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Abstract

Melanoma is a highly immunogenic malignancy with an elevated mutational burden, diffuse lymphocytic infiltration, and
one of the highest response rates to immune checkpoint inhibitors (ICIs). However, over half of all late-stage patients
treated with ICIs will either not respond or develop progressive disease. Spatial imaging technologies are being increas-
ingly used to study the melanoma tumor microenvironment (TME). The goal of such studies is to understand the complex
interplay between the stroma, melanoma cells, and immune cell-types as well as their association with treatment response.
Investigators seeking a better understanding of the role of cell location within the TME and the importance of spatial
expression of biomarkers are increasingly turning to highly multiplexed imaging approaches to more accurately measure
immune infiltration as well as to quantify receptor-ligand interactions (such as PD-1 and PD-L1) and cell-cell contacts.
CyTOF-IMC (Cytometry by Time of Flight - Imaging Mass Cytometry) has enabled high-dimensional profiling of mela-
nomas, allowing researchers to identify complex cellular subpopulations and immune cell interactions with unprecedented
resolution. Other spatial imaging technologies, such as multiplexed immunofluorescence and spatial transcriptomics, have
revealed distinct patterns of immune cell infiltration, highlighting the importance of spatial relationships, and their impact
in modulating immunotherapy responses. Overall, spatial imaging technologies are just beginning to transform our under-
standing of melanoma biology, providing new avenues for biomarker discovery and therapeutic development. These
technologies hold great promise for advancing personalized medicine to improve patient outcomes in melanoma and other
solid malignancies.
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Introduction

Melanoma is an immunogenic malignancy with an elevated
. tumor mutational burden (TMB) and a highly active immune
through the Lymphovascular System, May 4-6, 2023, in San . . . . .
Francisco, CA. To be published in a Special Issue of Clinical tumor microenvironment (TME) [1]. While historically
and Experimental Metastasis: Molecular Mechanisms of Cancer associated with poor clinical outcomes, late-stage metastatic
Metastasis. melanoma patients have seen a significant improvement in
prognosis with the advent and clinical implementation of
immune checkpoint inhibitors (ICIs) [2—4]. The favorable
response to these therapies has been linked to a number of
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immune and tumor-infiltrating lymphocyte subsets (TILs),
and their effect on ICI response.

Improved approaches to characterize the melanoma
TME carries a degree of urgency with clear clinical signifi-
cance as more than 50% of late-stage metastatic melanoma
patients treated with ICIs will either not respond or develop
progressive disease [8]. With the recent approval of anti-
LAG-3 ICIs for the treatment of metastatic melanoma, a
better understanding of the role of the melanoma TME and
mechanisms mediating patient response to anti-PD-1 mono-
therapy compared to combination therapy with anti-CTLA-4
or LAG-3, is clearly needed [9]. Furthermore, results from
recent melanoma neoadjuvant clinical trials, SWOG S1801
(NCT03698019) and NADINA (NCT04949113), are poised
to redefine management of high-risk resectable stage III
melanomas [10]. Molecular profiling studies of pre- and
post-treated melanomas in the neoadjuvant setting provides
an efficient platform to understand mechanisms of therapy
response with measured pathological response available
in a relatively short period of time. Such melanoma study
designs provide a critical opportunity to identify biomark-
ers to personalize adjuvant therapy and improve patient out-
comes [11]. In this review, we will provide a brief survey
of current multiplexed imaging technologies and highlight
recent studies that have employed such approaches to char-
acterize the spatial immune landscape of melanomas to bet-
ter understand ICI responses.

Multiplexed imaging technologies

Limitations in conventional multiplexed tissue staining and
antibody-based imaging, such as hematoxylin and eosin
(H&E), immunohistochemistry (IHC) and immunofluores-
cence (IF) approaches has previously limited the scope and
scale of melanoma TME research. However, studies have
shown the improved predictive power of biomarkers of
ICI response when incorporating spatial TME information,
such as cell-type specific expression in specific regions of
melanomas [5, 12]. Such studies have reinforced the need to
employ more advanced highly multiplexed approaches for
translational research.

To address these limitations, various multiplexed spa-
tial imaging methods have been developed to study the
melanoma TME in search of new clinically predictive bio-
markers over the past decade (Table 1). Multiplexed IF
and cyclical multiplexed immunofluorescence techniques
such as OPAL-7 [13], tyramide signal amplification (TSA)
[14], t-CyCIF (Tissue-based Cyclic Immunofluorescence)
[15], or MILAN (Multiple Iterative Labeling by Antibody
Neodeposition) [16] can image from 6 to 60 markers using
repeated cycles of antibody deposition and imaging. Among
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these, the more highly-multiplexed technologies have
enabled researchers to extract more cell-type specific spatial
information, such as t-CyCIF, which makes use of repeated
cycles of low-plex fluorescence staining and imaging for up
to 60 markers [15]. T-CyCIF has recently been applied to the
melanoma TME to evaluate sequential melanoma biopsies
obtained from the same patient, revealing co-evolution of
differences in immune composition among different clonal
lineages, while another study on metastatic melanoma
lymph nodes used a 45-plexed t-CyCIF antibody panel to
classify prognostically relevant immune-cell neighborhoods
[17, 18]. T-CyCIF has also been combined with other mul-
tiplexed technologies including PickSeq and NanoString to
spatially characterize melanoma cellular neighborhoods,
their transition from precursor states to melanoma in situ
and invasive tumor, and the immune-suppressive environ-
ment along the tumor-stromal boundary [19].

Recent advancements in lower-cost spatial immune pro-
filing technology include bright-field multiplexed imaging,
which enables imaging of triple-plexed bright-field colors
for clinical and histopathological diagnostic assays using
standard pathology-lab equipment [22]. Another advance-
ment is nine-color multiplexed immunofluorescence imag-
ing that has been applied to characterize cell phenotype
diversity and immunosuppression patterns within the TME
of malignant pleural mesothelioma [33].

In contrast, mass-spectroscopy-based imaging and
analysis methods, such as MALDI (Matrix Assisted Laser
Desorption/lonization), DESI (Desorption Electrospray
Ionization), SIMS (Secondary lon Mass Spectrometry), and
MIBI-TOF (Multiplexed Ion Beam Imaging by Time-of-
Flight MS), can detect up to thousands of analytes including
metabolites on a sample without using repetitive imaging
cycles [29, 34, 35]. For example, MIBI-TOF, which can
image up to 36-plex markers (or in theory, up to 100 mark-
ers) and uses a tunable ion-beam that can be adjusted to var-
ious sample depths and image resolutions, has been applied
to image cellular phenotypes and tissue structure, reveal-
ing regional variability in tumor cell phenotypes in several
different breast cancer subtypes including triple-negative
breast cancer [35, 36]. CyTOF-IMC, another recent addition
to the spatial imaging toolkit, can detect up to 40 proteins
on a single sample of formalin-fixed paraffin-embedded
(FFPE) tissue and has recently been applied to characterize
the melanoma TME [23-26].

Exponential development in the spatial transcriptomics
imaging field has enabled researchers to spatially image
transcripts from up to 20,000 different protein-coding genes
at mid to high-resolution, using technologies including
NanoString [37], Visium [38], and MER-FISH [39]. Gen-
erally, spatial transcriptomics technologies fall into two
categories. First, those that spatially segment tissue into a
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limited number of relevant cell types and interrogate large
numbers of transcripts across those selected groups of cells,
albeit without achieving single-cell resolution, such as
NanoString [37, 40]. Second, those that provide single-cell,
or close-to single-cell resolution for a more limited number
of transcripts, such as MER-FISH [40]. In the intermedi-
ary zone are technologies that include Visium, which allow
for lower-resolution whole transcriptome sequencing of
‘patches’ of 5-50 cells [38, 41]. These technologies have
provided detailed insights into the TME in the context of
ICI treatment for melanoma liver metastases. A compre-
hensive analysis of cutaneous and uveal melanoma liver
metastases identified differences in the TME between these
melanoma subtypes, such as PD-L1 expression and the ratio
of exhausted CD8 T cells to several other T cell subsets
[30]. High-plex spatial RNA profiling has been instrumental
in revealing cell type-specific biomarker expression in the
TME during early melanoma evolution, including promi-
nent expression of SI00A8 and S100A9 in melanoma-adja-
cent keratinocytes [42]. Furthermore, these technologies
have been used to examine the immune landscape of tumor-
associated lymph nodes in melanoma, leading to the iden-
tification of potential biomarkers of CD11c activation that
could be clinically relevant for predicting survival outcomes
[371.

Spatial transcriptomics platforms, including NanoString
and Visium, have greatly advanced our understanding of
gene transcription by facilitating the detailed analysis of
mRNA levels at a high spatial resolution [37-41]. Of note,
transcriptomic-based technologies do possess inherent limi-
tations as some isoforms may not be accurately differenti-
ated by these platforms and mRNA levels are not always
congruent with protein expression. Thus, protein-based
methodologies cannot be wholly substituted by spatial
transcriptomics alone. Integration of spatial proteomic and
transcriptomic profiling allowed by currently available plat-
forms has already shown promise in offering a more holis-
tic view of the cellular landscape [23, 24]. However, the
field still faces significant challenges in merging these data
streams, largely due to technological limitations in compre-
hensively measuring both the transcriptome and proteome
simultaneously.

Reference
papers
Hoefsmit et
al., 2020;
Thrane et al.,
2018.[30, 31]
2021.[32]

Limited resolution compared Quek et al.,

at the cellular-compartment

level through fluorescence
localization. CosMx provides

single-cell information on a
more limited panel of RNA

Limited to transcriptomics
and proteins.

high-throughput whole
transcriptome information
markers, does not provide
information on protein
transcriptomics, analyzes
‘patches’ of 5-50 cells

Limitations

tially resolved transcriptome to other forms of spatial

provide information on gene data, GeoMx provides
data.

High-throughput, can
expression patterns within
tissues.

High-throughput and spa-

Advantages

NGS-based Digital Spatial Profiling) and
NanoString CosMx (employing Cyclic

sections. Wide selection of assays includ-
in-Situ Hybridization).

Captures gene expression information
in situ via RNA sequencing of tissue
ing NanoString GeoMx (employing
Molecular profiling of mRNA by
spatially barcoded mRNA-binding

Description
oligonucleotides.

Resolution
10 pm (for
GeoMx),
50 nm (for
CosMx)
55 um

Spatial

Imaging Modality
RNA barcoding with
UV-photocleavable
Oligo capture probes

linkers

CyTOF studies in cutaneous melanoma

Flow cytometry has long been a cornerstone in the field of
cellular analytics, providing a means to measure, quantify
and analyze characteristics of single cells in suspension in
a multiplexed workflow. The Helios CyTOF platform intro-
duced the use of rare earth metal isotopes for antibody label-
ing and integrated mass spectroscopy into flow cytometry

Table 1 (continued)
Spatial transcriptomics

Technology
Visium
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as an analysis technique, thus allowing for separation of
cells based on their mass-to-charge ratio and eliminating
issues with spectral overlap from traditional flow cytometry
platforms [43, 44]. This significantly expanded the capa-
bilities of flow cytometry technology and allowed for the
simultaneous analysis of up to 60 parameters using metal-
tagged antibodies, albeit without preserving spatial orienta-
tion of cells within tissues [44—46]. The technology used to
develop the Helios CyTOF platform paved the way for the
development of the Hyperion CyTOF-IMC platform that
can multiplex image up to 40 markers using rare earth metal
isotope-conjugated antibodies [47].

CyTOF-IMC can detect antibodies at sub-cellular reso-
lution simultaneously on the same tissue slide using high-
frequency laser ablation of antibody-tagged metal isotopes
in a low-dispersion laser ablation chamber, for either FFPE
or fresh tissue [47]. In brief, tissues are labeled with metal-
tagged antibodies using standard immunohistochemistry
methods, air dried, laser-ablated pixel by pixel, and trans-
ported by a mixed argon and helium stream to the CyTOF
mass cytometer for measurement (Fig. 1) [47]. Cellular
images generated by CyTOF-IMC undergo a two-step ana-
lytical process. Images are first segmented into individual
cells using a variety of software. Next, cells are phenotyped
using methods based either on unsupervised clustering (e.g.
Phenograph) [48], FlowSOM [49], or probabilistic classi-
fication models (e.g. Astir) [50] (Table 2 provides a non-
exhaustive overview of some of the more commonly-used
tools available for these tasks). Advanced spatial analysis,
including the calculation of median intercellular distances,
and contact enrichment, can be performed using tools such
as imcRtools [51] (see [52] for a more comprehensive
review of analytical pipelines).

Melanoma @ @

tumor
samples

Fig. 1 Illustration of the data acquisition workflow used for CyTOF-
IMC: (1) One~5 um-thick section of a tissue microarray (TMA), usu-
ally composed of 1 mm2 melanoma cores (2) is stained with a cock-
tail of antibodies labeled with metal isotopes (colored asterisks). (3)
Samples are ablated with a high energy laser in a rastered pattern, and
the resulting ionized isotope plumes are analyzed by a mass cytom-
eter, which returns the number and type of metal isotopes per pixel

o

Antibody
staining

Two of the earliest publications to use CyTOF to char-
acterize melanoma patient samples utilized the Helios
platform to characterize peripheral blood mononuclear
cells (PBMCs) or immune profiles of tumor biopsies from
patients treated with anti-PD-1 monotherapy, or com-
bined anti-PD-1 and anti-CTLA-4 [62, 63]. One early
study conducted on stage IV melanoma patients receiv-
ing anti-PD-1 immunotherapy found that the frequency of
CD14+CD16 —HLA-DRhi monocytes in PBMCs prior to
therapy initiation was a strong indicator of progression-free
and overall survival, suggesting their potential use in inform-
ing treatment decisions [62]. Another study identified acti-
vated T-cell signatures and T-cell populations in responders
to both treatment modalities (anti-PD-1 and anti-CTLA-4)
using a panel of multiplexed antibodies to characterize
immune cell populations [63]. Further analysis revealed an
EOMES + CD69 + CD45RO + effector memory T-cell phe-
notype that was significantly more abundant in responders
to combined immunotherapy than non-responders. The gene
expression profile of this population was associated with
longer progression-free survival in patients treated with
single-agent therapy and showed greater tumor shrinkage in
both treatments, revealing insights into response and resis-
tance mechanisms to ICIs [63]. These early CyTOF flow
cytometry studies provided valuable information regard-
ing abundance of immune cell populations present in the
melanoma TME. However, the advent of the Hyperion IMC
has facilitated the multiplexed characterization of spatial
relationships of cells and biomarkers within the melanoma
TME using the CyTOF platform.

Four recent studies have utilized CyTOF-IMC to directly
characterize the melanoma TME (Table 3). Published in
2021, CyTOF-IMC was employed to analyze the TME of
patients with metastatic melanoma who received ICI, and to

Laser ablation
& mass-spec

Image stack
(1 layer per marker)

(one pixel = Imicron x 1micron). (4) Each antibody results in a single
image per sample, and together are layered to construct a multi-image
stack. Since 2014, CyTOF-IMC has been utilized to spatially analyze
a wide array of tissues and tumor-types, including breast, lung, and
melanoma, as well as to identify biomarkers of response to treatment
in breast cancer (including HR and HER2) or immunotherapy (anti
PD-1 or anti-CTLA4) in melanoma [24, 26, 47, 60, 61]
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identify indicative factors of treatment response [25]. Rather
than segmenting cells, the authors used a newly designed
version of the AQUA software to measure marker intensity
in molecularly defined compartments. Multivariable analy-
ses revealed significant associations of 12 markers with pro-
gression-free survival, and 7 markers with overall survival,
which included b2-microglobulin [25].

In our study, published in 2022, we utilized CyTOF-
IMC to profile more than 230,000 individual cells from 5
benign nevi and 67 melanomas and identified melanoma,
lymphocyte, macrophage/monocyte, and stromal cell popu-
lations, allowing for in-depth spatial quantification of the
melanoma microenvironment [26]. While prior studies have
shown that the abundance of TILs in the TME is associ-
ated with better prognosis and response to ICIs [64—66], we
demonstrated that within the pre-treatment melanoma TME,
it was the abundance of proliferating antigen-experienced
cytotoxic T-cells (CD8 + CD45RO +Ki67+) and their prox-
imity to melanoma cells that best informed on ICI responses
in our analyzed cohort [26]. This indicated that a shorter dis-
tance between melanoma and nearby antigen-experienced
cytotoxic T-cells within the TME was linked to a favour-
able response, highlighting the potential of CyTOF-IMC
to quantify spatial cell-cell interactions for ICI biomarker
studies.

Two other studies were published in 2022 that utilized
CyTOF-IMC but combined this approach with other modal-
ities to investigate the immune environment of melanoma.
Specifically, researchers investigated the role of regula-
tory and pro-inflammatory cytokine-expressing B cells in
patients with melanoma, utilizing flow cytometry, CyTOF-
IMC, single-cell RN Aseq, immunofluorescence staining and
transcriptomic analysis [23]. The group found that patients
had enhanced circulating regulatory B cell populations and
reduced pro-inflammatory B cell populations compared
to healthy volunteers [23]. They also found that cytokine-
expressing B cells in the melanoma TME assembled in
clusters and interacted with T-cells and T-regulatory cells
via various signaling pathways [23]. Patient-derived B cells
were found to promote T-regulatory cell differentiation and
T-helper cell proliferation in a TGF-B-dependent manner, an
effect further enhanced with anti-PD-1 checkpoint blockade
[23]. These findings highlight the bidirectional crosstalk
between B and T cell subsets with immunosuppressive attri-
butes in the context of melanoma. In another CyTOF IMC
study, researchers reported the use of multiplexed mass
cytometry—based imaging of protein markers and RNA tran-
scripts to investigate the chemokine landscape and immune
infiltration in metastatic melanoma samples [24]. The study
showed that tumors lacking immune infiltration had low
levels of antigen presentation and markers of inflammation,
and were devoid of most of the profiled chemokines [24]. In

contrast, infiltrated tumors expressed high cytokine levels,
with CXCL9 and CXCL10 being localized in patches asso-
ciated with dysfunctional T-cells expressing the B lympho-
cyte chemoattractant CXCL13 [24]. This study also found
that T-cells play a role in B cell recruitment and potentially
in B cell follicle formation, and that the formation of ter-
tiary lymphoid structures may be accompanied by naive and
naive-like T-cell recruitment, which can contribute to anti-
tumor activity. These two CyTOF-IMC articles demonstrate
the potential of combining multiple spatial ‘omic’ technolo-
gies to make important TME discoveries.

Future studies combining multiple spatial ‘omic’ technol-
ogies (e.g. CyTOF-IMC, NanoString, Visium, ATAC-Seq,
microbiome analysis, and plasma metabolite analysis) will
undoubtedly lead to a more deeper understanding of TME
biology. One challenge with integrating multiple profiling
approaches is that often these technologies require differ-
ent biological material inputs (i.e. plasma, tissue sections,
or tissue lysate). Already, studies have expanded IMC tech-
nologies to detect mRNA and proteins with single-cell and
spatial resolution in melanoma and breast tumours, captur-
ing three mRNAs along with a panel of proteins to reveal
correlations between mRNA and proteins at both the sin-
gle-cell and cell population levels [24, 67]. Furthermore,
we recently interrogated microbiome composition, plasma
metabolite makeup, and employed CyTOF-IMC to analyze
the immune landscape of melanoma tumors prior to fecal
microbiota transplantation (FMT) in order to more compre-
hensively characterize the immune infiltrates in responsive
and non-responsive patients to combination FMT and ICI
therapy [68].

Limitations

Spatial imaging proteomic and transcriptomics technolo-
gies, while powerful, are newer techniques that often grapple
with limitations and compromises. These include balancing
single-cell resolution with high multiplexing capabilities,
limitations in availability of required reagents such as high-
quality antibodies and probes, as well as challenges associ-
ated with high costs and slow data acquisition times coupled
with the complexity of data analysis. For example, analyz-
ing and interpreting the large and complex datasets produced
by CyTOF-IMC requires sophisticated tools and computa-
tional expertise. Recent advances in machine learning have
allowed for improved cell segmentation and classification in
the analysis and interpretation of large and complex datas-
ets produced by CyTOF-IMC. For example, a recent study
utilized CyTOF-IMC and deep learning to analyze the TME
of lung adenocarcinoma samples from 416 patients, profil-
ing 1.6 million cells using a combination of classical and
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modern machine learning based computer vision algorithms
in order to reveal distinct immune lineages and activation
states with clinical correlates, and demonstrating the poten-
tial of artificial intelligence in predicting patient progression
using a single 1-mm? tumor core [57, 61]. Finally, as the
technology for spatial imaging and transcriptomics continue
to advance, analytical tools, imaging analysis methods and
data processing pipelines will need to keep pace. These
rapid advances provide both great opportunities and present
unique challenges to researchers, as consolidation of best-
practices for application and data analysis are continually
evolving to meet the needs of the ever-advancing armamen-
tarium of spatial imaging technologies.

Conclusion

The future of single-cell spatial profiling will be driven by
the development of novel technologies that can overcome
current limitations and provide more nuanced insights into
single-cell dynamics. These advancements will enable mul-
tiplexed, cell-type specific, and tumor location-specific
analysis of biomarkers, which could significantly enhance
their predictive power. Furthermore, the integration of 3D
spatial imaging using technologies such as CyTOF-IMC
may provide a more comprehensive view of the cellular
landscape. Ultimately, the integration of 3D biomarker
imaging across multi-omic platforms would significantly
improve our understanding of the TME [69].

Within the melanoma TME research field, these single cell
imaging advancements are poised to have an immediate and
profound impact. With the recent approval of anti-LAG-3 for
the treatment of late-stage metastatic melanoma, identification
of biomarkers that can inform on prescription of monotherapy
anti-PD-1, versus combinations that include anti-CTLA-4
and LAG-3, are urgently needed. Moreover, single cell tech-
nologies amenable to predicting response in the neoadjuvant
setting could significantly advance personalized medicine by
tailoring adjuvant treatments to individual patient profiles [11].

As our review has underscored, recent studies utilizing
single cell imaging approaches are just beginning to illumi-
nate the cellular composition and functional dynamics of the
melanoma TME. This area of investigation has the potential
to uncover novel biomarkers for diagnosis and prognosis,
particularly in the context of ICI response, and to identify
new targets for therapeutic intervention.

Search methodology

In this review, a search of peer-reviewed scientific articles
and literature reviews was completed using PubMed with
the following search terms: (“Melanoma”) AND (“Tumor
micro-environment” OR “Tumour micro-environment”

OR “Tumor microenvironment” OR “Tumour microenvi-
ronment” OR “Cellular Microenvironment” OR “Cellular
Micro-environment” OR “Tumour immune microenviron-
ment” OR “Tumor immune microenvironment” OR “Tumour
immune micro-environment” OR “Tumor immune micro-
environment”) AND (“spatial landscape” OR “spatial”),
within the date range of 2014-2023 (the earliest CyTOF-
IMC paper being released in 2014), retrieving 82 results.
After full-text review, we included 3 papers on melanoma
spatial imaging using CyTOF-IMC, and captured an addi-
tional 6 papers on other melanoma spatial imaging technol-
ogies. We also applied a snowballing search methodology
using the references cited in the articles identified in the lit-
erature search, locating an additional 1 pertinent paper (see
Table 3). For the snowballing search, articles were limited to
those including CyTOF-IMC or other relevant spatial imag-
ing technologies, melanoma or another relevant cancer, or
other pertinent articles. Each identified item was assessed
for relevance by a member of the study team and final calls
were made by the senior author. This review is intended to
summarize high-impact, relevant and recent literature on
spatial imaging technologies, specifically CyTOF-IMC,
for the tumor microenvironment and immune landscape in
melanoma, and is not meant to be exhaustive.
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