111, 
115], but this phenomenon has not yet been studied enough 
to draw clear conclusions.

Tunneling nanotube (TNT) transfer

The formation of TNTs and subsequent intercellular move-
ment of organelles like mitochondria via TNTs, was not 
reported until 2004–2006 [116, 117]. TNTs are thin, mem-
brane projections that are suspended above the substratum 
and bridge independent cells to enable the transfer of cyto-
plasmic contents (Fig. 2) [116].

Fig. 2  Homotypic TNTs (indicated by arrows) between MDA-MB-231 breast cancer cells in vitro, scale bar 20 μm
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These structures are roughly categorized based on their 
dimensions and composition. Thin TNTs (< 1 µm in width), 
composed of only F-actin, span shorter distances, while 
thick TNTs (> 1 µm), containing F-actin and microtubules 
that reinforce the structures, span larger distances, even up 
to and over 500 µm [116, 118, 119]. Cancer cells typically 
form thin TNTs around 50–200 nm in width and around 
30 µm in length, although thick TNTs have been reported 
in a few studies [119, 120]. TNTs can be formed via sev-
eral different methods, summarized in Fig. 3. One method 
is by cell dislodgement whereby the movement of partially 
or completely attached adjacent cells away from each other 
draws out nanotubes [87, 121, 122]. These structures can 
also be formed via connecting membrane protrusions as one 
or both of the cells’ membranes extend and meet the target 
membrane [87, 116, 123–125].

Both open-ended and close-ended TNTs have been 
observed. Open-ended TNTs allow free cytoplasmic trans-
fer, while close-ended TNTs form a junctional border with 
the target cell, but most TNT literature discusses open-ended 
TNTs given that it is unclear if close-ended TNTs are simply 
an intermediate step before full fusion has occurred [120, 
126, 127]. In addition, the transfer of material may be uni-
directional or bidirectional and often depends on the cell 
types involved [128, 129]. Also of note, TNTs may form 
between cells of the same cell type or different cell types, 
known as homocellular/homotypic and heterocellular/het-
erotypic TNTs, respectively [87, 123, 125]. Although the 
current mechanism of TNT inception remains unclear, it 
is known that inducing stress (e.g. nutrient deprivation, 
oxidative stress) and damage within the recipient cell can 
stimulate the formation of TNTs and evoke the transfer of 
mitochondria [118, 122, 130].

Breast cancer cells have been found to form TNTs with 
several nearby cell types and subsequently receive mitochon-
dria from endothelial cells [87], cancer-associated fibroblasts 
(CAFs) [131], MSCs [87], and immune cells [88]. Interest-
ingly, at least one report has shown that the unidirectional 
transfer of mitochondria to breast cancer cells negatively 
affected the donor cell (here natural killer T and CD3+/
CD8+ T cells). Specifically, after mitochondrial transfer, 
the immune cells had a significant reduction in basal respi-
ration and spare respiratory capacity as well as significant 

population loss (cell death) [88]. The effect, especially the 
effect in vivo, of mitochondrial transfer to/from cancer cells 
on the non-cancerous populations of the tumor microenvi-
ronment is critically understudied.

Mesenchymal stem cell (MSC) donors

MSCs are able to differentiate into many different cell types, 
a property known as multipotency, and are often impli-
cated in regeneration and rejuvenating damaged cells [83, 
89, 90, 130]. The accumulation of stressed cells within a 
tumor similarly stimulates MSCs, causing them to migrate 
towards the tumor [132] and their nearby presence has been 
shown to increase the number of breast cancer metastases 
in mice [133]. mtDNA (and potentially reactive oxygen spe-
cies) released by injured cells are engulfed by MSCs, which 
subsequently triggers enhanced mitochondrial biogenesis 
through retrograde signaling whereafter MSCs have been 
known to donate their mitochondria to the damaged cells to 
restore their impaired mitochondrial function via TNTs [89, 
90, 130, 134]. Breast cancer cells have been seen forming 
TNTs with MSCs, as well as transferring mitochondria via 
this method [87, 135]. Additionally, the artificial transfer of 
MSC mitochondria to breast cancer cells has been shown 
to increase their OXPHOS, ATP production, invasion, and 
proliferation [135], as well as their chemoresistance to cis-
platin [136]. The transfer of mitochondria appears to be a 
selective process as TNTs were formed with breast cancer 
cells to/from both endothelial cells and MSCs, but in this 
model, mitochondrial transfer was much more robust from 
endothelial cells than the MSC TNTs [87]. This may be rep-
resentative of the composition of the donor cells and/or dif-
ferent mechanisms used by breast cancer cells to stimulate 
mitochondrial donation from said cells. For example, trans-
fer of mitochondria from MSCs to osteosarcoma cells was 
shown to be limited to the condition of near total absence 
of mitochondria function, rather than to replace mtDNA 
mutations in the cancer cells, but whether this is universal 
across cell types is not known [137]. Overall, the transfer 
of mitochondria via TNTs tends to increase OXPHOS and 
total ATP production, stimulate energy-intensive processes 
like proliferation and/or migration, and increase chemore-
sistance of breast cancer cells, as highlighted in Table 1 in 

Fig. 3  Methods of tunneling nanotube formation
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“Table of mitochondrial-transfer studies in breast cancer”. 
It is also important to note, however, that TNT formation 
itself, without the confirmed transfer of mitochondria, can 
also propagate chemoresistance [122, 138]. Here, TNTs 
may be used for bidirectional cytoplasmic exchange where 
the recipient cell redistributes the chemotherapeutic drug 
to donor cells. Similar has been seen with microparticles, 
wherein several chemotherapeutics could be sequestered and 
removed via microparticles, thus reducing free drug concen-
tration in MCF7 cells [139], but future work is necessary to 
validate if this compartmentalization and/or transfer of drug 
occurs via TNTs.

Cancer‑associated fibroblast (CAF) donors

Mitochondrial transfer via TNTs was also recently identified 
between CAFs and breast cancer cells [131]. CAFs are an 
abundant stromal cell type, representing up to 80% of tumor 
mass in breast cancer, and have been implicated in affect-
ing breast cancer growth and dissemination in several ways 
[140–142]. Goliwas et al. observed that CAFs increased 
migration of aggressive breast cancer cell spheroids (MDA-
MB-231 and SUM159) through collagen primarily through 
the formation of TNTs and transfer of mitochondria-contain-
ing cargo, as opposed to through other mechanisms, such as 
reorientation of the collagen fibrils. Allowing the heterocel-
lular TNT formation or artificially transferring CAF mito-
chondria to the breast cancer cells increased mitochondrial 
ATP production, for an overall increased total ATP produc-
tion, in the breast cancer cells [131]. Increased ATP pro-
duction from artificially transferring CAF mitochondria has 
been shown to increase the lifetime of breast cancer leader 
cells, further connecting mitochondria to breast cancer pro-
gression [70].

Although the definition of a CAF is debated, including 
what cell origins may be defined as a CAF rather than being 
another cancer-associated cell type, endothelial cells can be 
considered as a source of CAFs in the tumor microenviron-
ment (it is also worth noting that MSCs can potentially be a 
CAF-origin cell as well) [141, 143, 144]. If extracellular ves-
icles or mitochondria are isolated from these cell types and 
given to cancer cells, these would not be considered CAF 
results since the donor cells did not receive tumor signals. If, 
however, the cells are placed in a co-culture and allowed to 
exchange factors/cargo (in via TNTs, extracellular vesicles, 
soluble factors, etc.) bidirectionally with cancer cells, these 
results may be more comparable to studies which have first 
isolated patient- or mouse-derived CAFs as their donor cell 
before cargo isolation/co-culturing. In general, it is impor-
tant to recognize the significant influence that tumor cell 
signaling may have on the cargo released by non-tumor cells, 
which may be the cause of disparate pro- or anti-tumorigenic 
effects of said cargo across studies given the varied forms Ta
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of mitochondrial transfer possible (e.g. co-culture, artificial 
transfer).

Immune cell donors

Normal breast tissue contains a population of immune cells 
to maintain healthy function, but as breast cancer develops 
and progresses, there is an increase in the number of infiltrat-
ing immune cells [145]. Breast cancer cells have been spe-
cifically observed to recruit T cells [146] and macrophages 
[147] into the tumor microenvironment. These immune cells 
can then stimulate the formation of homocellular TNTs 
among breast cancer cells [123, 148] and can also participate 
in forming heterocellular TNTs with the breast cancer cells 
[88, 123, 125]. For example, macrophages secrete epidermal 
growth factor (EGF) and once in close proximity, can stimu-
late the expression of M-sec and induce homocellular TNT 
formation in breast cancer cells in a paracrine manner [123, 
125, 147]. This process is mechanistically similar to the for-
mation of homocellular TNTs in macrophages [124]. Inter-
estingly, breast cancer cells cultured in macrophage-derived 
conditioned media formed microplasts, cytoplasmic frag-
ments which contained mitochondria and could fuse with 
cell membranes [148]. Formation of TNTs between mac-
rophages and breast cancer cells increased the directional 
migration, invasion, and tumor growth in vivo in zebrafish, 
although the cargo was not identified to determine if it 
included mitochondrial content [125]. In fact, mitochondrial 
transfer between breast cancer cells and macrophages has 
yet to be visualized, but it is likely given that mitochondria 
transfer between various T cells and breast cancer has been 
shown [88]. Termed mitochondrial hijacking, mitochondria 
from T cells were predominantly trafficked unidirectionally 
to breast cancer cells, resulting in the oxygen consumption 
rate, basal respiration, spare respiratory capacity, and prolif-
eration of the breast cancer cells to increase [88]. Given that 
there is much that remains to be learned about this method 
of cell-to-cell communication, it is likely that other immune 
cells and cell types present within the human body will be 
implicated in mitochondrial transfer via TNTs to breast can-
cer cells during disease progression.

In Vivo models and unknown origin donors

Several groups have developed cancer cells devoid of func-
tional mitochondria (often devoid of mtDNA), typically 
called ρ0 cells, which are then injected into mice. In this 
method, mitochondrial recovery (via heterocellular transfer) 
can be observed and the effect on the full range of the meta-
static cascade can be studied. However, in these models, it 
is typically not possible to then confirm the donor cell type 
or transfer method. Dong et al. observed that injected ρ0 
melanoma (B16) cells acquired mtDNA through transfer of 

whole mitochondria and recovered mitochondrial respira-
tion capabilities. Knockdown of mitochondrial complex I 
and complex II subunits by shRNA in ρ0 cells significantly 
reduced or completely abolished their ability to form tumors, 
highlighting the role of intact mitochondria on tumorigen-
esis [149]. Similarly, 4T1ρ0 cells were generated and could 
form tumors in mice due to acquisition of host mouse 
mtDNA [150]. Interestingly, tumor formation lagged about 
20–25 days in 4T1ρ0 injections compared to wildtype 4T1 
inoculation, demonstrating the potentially significant time 
needed for mitochondrial transfer in vivo. In a similar vein, 
4T1ρ0 cells could metastasize to the lungs after primary 
tumor formation, but did not colonize the lungs if directly 
injected intravenously. When the lung metastasis cells were 
isolated and injected in a new cohort, however, no lag time 
was seen for primary tumor formation after subcutaneous 
injection, and lung tumor formation was comparable to 
wildtype 4T1 cells after intravenous injection. The 4T1 cells 
also recovered more respiratory capability with each stage 
of the metastatic cascade completed, with the isolated 4T1ρ0 
lung metastasis cells having recovered to levels not signifi-
cantly different from wildtype parental 4T1 cells [150]. A 
follow up study demonstrated that, in addition to bioener-
getic remodeling, the transfer of host mitochondria to 4T1ρ0 
cells in vivo is associated with re-expression of genes related 
to stress adaptation and immune cell recruitment [151].

The methods of mitochondrial transfer, namely TNTs or 
extracellular vesicles, are certainly not mutually exclusive, 
although it is unknown what factors influence the use of one 
versus the other in situations where both are possible [85, 
131]. Although TNTs require physical connection, extra-
cellular vesicles may facilitate long-distance mitochondria 
movement, such as during the development of the premeta-
static niche or during communication between primary and 
secondary tumors [152]. Many studies have demonstrated 
the important role of extracellular vesicles on metastasis by 
using intravenous extracellular vesicle injections to prime 
premetastatic niches prior to intravenous cancer cell injec-
tion, which lead to an increase in cancer cell colonization 
[153, 154]. Unfortunately, analysis of mitochondrial content 
in extracellular vesicles and, moreover, correlation between 
mitochondrial EV content and metastatic potential of the 
source cell line, is lacking and warrants study.

Lastly, recent evidence has shown that neutrophil extra-
cellular traps (NETs) from aged neutrophils in the premeta-
static lung niche capture disseminated tumor cells. These 
NETs were mitochondria-dependent in formation and con-
tained mitochondria [155]. It is not clear if the captured 
tumor cells take up this mitochondria upon arrival, though 
another study has shown that colorectal cancer cells treated 
with NETs increased ATP production, upregulated mito-
chondrial biogenesis associated genes, and had increased 
expression of Drp-1 and Mfn2, as well as mitophagy-linked 
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proteins, PINK1 and Parkin [156]. This unique potential 
transfer method highlights the need for more in vivo experi-
mentation, particularly with a focus on the latter portions of 
the metastatic cascade.

Potential clinical utility

In the landscape of mitochondria targeting, current efforts 
for treatments have focused on artificial mitochondrial 
transplantation to deliver healthy mitochondria to breast 
cancer cells and rewire the tumor cells’ mitochondria, poten-
tially leading to increased chemosensitivity and apoptosis 
[157–159]. More research, and potentially the inclusion of 
MSCs into the workflow, may be beneficial for optimization 
given MSC ability to transfer mitochondria to chemotherapy-
damaged cells [90]. In addition, new avenues of treatment 
are being considered, namely combination therapy targeting 
TNT formation (and/or mitochondrial dynamics), which are 
showing promise to aid the accumulation of chemothera-
peutics within breast cancer cells and increase the treatment 
efficiency [74, 88, 122]. For example, patients with diabetes 
receiving the anti-diabetic drug, Metformin, have a lower 
incidence of cancer as well as a better prognosis if diag-
nosed with cancer, than patients not receiving metformin 
[47]. Metformin is known to inhibit TNT formation [131], 
although it has also been shown to directly disrupt complex I 
of the ETC in cells [160], so the dominant mechanism is not 
known [161]. Cytochalasin B has also been shown to inhibit 
TNT formation. In one study, treatment with cytochalasin 
B in CAF:breast cancer cell co-culture spheroids inhibited 
transfer of CAF mitochondria into breast cancer cells and 
reduced migration speed and overall invasion into the sur-
rounding collagen [131], while another study demonstrated 
that the chemotherapy agent 5-fluorouracil (5-FU) was more 
cytotoxic to MCF7 cells when cytochalasin B was given in 
combination [122]. These studies are early indication of the 
therapeutic benefit possible with combination TNT-targeting 
treatments. Some commonly used chemotherapeutic agents, 
such as Taxanes and Vinca alkaloids, have also been recently 
shown to partially inhibit mitochondrial transfer by inhibit-
ing microtubule formation, and it may be beneficial to begin 
using them as adjuvant therapies in a wider range of treat-
ment regiments. This is not a comprehensive list, and several 
other regulators of TNT formation, such as M-sec, have been 
proposed for therapeutic purposes, but much more research 
is needed before clinical benefit may be assessed [88, 159].

It’s important to note that transferring of mitochondria is 
not the only intercellular interaction that enhances cancer 
cell mitochondrial respiration. For example, in the Reverse 
Warburg effect, cancer cells induce aerobic glycolysis in sur-
rounding stromal cells and use the waste metabolites from 
those cells to undergo additional OXPHOS reactions and 
fuel cancer growth/invasion [131, 162]. Although treatments 

targeting certain metabolic pathways or cargo transfer mech-
anisms seem promising, it has been shown likely from past 
experience that at least a subset of cancer cells will adapt to 
a new mechanism to fuel growth afterward. Given that cells 
from metastatic sites may show different metabolic prefer-
ences than the primary tumor cells, if treatments resulted 
in the inhibition of primary tumor growth at the expense 
of increasing metastasis to certain sites, this would not be 
clinically beneficial [5, 163–165]. There is not yet a clear 
consensus on what metabolic pathways may be more promi-
nent at what metastatic sites (given that it is likely molecular 
subtype specific and influenced by other patient character-
istics), so the effects of these mitochondrial transfer inhibi-
tors cannot be known. Additionally, we do not yet know if 
the changes in the dominant metabolic pathway across the 
cell population is due to selection pressures whereby only 
certain phenotypes present in the primary tumor thrive in 
certain environments [166], or if the process of metastasiz-
ing, including undergoing fluid shear stress, and the features 
of the new tissue reprogram tumor cells once they arrive, 
but this difference should certainly affect the development 
of therapeutics.

Table of mitochondrial‑transfer studies 
in breast cancer

Table 1 lists studies reporting transfer of mitochondrial con-
tent to/from breast cancer cells. It is important to note that 
there are other reports of mitochondrial transfer between 
cell types that are not related to breast cancer. This includes 
other cancer types, other disease states, and in healthy tissue 
[167–169]. Some of these studies are discussed in the text, 
but a comprehensive list is beyond the scope of this review. 
We acknowledge that much of what is seen across other cell 
types may be applicable to breast cancer, including the array 
of donor cells possible and the resulting effects of mitochon-
drial transfer on the recipient cells. However, as briefly noted 
in “mtDNA reduction and clinical relevance” and “Breast 
cancer migration”, the metabolic reprogramming necessary 
for invasion and seen in metastatic populations seems unique 
to both the cancer cell of origin and the metastatic loca-
tion. Therefore, it will be important to confirm results in a 
breast-cancer specific model, as well as noting the molecular 
subtype.

It is also important to note that there are innumerable 
additional manuscripts which have reported changes in 
breast cancer cell behavior, including metabolism shifts, 
after supplementing with conditioned media and/or extra-
cellular vesicles from another cell population or co-cul-
turing and allowing TNT formation with said population, 
but which either did not investigate the cargo being trans-
ferred or the reported cargo was not directly related to intact 
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mitochondria or mtDNA [123, 125, 170–172]. For example, 
uptake of extracellular vesicles from Adriamycin-resistant 
breast cancer cells (MCF7) resulted in increased drug resist-
ance in previously-sensitive MCF7 cells. Chemoresistance 
was due to delivery of Hsp70 (heat shock protein) via the 
extracellular vesicles. Delivered Hsp70 translocated into the 
mitochondria of the recipient cell resulting in impaired mito-
chondrial respiration and increased glycolysis, but because 
the cargo itself was not mitochondrial content, this work 
would not appear in Table 1 [173]. Similarly, several papers 
identify homotypic TNT formation as a method of aggrega-
tion for physical networks of breast cancer cells to develop 
or as breast cancer clusters and/or spheroids are develop-
ing in vitro without discussion of cargo [148, 174, 175]. As 
above, a few examples of these studies have been included 
in the text when applicable, but they have been excluded 
from Table 1. Lastly, there have been reports demonstrat-
ing that cancer cells can induce mitochondrial dysfunction/
increased glycolytic reliance in cells of the microenviron-
ment via extracellular vesicles and TNTs, including T cells 
(but not B or natural killer cells) [176], myoblasts (C2C12) 
[177], and macrophages (polarized to M1) [178], but not 
specifically related to a known transfer of mitochondria to 
said cells. These exclusions demonstrate the plethora of 
work needed to expand our understanding of the bidirec-
tional effects between the tumor and its microenvironment 
in breast cancer.

A mito‑centric perspective in the future

Mitochondria have fascinated researchers for decades, and 
the recent discovery of tunneling nanotubes has added an 
additional element to consider for the role of mitochondrial 
transfer in cells. Focusing on mitochondrial dynamics and 
transfer via TNTs may yield new therapeutic targets and 
combination treatments for breast cancer patients. Examin-
ing the ways in which chemotherapeutics interact with the 
mitochondria of breast cancer cells could become standard 
practice in drug development, as some chemotherapeu-
tics can stimulate the redistribution of mitochondria to the 
anterior portion of the cell to promote tumor invasion [66]. 
Additionally, there are several groups investigating the use 
of extracellular vesicles/nanoparticles targeting mitochon-
dria/mitochondrial damage in order to induce cell death in 
breast cancer cells or achieve M1 macrophage polarization 
and macrophage tumor infiltration [187–192]. With regard 
to retrograde signaling, and given that mtDNA is more sus-
ceptible to mutations than nDNA, how mitochondria interact 
with oncogenes and tumor suppressors may be of utmost 
important and its investigation could uncover new upstream, 
therapeutic targets. How mitochondria sense their intracel-
lular environment and the cell’s extracellular environment 

could further help elucidate the mechanics of communi-
cation between the mitochondria and host cell’s nucleus. 
While much of these discussions were beyond the scope 
of this review, they represent potential therapeutic options 
that show promise and overall, we hope to have highlighted 
the need for more (pre)clinical research on mitochondrial 
dysfunction and mitochondrial transfer across cancer pro-
gression and treatment regimens.

Using mitochondria as a prognostic factor for treatment 
or predicting overall patient survival will hopefully prove 
useful to incorporate into analyzing biopsies. As discussed, 
there are currently many contradictory opinions about the 
value of identifying mutations in mitochondria, especially 
since mitochondrial mutations are accumulated with age, 
but given the reliance of cancer cells on their mitochondria, 
the genetic composition of mitochondria could be used to 
predict next steps for patients. Rather than analyzing mtDNA 
levels from tissue biopsies or cell-free in the plasma, recent 
studies have highlighted the potential to analyze mtDNA 
or mitochondrial proteins housed inside extracellular vesi-
cles during liquid biopsies [107, 182, 193]. For example, 
ND1, which encodes for an enzyme involved in complex 
1 in the ETC, was elevated in 86% of patients with breast 
cancer [182]. Breast cancer extracellular vesicles were also 
higher for two inner membrane proteins (MT-CO2 and 
COX6c—mitochondrial encoded cytochrome c oxidase II 
and cytochrome c oxidase subunit 6c, respectively) [107] 
and had a loss of Mfn2 and SH3GL2 (SH3 domain con-
taining GRB2 like 2) as opposed to healthy controls [194]. 
The consensus of a mitochondria-related gene signature in 
serum-harvested extracellular vesicles that correlate to better 
or poor prognoses would be necessary for these methods to 
see clinical utilization. Additionally, the different molecular 
subtypes of breast cancer underpin all discussion of clinical 
utility as these differences are almost certainly critical for 
prognostic evaluations and effective response to treatments.

Besides identifying the role of mitochondria within cells, 
mitochondrial transfer via tunneling nanotubes brings the 
opportunity to further uncover the role of TNTs in cell–cell 
communication. Since 2004, many groups have begun to 
identify TNTs within their own research, yet few papers have 
examined the events before or after mitochondrial transfer. 
There are still questions surrounding how cells stimulate 
the formation of TNTs, what dictates unidirectional versus 
bidirectional transport of TNT cargo, and what establishes 
the donor-recipient cell hierarchy. In cells that form TNTs 
as a mechanism to aid damaged cells, how is the need inter-
preted and is there a threshold where TNTs will not form 
if the cellular damage is deemed beyond repair? Even after 
documenting mitochondrial transfer via TNTs, questions 
about the functionality of the transferred mitochondria, 
incorporation and downstream implications to the recipient 
cell, and the effect of mitochondrial loss on the donor cell 
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remain. Though mitochondria have been identified as TNT 
cargo, it still remains unclear what else may be transferred 
and how cells select what to transfer to recipient cells. Future 
efforts will be necessary to understand what kind of cell-to-
cell signaling is required to stimulate the donation of such 
a precious and valuable component, as the mitochondrion.
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